LiveStackAnalysis.cpp 2.9 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788
  1. //===-- LiveStackAnalysis.cpp - Live Stack Slot Analysis ------------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // This file implements the live stack slot analysis pass. It is analogous to
  11. // live interval analysis except it's analyzing liveness of stack slots rather
  12. // than registers.
  13. //
  14. //===----------------------------------------------------------------------===//
  15. #include "llvm/CodeGen/LiveStackAnalysis.h"
  16. #include "llvm/ADT/Statistic.h"
  17. #include "llvm/CodeGen/LiveIntervalAnalysis.h"
  18. #include "llvm/CodeGen/Passes.h"
  19. #include "llvm/Support/Debug.h"
  20. #include "llvm/Support/raw_ostream.h"
  21. #include "llvm/Target/TargetRegisterInfo.h"
  22. #include "llvm/Target/TargetSubtargetInfo.h"
  23. #include <limits>
  24. using namespace llvm;
  25. #define DEBUG_TYPE "livestacks"
  26. char LiveStacks::ID = 0;
  27. INITIALIZE_PASS_BEGIN(LiveStacks, "livestacks",
  28. "Live Stack Slot Analysis", false, false)
  29. INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
  30. INITIALIZE_PASS_END(LiveStacks, "livestacks",
  31. "Live Stack Slot Analysis", false, false)
  32. char &llvm::LiveStacksID = LiveStacks::ID;
  33. void LiveStacks::getAnalysisUsage(AnalysisUsage &AU) const {
  34. AU.setPreservesAll();
  35. AU.addPreserved<SlotIndexes>();
  36. AU.addRequiredTransitive<SlotIndexes>();
  37. MachineFunctionPass::getAnalysisUsage(AU);
  38. }
  39. void LiveStacks::releaseMemory() {
  40. // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
  41. VNInfoAllocator.Reset();
  42. S2IMap.clear();
  43. S2RCMap.clear();
  44. }
  45. bool LiveStacks::runOnMachineFunction(MachineFunction &MF) {
  46. TRI = MF.getSubtarget().getRegisterInfo();
  47. // FIXME: No analysis is being done right now. We are relying on the
  48. // register allocators to provide the information.
  49. return false;
  50. }
  51. LiveInterval &
  52. LiveStacks::getOrCreateInterval(int Slot, const TargetRegisterClass *RC) {
  53. assert(Slot >= 0 && "Spill slot indice must be >= 0");
  54. SS2IntervalMap::iterator I = S2IMap.find(Slot);
  55. if (I == S2IMap.end()) {
  56. I = S2IMap.insert(I, std::make_pair(Slot,
  57. LiveInterval(TargetRegisterInfo::index2StackSlot(Slot), 0.0F)));
  58. S2RCMap.insert(std::make_pair(Slot, RC));
  59. } else {
  60. // Use the largest common subclass register class.
  61. const TargetRegisterClass *OldRC = S2RCMap[Slot];
  62. S2RCMap[Slot] = TRI->getCommonSubClass(OldRC, RC);
  63. }
  64. return I->second;
  65. }
  66. /// print - Implement the dump method.
  67. void LiveStacks::print(raw_ostream &OS, const Module*) const {
  68. OS << "********** INTERVALS **********\n";
  69. for (const_iterator I = begin(), E = end(); I != E; ++I) {
  70. I->second.print(OS);
  71. int Slot = I->first;
  72. const TargetRegisterClass *RC = getIntervalRegClass(Slot);
  73. if (RC)
  74. OS << " [" << TRI->getRegClassName(RC) << "]\n";
  75. else
  76. OS << " [Unknown]\n";
  77. }
  78. }