123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379 |
- //===- InlineFunction.cpp - Code to perform function inlining -------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements inlining of a function into a call site, resolving
- // parameters and the return value as appropriate.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/BlockFrequencyInfo.h"
- #include "llvm/Analysis/CallGraph.h"
- #include "llvm/Analysis/CaptureTracking.h"
- #include "llvm/Analysis/EHPersonalities.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/ProfileSummaryInfo.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DIBuilder.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/Transforms/Utils/ValueMapper.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <iterator>
- #include <limits>
- #include <string>
- #include <utility>
- #include <vector>
- using namespace llvm;
- using ProfileCount = Function::ProfileCount;
- static cl::opt<bool>
- EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
- cl::Hidden,
- cl::desc("Convert noalias attributes to metadata during inlining."));
- static cl::opt<bool>
- PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
- cl::init(true), cl::Hidden,
- cl::desc("Convert align attributes to assumptions during inlining."));
- llvm::InlineResult llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
- AAResults *CalleeAAR,
- bool InsertLifetime) {
- return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime);
- }
- llvm::InlineResult llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
- AAResults *CalleeAAR,
- bool InsertLifetime) {
- return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime);
- }
- namespace {
- /// A class for recording information about inlining a landing pad.
- class LandingPadInliningInfo {
- /// Destination of the invoke's unwind.
- BasicBlock *OuterResumeDest;
- /// Destination for the callee's resume.
- BasicBlock *InnerResumeDest = nullptr;
- /// LandingPadInst associated with the invoke.
- LandingPadInst *CallerLPad = nullptr;
- /// PHI for EH values from landingpad insts.
- PHINode *InnerEHValuesPHI = nullptr;
- SmallVector<Value*, 8> UnwindDestPHIValues;
- public:
- LandingPadInliningInfo(InvokeInst *II)
- : OuterResumeDest(II->getUnwindDest()) {
- // If there are PHI nodes in the unwind destination block, we need to keep
- // track of which values came into them from the invoke before removing
- // the edge from this block.
- BasicBlock *InvokeBB = II->getParent();
- BasicBlock::iterator I = OuterResumeDest->begin();
- for (; isa<PHINode>(I); ++I) {
- // Save the value to use for this edge.
- PHINode *PHI = cast<PHINode>(I);
- UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
- }
- CallerLPad = cast<LandingPadInst>(I);
- }
- /// The outer unwind destination is the target of
- /// unwind edges introduced for calls within the inlined function.
- BasicBlock *getOuterResumeDest() const {
- return OuterResumeDest;
- }
- BasicBlock *getInnerResumeDest();
- LandingPadInst *getLandingPadInst() const { return CallerLPad; }
- /// Forward the 'resume' instruction to the caller's landing pad block.
- /// When the landing pad block has only one predecessor, this is
- /// a simple branch. When there is more than one predecessor, we need to
- /// split the landing pad block after the landingpad instruction and jump
- /// to there.
- void forwardResume(ResumeInst *RI,
- SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
- /// Add incoming-PHI values to the unwind destination block for the given
- /// basic block, using the values for the original invoke's source block.
- void addIncomingPHIValuesFor(BasicBlock *BB) const {
- addIncomingPHIValuesForInto(BB, OuterResumeDest);
- }
- void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
- BasicBlock::iterator I = dest->begin();
- for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
- PHINode *phi = cast<PHINode>(I);
- phi->addIncoming(UnwindDestPHIValues[i], src);
- }
- }
- };
- } // end anonymous namespace
- /// Get or create a target for the branch from ResumeInsts.
- BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
- if (InnerResumeDest) return InnerResumeDest;
- // Split the landing pad.
- BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
- InnerResumeDest =
- OuterResumeDest->splitBasicBlock(SplitPoint,
- OuterResumeDest->getName() + ".body");
- // The number of incoming edges we expect to the inner landing pad.
- const unsigned PHICapacity = 2;
- // Create corresponding new PHIs for all the PHIs in the outer landing pad.
- Instruction *InsertPoint = &InnerResumeDest->front();
- BasicBlock::iterator I = OuterResumeDest->begin();
- for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
- PHINode *OuterPHI = cast<PHINode>(I);
- PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
- OuterPHI->getName() + ".lpad-body",
- InsertPoint);
- OuterPHI->replaceAllUsesWith(InnerPHI);
- InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
- }
- // Create a PHI for the exception values.
- InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
- "eh.lpad-body", InsertPoint);
- CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
- InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
- // All done.
- return InnerResumeDest;
- }
- /// Forward the 'resume' instruction to the caller's landing pad block.
- /// When the landing pad block has only one predecessor, this is a simple
- /// branch. When there is more than one predecessor, we need to split the
- /// landing pad block after the landingpad instruction and jump to there.
- void LandingPadInliningInfo::forwardResume(
- ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
- BasicBlock *Dest = getInnerResumeDest();
- BasicBlock *Src = RI->getParent();
- BranchInst::Create(Dest, Src);
- // Update the PHIs in the destination. They were inserted in an order which
- // makes this work.
- addIncomingPHIValuesForInto(Src, Dest);
- InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
- RI->eraseFromParent();
- }
- /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
- static Value *getParentPad(Value *EHPad) {
- if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
- return FPI->getParentPad();
- return cast<CatchSwitchInst>(EHPad)->getParentPad();
- }
- using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
- /// Helper for getUnwindDestToken that does the descendant-ward part of
- /// the search.
- static Value *getUnwindDestTokenHelper(Instruction *EHPad,
- UnwindDestMemoTy &MemoMap) {
- SmallVector<Instruction *, 8> Worklist(1, EHPad);
- while (!Worklist.empty()) {
- Instruction *CurrentPad = Worklist.pop_back_val();
- // We only put pads on the worklist that aren't in the MemoMap. When
- // we find an unwind dest for a pad we may update its ancestors, but
- // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
- // so they should never get updated while queued on the worklist.
- assert(!MemoMap.count(CurrentPad));
- Value *UnwindDestToken = nullptr;
- if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
- if (CatchSwitch->hasUnwindDest()) {
- UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
- } else {
- // Catchswitch doesn't have a 'nounwind' variant, and one might be
- // annotated as "unwinds to caller" when really it's nounwind (see
- // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
- // parent's unwind dest from this. We can check its catchpads'
- // descendants, since they might include a cleanuppad with an
- // "unwinds to caller" cleanupret, which can be trusted.
- for (auto HI = CatchSwitch->handler_begin(),
- HE = CatchSwitch->handler_end();
- HI != HE && !UnwindDestToken; ++HI) {
- BasicBlock *HandlerBlock = *HI;
- auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
- for (User *Child : CatchPad->users()) {
- // Intentionally ignore invokes here -- since the catchswitch is
- // marked "unwind to caller", it would be a verifier error if it
- // contained an invoke which unwinds out of it, so any invoke we'd
- // encounter must unwind to some child of the catch.
- if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
- continue;
- Instruction *ChildPad = cast<Instruction>(Child);
- auto Memo = MemoMap.find(ChildPad);
- if (Memo == MemoMap.end()) {
- // Haven't figured out this child pad yet; queue it.
- Worklist.push_back(ChildPad);
- continue;
- }
- // We've already checked this child, but might have found that
- // it offers no proof either way.
- Value *ChildUnwindDestToken = Memo->second;
- if (!ChildUnwindDestToken)
- continue;
- // We already know the child's unwind dest, which can either
- // be ConstantTokenNone to indicate unwind to caller, or can
- // be another child of the catchpad. Only the former indicates
- // the unwind dest of the catchswitch.
- if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
- UnwindDestToken = ChildUnwindDestToken;
- break;
- }
- assert(getParentPad(ChildUnwindDestToken) == CatchPad);
- }
- }
- }
- } else {
- auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
- for (User *U : CleanupPad->users()) {
- if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
- if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
- UnwindDestToken = RetUnwindDest->getFirstNonPHI();
- else
- UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
- break;
- }
- Value *ChildUnwindDestToken;
- if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
- ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
- } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
- Instruction *ChildPad = cast<Instruction>(U);
- auto Memo = MemoMap.find(ChildPad);
- if (Memo == MemoMap.end()) {
- // Haven't resolved this child yet; queue it and keep searching.
- Worklist.push_back(ChildPad);
- continue;
- }
- // We've checked this child, but still need to ignore it if it
- // had no proof either way.
- ChildUnwindDestToken = Memo->second;
- if (!ChildUnwindDestToken)
- continue;
- } else {
- // Not a relevant user of the cleanuppad
- continue;
- }
- // In a well-formed program, the child/invoke must either unwind to
- // an(other) child of the cleanup, or exit the cleanup. In the
- // first case, continue searching.
- if (isa<Instruction>(ChildUnwindDestToken) &&
- getParentPad(ChildUnwindDestToken) == CleanupPad)
- continue;
- UnwindDestToken = ChildUnwindDestToken;
- break;
- }
- }
- // If we haven't found an unwind dest for CurrentPad, we may have queued its
- // children, so move on to the next in the worklist.
- if (!UnwindDestToken)
- continue;
- // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits
- // any ancestors of CurrentPad up to but not including UnwindDestToken's
- // parent pad. Record this in the memo map, and check to see if the
- // original EHPad being queried is one of the ones exited.
- Value *UnwindParent;
- if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
- UnwindParent = getParentPad(UnwindPad);
- else
- UnwindParent = nullptr;
- bool ExitedOriginalPad = false;
- for (Instruction *ExitedPad = CurrentPad;
- ExitedPad && ExitedPad != UnwindParent;
- ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
- // Skip over catchpads since they just follow their catchswitches.
- if (isa<CatchPadInst>(ExitedPad))
- continue;
- MemoMap[ExitedPad] = UnwindDestToken;
- ExitedOriginalPad |= (ExitedPad == EHPad);
- }
- if (ExitedOriginalPad)
- return UnwindDestToken;
- // Continue the search.
