123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773 |
- //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- /// \file
- /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
- /// analysis.
- ///
- /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
- /// class of bugs on its own. Instead, it provides a generic dynamic data flow
- /// analysis framework to be used by clients to help detect application-specific
- /// issues within their own code.
- ///
- /// The analysis is based on automatic propagation of data flow labels (also
- /// known as taint labels) through a program as it performs computation. Each
- /// byte of application memory is backed by two bytes of shadow memory which
- /// hold the label. On Linux/x86_64, memory is laid out as follows:
- ///
- /// +--------------------+ 0x800000000000 (top of memory)
- /// | application memory |
- /// +--------------------+ 0x700000008000 (kAppAddr)
- /// | |
- /// | unused |
- /// | |
- /// +--------------------+ 0x200200000000 (kUnusedAddr)
- /// | union table |
- /// +--------------------+ 0x200000000000 (kUnionTableAddr)
- /// | shadow memory |
- /// +--------------------+ 0x000000010000 (kShadowAddr)
- /// | reserved by kernel |
- /// +--------------------+ 0x000000000000
- ///
- /// To derive a shadow memory address from an application memory address,
- /// bits 44-46 are cleared to bring the address into the range
- /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to
- /// account for the double byte representation of shadow labels and move the
- /// address into the shadow memory range. See the function
- /// DataFlowSanitizer::getShadowAddress below.
- ///
- /// For more information, please refer to the design document:
- /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/ADT/Triple.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GlobalAlias.h"
- #include "llvm/IR/GlobalValue.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InlineAsm.h"
- #include "llvm/IR/InstVisitor.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/SpecialCaseList.h"
- #include "llvm/Transforms/Instrumentation.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include <algorithm>
- #include <cassert>
- #include <cstddef>
- #include <cstdint>
- #include <iterator>
- #include <memory>
- #include <set>
- #include <string>
- #include <utility>
- #include <vector>
- using namespace llvm;
- // External symbol to be used when generating the shadow address for
- // architectures with multiple VMAs. Instead of using a constant integer
- // the runtime will set the external mask based on the VMA range.
- static const char *const kDFSanExternShadowPtrMask = "__dfsan_shadow_ptr_mask";
- // The -dfsan-preserve-alignment flag controls whether this pass assumes that
- // alignment requirements provided by the input IR are correct. For example,
- // if the input IR contains a load with alignment 8, this flag will cause
- // the shadow load to have alignment 16. This flag is disabled by default as
- // we have unfortunately encountered too much code (including Clang itself;
- // see PR14291) which performs misaligned access.
- static cl::opt<bool> ClPreserveAlignment(
- "dfsan-preserve-alignment",
- cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
- cl::init(false));
- // The ABI list files control how shadow parameters are passed. The pass treats
- // every function labelled "uninstrumented" in the ABI list file as conforming
- // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
- // additional annotations for those functions, a call to one of those functions
- // will produce a warning message, as the labelling behaviour of the function is
- // unknown. The other supported annotations are "functional" and "discard",
- // which are described below under DataFlowSanitizer::WrapperKind.
- static cl::list<std::string> ClABIListFiles(
- "dfsan-abilist",
- cl::desc("File listing native ABI functions and how the pass treats them"),
- cl::Hidden);
- // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
- // functions (see DataFlowSanitizer::InstrumentedABI below).
- static cl::opt<bool> ClArgsABI(
- "dfsan-args-abi",
- cl::desc("Use the argument ABI rather than the TLS ABI"),
- cl::Hidden);
- // Controls whether the pass includes or ignores the labels of pointers in load
- // instructions.
- static cl::opt<bool> ClCombinePointerLabelsOnLoad(
- "dfsan-combine-pointer-labels-on-load",
- cl::desc("Combine the label of the pointer with the label of the data when "
- "loading from memory."),
- cl::Hidden, cl::init(true));
- // Controls whether the pass includes or ignores the labels of pointers in
- // stores instructions.
- static cl::opt<bool> ClCombinePointerLabelsOnStore(
- "dfsan-combine-pointer-labels-on-store",
- cl::desc("Combine the label of the pointer with the label of the data when "
- "storing in memory."),
- cl::Hidden, cl::init(false));
- static cl::opt<bool> ClDebugNonzeroLabels(
- "dfsan-debug-nonzero-labels",
- cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
- "load or return with a nonzero label"),
- cl::Hidden);
- static StringRef GetGlobalTypeString(const GlobalValue &G) {
- // Types of GlobalVariables are always pointer types.
- Type *GType = G.getValueType();
- // For now we support blacklisting struct types only.
- if (StructType *SGType = dyn_cast<StructType>(GType)) {
- if (!SGType->isLiteral())
- return SGType->getName();
- }
- return "<unknown type>";
- }
- namespace {
- class DFSanABIList {
- std::unique_ptr<SpecialCaseList> SCL;
- public:
- DFSanABIList() = default;
- void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
- /// Returns whether either this function or its source file are listed in the
- /// given category.
- bool isIn(const Function &F, StringRef Category) const {
- return isIn(*F.getParent(), Category) ||
- SCL->inSection("dataflow", "fun", F.getName(), Category);
- }
- /// Returns whether this global alias is listed in the given category.
- ///
- /// If GA aliases a function, the alias's name is matched as a function name
- /// would be. Similarly, aliases of globals are matched like globals.
- bool isIn(const GlobalAlias &GA, StringRef Category) const {
- if (isIn(*GA.getParent(), Category))
- return true;
- if (isa<FunctionType>(GA.getValueType()))
- return SCL->inSection("dataflow", "fun", GA.getName(), Category);
- return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
- SCL->inSection("dataflow", "type", GetGlobalTypeString(GA),
- Category);
- }
- /// Returns whether this module is listed in the given category.
- bool isIn(const Module &M, StringRef Category) const {
- return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
- }
- };
- /// TransformedFunction is used to express the result of transforming one
- /// function type into another. This struct is immutable. It holds metadata
- /// useful for updating calls of the old function to the new type.
- struct TransformedFunction {
- TransformedFunction(FunctionType* OriginalType,
- FunctionType* TransformedType,
- std::vector<unsigned> ArgumentIndexMapping)
- : OriginalType(OriginalType),
- TransformedType(TransformedType),
- ArgumentIndexMapping(ArgumentIndexMapping) {}
- // Disallow copies.
- TransformedFunction(const TransformedFunction&) = delete;
- TransformedFunction& operator=(const TransformedFunction&) = delete;
- // Allow moves.
- TransformedFunction(TransformedFunction&&) = default;
- TransformedFunction& operator=(TransformedFunction&&) = default;
- /// Type of the function before the transformation.
- FunctionType *OriginalType;
- /// Type of the function after the transformation.
