123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901 |
- //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the library calls simplifier. It does not implement
- // any pass, but can't be used by other passes to do simplifications.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
- #include "llvm/ADT/APSInt.h"
- #include "llvm/ADT/SmallString.h"
- #include "llvm/ADT/StringMap.h"
- #include "llvm/ADT/Triple.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Analysis/CaptureTracking.h"
- #include "llvm/Analysis/Loads.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Transforms/Utils/BuildLibCalls.h"
- using namespace llvm;
- using namespace PatternMatch;
- static cl::opt<bool>
- EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
- cl::init(false),
- cl::desc("Enable unsafe double to float "
- "shrinking for math lib calls"));
- //===----------------------------------------------------------------------===//
- // Helper Functions
- //===----------------------------------------------------------------------===//
- static bool ignoreCallingConv(LibFunc Func) {
- return Func == LibFunc_abs || Func == LibFunc_labs ||
- Func == LibFunc_llabs || Func == LibFunc_strlen;
- }
- static bool isCallingConvCCompatible(CallInst *CI) {
- switch(CI->getCallingConv()) {
- default:
- return false;
- case llvm::CallingConv::C:
- return true;
- case llvm::CallingConv::ARM_APCS:
- case llvm::CallingConv::ARM_AAPCS:
- case llvm::CallingConv::ARM_AAPCS_VFP: {
- // The iOS ABI diverges from the standard in some cases, so for now don't
- // try to simplify those calls.
- if (Triple(CI->getModule()->getTargetTriple()).isiOS())
- return false;
- auto *FuncTy = CI->getFunctionType();
- if (!FuncTy->getReturnType()->isPointerTy() &&
- !FuncTy->getReturnType()->isIntegerTy() &&
- !FuncTy->getReturnType()->isVoidTy())
- return false;
- for (auto Param : FuncTy->params()) {
- if (!Param->isPointerTy() && !Param->isIntegerTy())
- return false;
- }
- return true;
- }
- }
- return false;
- }
- /// Return true if it is only used in equality comparisons with With.
- static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
- for (User *U : V->users()) {
- if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
- if (IC->isEquality() && IC->getOperand(1) == With)
- continue;
- // Unknown instruction.
- return false;
- }
- return true;
- }
- static bool callHasFloatingPointArgument(const CallInst *CI) {
- return any_of(CI->operands(), [](const Use &OI) {
- return OI->getType()->isFloatingPointTy();
- });
- }
- static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
- if (Base < 2 || Base > 36)
- // handle special zero base
- if (Base != 0)
- return nullptr;
- char *End;
- std::string nptr = Str.str();
- errno = 0;
- long long int Result = strtoll(nptr.c_str(), &End, Base);
- if (errno)
- return nullptr;
- // if we assume all possible target locales are ASCII supersets,
- // then if strtoll successfully parses a number on the host,
- // it will also successfully parse the same way on the target
- if (*End != '\0')
- return nullptr;
- if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
- return nullptr;
- return ConstantInt::get(CI->getType(), Result);
- }
- static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B,
- const TargetLibraryInfo *TLI) {
- CallInst *FOpen = dyn_cast<CallInst>(File);
- if (!FOpen)
- return false;
- Function *InnerCallee = FOpen->getCalledFunction();
- if (!InnerCallee)
- return false;
- LibFunc Func;
- if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
- Func != LibFunc_fopen)
- return false;
- inferLibFuncAttributes(*CI->getCalledFunction(), *TLI);
- if (PointerMayBeCaptured(File, true, true))
- return false;
- return true;
- }
- static bool isOnlyUsedInComparisonWithZero(Value *V) {
- for (User *U : V->users()) {
- if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
- if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
- if (C->isNullValue())
- continue;
- // Unknown instruction.
- return false;
- }
- return true;
- }
- static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
- const DataLayout &DL) {
- if (!isOnlyUsedInComparisonWithZero(CI))
- return false;
- if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL))
- return false;
- if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
- return false;
- return true;
- }
- //===----------------------------------------------------------------------===//
- // String and Memory Library Call Optimizations
- //===----------------------------------------------------------------------===//
- Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
- // Extract some information from the instruction
- Value *Dst = CI->getArgOperand(0);
- Value *Src = CI->getArgOperand(1);
- // See if we can get the length of the input string.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0)
- return nullptr;
- --Len; // Unbias length.