- }
- // No definitive information is contained within this funclet.
- return nullptr;
- }
- /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad,
- /// return that pad instruction. If it unwinds to caller, return
- /// ConstantTokenNone. If it does not have a definitive unwind destination,
- /// return nullptr.
- ///
- /// This routine gets invoked for calls in funclets in inlinees when inlining
- /// an invoke. Since many funclets don't have calls inside them, it's queried
- /// on-demand rather than building a map of pads to unwind dests up front.
- /// Determining a funclet's unwind dest may require recursively searching its
- /// descendants, and also ancestors and cousins if the descendants don't provide
- /// an answer. Since most funclets will have their unwind dest immediately
- /// available as the unwind dest of a catchswitch or cleanupret, this routine
- /// searches top-down from the given pad and then up. To avoid worst-case
- /// quadratic run-time given that approach, it uses a memo map to avoid
- /// re-processing funclet trees. The callers that rewrite the IR as they go
- /// take advantage of this, for correctness, by checking/forcing rewritten
- /// pads' entries to match the original callee view.
- static Value *getUnwindDestToken(Instruction *EHPad,
- UnwindDestMemoTy &MemoMap) {
- // Catchpads unwind to the same place as their catchswitch;
- // redirct any queries on catchpads so the code below can
- // deal with just catchswitches and cleanuppads.
- if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
- EHPad = CPI->getCatchSwitch();
- // Check if we've already determined the unwind dest for this pad.
- auto Memo = MemoMap.find(EHPad);
- if (Memo != MemoMap.end())
- return Memo->second;
- // Search EHPad and, if necessary, its descendants.
- Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
- assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
- if (UnwindDestToken)
- return UnwindDestToken;
- // No information is available for this EHPad from itself or any of its
- // descendants. An unwind all the way out to a pad in the caller would
- // need also to agree with the unwind dest of the parent funclet, so
- // search up the chain to try to find a funclet with information. Put
- // null entries in the memo map to avoid re-processing as we go up.
- MemoMap[EHPad] = nullptr;
- #ifndef NDEBUG
- SmallPtrSet<Instruction *, 4> TempMemos;
- TempMemos.insert(EHPad);
- #endif
- Instruction *LastUselessPad = EHPad;
- Value *AncestorToken;
- for (AncestorToken = getParentPad(EHPad);
- auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
- AncestorToken = getParentPad(AncestorToken)) {
- // Skip over catchpads since they just follow their catchswitches.
- if (isa<CatchPadInst>(AncestorPad))
- continue;
- // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
- // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
- // call to getUnwindDestToken, that would mean that AncestorPad had no
- // information in itself, its descendants, or its ancestors. If that
- // were the case, then we should also have recorded the lack of information
- // for the descendant that we're coming from. So assert that we don't
- // find a null entry in the MemoMap for AncestorPad.
- assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
- auto AncestorMemo = MemoMap.find(AncestorPad);
- if (AncestorMemo == MemoMap.end()) {
- UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
- } else {
- UnwindDestToken = AncestorMemo->second;
- }
- if (UnwindDestToken)
- break;
- LastUselessPad = AncestorPad;
- MemoMap[LastUselessPad] = nullptr;
- #ifndef NDEBUG
- TempMemos.insert(LastUselessPad);
- #endif
- }
- // We know that getUnwindDestTokenHelper was called on LastUselessPad and
- // returned nullptr (and likewise for EHPad and any of its ancestors up to
- // LastUselessPad), so LastUselessPad has no information from below. Since
- // getUnwindDestTokenHelper must investigate all downward paths through
- // no-information nodes to prove that a node has no information like this,
- // and since any time it finds information it records it in the MemoMap for
- // not just the immediately-containing funclet but also any ancestors also
- // exited, it must be the case that, walking downward from LastUselessPad,
- // visiting just those nodes which have not been mapped to an unwind dest
- // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
- // they are just used to keep getUnwindDestTokenHelper from repeating work),
- // any node visited must have been exhaustively searched with no information
- // for it found.
- SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
- while (!Worklist.empty()) {
- Instruction *UselessPad = Worklist.pop_back_val();
- auto Memo = MemoMap.find(UselessPad);
- if (Memo != MemoMap.end() && Memo->second) {
- // Here the name 'UselessPad' is a bit of a misnomer, because we've found
- // that it is a funclet that does have information about unwinding to
- // a particular destination; its parent was a useless pad.
- // Since its parent has no information, the unwind edge must not escape
- // the parent, and must target a sibling of this pad. This local unwind
- // gives us no information about EHPad. Leave it and the subtree rooted
- // at it alone.
- assert(getParentPad(Memo->second) == getParentPad(UselessPad));
- continue;
- }
- // We know we don't have information for UselesPad. If it has an entry in
- // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
- // added on this invocation of getUnwindDestToken; if a previous invocation
- // recorded nullptr, it would have had to prove that the ancestors of
- // UselessPad, which include LastUselessPad, had no information, and that
- // in turn would have required proving that the descendants of
- // LastUselesPad, which include EHPad, have no information about
- // LastUselessPad, which would imply that EHPad was mapped to nullptr in
- // the MemoMap on that invocation, which isn't the case if we got here.
- assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
- // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
- // information that we'd be contradicting by making a map entry for it
- // (which is something that getUnwindDestTokenHelper must have proved for
- // us to get here). Just assert on is direct users here; the checks in
- // this downward walk at its descendants will verify that they don't have
- // any unwind edges that exit 'UselessPad' either (i.e. they either have no
- // unwind edges or unwind to a sibling).
- MemoMap[UselessPad] = UnwindDestToken;
- if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
- assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
- for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
- auto *CatchPad = HandlerBlock->getFirstNonPHI();
- for (User *U : CatchPad->users()) {
- assert(
- (!isa<InvokeInst>(U) ||
- (getParentPad(
- cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
- CatchPad)) &&
- "Expected useless pad");
- if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
- Worklist.push_back(cast<Instruction>(U));
- }
- }
- } else {
- assert(isa<CleanupPadInst>(UselessPad));
- for (User *U : UselessPad->users()) {
- assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
- assert((!isa<InvokeInst>(U) ||
- (getParentPad(
- cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
- UselessPad)) &&
- "Expected useless pad");
- if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
- Worklist.push_back(cast<Instruction>(U));
- }
- }
- }
- return UnwindDestToken;
- }
- /// When we inline a basic block into an invoke,
- /// we have to turn all of the calls that can throw into invokes.
- /// This function analyze BB to see if there are any calls, and if so,
- /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
- /// nodes in that block with the values specified in InvokeDestPHIValues.
- static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
- BasicBlock *BB, BasicBlock *UnwindEdge,
- UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
- for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
- Instruction *I = &*BBI++;
- // We only need to check for function calls: inlined invoke
- // instructions require no special handling.
- CallInst *CI = dyn_cast<CallInst>(I);
- if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
- continue;
- // We do not need to (and in fact, cannot) convert possibly throwing calls
- // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
- // invokes. The caller's "segment" of the deoptimization continuation
- // attached to the newly inlined @llvm.experimental_deoptimize
- // (resp. @llvm.experimental.guard) call should contain the exception
- // handling logic, if any.
- if (auto *F = CI->getCalledFunction())
- if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
- F->getIntrinsicID() == Intrinsic::experimental_guard)
- continue;
- if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
- // This call is nested inside a funclet. If that funclet has an unwind
- // destination within the inlinee, then unwinding out of this call would
- // be UB. Rewriting this call to an invoke which targets the inlined
- // invoke's unwind dest would give the call's parent funclet multiple
- // unwind destinations, which is something that subsequent EH table
- // generation can't handle and that the veirifer rejects. So when we
- // see such a call, leave it as a call.
- auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
- Value *UnwindDestToken =
- getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
- if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
- continue;
- #ifndef NDEBUG
- Instruction *MemoKey;
- if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
- MemoKey = CatchPad->getCatchSwitch();
- else
- MemoKey = FuncletPad;
- assert(FuncletUnwindMap->count(MemoKey) &&
- (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
- "must get memoized to avoid confusing later searches");
- #endif // NDEBUG
- }
- changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
- return BB;
- }
- return nullptr;
- }
- /// If we inlined an invoke site, we need to convert calls
- /// in the body of the inlined function into invokes.
- ///
- /// II is the invoke instruction being inlined. FirstNewBlock is the first
- /// block of the inlined code (the last block is the end of the function),
- /// and InlineCodeInfo is information about the code that got inlined.
- static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
- ClonedCodeInfo &InlinedCodeInfo) {
- BasicBlock *InvokeDest = II->getUnwindDest();
- Function *Caller = FirstNewBlock->getParent();
- // The inlined code is currently at the end of the function, scan from the
- // start of the inlined code to its end, checking for stuff we need to
- // rewrite.
- LandingPadInliningInfo Invoke(II);
- // Get all of the inlined landing pad instructions.
- SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
- for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
- I != E; ++I)
- if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
- InlinedLPads.insert(II->getLandingPadInst());
- // Append the clauses from the outer landing pad instruction into the inlined
- // landing pad instructions.
- LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
- for (LandingPadInst *InlinedLPad : InlinedLPads) {
- unsigned OuterNum = OuterLPad->getNumClauses();
- InlinedLPad->reserveClauses(OuterNum);
- for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
- InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
- if (OuterLPad->isCleanup())
- InlinedLPad->setCleanup(true);
- }
- for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
- BB != E; ++BB) {
- if (InlinedCodeInfo.ContainsCalls)
- if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
- &*BB, Invoke.getOuterResumeDest()))
- // Update any PHI nodes in the exceptional block to indicate that there
- // is now a new entry in them.
- Invoke.addIncomingPHIValuesFor(NewBB);
- // Forward any resumes that are remaining here.