- FunctionType *TransformedType;
- /// Transforming a function may change the position of arguments. This
- /// member records the mapping from each argument's old position to its new
- /// position. Argument positions are zero-indexed. If the transformation
- /// from F to F' made the first argument of F into the third argument of F',
- /// then ArgumentIndexMapping[0] will equal 2.
- std::vector<unsigned> ArgumentIndexMapping;
- };
- /// Given function attributes from a call site for the original function,
- /// return function attributes appropriate for a call to the transformed
- /// function.
- AttributeList TransformFunctionAttributes(
- const TransformedFunction& TransformedFunction,
- LLVMContext& Ctx, AttributeList CallSiteAttrs) {
- // Construct a vector of AttributeSet for each function argument.
- std::vector<llvm::AttributeSet> ArgumentAttributes(
- TransformedFunction.TransformedType->getNumParams());
- // Copy attributes from the parameter of the original function to the
- // transformed version. 'ArgumentIndexMapping' holds the mapping from
- // old argument position to new.
- for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size();
- i < ie; ++i) {
- unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i];
- ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i);
- }
- // Copy annotations on varargs arguments.
- for (unsigned i = TransformedFunction.OriginalType->getNumParams(),
- ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) {
- ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i));
- }
- return AttributeList::get(
- Ctx,
- CallSiteAttrs.getFnAttributes(),
- CallSiteAttrs.getRetAttributes(),
- llvm::makeArrayRef(ArgumentAttributes));
- }
- class DataFlowSanitizer : public ModulePass {
- friend struct DFSanFunction;
- friend class DFSanVisitor;
- enum {
- ShadowWidth = 16
- };
- /// Which ABI should be used for instrumented functions?
- enum InstrumentedABI {
- /// Argument and return value labels are passed through additional
- /// arguments and by modifying the return type.
- IA_Args,
- /// Argument and return value labels are passed through TLS variables
- /// __dfsan_arg_tls and __dfsan_retval_tls.
- IA_TLS
- };
- /// How should calls to uninstrumented functions be handled?
- enum WrapperKind {
- /// This function is present in an uninstrumented form but we don't know
- /// how it should be handled. Print a warning and call the function anyway.
- /// Don't label the return value.
- WK_Warning,
- /// This function does not write to (user-accessible) memory, and its return
- /// value is unlabelled.
- WK_Discard,
- /// This function does not write to (user-accessible) memory, and the label
- /// of its return value is the union of the label of its arguments.
- WK_Functional,
- /// Instead of calling the function, a custom wrapper __dfsw_F is called,
- /// where F is the name of the function. This function may wrap the
- /// original function or provide its own implementation. This is similar to
- /// the IA_Args ABI, except that IA_Args uses a struct return type to
- /// pass the return value shadow in a register, while WK_Custom uses an
- /// extra pointer argument to return the shadow. This allows the wrapped
- /// form of the function type to be expressed in C.
- WK_Custom
- };
- Module *Mod;
- LLVMContext *Ctx;
- IntegerType *ShadowTy;
- PointerType *ShadowPtrTy;
- IntegerType *IntptrTy;
- ConstantInt *ZeroShadow;
- ConstantInt *ShadowPtrMask;
- ConstantInt *ShadowPtrMul;
- Constant *ArgTLS;
- Constant *RetvalTLS;
- void *(*GetArgTLSPtr)();
- void *(*GetRetvalTLSPtr)();
- FunctionType *GetArgTLSTy;
- FunctionType *GetRetvalTLSTy;
- Constant *GetArgTLS;
- Constant *GetRetvalTLS;
- Constant *ExternalShadowMask;
- FunctionType *DFSanUnionFnTy;
- FunctionType *DFSanUnionLoadFnTy;
- FunctionType *DFSanUnimplementedFnTy;
- FunctionType *DFSanSetLabelFnTy;
- FunctionType *DFSanNonzeroLabelFnTy;
- FunctionType *DFSanVarargWrapperFnTy;
- FunctionCallee DFSanUnionFn;
- FunctionCallee DFSanCheckedUnionFn;
- FunctionCallee DFSanUnionLoadFn;
- FunctionCallee DFSanUnimplementedFn;
- FunctionCallee DFSanSetLabelFn;
- FunctionCallee DFSanNonzeroLabelFn;
- FunctionCallee DFSanVarargWrapperFn;
- MDNode *ColdCallWeights;
- DFSanABIList ABIList;
- DenseMap<Value *, Function *> UnwrappedFnMap;
- AttrBuilder ReadOnlyNoneAttrs;
- bool DFSanRuntimeShadowMask = false;
- Value *getShadowAddress(Value *Addr, Instruction *Pos);
- bool isInstrumented(const Function *F);
- bool isInstrumented(const GlobalAlias *GA);
- FunctionType *getArgsFunctionType(FunctionType *T);
- FunctionType *getTrampolineFunctionType(FunctionType *T);
- TransformedFunction getCustomFunctionType(FunctionType *T);
- InstrumentedABI getInstrumentedABI();
- WrapperKind getWrapperKind(Function *F);
- void addGlobalNamePrefix(GlobalValue *GV);
- Function *buildWrapperFunction(Function *F, StringRef NewFName,
- GlobalValue::LinkageTypes NewFLink,
- FunctionType *NewFT);
- Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
- public:
- static char ID;
- DataFlowSanitizer(
- const std::vector<std::string> &ABIListFiles = std::vector<std::string>(),
- void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr);
- bool doInitialization(Module &M) override;
- bool runOnModule(Module &M) override;
- };
- struct DFSanFunction {
- DataFlowSanitizer &DFS;
- Function *F;
- DominatorTree DT;
- DataFlowSanitizer::InstrumentedABI IA;
- bool IsNativeABI;
- Value *ArgTLSPtr = nullptr;
- Value *RetvalTLSPtr = nullptr;
- AllocaInst *LabelReturnAlloca = nullptr;
- DenseMap<Value *, Value *> ValShadowMap;
- DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
- std::vector<std::pair<PHINode *, PHINode *>> PHIFixups;
- DenseSet<Instruction *> SkipInsts;
- std::vector<Value *> NonZeroChecks;
- bool AvoidNewBlocks;
- struct CachedCombinedShadow {
- BasicBlock *Block;
- Value *Shadow;
- };
- DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow>
- CachedCombinedShadows;
- DenseMap<Value *, std::set<Value *>> ShadowElements;
- DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
- : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) {
- DT.recalculate(*F);
- // FIXME: Need to track down the register allocator issue which causes poor
- // performance in pathological cases with large numbers of basic blocks.