- if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
- Invoke.forwardResume(RI, InlinedLPads);
- }
- // Now that everything is happy, we have one final detail. The PHI nodes in
- // the exception destination block still have entries due to the original
- // invoke instruction. Eliminate these entries (which might even delete the
- // PHI node) now.
- InvokeDest->removePredecessor(II->getParent());
- }
- /// If we inlined an invoke site, we need to convert calls
- /// in the body of the inlined function into invokes.
- ///
- /// II is the invoke instruction being inlined. FirstNewBlock is the first
- /// block of the inlined code (the last block is the end of the function),
- /// and InlineCodeInfo is information about the code that got inlined.
- static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
- ClonedCodeInfo &InlinedCodeInfo) {
- BasicBlock *UnwindDest = II->getUnwindDest();
- Function *Caller = FirstNewBlock->getParent();
- assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
- // If there are PHI nodes in the unwind destination block, we need to keep
- // track of which values came into them from the invoke before removing the
- // edge from this block.
- SmallVector<Value *, 8> UnwindDestPHIValues;
- BasicBlock *InvokeBB = II->getParent();
- for (Instruction &I : *UnwindDest) {
- // Save the value to use for this edge.
- PHINode *PHI = dyn_cast<PHINode>(&I);
- if (!PHI)
- break;
- UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
- }
- // Add incoming-PHI values to the unwind destination block for the given basic
- // block, using the values for the original invoke's source block.
- auto UpdatePHINodes = [&](BasicBlock *Src) {
- BasicBlock::iterator I = UnwindDest->begin();
- for (Value *V : UnwindDestPHIValues) {
- PHINode *PHI = cast<PHINode>(I);
- PHI->addIncoming(V, Src);
- ++I;
- }
- };
- // This connects all the instructions which 'unwind to caller' to the invoke
- // destination.
- UnwindDestMemoTy FuncletUnwindMap;
- for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
- BB != E; ++BB) {
- if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
- if (CRI->unwindsToCaller()) {
- auto *CleanupPad = CRI->getCleanupPad();
- CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
- CRI->eraseFromParent();
- UpdatePHINodes(&*BB);
- // Finding a cleanupret with an unwind destination would confuse
- // subsequent calls to getUnwindDestToken, so map the cleanuppad
- // to short-circuit any such calls and recognize this as an "unwind
- // to caller" cleanup.
- assert(!FuncletUnwindMap.count(CleanupPad) ||
- isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
- FuncletUnwindMap[CleanupPad] =
- ConstantTokenNone::get(Caller->getContext());
- }
- }
- Instruction *I = BB->getFirstNonPHI();
- if (!I->isEHPad())
- continue;
- Instruction *Replacement = nullptr;
- if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
- if (CatchSwitch->unwindsToCaller()) {
- Value *UnwindDestToken;
- if (auto *ParentPad =
- dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
- // This catchswitch is nested inside another funclet. If that
- // funclet has an unwind destination within the inlinee, then
- // unwinding out of this catchswitch would be UB. Rewriting this
- // catchswitch to unwind to the inlined invoke's unwind dest would
- // give the parent funclet multiple unwind destinations, which is
- // something that subsequent EH table generation can't handle and
- // that the veirifer rejects. So when we see such a call, leave it
- // as "unwind to caller".
- UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
- if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
- continue;
- } else {
- // This catchswitch has no parent to inherit constraints from, and
- // none of its descendants can have an unwind edge that exits it and
- // targets another funclet in the inlinee. It may or may not have a
- // descendant that definitively has an unwind to caller. In either
- // case, we'll have to assume that any unwinds out of it may need to
- // be routed to the caller, so treat it as though it has a definitive
- // unwind to caller.
- UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
- }
- auto *NewCatchSwitch = CatchSwitchInst::Create(
- CatchSwitch->getParentPad(), UnwindDest,
- CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
- CatchSwitch);
- for (BasicBlock *PadBB : CatchSwitch->handlers())
- NewCatchSwitch->addHandler(PadBB);
- // Propagate info for the old catchswitch over to the new one in
- // the unwind map. This also serves to short-circuit any subsequent
- // checks for the unwind dest of this catchswitch, which would get
- // confused if they found the outer handler in the callee.
- FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
- Replacement = NewCatchSwitch;
- }
- } else if (!isa<FuncletPadInst>(I)) {
- llvm_unreachable("unexpected EHPad!");
- }
- if (Replacement) {
- Replacement->takeName(I);
- I->replaceAllUsesWith(Replacement);
- I->eraseFromParent();
- UpdatePHINodes(&*BB);
- }
- }
- if (InlinedCodeInfo.ContainsCalls)
- for (Function::iterator BB = FirstNewBlock->getIterator(),
- E = Caller->end();
- BB != E; ++BB)
- if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
- &*BB, UnwindDest, &FuncletUnwindMap))
- // Update any PHI nodes in the exceptional block to indicate that there
- // is now a new entry in them.
- UpdatePHINodes(NewBB);
- // Now that everything is happy, we have one final detail. The PHI nodes in
- // the exception destination block still have entries due to the original
- // invoke instruction. Eliminate these entries (which might even delete the
- // PHI node) now.
- UnwindDest->removePredecessor(InvokeBB);
- }
- /// When inlining a call site that has !llvm.mem.parallel_loop_access or
- /// llvm.access.group metadata, that metadata should be propagated to all
- /// memory-accessing cloned instructions.
- static void PropagateParallelLoopAccessMetadata(CallSite CS,
- ValueToValueMapTy &VMap) {
- MDNode *M =
- CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
- MDNode *CallAccessGroup =
- CS.getInstruction()->getMetadata(LLVMContext::MD_access_group);
- if (!M && !CallAccessGroup)
- return;
- for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
- VMI != VMIE; ++VMI) {
- if (!VMI->second)
- continue;
- Instruction *NI = dyn_cast<Instruction>(VMI->second);
- if (!NI)
- continue;
- if (M) {
- if (MDNode *PM =
- NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
- M = MDNode::concatenate(PM, M);
- NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
- } else if (NI->mayReadOrWriteMemory()) {
- NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
- }
- }
- if (NI->mayReadOrWriteMemory()) {
- MDNode *UnitedAccGroups = uniteAccessGroups(
- NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup);
- NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups);
- }
- }
- }
- /// When inlining a function that contains noalias scope metadata,
- /// this metadata needs to be cloned so that the inlined blocks
- /// have different "unique scopes" at every call site. Were this not done, then
- /// aliasing scopes from a function inlined into a caller multiple times could
- /// not be differentiated (and this would lead to miscompiles because the
- /// non-aliasing property communicated by the metadata could have
- /// call-site-specific control dependencies).
- static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
- const Function *CalledFunc = CS.getCalledFunction();
- SetVector<const MDNode *> MD;
- // Note: We could only clone the metadata if it is already used in the
- // caller. I'm omitting that check here because it might confuse
- // inter-procedural alias analysis passes. We can revisit this if it becomes
- // an efficiency or overhead problem.
- for (const BasicBlock &I : *CalledFunc)
- for (const Instruction &J : I) {
- if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
- MD.insert(M);
- if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
- MD.insert(M);
- }
- if (MD.empty())
- return;
- // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
- // the set.
- SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
- while (!Queue.empty()) {
- const MDNode *M = cast<MDNode>(Queue.pop_back_val());
- for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
- if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
- if (MD.insert(M1))
- Queue.push_back(M1);
- }
- // Now we have a complete set of all metadata in the chains used to specify
- // the noalias scopes and the lists of those scopes.
- SmallVector<TempMDTuple, 16> DummyNodes;
- DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
- for (const MDNode *I : MD) {
- DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
- MDMap[I].reset(DummyNodes.back().get());
- }
- // Create new metadata nodes to replace the dummy nodes, replacing old
- // metadata references with either a dummy node or an already-created new
- // node.
- for (const MDNode *I : MD) {
- SmallVector<Metadata *, 4> NewOps;
- for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
- const Metadata *V = I->getOperand(i);
- if (const MDNode *M = dyn_cast<MDNode>(V))
- NewOps.push_back(MDMap[M]);
- else
- NewOps.push_back(const_cast<Metadata *>(V));
- }
- MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
- MDTuple *TempM = cast<MDTuple>(MDMap[I]);
- assert(TempM->isTemporary() && "Expected temporary node");
- TempM->replaceAllUsesWith(NewM);
- }
- // Now replace the metadata in the new inlined instructions with the
- // repacements from the map.
- for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
- VMI != VMIE; ++VMI) {
- if (!VMI->second)
- continue;
- Instruction *NI = dyn_cast<Instruction>(VMI->second);
- if (!NI)
- continue;
- if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
- MDNode *NewMD = MDMap[M];
- // If the call site also had alias scope metadata (a list of scopes to
- // which instructions inside it might belong), propagate those scopes to
- // the inlined instructions.
- if (MDNode *CSM =
- CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
- NewMD = MDNode::concatenate(NewMD, CSM);
- NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
- } else if (NI->mayReadOrWriteMemory()) {
- if (MDNode *M =
- CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
- NI->setMetadata(LLVMContext::MD_alias_scope, M);
- }
- if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
- MDNode *NewMD = MDMap[M];
- // If the call site also had noalias metadata (a list of scopes with
- // which instructions inside it don't alias), propagate those scopes to
- // the inlined instructions.
- if (MDNode *CSM =
- CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
- NewMD = MDNode::concatenate(NewMD, CSM);
- NI->setMetadata(LLVMContext::MD_noalias, NewMD);
- } else if (NI->mayReadOrWriteMemory()) {
- if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
- NI->setMetadata(LLVMContext::MD_noalias, M);
- }
- }
- }
- /// If the inlined function has noalias arguments,
- /// then add new alias scopes for each noalias argument, tag the mapped noalias
- /// parameters with noalias metadata specifying the new scope, and tag all
- /// non-derived loads, stores and memory intrinsics with the new alias scopes.
- static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
- const DataLayout &DL, AAResults *CalleeAAR) {
- if (!EnableNoAliasConversion)
- return;
- const Function *CalledFunc = CS.getCalledFunction();
- SmallVector<const Argument *, 4> NoAliasArgs;
- for (const Argument &Arg : CalledFunc->args())
- if (Arg.hasNoAliasAttr() && !Arg.use_empty())
- NoAliasArgs.push_back(&Arg);
- if (NoAliasArgs.empty())
- return;
- // To do a good job, if a noalias variable is captured, we need to know if
- // the capture point dominates the particular use we're considering.
- DominatorTree DT;
- DT.recalculate(const_cast<Function&>(*CalledFunc));
- // noalias indicates that pointer values based on the argument do not alias
- // pointer values which are not based on it. So we add a new "scope" for each
- // noalias function argument. Accesses using pointers based on that argument
- // become part of that alias scope, accesses using pointers not based on that
- // argument are tagged as noalias with that scope.
- DenseMap<const Argument *, MDNode *> NewScopes;
- MDBuilder MDB(CalledFunc->getContext());
- // Create a new scope domain for this function.
- MDNode *NewDomain =
- MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
- for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
- const Argument *A = NoAliasArgs[i];
- std::string Name = CalledFunc->getName();
- if (A->hasName()) {
- Name += ": %";
- Name += A->getName();
- } else {
- Name += ": argument ";
- Name += utostr(i);
- }
- // Note: We always create a new anonymous root here. This is true regardless
- // of the linkage of the callee because the aliasing "scope" is not just a
- // property of the callee, but also all control dependencies in the caller.
- MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
- NewScopes.insert(std::make_pair(A, NewScope));
- }
- // Iterate over all new instructions in the map; for all memory-access
- // instructions, add the alias scope metadata.
- for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
- VMI != VMIE; ++VMI) {
- if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
- if (!VMI->second)
- continue;
- Instruction *NI = dyn_cast<Instruction>(VMI->second);
- if (!NI)
- continue;
- bool IsArgMemOnlyCall = false, IsFuncCall = false;
- SmallVector<const Value *, 2> PtrArgs;
- if (const LoadInst *LI = dyn_cast<LoadInst>(I))
- PtrArgs.push_back(LI->getPointerOperand());
- else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
- PtrArgs.push_back(SI->getPointerOperand());
- else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
- PtrArgs.push_back(VAAI->getPointerOperand());
- else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
- PtrArgs.push_back(CXI->getPointerOperand());
- else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
- PtrArgs.push_back(RMWI->getPointerOperand());
- else if (const auto *Call = dyn_cast<CallBase>(I)) {
- // If we know that the call does not access memory, then we'll still
- // know that about the inlined clone of this call site, and we don't
- // need to add metadata.
- if (Call->doesNotAccessMemory())
- continue;
- IsFuncCall = true;
- if (CalleeAAR) {
- FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
- if (MRB == FMRB_OnlyAccessesArgumentPointees ||
- MRB == FMRB_OnlyReadsArgumentPointees)
- IsArgMemOnlyCall = true;
- }
- for (Value *Arg : Call->args()) {
- // We need to check the underlying objects of all arguments, not just
- // the pointer arguments, because we might be passing pointers as
- // integers, etc.
- // However, if we know that the call only accesses pointer arguments,
- // then we only need to check the pointer arguments.
- if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
- continue;
- PtrArgs.push_back(Arg);
- }
- }
- // If we found no pointers, then this instruction is not suitable for
- // pairing with an instruction to receive aliasing metadata.
- // However, if this is a call, this we might just alias with none of the
- // noalias arguments.
- if (PtrArgs.empty() && !IsFuncCall)
- continue;
- // It is possible that there is only one underlying object, but you
- // need to go through several PHIs to see it, and thus could be
- // repeated in the Objects list.
- SmallPtrSet<const Value *, 4> ObjSet;
- SmallVector<Metadata *, 4> Scopes, NoAliases;
- SmallSetVector<const Argument *, 4> NAPtrArgs;
- for (const Value *V : PtrArgs) {
- SmallVector<const Value *, 4> Objects;
- GetUnderlyingObjects(V, Objects, DL, /* LI = */ nullptr);
- for (const Value *O : Objects)
- ObjSet.insert(O);
- }
- // Figure out if we're derived from anything that is not a noalias
- // argument.
- bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
- for (const Value *V : ObjSet) {
- // Is this value a constant that cannot be derived from any pointer
- // value (we need to exclude constant expressions, for example, that
- // are formed from arithmetic on global symbols).
- bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
- isa<ConstantPointerNull>(V) ||
- isa<ConstantDataVector>(V) || isa<UndefValue>(V);
- if (IsNonPtrConst)
- continue;
- // If this is anything other than a noalias argument, then we cannot
- // completely describe the aliasing properties using alias.scope
- // metadata (and, thus, won't add any).
- if (const Argument *A = dyn_cast<Argument>(V)) {
- if (!A->hasNoAliasAttr())
- UsesAliasingPtr = true;
- } else {
- UsesAliasingPtr = true;
- }
- // If this is not some identified function-local object (which cannot
- // directly alias a noalias argument), or some other argument (which,
- // by definition, also cannot alias a noalias argument), then we could
- // alias a noalias argument that has been captured).
- if (!isa<Argument>(V) &&
- !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
- CanDeriveViaCapture = true;
- }
- // A function call can always get captured noalias pointers (via other
- // parameters, globals, etc.).
- if (IsFuncCall && !IsArgMemOnlyCall)
- CanDeriveViaCapture = true;
- // First, we want to figure out all of the sets with which we definitely
- // don't alias. Iterate over all noalias set, and add those for which:
- // 1. The noalias argument is not in the set of objects from which we
- // definitely derive.
- // 2. The noalias argument has not yet been captured.
- // An arbitrary function that might load pointers could see captured
- // noalias arguments via other noalias arguments or globals, and so we
- // must always check for prior capture.
- for (const Argument *A : NoAliasArgs) {
- if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
- // It might be tempting to skip the
- // PointerMayBeCapturedBefore check if
- // A->hasNoCaptureAttr() is true, but this is
- // incorrect because nocapture only guarantees
- // that no copies outlive the function, not
- // that the value cannot be locally captured.
- !PointerMayBeCapturedBefore(A,
- /* ReturnCaptures */ false,
- /* StoreCaptures */ false, I, &DT)))
- NoAliases.push_back(NewScopes[A]);
- }
- if (!NoAliases.empty())
- NI->setMetadata(LLVMContext::MD_noalias,
- MDNode::concatenate(
- NI->getMetadata(LLVMContext::MD_noalias),
- MDNode::get(CalledFunc->getContext(), NoAliases)));
- // Next, we want to figure out all of the sets to which we might belong.
- // We might belong to a set if the noalias argument is in the set of
- // underlying objects. If there is some non-noalias argument in our list
- // of underlying objects, then we cannot add a scope because the fact
- // that some access does not alias with any set of our noalias arguments
- // cannot itself guarantee that it does not alias with this access
- // (because there is some pointer of unknown origin involved and the
- // other access might also depend on this pointer). We also cannot add
- // scopes to arbitrary functions unless we know they don't access any
- // non-parameter pointer-values.
- bool CanAddScopes = !UsesAliasingPtr;
- if (CanAddScopes && IsFuncCall)
- CanAddScopes = IsArgMemOnlyCall;
- if (CanAddScopes)
- for (const Argument *A : NoAliasArgs) {
- if (ObjSet.count(A))
- Scopes.push_back(NewScopes[A]);
- }
- if (!Scopes.empty())
- NI->setMetadata(
- LLVMContext::MD_alias_scope,
- MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
- MDNode::get(CalledFunc->getContext(), Scopes)));
- }
- }
- }
- /// If the inlined function has non-byval align arguments, then
- /// add @llvm.assume-based alignment assumptions to preserve this information.
- static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
- if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
- return;
- AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller());
- auto &DL = CS.getCaller()->getParent()->getDataLayout();
- // To avoid inserting redundant assumptions, we should check for assumptions
- // already in the caller. To do this, we might need a DT of the caller.
- DominatorTree DT;
- bool DTCalculated = false;
- Function *CalledFunc = CS.getCalledFunction();
- for (Argument &Arg : CalledFunc->args()) {
- unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
- if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) {
- if (!DTCalculated) {
- DT.recalculate(*CS.getCaller());
- DTCalculated = true;
- }
- // If we can already prove the asserted alignment in the context of the
- // caller, then don't bother inserting the assumption.
- Value *ArgVal = CS.getArgument(Arg.getArgNo());
- if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align)
- continue;
- CallInst *NewAsmp = IRBuilder<>(CS.getInstruction())
- .CreateAlignmentAssumption(DL, ArgVal, Align);
- AC->registerAssumption(NewAsmp);
- }
- }
- }
- /// Once we have cloned code over from a callee into the caller,
- /// update the specified callgraph to reflect the changes we made.
- /// Note that it's possible that not all code was copied over, so only
- /// some edges of the callgraph may remain.
- static void UpdateCallGraphAfterInlining(CallSite CS,
- Function::iterator FirstNewBlock,
- ValueToValueMapTy &VMap,
- InlineFunctionInfo &IFI) {
- CallGraph &CG = *IFI.CG;
- const Function *Caller = CS.getCaller();
- const Function *Callee = CS.getCalledFunction();
- CallGraphNode *CalleeNode = CG[Callee];
- CallGraphNode *CallerNode = CG[Caller];
- // Since we inlined some uninlined call sites in the callee into the caller,
- // add edges from the caller to all of the callees of the callee.
- CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
- // Consider the case where CalleeNode == CallerNode.