- AvoidNewBlocks = F->size() > 1000;
- }
- Value *getArgTLSPtr();
- Value *getArgTLS(unsigned Index, Instruction *Pos);
- Value *getRetvalTLS();
- Value *getShadow(Value *V);
- void setShadow(Instruction *I, Value *Shadow);
- Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
- Value *combineOperandShadows(Instruction *Inst);
- Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align,
- Instruction *Pos);
- void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow,
- Instruction *Pos);
- };
- class DFSanVisitor : public InstVisitor<DFSanVisitor> {
- public:
- DFSanFunction &DFSF;
- DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
- const DataLayout &getDataLayout() const {
- return DFSF.F->getParent()->getDataLayout();
- }
- void visitOperandShadowInst(Instruction &I);
- void visitBinaryOperator(BinaryOperator &BO);
- void visitCastInst(CastInst &CI);
- void visitCmpInst(CmpInst &CI);
- void visitGetElementPtrInst(GetElementPtrInst &GEPI);
- void visitLoadInst(LoadInst &LI);
- void visitStoreInst(StoreInst &SI);
- void visitReturnInst(ReturnInst &RI);
- void visitCallSite(CallSite CS);
- void visitPHINode(PHINode &PN);
- void visitExtractElementInst(ExtractElementInst &I);
- void visitInsertElementInst(InsertElementInst &I);
- void visitShuffleVectorInst(ShuffleVectorInst &I);
- void visitExtractValueInst(ExtractValueInst &I);
- void visitInsertValueInst(InsertValueInst &I);
- void visitAllocaInst(AllocaInst &I);
- void visitSelectInst(SelectInst &I);
- void visitMemSetInst(MemSetInst &I);
- void visitMemTransferInst(MemTransferInst &I);
- };
- } // end anonymous namespace
- char DataFlowSanitizer::ID;
- INITIALIZE_PASS(DataFlowSanitizer, "dfsan",
- "DataFlowSanitizer: dynamic data flow analysis.", false, false)
- ModulePass *
- llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles,
- void *(*getArgTLS)(),
- void *(*getRetValTLS)()) {
- return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS);
- }
- DataFlowSanitizer::DataFlowSanitizer(
- const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(),
- void *(*getRetValTLS)())
- : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) {
- std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
- AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(),
- ClABIListFiles.end());
- ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles));
- }
- FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
- SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end());
- ArgTypes.append(T->getNumParams(), ShadowTy);
- if (T->isVarArg())
- ArgTypes.push_back(ShadowPtrTy);
- Type *RetType = T->getReturnType();
- if (!RetType->isVoidTy())
- RetType = StructType::get(RetType, ShadowTy);
- return FunctionType::get(RetType, ArgTypes, T->isVarArg());
- }
- FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
- assert(!T->isVarArg());
- SmallVector<Type *, 4> ArgTypes;
- ArgTypes.push_back(T->getPointerTo());
- ArgTypes.append(T->param_begin(), T->param_end());
- ArgTypes.append(T->getNumParams(), ShadowTy);
- Type *RetType = T->getReturnType();
- if (!RetType->isVoidTy())
- ArgTypes.push_back(ShadowPtrTy);
- return FunctionType::get(T->getReturnType(), ArgTypes, false);
- }
- TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
- SmallVector<Type *, 4> ArgTypes;
- // Some parameters of the custom function being constructed are
- // parameters of T. Record the mapping from parameters of T to
- // parameters of the custom function, so that parameter attributes
- // at call sites can be updated.
- std::vector<unsigned> ArgumentIndexMapping;
- for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) {
- Type* param_type = T->getParamType(i);
- FunctionType *FT;
- if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>(
- cast<PointerType>(param_type)->getElementType()))) {
- ArgumentIndexMapping.push_back(ArgTypes.size());
- ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
- ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
- } else {
- ArgumentIndexMapping.push_back(ArgTypes.size());
- ArgTypes.push_back(param_type);
- }
- }
- for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
- ArgTypes.push_back(ShadowTy);
- if (T->isVarArg())
- ArgTypes.push_back(ShadowPtrTy);
- Type *RetType = T->getReturnType();
- if (!RetType->isVoidTy())
- ArgTypes.push_back(ShadowPtrTy);
- return TransformedFunction(
- T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
- ArgumentIndexMapping);
- }
- bool DataFlowSanitizer::doInitialization(Module &M) {
- Triple TargetTriple(M.getTargetTriple());
- bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
- bool IsMIPS64 = TargetTriple.isMIPS64();
- bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 ||
- TargetTriple.getArch() == Triple::aarch64_be;
- const DataLayout &DL = M.getDataLayout();
- Mod = &M;
- Ctx = &M.getContext();
- ShadowTy = IntegerType::get(*Ctx, ShadowWidth);
- ShadowPtrTy = PointerType::getUnqual(ShadowTy);
- IntptrTy = DL.getIntPtrType(*Ctx);
- ZeroShadow = ConstantInt::getSigned(ShadowTy, 0);
- ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8);
- if (IsX86_64)
- ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
- else if (IsMIPS64)
- ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL);
- // AArch64 supports multiple VMAs and the shadow mask is set at runtime.
- else if (IsAArch64)
- DFSanRuntimeShadowMask = true;
- else
- report_fatal_error("unsupported triple");
- Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy };
- DFSanUnionFnTy =
- FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false);
- Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy };
- DFSanUnionLoadFnTy =
- FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false);
- DFSanUnimplementedFnTy = FunctionType::get(
- Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
- Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy };
- DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
- DFSanSetLabelArgs, /*isVarArg=*/false);
- DFSanNonzeroLabelFnTy = FunctionType::get(
- Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
- DFSanVarargWrapperFnTy = FunctionType::get(
- Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
- if (GetArgTLSPtr) {
- Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
- ArgTLS = nullptr;
- GetArgTLSTy = FunctionType::get(PointerType::getUnqual(ArgTLSTy), false);
- GetArgTLS = ConstantExpr::getIntToPtr(
- ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)),
- PointerType::getUnqual(GetArgTLSTy));
- }
- if (GetRetvalTLSPtr) {
- RetvalTLS = nullptr;
- GetRetvalTLSTy = FunctionType::get(PointerType::getUnqual(ShadowTy), false);
- GetRetvalTLS = ConstantExpr::getIntToPtr(
- ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)),
- PointerType::getUnqual(GetRetvalTLSTy));
- }
- ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
- return true;
- }
- bool DataFlowSanitizer::isInstrumented(const Function *F) {
- return !ABIList.isIn(*F, "uninstrumented");
- }
- bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
- return !ABIList.isIn(*GA, "uninstrumented");
- }
- DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
- return ClArgsABI ? IA_Args : IA_TLS;
- }
- DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
- if (ABIList.isIn(*F, "functional"))
- return WK_Functional;
- if (ABIList.isIn(*F, "discard"))
- return WK_Discard;
- if (ABIList.isIn(*F, "custom"))
- return WK_Custom;
- return WK_Warning;
- }
- void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
- std::string GVName = GV->getName(), Prefix = "dfs$";
- GV->setName(Prefix + GVName);
- // Try to change the name of the function in module inline asm. We only do
- // this for specific asm directives, currently only ".symver", to try to avoid
- // corrupting asm which happens to contain the symbol name as a substring.