- CallGraphNode::CalledFunctionsVector CallCache;
- if (CalleeNode == CallerNode) {
- CallCache.assign(I, E);
- I = CallCache.begin();
- E = CallCache.end();
- }
- for (; I != E; ++I) {
- const Value *OrigCall = I->first;
- ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
- // Only copy the edge if the call was inlined!
- if (VMI == VMap.end() || VMI->second == nullptr)
- continue;
- // If the call was inlined, but then constant folded, there is no edge to
- // add. Check for this case.
- auto *NewCall = dyn_cast<CallBase>(VMI->second);
- if (!NewCall)
- continue;
- // We do not treat intrinsic calls like real function calls because we
- // expect them to become inline code; do not add an edge for an intrinsic.
- if (NewCall->getCalledFunction() &&
- NewCall->getCalledFunction()->isIntrinsic())
- continue;
- // Remember that this call site got inlined for the client of
- // InlineFunction.
- IFI.InlinedCalls.push_back(NewCall);
- // It's possible that inlining the callsite will cause it to go from an
- // indirect to a direct call by resolving a function pointer. If this
- // happens, set the callee of the new call site to a more precise
- // destination. This can also happen if the call graph node of the caller
- // was just unnecessarily imprecise.
- if (!I->second->getFunction())
- if (Function *F = NewCall->getCalledFunction()) {
- // Indirect call site resolved to direct call.
- CallerNode->addCalledFunction(NewCall, CG[F]);
- continue;
- }
- CallerNode->addCalledFunction(NewCall, I->second);
- }
- // Update the call graph by deleting the edge from Callee to Caller. We must
- // do this after the loop above in case Caller and Callee are the same.
- CallerNode->removeCallEdgeFor(*cast<CallBase>(CS.getInstruction()));
- }
- static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
- BasicBlock *InsertBlock,
- InlineFunctionInfo &IFI) {
- Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
- IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
- Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
- // Always generate a memcpy of alignment 1 here because we don't know
- // the alignment of the src pointer. Other optimizations can infer
- // better alignment.
- Builder.CreateMemCpy(Dst, /*DstAlign*/1, Src, /*SrcAlign*/1, Size);
- }
- /// When inlining a call site that has a byval argument,
- /// we have to make the implicit memcpy explicit by adding it.
- static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
- const Function *CalledFunc,
- InlineFunctionInfo &IFI,
- unsigned ByValAlignment) {
- PointerType *ArgTy = cast<PointerType>(Arg->getType());
- Type *AggTy = ArgTy->getElementType();
- Function *Caller = TheCall->getFunction();
- const DataLayout &DL = Caller->getParent()->getDataLayout();
- // If the called function is readonly, then it could not mutate the caller's
- // copy of the byval'd memory. In this case, it is safe to elide the copy and
- // temporary.
- if (CalledFunc->onlyReadsMemory()) {
- // If the byval argument has a specified alignment that is greater than the
- // passed in pointer, then we either have to round up the input pointer or
- // give up on this transformation.
- if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
- return Arg;
- AssumptionCache *AC =
- IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
- // If the pointer is already known to be sufficiently aligned, or if we can
- // round it up to a larger alignment, then we don't need a temporary.
- if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >=
- ByValAlignment)
- return Arg;
- // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
- // for code quality, but rarely happens and is required for correctness.
- }
- // Create the alloca. If we have DataLayout, use nice alignment.
- unsigned Align = DL.getPrefTypeAlignment(AggTy);
- // If the byval had an alignment specified, we *must* use at least that
- // alignment, as it is required by the byval argument (and uses of the
- // pointer inside the callee).
- Align = std::max(Align, ByValAlignment);
- Value *NewAlloca = new AllocaInst(AggTy, DL.getAllocaAddrSpace(),
- nullptr, Align, Arg->getName(),
- &*Caller->begin()->begin());
- IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
- // Uses of the argument in the function should use our new alloca
- // instead.
- return NewAlloca;
- }
- // Check whether this Value is used by a lifetime intrinsic.
- static bool isUsedByLifetimeMarker(Value *V) {
- for (User *U : V->users())
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
- if (II->isLifetimeStartOrEnd())
- return true;
- return false;
- }
- // Check whether the given alloca already has
- // lifetime.start or lifetime.end intrinsics.
- static bool hasLifetimeMarkers(AllocaInst *AI) {
- Type *Ty = AI->getType();
- Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
- Ty->getPointerAddressSpace());
- if (Ty == Int8PtrTy)
- return isUsedByLifetimeMarker(AI);
- // Do a scan to find all the casts to i8*.
- for (User *U : AI->users()) {
- if (U->getType() != Int8PtrTy) continue;
- if (U->stripPointerCasts() != AI) continue;
- if (isUsedByLifetimeMarker(U))
- return true;
- }
- return false;
- }
- /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
- /// block. Allocas used in inalloca calls and allocas of dynamic array size
- /// cannot be static.
- static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
- return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
- }
- /// Update inlined instructions' line numbers to
- /// to encode location where these instructions are inlined.
- static void fixupLineNumbers(Function *Fn, Function::iterator FI,
- Instruction *TheCall, bool CalleeHasDebugInfo) {
- const DebugLoc &TheCallDL = TheCall->getDebugLoc();
- if (!TheCallDL)
- return;
- auto &Ctx = Fn->getContext();
- DILocation *InlinedAtNode = TheCallDL;
- // Create a unique call site, not to be confused with any other call from the
- // same location.
- InlinedAtNode = DILocation::getDistinct(
- Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
- InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
- // Cache the inlined-at nodes as they're built so they are reused, without
- // this every instruction's inlined-at chain would become distinct from each
- // other.
- DenseMap<const MDNode *, MDNode *> IANodes;
- for (; FI != Fn->end(); ++FI) {
- for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
- BI != BE; ++BI) {
- if (DebugLoc DL = BI->getDebugLoc()) {
- auto IA = DebugLoc::appendInlinedAt(DL, InlinedAtNode, BI->getContext(),
- IANodes);
- auto IDL = DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), IA);
- BI->setDebugLoc(IDL);
- continue;
- }
- if (CalleeHasDebugInfo)
- continue;
- // If the inlined instruction has no line number, make it look as if it
- // originates from the call location. This is important for
- // ((__always_inline__, __nodebug__)) functions which must use caller
- // location for all instructions in their function body.
- // Don't update static allocas, as they may get moved later.
- if (auto *AI = dyn_cast<AllocaInst>(BI))
- if (allocaWouldBeStaticInEntry(AI))
- continue;
- BI->setDebugLoc(TheCallDL);
- }
- }
- }
- /// Update the block frequencies of the caller after a callee has been inlined.
- ///
- /// Each block cloned into the caller has its block frequency scaled by the
- /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
- /// callee's entry block gets the same frequency as the callsite block and the
- /// relative frequencies of all cloned blocks remain the same after cloning.
- static void updateCallerBFI(BasicBlock *CallSiteBlock,
- const ValueToValueMapTy &VMap,
- BlockFrequencyInfo *CallerBFI,
- BlockFrequencyInfo *CalleeBFI,
- const BasicBlock &CalleeEntryBlock) {
- SmallPtrSet<BasicBlock *, 16> ClonedBBs;
- for (auto const &Entry : VMap) {
- if (!isa<BasicBlock>(Entry.first) || !Entry.second)
- continue;
- auto *OrigBB = cast<BasicBlock>(Entry.first);
- auto *ClonedBB = cast<BasicBlock>(Entry.second);
- uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
- if (!ClonedBBs.insert(ClonedBB).second) {
- // Multiple blocks in the callee might get mapped to one cloned block in
- // the caller since we prune the callee as we clone it. When that happens,
- // we want to use the maximum among the original blocks' frequencies.
- uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
- if (NewFreq > Freq)
- Freq = NewFreq;
- }
- CallerBFI->setBlockFreq(ClonedBB, Freq);
- }
- BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
- CallerBFI->setBlockFreqAndScale(
- EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
- ClonedBBs);
- }
- /// Update the branch metadata for cloned call instructions.
- static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
- const ProfileCount &CalleeEntryCount,
- const Instruction *TheCall,
- ProfileSummaryInfo *PSI,
- BlockFrequencyInfo *CallerBFI) {
- if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
- CalleeEntryCount.getCount() < 1)
- return;
- auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
- int64_t CallCount =
- std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0,
- CalleeEntryCount.getCount());
- updateProfileCallee(Callee, -CallCount, &VMap);
- }
- void llvm::updateProfileCallee(
- Function *Callee, int64_t entryDelta,
- const ValueMap<const Value *, WeakTrackingVH> *VMap) {
- auto CalleeCount = Callee->getEntryCount();
- if (!CalleeCount.hasValue())
- return;
- uint64_t priorEntryCount = CalleeCount.getCount();
- uint64_t newEntryCount = priorEntryCount;
- // Since CallSiteCount is an estimate, it could exceed the original callee
- // count and has to be set to 0 so guard against underflow.
- if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount)
- newEntryCount = 0;
- else
- newEntryCount = priorEntryCount + entryDelta;
- Callee->setEntryCount(newEntryCount);
- // During inlining ?
- if (VMap) {
- uint64_t cloneEntryCount = priorEntryCount - newEntryCount;
- for (auto const &Entry : *VMap)
- if (isa<CallInst>(Entry.first))
- if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
- CI->updateProfWeight(cloneEntryCount, priorEntryCount);
- }
- for (BasicBlock &BB : *Callee)
- // No need to update the callsite if it is pruned during inlining.
- if (!VMap || VMap->count(&BB))
- for (Instruction &I : BB)
- if (CallInst *CI = dyn_cast<CallInst>(&I))
- CI->updateProfWeight(newEntryCount, priorEntryCount);
- }
- /// This function inlines the called function into the basic block of the
- /// caller. This returns false if it is not possible to inline this call.
- /// The program is still in a well defined state if this occurs though.
- ///
- /// Note that this only does one level of inlining. For example, if the
- /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
- /// exists in the instruction stream. Similarly this will inline a recursive
- /// function by one level.
- llvm::InlineResult llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
- AAResults *CalleeAAR,
- bool InsertLifetime,
- Function *ForwardVarArgsTo) {
- Instruction *TheCall = CS.getInstruction();
- assert(TheCall->getParent() && TheCall->getFunction()
- && "Instruction not in function!");
- // FIXME: we don't inline callbr yet.
- if (isa<CallBrInst>(TheCall))
- return false;
- // If IFI has any state in it, zap it before we fill it in.
- IFI.reset();
- Function *CalledFunc = CS.getCalledFunction();
- if (!CalledFunc || // Can't inline external function or indirect
- CalledFunc->isDeclaration()) // call!
- return "external or indirect";
- // The inliner does not know how to inline through calls with operand bundles
- // in general ...
- if (CS.hasOperandBundles()) {
- for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
- uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
- // ... but it knows how to inline through "deopt" operand bundles ...
- if (Tag == LLVMContext::OB_deopt)
- continue;
- // ... and "funclet" operand bundles.
- if (Tag == LLVMContext::OB_funclet)
- continue;
- return "unsupported operand bundle";
- }
- }
- // If the call to the callee cannot throw, set the 'nounwind' flag on any
- // calls that we inline.
- bool MarkNoUnwind = CS.doesNotThrow();
- BasicBlock *OrigBB = TheCall->getParent();
- Function *Caller = OrigBB->getParent();
- // GC poses two hazards to inlining, which only occur when the callee has GC:
- // 1. If the caller has no GC, then the callee's GC must be propagated to the
- // caller.
- // 2. If the caller has a differing GC, it is invalid to inline.
- if (CalledFunc->hasGC()) {
- if (!Caller->hasGC())
- Caller->setGC(CalledFunc->getGC());
- else if (CalledFunc->getGC() != Caller->getGC())
- return "incompatible GC";
- }
- // Get the personality function from the callee if it contains a landing pad.
- Constant *CalledPersonality =
- CalledFunc->hasPersonalityFn()
- ? CalledFunc->getPersonalityFn()->stripPointerCasts()
- : nullptr;
- // Find the personality function used by the landing pads of the caller. If it
- // exists, then check to see that it matches the personality function used in
- // the callee.
- Constant *CallerPersonality =
- Caller->hasPersonalityFn()
- ? Caller->getPersonalityFn()->stripPointerCasts()
- : nullptr;
- if (CalledPersonality) {
- if (!CallerPersonality)
- Caller->setPersonalityFn(CalledPersonality);
- // If the personality functions match, then we can perform the
- // inlining. Otherwise, we can't inline.
- // TODO: This isn't 100% true. Some personality functions are proper
- // supersets of others and can be used in place of the other.
- else if (CalledPersonality != CallerPersonality)
- return "incompatible personality";
- }
- // We need to figure out which funclet the callsite was in so that we may
- // properly nest the callee.
- Instruction *CallSiteEHPad = nullptr;
- if (CallerPersonality) {
- EHPersonality Personality = classifyEHPersonality(CallerPersonality);
- if (isScopedEHPersonality(Personality)) {
- Optional<OperandBundleUse> ParentFunclet =
- CS.getOperandBundle(LLVMContext::OB_funclet);
- if (ParentFunclet)
- CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
- // OK, the inlining site is legal. What about the target function?
- if (CallSiteEHPad) {
- if (Personality == EHPersonality::MSVC_CXX) {
- // The MSVC personality cannot tolerate catches getting inlined into
- // cleanup funclets.
- if (isa<CleanupPadInst>(CallSiteEHPad)) {
- // Ok, the call site is within a cleanuppad. Let's check the callee
- // for catchpads.
- for (const BasicBlock &CalledBB : *CalledFunc) {
- if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
- return "catch in cleanup funclet";
- }
- }
- } else if (isAsynchronousEHPersonality(Personality)) {
- // SEH is even less tolerant, there may not be any sort of exceptional
- // funclet in the callee.
- for (const BasicBlock &CalledBB : *CalledFunc) {
- if (CalledBB.isEHPad())
- return "SEH in cleanup funclet";
- }
- }
- }
- }
- }
- // Determine if we are dealing with a call in an EHPad which does not unwind
- // to caller.
- bool EHPadForCallUnwindsLocally = false;
- if (CallSiteEHPad && CS.isCall()) {
- UnwindDestMemoTy FuncletUnwindMap;
- Value *CallSiteUnwindDestToken =
- getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
- EHPadForCallUnwindsLocally =
- CallSiteUnwindDestToken &&
- !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
- }
- // Get an iterator to the last basic block in the function, which will have
- // the new function inlined after it.
- Function::iterator LastBlock = --Caller->end();
- // Make sure to capture all of the return instructions from the cloned
- // function.
- SmallVector<ReturnInst*, 8> Returns;
- ClonedCodeInfo InlinedFunctionInfo;
- Function::iterator FirstNewBlock;
- { // Scope to destroy VMap after cloning.
- ValueToValueMapTy VMap;
- // Keep a list of pair (dst, src) to emit byval initializations.
- SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
- auto &DL = Caller->getParent()->getDataLayout();
- // Calculate the vector of arguments to pass into the function cloner, which
- // matches up the formal to the actual argument values.
- CallSite::arg_iterator AI = CS.arg_begin();
- unsigned ArgNo = 0;
- for (Function::arg_iterator I = CalledFunc->arg_begin(),
- E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
- Value *ActualArg = *AI;
- // When byval arguments actually inlined, we need to make the copy implied
- // by them explicit. However, we don't do this if the callee is readonly
- // or readnone, because the copy would be unneeded: the callee doesn't
- // modify the struct.
- if (CS.isByValArgument(ArgNo)) {
- ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
- CalledFunc->getParamAlignment(ArgNo));
- if (ActualArg != *AI)
- ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
- }
- VMap[&*I] = ActualArg;
- }
- // Add alignment assumptions if necessary. We do this before the inlined
- // instructions are actually cloned into the caller so that we can easily
- // check what will be known at the start of the inlined code.
- AddAlignmentAssumptions(CS, IFI);
- // We want the inliner to prune the code as it copies. We would LOVE to
- // have no dead or constant instructions leftover after inlining occurs
- // (which can happen, e.g., because an argument was constant), but we'll be
- // happy with whatever the cloner can do.
- CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
- /*ModuleLevelChanges=*/false, Returns, ".i",
- &InlinedFunctionInfo, TheCall);
- // Remember the first block that is newly cloned over.
- FirstNewBlock = LastBlock; ++FirstNewBlock;
- if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
- // Update the BFI of blocks cloned into the caller.
- updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
- CalledFunc->front());
- updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall,
- IFI.PSI, IFI.CallerBFI);
- // Inject byval arguments initialization.
- for (std::pair<Value*, Value*> &Init : ByValInit)
- HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
- &*FirstNewBlock, IFI);
- Optional<OperandBundleUse> ParentDeopt =
- CS.getOperandBundle(LLVMContext::OB_deopt);
- if (ParentDeopt) {
- SmallVector<OperandBundleDef, 2> OpDefs;
- for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
- Instruction *I = dyn_cast_or_null<Instruction>(VH);
- if (!I) continue; // instruction was DCE'd or RAUW'ed to undef
- OpDefs.clear();
- CallSite ICS(I);
- OpDefs.reserve(ICS.getNumOperandBundles());
- for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
- auto ChildOB = ICS.getOperandBundleAt(i);
- if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
- // If the inlined call has other operand bundles, let them be
- OpDefs.emplace_back(ChildOB);
- continue;
- }
- // It may be useful to separate this logic (of handling operand
- // bundles) out to a separate "policy" component if this gets crowded.
- // Prepend the parent's deoptimization continuation to the newly
- // inlined call's deoptimization continuation.
- std::vector<Value *> MergedDeoptArgs;
- MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
- ChildOB.Inputs.size());
- MergedDeoptArgs.insert(MergedDeoptArgs.end(),
- ParentDeopt->Inputs.begin(),
- ParentDeopt->Inputs.end());
- MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
- ChildOB.Inputs.end());
- OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
- }
- Instruction *NewI = nullptr;
- if (isa<CallInst>(I))
- NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
- else if (isa<CallBrInst>(I))
- NewI = CallBrInst::Create(cast<CallBrInst>(I), OpDefs, I);
- else
- NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);
- // Note: the RAUW does the appropriate fixup in VMap, so we need to do
- // this even if the call returns void.
- I->replaceAllUsesWith(NewI);
- VH = nullptr;
- I->eraseFromParent();
- }
- }
- // Update the callgraph if requested.
- if (IFI.CG)
- UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
- // For 'nodebug' functions, the associated DISubprogram is always null.
- // Conservatively avoid propagating the callsite debug location to
- // instructions inlined from a function whose DISubprogram is not null.
- fixupLineNumbers(Caller, FirstNewBlock, TheCall,
- CalledFunc->getSubprogram() != nullptr);
- // Clone existing noalias metadata if necessary.
- CloneAliasScopeMetadata(CS, VMap);
- // Add noalias metadata if necessary.
- AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);
- // Propagate llvm.mem.parallel_loop_access if necessary.
- PropagateParallelLoopAccessMetadata(CS, VMap);
- // Register any cloned assumptions.
- if (IFI.GetAssumptionCache)
- for (BasicBlock &NewBlock :
- make_range(FirstNewBlock->getIterator(), Caller->end()))
- for (Instruction &I : NewBlock) {
- if (auto *II = dyn_cast<IntrinsicInst>(&I))
- if (II->getIntrinsicID() == Intrinsic::assume)
- (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II);
- }
- }
- // If there are any alloca instructions in the block that used to be the entry
- // block for the callee, move them to the entry block of the caller. First
- // calculate which instruction they should be inserted before. We insert the
- // instructions at the end of the current alloca list.