- // Note that the substitution for .symver assumes that the versioned symbol
- // also has an instrumented name.
- std::string Asm = GV->getParent()->getModuleInlineAsm();
- std::string SearchStr = ".symver " + GVName + ",";
- size_t Pos = Asm.find(SearchStr);
- if (Pos != std::string::npos) {
- Asm.replace(Pos, SearchStr.size(),
- ".symver " + Prefix + GVName + "," + Prefix);
- GV->getParent()->setModuleInlineAsm(Asm);
- }
- }
- Function *
- DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
- GlobalValue::LinkageTypes NewFLink,
- FunctionType *NewFT) {
- FunctionType *FT = F->getFunctionType();
- Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(),
- NewFName, F->getParent());
- NewF->copyAttributesFrom(F);
- NewF->removeAttributes(
- AttributeList::ReturnIndex,
- AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
- BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
- if (F->isVarArg()) {
- NewF->removeAttributes(AttributeList::FunctionIndex,
- AttrBuilder().addAttribute("split-stack"));
- CallInst::Create(DFSanVarargWrapperFn,
- IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
- BB);
- new UnreachableInst(*Ctx, BB);
- } else {
- std::vector<Value *> Args;
- unsigned n = FT->getNumParams();
- for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
- Args.push_back(&*ai);
- CallInst *CI = CallInst::Create(F, Args, "", BB);
- if (FT->getReturnType()->isVoidTy())
- ReturnInst::Create(*Ctx, BB);
- else
- ReturnInst::Create(*Ctx, CI, BB);
- }
- return NewF;
- }
- Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
- StringRef FName) {
- FunctionType *FTT = getTrampolineFunctionType(FT);
- FunctionCallee C = Mod->getOrInsertFunction(FName, FTT);
- Function *F = dyn_cast<Function>(C.getCallee());
- if (F && F->isDeclaration()) {
- F->setLinkage(GlobalValue::LinkOnceODRLinkage);
- BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
- std::vector<Value *> Args;
- Function::arg_iterator AI = F->arg_begin(); ++AI;
- for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
- Args.push_back(&*AI);
- CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB);
- ReturnInst *RI;
- if (FT->getReturnType()->isVoidTy())
- RI = ReturnInst::Create(*Ctx, BB);
- else
- RI = ReturnInst::Create(*Ctx, CI, BB);
- DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
- Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI;
- for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N)
- DFSF.ValShadowMap[&*ValAI] = &*ShadowAI;
- DFSanVisitor(DFSF).visitCallInst(*CI);
- if (!FT->getReturnType()->isVoidTy())
- new StoreInst(DFSF.getShadow(RI->getReturnValue()),
- &*std::prev(F->arg_end()), RI);
- }
- return cast<Constant>(C.getCallee());
- }
- bool DataFlowSanitizer::runOnModule(Module &M) {
- if (ABIList.isIn(M, "skip"))
- return false;
- if (!GetArgTLSPtr) {
- Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
- ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
- if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS))
- G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
- }
- if (!GetRetvalTLSPtr) {
- RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy);
- if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS))
- G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
- }
- ExternalShadowMask =
- Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy);
- {
- AttributeList AL;
- AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
- Attribute::NoUnwind);
- AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
- Attribute::ReadNone);
- AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
- Attribute::ZExt);
- AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
- AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
- DFSanUnionFn =
- Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL);
- }
- {
- AttributeList AL;
- AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
- Attribute::NoUnwind);
- AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
- Attribute::ReadNone);
- AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
- Attribute::ZExt);
- AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
- AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
- DFSanCheckedUnionFn =
- Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL);
- }
- {
- AttributeList AL;
- AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
- Attribute::NoUnwind);
- AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
- Attribute::ReadOnly);
- AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
- Attribute::ZExt);
- DFSanUnionLoadFn =
- Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL);
- }
- DFSanUnimplementedFn =
- Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
- {
- AttributeList AL;
- AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
- DFSanSetLabelFn =
- Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL);
- }
- DFSanNonzeroLabelFn =
- Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
- DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
- DFSanVarargWrapperFnTy);
- std::vector<Function *> FnsToInstrument;
- SmallPtrSet<Function *, 2> FnsWithNativeABI;
- for (Function &i : M) {
- if (!i.isIntrinsic() &&
- &i != DFSanUnionFn.getCallee()->stripPointerCasts() &&
- &i != DFSanCheckedUnionFn.getCallee()->stripPointerCasts() &&
- &i != DFSanUnionLoadFn.getCallee()->stripPointerCasts() &&
- &i != DFSanUnimplementedFn.getCallee()->stripPointerCasts() &&
- &i != DFSanSetLabelFn.getCallee()->stripPointerCasts() &&
- &i != DFSanNonzeroLabelFn.getCallee()->stripPointerCasts() &&
- &i != DFSanVarargWrapperFn.getCallee()->stripPointerCasts())
- FnsToInstrument.push_back(&i);
- }
- // Give function aliases prefixes when necessary, and build wrappers where the
- // instrumentedness is inconsistent.
- for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) {
- GlobalAlias *GA = &*i;
- ++i;
- // Don't stop on weak. We assume people aren't playing games with the
- // instrumentedness of overridden weak aliases.
- if (auto F = dyn_cast<Function>(GA->getBaseObject())) {
- bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
- if (GAInst && FInst) {
- addGlobalNamePrefix(GA);
- } else if (GAInst != FInst) {
- // Non-instrumented alias of an instrumented function, or vice versa.
- // Replace the alias with a native-ABI wrapper of the aliasee. The pass
- // below will take care of instrumenting it.
- Function *NewF =
- buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
- GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType()));
- NewF->takeName(GA);
- GA->eraseFromParent();
- FnsToInstrument.push_back(NewF);
- }
- }
- }
- ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly)
- .addAttribute(Attribute::ReadNone);
- // First, change the ABI of every function in the module. ABI-listed
- // functions keep their original ABI and get a wrapper function.
- for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
- e = FnsToInstrument.end();
- i != e; ++i) {
- Function &F = **i;
- FunctionType *FT = F.getFunctionType();
- bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
- FT->getReturnType()->isVoidTy());
- if (isInstrumented(&F)) {
- // Instrumented functions get a 'dfs$' prefix. This allows us to more
- // easily identify cases of mismatching ABIs.