- {
- BasicBlock::iterator InsertPoint = Caller->begin()->begin();
- for (BasicBlock::iterator I = FirstNewBlock->begin(),
- E = FirstNewBlock->end(); I != E; ) {
- AllocaInst *AI = dyn_cast<AllocaInst>(I++);
- if (!AI) continue;
- // If the alloca is now dead, remove it. This often occurs due to code
- // specialization.
- if (AI->use_empty()) {
- AI->eraseFromParent();
- continue;
- }
- if (!allocaWouldBeStaticInEntry(AI))
- continue;
- // Keep track of the static allocas that we inline into the caller.
- IFI.StaticAllocas.push_back(AI);
- // Scan for the block of allocas that we can move over, and move them
- // all at once.
- while (isa<AllocaInst>(I) &&
- allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
- IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
- ++I;
- }
- // Transfer all of the allocas over in a block. Using splice means
- // that the instructions aren't removed from the symbol table, then
- // reinserted.
- Caller->getEntryBlock().getInstList().splice(
- InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
- }
- // Move any dbg.declares describing the allocas into the entry basic block.
- DIBuilder DIB(*Caller->getParent());
- for (auto &AI : IFI.StaticAllocas)
- replaceDbgDeclareForAlloca(AI, AI, DIB, DIExpression::NoDeref, 0,
- DIExpression::NoDeref);
- }
- SmallVector<Value*,4> VarArgsToForward;
- SmallVector<AttributeSet, 4> VarArgsAttrs;
- for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
- i < CS.getNumArgOperands(); i++) {
- VarArgsToForward.push_back(CS.getArgOperand(i));
- VarArgsAttrs.push_back(CS.getAttributes().getParamAttributes(i));
- }
- bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
- if (InlinedFunctionInfo.ContainsCalls) {
- CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
- if (CallInst *CI = dyn_cast<CallInst>(TheCall))
- CallSiteTailKind = CI->getTailCallKind();
- // For inlining purposes, the "notail" marker is the same as no marker.
- if (CallSiteTailKind == CallInst::TCK_NoTail)
- CallSiteTailKind = CallInst::TCK_None;
- for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
- ++BB) {
- for (auto II = BB->begin(); II != BB->end();) {
- Instruction &I = *II++;
- CallInst *CI = dyn_cast<CallInst>(&I);
- if (!CI)
- continue;
- // Forward varargs from inlined call site to calls to the
- // ForwardVarArgsTo function, if requested, and to musttail calls.
- if (!VarArgsToForward.empty() &&
- ((ForwardVarArgsTo &&
- CI->getCalledFunction() == ForwardVarArgsTo) ||
- CI->isMustTailCall())) {
- // Collect attributes for non-vararg parameters.
- AttributeList Attrs = CI->getAttributes();
- SmallVector<AttributeSet, 8> ArgAttrs;
- if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
- for (unsigned ArgNo = 0;
- ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
- ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
- }
- // Add VarArg attributes.
- ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
- Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
- Attrs.getRetAttributes(), ArgAttrs);
- // Add VarArgs to existing parameters.
- SmallVector<Value *, 6> Params(CI->arg_operands());
- Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
- CallInst *NewCI = CallInst::Create(
- CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
- NewCI->setDebugLoc(CI->getDebugLoc());
- NewCI->setAttributes(Attrs);
- NewCI->setCallingConv(CI->getCallingConv());
- CI->replaceAllUsesWith(NewCI);
- CI->eraseFromParent();
- CI = NewCI;
- }
- if (Function *F = CI->getCalledFunction())
- InlinedDeoptimizeCalls |=
- F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
- // We need to reduce the strength of any inlined tail calls. For
- // musttail, we have to avoid introducing potential unbounded stack
- // growth. For example, if functions 'f' and 'g' are mutually recursive
- // with musttail, we can inline 'g' into 'f' so long as we preserve
- // musttail on the cloned call to 'f'. If either the inlined call site
- // or the cloned call site is *not* musttail, the program already has
- // one frame of stack growth, so it's safe to remove musttail. Here is
- // a table of example transformations:
- //
- // f -> musttail g -> musttail f ==> f -> musttail f
- // f -> musttail g -> tail f ==> f -> tail f
- // f -> g -> musttail f ==> f -> f
- // f -> g -> tail f ==> f -> f
- //
- // Inlined notail calls should remain notail calls.
- CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
- if (ChildTCK != CallInst::TCK_NoTail)
- ChildTCK = std::min(CallSiteTailKind, ChildTCK);
- CI->setTailCallKind(ChildTCK);
- InlinedMustTailCalls |= CI->isMustTailCall();
- // Calls inlined through a 'nounwind' call site should be marked
- // 'nounwind'.
- if (MarkNoUnwind)
- CI->setDoesNotThrow();
- }
- }
- }
- // Leave lifetime markers for the static alloca's, scoping them to the
- // function we just inlined.
- if (InsertLifetime && !IFI.StaticAllocas.empty()) {
- IRBuilder<> builder(&FirstNewBlock->front());
- for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
- AllocaInst *AI = IFI.StaticAllocas[ai];
- // Don't mark swifterror allocas. They can't have bitcast uses.
- if (AI->isSwiftError())
- continue;
- // If the alloca is already scoped to something smaller than the whole
- // function then there's no need to add redundant, less accurate markers.
- if (hasLifetimeMarkers(AI))
- continue;
- // Try to determine the size of the allocation.
- ConstantInt *AllocaSize = nullptr;
- if (ConstantInt *AIArraySize =
- dyn_cast<ConstantInt>(AI->getArraySize())) {
- auto &DL = Caller->getParent()->getDataLayout();
- Type *AllocaType = AI->getAllocatedType();
- uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
- uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
- // Don't add markers for zero-sized allocas.
- if (AllocaArraySize == 0)
- continue;
- // Check that array size doesn't saturate uint64_t and doesn't
- // overflow when it's multiplied by type size.
- if (AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
- std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
- AllocaTypeSize) {
- AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
- AllocaArraySize * AllocaTypeSize);
- }
- }
- builder.CreateLifetimeStart(AI, AllocaSize);
- for (ReturnInst *RI : Returns) {
- // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
- // call and a return. The return kills all local allocas.
- if (InlinedMustTailCalls &&
- RI->getParent()->getTerminatingMustTailCall())
- continue;
- if (InlinedDeoptimizeCalls &&
- RI->getParent()->getTerminatingDeoptimizeCall())
- continue;
- IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
- }
- }
- }
- // If the inlined code contained dynamic alloca instructions, wrap the inlined
- // code with llvm.stacksave/llvm.stackrestore intrinsics.
- if (InlinedFunctionInfo.ContainsDynamicAllocas) {
- Module *M = Caller->getParent();
- // Get the two intrinsics we care about.
- Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
- Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
- // Insert the llvm.stacksave.
- CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
- .CreateCall(StackSave, {}, "savedstack");
- // Insert a call to llvm.stackrestore before any return instructions in the
- // inlined function.
- for (ReturnInst *RI : Returns) {
- // Don't insert llvm.stackrestore calls between a musttail or deoptimize
- // call and a return. The return will restore the stack pointer.
- if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
- continue;
- if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
- continue;
- IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
- }
- }
- // If we are inlining for an invoke instruction, we must make sure to rewrite
- // any call instructions into invoke instructions. This is sensitive to which
- // funclet pads were top-level in the inlinee, so must be done before
- // rewriting the "parent pad" links.
- if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
- BasicBlock *UnwindDest = II->getUnwindDest();
- Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
- if (isa<LandingPadInst>(FirstNonPHI)) {
- HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
- } else {
- HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
- }
- }
- // Update the lexical scopes of the new funclets and callsites.
- // Anything that had 'none' as its parent is now nested inside the callsite's
- // EHPad.
- if (CallSiteEHPad) {
- for (Function::iterator BB = FirstNewBlock->getIterator(),
- E = Caller->end();
- BB != E; ++BB) {
- // Add bundle operands to any top-level call sites.
- SmallVector<OperandBundleDef, 1> OpBundles;
- for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
- Instruction *I = &*BBI++;
- CallSite CS(I);
- if (!CS)
- continue;
- // Skip call sites which are nounwind intrinsics.
- auto *CalledFn =
- dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
- if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
- continue;
- // Skip call sites which already have a "funclet" bundle.
- if (CS.getOperandBundle(LLVMContext::OB_funclet))
- continue;
- CS.getOperandBundlesAsDefs(OpBundles);
- OpBundles.emplace_back("funclet", CallSiteEHPad);
- Instruction *NewInst;
- if (CS.isCall())
- NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
- else if (CS.isCallBr())
- NewInst = CallBrInst::Create(cast<CallBrInst>(I), OpBundles, I);
- else
- NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
- NewInst->takeName(I);
- I->replaceAllUsesWith(NewInst);
- I->eraseFromParent();
- OpBundles.clear();
- }
- // It is problematic if the inlinee has a cleanupret which unwinds to
- // caller and we inline it into a call site which doesn't unwind but into
- // an EH pad that does. Such an edge must be dynamically unreachable.
- // As such, we replace the cleanupret with unreachable.
- if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
- if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
- changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
- Instruction *I = BB->getFirstNonPHI();
- if (!I->isEHPad())
- continue;
- if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
- if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
- CatchSwitch->setParentPad(CallSiteEHPad);
- } else {
- auto *FPI = cast<FuncletPadInst>(I);
- if (isa<ConstantTokenNone>(FPI->getParentPad()))
- FPI->setParentPad(CallSiteEHPad);
- }
- }
- }
- if (InlinedDeoptimizeCalls) {
- // We need to at least remove the deoptimizing returns from the Return set,
- // so that the control flow from those returns does not get merged into the
- // caller (but terminate it instead). If the caller's return type does not
- // match the callee's return type, we also need to change the return type of
- // the intrinsic.
- if (Caller->getReturnType() == TheCall->getType()) {
- auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) {
- return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
- });
- Returns.erase(NewEnd, Returns.end());
- } else {
- SmallVector<ReturnInst *, 8> NormalReturns;
- Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
- Caller->getParent(), Intrinsic::experimental_deoptimize,
- {Caller->getReturnType()});
- for (ReturnInst *RI : Returns) {
- CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
- if (!DeoptCall) {
- NormalReturns.push_back(RI);
- continue;
- }
- // The calling convention on the deoptimize call itself may be bogus,
- // since the code we're inlining may have undefined behavior (and may
- // never actually execute at runtime); but all
- // @llvm.experimental.deoptimize declarations have to have the same
- // calling convention in a well-formed module.
- auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
- NewDeoptIntrinsic->setCallingConv(CallingConv);
- auto *CurBB = RI->getParent();
- RI->eraseFromParent();
- SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
- DeoptCall->arg_end());
- SmallVector<OperandBundleDef, 1> OpBundles;
- DeoptCall->getOperandBundlesAsDefs(OpBundles);
- DeoptCall->eraseFromParent();
- assert(!OpBundles.empty() &&
- "Expected at least the deopt operand bundle");
- IRBuilder<> Builder(CurBB);
- CallInst *NewDeoptCall =
- Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
- NewDeoptCall->setCallingConv(CallingConv);
- if (NewDeoptCall->getType()->isVoidTy())
- Builder.CreateRetVoid();
- else
- Builder.CreateRet(NewDeoptCall);
- }
- // Leave behind the normal returns so we can merge control flow.
- std::swap(Returns, NormalReturns);
- }
- }
- // Handle any inlined musttail call sites. In order for a new call site to be
- // musttail, the source of the clone and the inlined call site must have been
- // musttail. Therefore it's safe to return without merging control into the
- // phi below.
- if (InlinedMustTailCalls) {
- // Check if we need to bitcast the result of any musttail calls.
- Type *NewRetTy = Caller->getReturnType();
- bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
- // Handle the returns preceded by musttail calls separately.
- SmallVector<ReturnInst *, 8> NormalReturns;
- for (ReturnInst *RI : Returns) {
- CallInst *ReturnedMustTail =
- RI->getParent()->getTerminatingMustTailCall();
- if (!ReturnedMustTail) {
- NormalReturns.push_back(RI);
- continue;
- }
- if (!NeedBitCast)
- continue;
- // Delete the old return and any preceding bitcast.
- BasicBlock *CurBB = RI->getParent();
- auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
- RI->eraseFromParent();
- if (OldCast)
- OldCast->eraseFromParent();
- // Insert a new bitcast and return with the right type.
- IRBuilder<> Builder(CurBB);
- Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
- }
- // Leave behind the normal returns so we can merge control flow.
- std::swap(Returns, NormalReturns);
- }
- // Now that all of the transforms on the inlined code have taken place but
- // before we splice the inlined code into the CFG and lose track of which
- // blocks were actually inlined, collect the call sites. We only do this if
- // call graph updates weren't requested, as those provide value handle based
- // tracking of inlined call sites instead.
- if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
- // Otherwise just collect the raw call sites that were inlined.
- for (BasicBlock &NewBB :
- make_range(FirstNewBlock->getIterator(), Caller->end()))
- for (Instruction &I : NewBB)
- if (auto CS = CallSite(&I))
- IFI.InlinedCallSites.push_back(CS);
- }
- // If we cloned in _exactly one_ basic block, and if that block ends in a
- // return instruction, we splice the body of the inlined callee directly into
- // the calling basic block.
- if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
- // Move all of the instructions right before the call.
- OrigBB->getInstList().splice(TheCall->getIterator(),
- FirstNewBlock->getInstList(),
- FirstNewBlock->begin(), FirstNewBlock->end());
- // Remove the cloned basic block.
- Caller->getBasicBlockList().pop_back();
- // If the call site was an invoke instruction, add a branch to the normal
- // destination.
- if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
- BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
- NewBr->setDebugLoc(Returns[0]->getDebugLoc());
- }
- // If the return instruction returned a value, replace uses of the call with
- // uses of the returned value.
- if (!TheCall->use_empty()) {
- ReturnInst *R = Returns[0];
- if (TheCall == R->getReturnValue())
- TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
- else
- TheCall->replaceAllUsesWith(R->getReturnValue());
- }
- // Since we are now done with the Call/Invoke, we can delete it.
- TheCall->eraseFromParent();
- // Since we are now done with the return instruction, delete it also.
- Returns[0]->eraseFromParent();
- // We are now done with the inlining.
- return true;
- }
- // Otherwise, we have the normal case, of more than one block to inline or
- // multiple return sites.
- // We want to clone the entire callee function into the hole between the
- // "starter" and "ender" blocks. How we accomplish this depends on whether
- // this is an invoke instruction or a call instruction.
- BasicBlock *AfterCallBB;
- BranchInst *CreatedBranchToNormalDest = nullptr;
- if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
- // Add an unconditional branch to make this look like the CallInst case...
- CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
- // Split the basic block. This guarantees that no PHI nodes will have to be
- // updated due to new incoming edges, and make the invoke case more
- // symmetric to the call case.
- AfterCallBB =
- OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
- CalledFunc->getName() + ".exit");
- } else { // It's a call
- // If this is a call instruction, we need to split the basic block that
- // the call lives in.
- //
- AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
- CalledFunc->getName() + ".exit");
- }
- if (IFI.CallerBFI) {
- // Copy original BB's block frequency to AfterCallBB
- IFI.CallerBFI->setBlockFreq(
- AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
- }
- // Change the branch that used to go to AfterCallBB to branch to the first
- // basic block of the inlined function.
- //
- Instruction *Br = OrigBB->getTerminator();
- assert(Br && Br->getOpcode() == Instruction::Br &&
- "splitBasicBlock broken!");
- Br->setOperand(0, &*FirstNewBlock);
- // Now that the function is correct, make it a little bit nicer. In
- // particular, move the basic blocks inserted from the end of the function
- // into the space made by splitting the source basic block.
- Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
- Caller->getBasicBlockList(), FirstNewBlock,
- Caller->end());
- // Handle all of the return instructions that we just cloned in, and eliminate
- // any users of the original call/invoke instruction.
- Type *RTy = CalledFunc->getReturnType();
- PHINode *PHI = nullptr;
- if (Returns.size() > 1) {
- // The PHI node should go at the front of the new basic block to merge all
- // possible incoming values.
- if (!TheCall->use_empty()) {
- PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
- &AfterCallBB->front());
- // Anything that used the result of the function call should now use the
- // PHI node as their operand.
- TheCall->replaceAllUsesWith(PHI);
- }
- // Loop over all of the return instructions adding entries to the PHI node
- // as appropriate.
- if (PHI) {
- for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
- ReturnInst *RI = Returns[i];
- assert(RI->getReturnValue()->getType() == PHI->getType() &&
- "Ret value not consistent in function!");
- PHI->addIncoming(RI->getReturnValue(), RI->getParent());
- }
- }
- // Add a branch to the merge points and remove return instructions.
- DebugLoc Loc;
- for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
- ReturnInst *RI = Returns[i];
- BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
- Loc = RI->getDebugLoc();
- BI->setDebugLoc(Loc);
- RI->eraseFromParent();
- }
- // We need to set the debug location to *somewhere* inside the
- // inlined function. The line number may be nonsensical, but the
- // instruction will at least be associated with the right
- // function.
- if (CreatedBranchToNormalDest)
- CreatedBranchToNormalDest->setDebugLoc(Loc);
- } else if (!Returns.empty()) {
- // Otherwise, if there is exactly one return value, just replace anything
- // using the return value of the call with the computed value.
- if (!TheCall->use_empty()) {
- if (TheCall == Returns[0]->getReturnValue())
- TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
- else
- TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
- }
- // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
- BasicBlock *ReturnBB = Returns[0]->getParent();
- ReturnBB->replaceAllUsesWith(AfterCallBB);
- // Splice the code from the return block into the block that it will return
- // to, which contains the code that was after the call.
- AfterCallBB->getInstList().splice(AfterCallBB->begin(),
- ReturnBB->getInstList());
- if (CreatedBranchToNormalDest)
- CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
- // Delete the return instruction now and empty ReturnBB now.
- Returns[0]->eraseFromParent();
- ReturnBB->eraseFromParent();
- } else if (!TheCall->use_empty()) {
- // No returns, but something is using the return value of the call. Just
- // nuke the result.
- TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
- }
- // Since we are now done with the Call/Invoke, we can delete it.
- TheCall->eraseFromParent();
- // If we inlined any musttail calls and the original return is now
- // unreachable, delete it. It can only contain a bitcast and ret.
- if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
- AfterCallBB->eraseFromParent();
- // We should always be able to fold the entry block of the function into the
- // single predecessor of the block...
- assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
- BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
- // Splice the code entry block into calling block, right before the
- // unconditional branch.
- CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
- OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
- // Remove the unconditional branch.
- OrigBB->getInstList().erase(Br);
- // Now we can remove the CalleeEntry block, which is now empty.
- Caller->getBasicBlockList().erase(CalleeEntry);
- // If we inserted a phi node, check to see if it has a single value (e.g. all
- // the entries are the same or undef). If so, remove the PHI so it doesn't
- // block other optimizations.
- if (PHI) {
- AssumptionCache *AC =
- IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
- auto &DL = Caller->getParent()->getDataLayout();
- if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
- PHI->replaceAllUsesWith(V);
- PHI->eraseFromParent();
- }
- }
- return true;
- }
|