- if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
- FunctionType *NewFT = getArgsFunctionType(FT);
- Function *NewF = Function::Create(NewFT, F.getLinkage(),
- F.getAddressSpace(), "", &M);
- NewF->copyAttributesFrom(&F);
- NewF->removeAttributes(
- AttributeList::ReturnIndex,
- AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
- for (Function::arg_iterator FArg = F.arg_begin(),
- NewFArg = NewF->arg_begin(),
- FArgEnd = F.arg_end();
- FArg != FArgEnd; ++FArg, ++NewFArg) {
- FArg->replaceAllUsesWith(&*NewFArg);
- }
- NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
- for (Function::user_iterator UI = F.user_begin(), UE = F.user_end();
- UI != UE;) {
- BlockAddress *BA = dyn_cast<BlockAddress>(*UI);
- ++UI;
- if (BA) {
- BA->replaceAllUsesWith(
- BlockAddress::get(NewF, BA->getBasicBlock()));
- delete BA;
- }
- }
- F.replaceAllUsesWith(
- ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
- NewF->takeName(&F);
- F.eraseFromParent();
- *i = NewF;
- addGlobalNamePrefix(NewF);
- } else {
- addGlobalNamePrefix(&F);
- }
- } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
- // Build a wrapper function for F. The wrapper simply calls F, and is
- // added to FnsToInstrument so that any instrumentation according to its
- // WrapperKind is done in the second pass below.
- FunctionType *NewFT = getInstrumentedABI() == IA_Args
- ? getArgsFunctionType(FT)
- : FT;
- // If the function being wrapped has local linkage, then preserve the
- // function's linkage in the wrapper function.
- GlobalValue::LinkageTypes wrapperLinkage =
- F.hasLocalLinkage()
- ? F.getLinkage()
- : GlobalValue::LinkOnceODRLinkage;
- Function *NewF = buildWrapperFunction(
- &F, std::string("dfsw$") + std::string(F.getName()),
- wrapperLinkage, NewFT);
- if (getInstrumentedABI() == IA_TLS)
- NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs);
- Value *WrappedFnCst =
- ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
- F.replaceAllUsesWith(WrappedFnCst);
- UnwrappedFnMap[WrappedFnCst] = &F;
- *i = NewF;
- if (!F.isDeclaration()) {
- // This function is probably defining an interposition of an
- // uninstrumented function and hence needs to keep the original ABI.
- // But any functions it may call need to use the instrumented ABI, so
- // we instrument it in a mode which preserves the original ABI.
- FnsWithNativeABI.insert(&F);
- // This code needs to rebuild the iterators, as they may be invalidated
- // by the push_back, taking care that the new range does not include
- // any functions added by this code.
- size_t N = i - FnsToInstrument.begin(),
- Count = e - FnsToInstrument.begin();
- FnsToInstrument.push_back(&F);
- i = FnsToInstrument.begin() + N;
- e = FnsToInstrument.begin() + Count;
- }
- // Hopefully, nobody will try to indirectly call a vararg
- // function... yet.
- } else if (FT->isVarArg()) {
- UnwrappedFnMap[&F] = &F;
- *i = nullptr;
- }
- }
- for (Function *i : FnsToInstrument) {
- if (!i || i->isDeclaration())
- continue;
- removeUnreachableBlocks(*i);
- DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i));
- // DFSanVisitor may create new basic blocks, which confuses df_iterator.
- // Build a copy of the list before iterating over it.
- SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock()));
- for (BasicBlock *i : BBList) {
- Instruction *Inst = &i->front();
- while (true) {
- // DFSanVisitor may split the current basic block, changing the current
- // instruction's next pointer and moving the next instruction to the
- // tail block from which we should continue.
- Instruction *Next = Inst->getNextNode();
- // DFSanVisitor may delete Inst, so keep track of whether it was a
- // terminator.
- bool IsTerminator = Inst->isTerminator();
- if (!DFSF.SkipInsts.count(Inst))
- DFSanVisitor(DFSF).visit(Inst);
- if (IsTerminator)
- break;
- Inst = Next;
- }
- }
- // We will not necessarily be able to compute the shadow for every phi node
- // until we have visited every block. Therefore, the code that handles phi
- // nodes adds them to the PHIFixups list so that they can be properly
- // handled here.
- for (std::vector<std::pair<PHINode *, PHINode *>>::iterator
- i = DFSF.PHIFixups.begin(),
- e = DFSF.PHIFixups.end();
- i != e; ++i) {
- for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n;
- ++val) {
- i->second->setIncomingValue(
- val, DFSF.getShadow(i->first->getIncomingValue(val)));
- }
- }
- // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
- // places (i.e. instructions in basic blocks we haven't even begun visiting
- // yet). To make our life easier, do this work in a pass after the main
- // instrumentation.
- if (ClDebugNonzeroLabels) {
- for (Value *V : DFSF.NonZeroChecks) {
- Instruction *Pos;
- if (Instruction *I = dyn_cast<Instruction>(V))
- Pos = I->getNextNode();
- else
- Pos = &DFSF.F->getEntryBlock().front();
- while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
- Pos = Pos->getNextNode();
- IRBuilder<> IRB(Pos);
- Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow);
- BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
- Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
- IRBuilder<> ThenIRB(BI);
- ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
- }
- }
- }
- return false;
- }
- Value *DFSanFunction::getArgTLSPtr() {
- if (ArgTLSPtr)
- return ArgTLSPtr;
- if (DFS.ArgTLS)
- return ArgTLSPtr = DFS.ArgTLS;
- IRBuilder<> IRB(&F->getEntryBlock().front());
- return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLSTy, DFS.GetArgTLS, {});
- }
- Value *DFSanFunction::getRetvalTLS() {
- if (RetvalTLSPtr)
- return RetvalTLSPtr;
- if (DFS.RetvalTLS)
- return RetvalTLSPtr = DFS.RetvalTLS;
- IRBuilder<> IRB(&F->getEntryBlock().front());
- return RetvalTLSPtr =
- IRB.CreateCall(DFS.GetRetvalTLSTy, DFS.GetRetvalTLS, {});
- }
- Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) {
- IRBuilder<> IRB(Pos);
- return IRB.CreateConstGEP2_64(ArrayType::get(DFS.ShadowTy, 64),
- getArgTLSPtr(), 0, Idx);
- }
- Value *DFSanFunction::getShadow(Value *V) {
- if (!isa<Argument>(V) && !isa<Instruction>(V))
- return DFS.ZeroShadow;
- Value *&Shadow = ValShadowMap[V];
- if (!Shadow) {
- if (Argument *A = dyn_cast<Argument>(V)) {
- if (IsNativeABI)
- return DFS.ZeroShadow;
- switch (IA) {
- case DataFlowSanitizer::IA_TLS: {
- Value *ArgTLSPtr = getArgTLSPtr();
- Instruction *ArgTLSPos =
- DFS.ArgTLS ? &*F->getEntryBlock().begin()
- : cast<Instruction>(ArgTLSPtr)->getNextNode();
- IRBuilder<> IRB(ArgTLSPos);
- Shadow =
- IRB.CreateLoad(DFS.ShadowTy, getArgTLS(A->getArgNo(), ArgTLSPos));
- break;
- }
- case DataFlowSanitizer::IA_Args: {
- unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2;
- Function::arg_iterator i = F->arg_begin();
- while (ArgIdx--)
- ++i;
- Shadow = &*i;
- assert(Shadow->getType() == DFS.ShadowTy);
- break;
- }
- }
- NonZeroChecks.push_back(Shadow);
- } else {
- Shadow = DFS.ZeroShadow;
- }
- }
- return Shadow;
- }
- void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
- assert(!ValShadowMap.count(I));
- assert(Shadow->getType() == DFS.ShadowTy);
- ValShadowMap[I] = Shadow;
- }
- Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
- assert(Addr != RetvalTLS && "Reinstrumenting?");
- IRBuilder<> IRB(Pos);
- Value *ShadowPtrMaskValue;
- if (DFSanRuntimeShadowMask)
- ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask);
- else
- ShadowPtrMaskValue = ShadowPtrMask;
- return IRB.CreateIntToPtr(
- IRB.CreateMul(
- IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy),
- IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)),
- ShadowPtrMul),
- ShadowPtrTy);
- }
- // Generates IR to compute the union of the two given shadows, inserting it
- // before Pos. Returns the computed union Value.
- Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
- if (V1 == DFS.ZeroShadow)
- return V2;
- if (V2 == DFS.ZeroShadow)
- return V1;
- if (V1 == V2)
- return V1;
- auto V1Elems = ShadowElements.find(V1);
- auto V2Elems = ShadowElements.find(V2);
- if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
- if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
- V2Elems->second.begin(), V2Elems->second.end())) {
- return V1;
- } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
- V1Elems->second.begin(), V1Elems->second.end())) {
- return V2;
- }
- } else if (V1Elems != ShadowElements.end()) {
- if (V1Elems->second.count(V2))
- return V1;
- } else if (V2Elems != ShadowElements.end()) {
- if (V2Elems->second.count(V1))
- return V2;
- }
- auto Key = std::make_pair(V1, V2);
- if (V1 > V2)
- std::swap(Key.first, Key.second);
- CachedCombinedShadow &CCS = CachedCombinedShadows[Key];
- if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
- return CCS.Shadow;
- IRBuilder<> IRB(Pos);
- if (AvoidNewBlocks) {
- CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2});
- Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
- Call->addParamAttr(0, Attribute::ZExt);
- Call->addParamAttr(1, Attribute::ZExt);
- CCS.Block = Pos->getParent();
- CCS.Shadow = Call;
- } else {
- BasicBlock *Head = Pos->getParent();
- Value *Ne = IRB.CreateICmpNE(V1, V2);
- BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
- Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT));
- IRBuilder<> ThenIRB(BI);
- CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2});
- Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
- Call->addParamAttr(0, Attribute::ZExt);
- Call->addParamAttr(1, Attribute::ZExt);
- BasicBlock *Tail = BI->getSuccessor(0);
- PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
- Phi->addIncoming(Call, Call->getParent());
- Phi->addIncoming(V1, Head);
- CCS.Block = Tail;
- CCS.Shadow = Phi;
- }
- std::set<Value *> UnionElems;
- if (V1Elems != ShadowElements.end()) {
- UnionElems = V1Elems->second;
- } else {
- UnionElems.insert(V1);
- }
- if (V2Elems != ShadowElements.end()) {
- UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
- } else {
- UnionElems.insert(V2);
- }
- ShadowElements[CCS.Shadow] = std::move(UnionElems);
- return CCS.Shadow;
- }
- // A convenience function which folds the shadows of each of the operands
- // of the provided instruction Inst, inserting the IR before Inst. Returns
- // the computed union Value.
- Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
- if (Inst->getNumOperands() == 0)
- return DFS.ZeroShadow;
- Value *Shadow = getShadow(Inst->getOperand(0));
- for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) {
- Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst);
- }
- return Shadow;
- }
- void DFSanVisitor::visitOperandShadowInst(Instruction &I) {
- Value *CombinedShadow = DFSF.combineOperandShadows(&I);
- DFSF.setShadow(&I, CombinedShadow);
- }
- // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
- // Addr has alignment Align, and take the union of each of those shadows.
- Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
- Instruction *Pos) {
- if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
- const auto i = AllocaShadowMap.find(AI);
- if (i != AllocaShadowMap.end()) {
- IRBuilder<> IRB(Pos);
- return IRB.CreateLoad(DFS.ShadowTy, i->second);
- }
- }
- uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
- SmallVector<const Value *, 2> Objs;
- GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout());
- bool AllConstants = true;
- for (const Value *Obj : Objs) {
- if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
- continue;
- if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
- continue;
- AllConstants = false;
- break;
- }
- if (AllConstants)
- return DFS.ZeroShadow;
- Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
- switch (Size) {
- case 0:
- return DFS.ZeroShadow;
- case 1: {
- LoadInst *LI = new LoadInst(DFS.ShadowTy, ShadowAddr, "", Pos);
- LI->setAlignment(ShadowAlign);
- return LI;
- }
- case 2: {
- IRBuilder<> IRB(Pos);
- Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr,
- ConstantInt::get(DFS.IntptrTy, 1));
- return combineShadows(
- IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr, ShadowAlign),
- IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr1, ShadowAlign), Pos);
- }
- }
- if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) {
- // Fast path for the common case where each byte has identical shadow: load
- // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
- // shadow is non-equal.
- BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
- IRBuilder<> FallbackIRB(FallbackBB);
- CallInst *FallbackCall = FallbackIRB.CreateCall(
- DFS.DFSanUnionLoadFn,
- {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
- FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
- // Compare each of the shadows stored in the loaded 64 bits to each other,
- // by computing (WideShadow rotl ShadowWidth) == WideShadow.
- IRBuilder<> IRB(Pos);
- Value *WideAddr =
- IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
- Value *WideShadow =
- IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign);
- Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy);
- Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth);
- Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth);
- Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
- Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
- BasicBlock *Head = Pos->getParent();
- BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator());
- if (DomTreeNode *OldNode = DT.getNode(Head)) {
- std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
- DomTreeNode *NewNode = DT.addNewBlock(Tail, Head);
- for (auto Child : Children)
- DT.changeImmediateDominator(Child, NewNode);
- }
- // In the following code LastBr will refer to the previous basic block's
- // conditional branch instruction, whose true successor is fixed up to point
- // to the next block during the loop below or to the tail after the final
- // iteration.
- BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
- ReplaceInstWithInst(Head->getTerminator(), LastBr);
- DT.addNewBlock(FallbackBB, Head);
- for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size;
- Ofs += 64 / DFS.ShadowWidth) {
- BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
- DT.addNewBlock(NextBB, LastBr->getParent());
- IRBuilder<> NextIRB(NextBB);
- WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr,
- ConstantInt::get(DFS.IntptrTy, 1));
- Value *NextWideShadow = NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(),
- WideAddr, ShadowAlign);
- ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
- LastBr->setSuccessor(0, NextBB);
- LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
- }
- LastBr->setSuccessor(0, Tail);
- FallbackIRB.CreateBr(Tail);
- PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
- Shadow->addIncoming(FallbackCall, FallbackBB);
- Shadow->addIncoming(TruncShadow, LastBr->getParent());
- return Shadow;
- }
- IRBuilder<> IRB(Pos);
- CallInst *FallbackCall = IRB.CreateCall(
- DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
- FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
- return FallbackCall;
- }
- void DFSanVisitor::visitLoadInst(LoadInst &LI) {
- auto &DL = LI.getModule()->getDataLayout();
- uint64_t Size = DL.getTypeStoreSize(LI.getType());
- if (Size == 0) {
- DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow);
- return;
- }
- uint64_t Align;
- if (ClPreserveAlignment) {
- Align = LI.getAlignment();
- if (Align == 0)
- Align = DL.getABITypeAlignment(LI.getType());
- } else {
- Align = 1;
- }
- IRBuilder<> IRB(&LI);
- Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI);
- if (ClCombinePointerLabelsOnLoad) {
- Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
- Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI);
- }
- if (Shadow != DFSF.DFS.ZeroShadow)
- DFSF.NonZeroChecks.push_back(Shadow);
- DFSF.setShadow(&LI, Shadow);
- }
- void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align,
- Value *Shadow, Instruction *Pos) {
- if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
- const auto i = AllocaShadowMap.find(AI);
- if (i != AllocaShadowMap.end()) {
- IRBuilder<> IRB(Pos);
- IRB.CreateStore(Shadow, i->second);
- return;
- }
- }
- uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
- IRBuilder<> IRB(Pos);
- Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
- if (Shadow == DFS.ZeroShadow) {
- IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth);
- Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
- Value *ExtShadowAddr =
- IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
- IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
- return;
- }
- const unsigned ShadowVecSize = 128 / DFS.ShadowWidth;
- uint64_t Offset = 0;
- if (Size >= ShadowVecSize) {
- VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize);
- Value *ShadowVec = UndefValue::get(ShadowVecTy);
- for (unsigned i = 0; i != ShadowVecSize; ++i) {
- ShadowVec = IRB.CreateInsertElement(
- ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i));
- }
- Value *ShadowVecAddr =
- IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
- do {
- Value *CurShadowVecAddr =
- IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
- IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
- Size -= ShadowVecSize;
- ++Offset;
- } while (Size >= ShadowVecSize);
- Offset *= ShadowVecSize;
- }
- while (Size > 0) {
- Value *CurShadowAddr =
- IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset);
- IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign);
- --Size;
- ++Offset;
- }
- }
- void DFSanVisitor::visitStoreInst(StoreInst &SI) {
- auto &DL = SI.getModule()->getDataLayout();
- uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType());
- if (Size == 0)
- return;
- uint64_t Align;
- if (ClPreserveAlignment) {
- Align = SI.getAlignment();
- if (Align == 0)
- Align = DL.getABITypeAlignment(SI.getValueOperand()->getType());
- } else {
- Align = 1;
- }
- Value* Shadow = DFSF.getShadow(SI.getValueOperand());
- if (ClCombinePointerLabelsOnStore) {
- Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
- Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
- }
- DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI);
- }
- void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
- visitOperandShadowInst(BO);
- }
- void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); }
- void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); }
- void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
- visitOperandShadowInst(GEPI);
- }
- void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
- visitOperandShadowInst(I);
- }
- void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
- visitOperandShadowInst(I);
- }
- void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
- visitOperandShadowInst(I);
- }
- void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
- visitOperandShadowInst(I);
- }
- void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
- visitOperandShadowInst(I);
- }
- void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
- bool AllLoadsStores = true;
- for (User *U : I.users()) {
- if (isa<LoadInst>(U))
- continue;
- if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- if (SI->getPointerOperand() == &I)
- continue;
- }
- AllLoadsStores = false;
- break;
- }
- if (AllLoadsStores) {
- IRBuilder<> IRB(&I);
- DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy);
- }
- DFSF.setShadow(&I, DFSF.DFS.ZeroShadow);
- }
- void DFSanVisitor::visitSelectInst(SelectInst &I) {
- Value *CondShadow = DFSF.getShadow(I.getCondition());
- Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
- Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
- if (isa<VectorType>(I.getCondition()->getType())) {
- DFSF.setShadow(
- &I,
- DFSF.combineShadows(
- CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I));
- } else {
- Value *ShadowSel;
- if (TrueShadow == FalseShadow) {
- ShadowSel = TrueShadow;
- } else {
- ShadowSel =
- SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
- }
- DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I));
- }
- }
- void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
- IRBuilder<> IRB(&I);
- Value *ValShadow = DFSF.getShadow(I.getValue());
- IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn,
- {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(
- *DFSF.DFS.Ctx)),
- IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
- }
- void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
- IRBuilder<> IRB(&I);
- Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
- Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
- Value *LenShadow = IRB.CreateMul(
- I.getLength(),
- ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8));
- Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
- DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr);
- SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
- auto *MTI = cast<MemTransferInst>(
- IRB.CreateCall(I.getFunctionType(), I.getCalledValue(),
- {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
- if (ClPreserveAlignment) {
- MTI->setDestAlignment(I.getDestAlignment() * (DFSF.DFS.ShadowWidth / 8));
- MTI->setSourceAlignment(I.getSourceAlignment() * (DFSF.DFS.ShadowWidth / 8));
- } else {
- MTI->setDestAlignment(DFSF.DFS.ShadowWidth / 8);
- MTI->setSourceAlignment(DFSF.DFS.ShadowWidth / 8);
- }
- }
- void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
- if (!DFSF.IsNativeABI && RI.getReturnValue()) {
- switch (DFSF.IA) {
- case DataFlowSanitizer::IA_TLS: {
- Value *S = DFSF.getShadow(RI.getReturnValue());
- IRBuilder<> IRB(&RI);
- IRB.CreateStore(S, DFSF.getRetvalTLS());
- break;
- }
- case DataFlowSanitizer::IA_Args: {
- IRBuilder<> IRB(&RI);
- Type *RT = DFSF.F->getFunctionType()->getReturnType();
- Value *InsVal =
- IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
- Value *InsShadow =
- IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
- RI.setOperand(0, InsShadow);
- break;
- }
- }
- }
- }
- void DFSanVisitor::visitCallSite(CallSite CS) {
- Function *F = CS.getCalledFunction();
- if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) {
- visitOperandShadowInst(*CS.getInstruction());
- return;
- }
- // Calls to this function are synthesized in wrappers, and we shouldn't
- // instrument them.
- if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts())
- return;
- IRBuilder<> IRB(CS.getInstruction());
- DenseMap<Value *, Function *>::iterator i =
- DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue());
- if (i != DFSF.DFS.UnwrappedFnMap.end()) {
- Function *F = i->second;
- switch (DFSF.DFS.getWrapperKind(F)) {
- case DataFlowSanitizer::WK_Warning:
- CS.setCalledFunction(F);
- IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
- IRB.CreateGlobalStringPtr(F->getName()));
- DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
- return;
- case DataFlowSanitizer::WK_Discard:
- CS.setCalledFunction(F);
- DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
- return;
- case DataFlowSanitizer::WK_Functional:
- CS.setCalledFunction(F);
- visitOperandShadowInst(*CS.getInstruction());
- return;
- case DataFlowSanitizer::WK_Custom:
- // Don't try to handle invokes of custom functions, it's too complicated.
- // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
- // wrapper.
- if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
- FunctionType *FT = F->getFunctionType();
- TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
- std::string CustomFName = "__dfsw_";
- CustomFName += F->getName();
- FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction(
- CustomFName, CustomFn.TransformedType);
- if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) {
- CustomFn->copyAttributesFrom(F);
- // Custom functions returning non-void will write to the return label.
- if (!FT->getReturnType()->isVoidTy()) {
- CustomFn->removeAttributes(AttributeList::FunctionIndex,
- DFSF.DFS.ReadOnlyNoneAttrs);
- }
- }
- std::vector<Value *> Args;
- CallSite::arg_iterator i = CS.arg_begin();
- for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) {
- Type *T = (*i)->getType();
- FunctionType *ParamFT;
- if (isa<PointerType>(T) &&
- (ParamFT = dyn_cast<FunctionType>(
- cast<PointerType>(T)->getElementType()))) {
- std::string TName = "dfst";
- TName += utostr(FT->getNumParams() - n);
- TName += "$";
- TName += F->getName();
- Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
- Args.push_back(T);
- Args.push_back(
- IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
- } else {
- Args.push_back(*i);
- }
- }
- i = CS.arg_begin();
- const unsigned ShadowArgStart = Args.size();
- for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
- Args.push_back(DFSF.getShadow(*i));
- if (FT->isVarArg()) {
- auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy,
- CS.arg_size() - FT->getNumParams());
- auto *LabelVAAlloca = new AllocaInst(
- LabelVATy, getDataLayout().getAllocaAddrSpace(),
- "labelva", &DFSF.F->getEntryBlock().front());
- for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) {
- auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n);
- IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr);
- }
- Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
- }
- if (!FT->getReturnType()->isVoidTy()) {
- if (!DFSF.LabelReturnAlloca) {
- DFSF.LabelReturnAlloca =
- new AllocaInst(DFSF.DFS.ShadowTy,
- getDataLayout().getAllocaAddrSpace(),
- "labelreturn", &DFSF.F->getEntryBlock().front());
- }
- Args.push_back(DFSF.LabelReturnAlloca);
- }
- for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i)
- Args.push_back(*i);
- CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
- CustomCI->setCallingConv(CI->getCallingConv());
- CustomCI->setAttributes(TransformFunctionAttributes(CustomFn,
- CI->getContext(), CI->getAttributes()));
- // Update the parameter attributes of the custom call instruction to
- // zero extend the shadow parameters. This is required for targets
- // which consider ShadowTy an illegal type.
- for (unsigned n = 0; n < FT->getNumParams(); n++) {
- const unsigned ArgNo = ShadowArgStart + n;
- if (CustomCI->getArgOperand(ArgNo)->getType() == DFSF.DFS.ShadowTy)
- CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
- }
- if (!FT->getReturnType()->isVoidTy()) {
- LoadInst *LabelLoad =
- IRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.LabelReturnAlloca);
- DFSF.setShadow(CustomCI, LabelLoad);
- }
- CI->replaceAllUsesWith(CustomCI);
- CI->eraseFromParent();
- return;
- }
- break;
- }
- }
- FunctionType *FT = cast<FunctionType>(
- CS.getCalledValue()->getType()->getPointerElementType());
- if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
- for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) {
- IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)),
- DFSF.getArgTLS(i, CS.getInstruction()));
- }
- }
- Instruction *Next = nullptr;
- if (!CS.getType()->isVoidTy()) {
- if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
- if (II->getNormalDest()->getSinglePredecessor()) {
- Next = &II->getNormalDest()->front();
- } else {
- BasicBlock *NewBB =
- SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
- Next = &NewBB->front();
- }
- } else {
- assert(CS->getIterator() != CS->getParent()->end());
- Next = CS->getNextNode();
- }
- if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
- IRBuilder<> NextIRB(Next);
- LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.getRetvalTLS());
- DFSF.SkipInsts.insert(LI);
- DFSF.setShadow(CS.getInstruction(), LI);
- DFSF.NonZeroChecks.push_back(LI);
- }
- }
- // Do all instrumentation for IA_Args down here to defer tampering with the
- // CFG in a way that SplitEdge may be able to detect.
- if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
- FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
- Value *Func =
- IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT));
- std::vector<Value *> Args;
- CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
- for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
- Args.push_back(*i);
- i = CS.arg_begin();
- for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
- Args.push_back(DFSF.getShadow(*i));
- if (FT->isVarArg()) {
- unsigned VarArgSize = CS.arg_size() - FT->getNumParams();
- ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize);
- AllocaInst *VarArgShadow =
- new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(),
- "", &DFSF.F->getEntryBlock().front());
- Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0));
- for (unsigned n = 0; i != e; ++i, ++n) {
- IRB.CreateStore(
- DFSF.getShadow(*i),
- IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n));
- Args.push_back(*i);
- }
- }
- CallSite NewCS;
- if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
- NewCS = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(),
- II->getUnwindDest(), Args);
- } else {
- NewCS = IRB.CreateCall(NewFT, Func, Args);
- }
- NewCS.setCallingConv(CS.getCallingConv());
- NewCS.setAttributes(CS.getAttributes().removeAttributes(
- *DFSF.DFS.Ctx, AttributeList::ReturnIndex,
- AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType())));
- if (Next) {
- ExtractValueInst *ExVal =
- ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next);
- DFSF.SkipInsts.insert(ExVal);
- ExtractValueInst *ExShadow =
- ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next);
- DFSF.SkipInsts.insert(ExShadow);
- DFSF.setShadow(ExVal, ExShadow);
- DFSF.NonZeroChecks.push_back(ExShadow);
- CS.getInstruction()->replaceAllUsesWith(ExVal);
- }
- CS.getInstruction()->eraseFromParent();
- }
- }
- void DFSanVisitor::visitPHINode(PHINode &PN) {
- PHINode *ShadowPN =
- PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN);
- // Give the shadow phi node valid predecessors to fool SplitEdge into working.
- Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy);
- for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e;
- ++i) {
- ShadowPN->addIncoming(UndefShadow, *i);
- }
- DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN));
- DFSF.setShadow(&PN, ShadowPN);
- }
|