- // Handle the simple, do-nothing case: strcat(x, "") -> x
- if (Len == 0)
- return Dst;
- return emitStrLenMemCpy(Src, Dst, Len, B);
- }
- Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
- IRBuilder<> &B) {
- // We need to find the end of the destination string. That's where the
- // memory is to be moved to. We just generate a call to strlen.
- Value *DstLen = emitStrLen(Dst, B, DL, TLI);
- if (!DstLen)
- return nullptr;
- // Now that we have the destination's length, we must index into the
- // destination's pointer to get the actual memcpy destination (end of
- // the string .. we're concatenating).
- Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
- // We have enough information to now generate the memcpy call to do the
- // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
- B.CreateMemCpy(CpyDst, 1, Src, 1,
- ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
- return Dst;
- }
- Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
- // Extract some information from the instruction.
- Value *Dst = CI->getArgOperand(0);
- Value *Src = CI->getArgOperand(1);
- uint64_t Len;
- // We don't do anything if length is not constant.
- if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
- Len = LengthArg->getZExtValue();
- else
- return nullptr;
- // See if we can get the length of the input string.
- uint64_t SrcLen = GetStringLength(Src);
- if (SrcLen == 0)
- return nullptr;
- --SrcLen; // Unbias length.
- // Handle the simple, do-nothing cases:
- // strncat(x, "", c) -> x
- // strncat(x, c, 0) -> x
- if (SrcLen == 0 || Len == 0)
- return Dst;
- // We don't optimize this case.
- if (Len < SrcLen)
- return nullptr;
- // strncat(x, s, c) -> strcat(x, s)
- // s is constant so the strcat can be optimized further.
- return emitStrLenMemCpy(Src, Dst, SrcLen, B);
- }
- Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- Value *SrcStr = CI->getArgOperand(0);
- // If the second operand is non-constant, see if we can compute the length
- // of the input string and turn this into memchr.
- ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- if (!CharC) {
- uint64_t Len = GetStringLength(SrcStr);
- if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
- return nullptr;
- return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
- ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
- B, DL, TLI);
- }
- // Otherwise, the character is a constant, see if the first argument is
- // a string literal. If so, we can constant fold.
- StringRef Str;
- if (!getConstantStringInfo(SrcStr, Str)) {
- if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
- return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
- "strchr");
- return nullptr;
- }
- // Compute the offset, make sure to handle the case when we're searching for
- // zero (a weird way to spell strlen).
- size_t I = (0xFF & CharC->getSExtValue()) == 0
- ? Str.size()
- : Str.find(CharC->getSExtValue());
- if (I == StringRef::npos) // Didn't find the char. strchr returns null.
- return Constant::getNullValue(CI->getType());
- // strchr(s+n,c) -> gep(s+n+i,c)
- return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
- }
- Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
- Value *SrcStr = CI->getArgOperand(0);
- ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- // Cannot fold anything if we're not looking for a constant.
- if (!CharC)
- return nullptr;
- StringRef Str;
- if (!getConstantStringInfo(SrcStr, Str)) {
- // strrchr(s, 0) -> strchr(s, 0)
- if (CharC->isZero())
- return emitStrChr(SrcStr, '\0', B, TLI);
- return nullptr;
- }
- // Compute the offset.
- size_t I = (0xFF & CharC->getSExtValue()) == 0
- ? Str.size()
- : Str.rfind(CharC->getSExtValue());
- if (I == StringRef::npos) // Didn't find the char. Return null.
- return Constant::getNullValue(CI->getType());
- // strrchr(s+n,c) -> gep(s+n+i,c)
- return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
- }
- Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
- Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
- if (Str1P == Str2P) // strcmp(x,x) -> 0
- return ConstantInt::get(CI->getType(), 0);
- StringRef Str1, Str2;
- bool HasStr1 = getConstantStringInfo(Str1P, Str1);
- bool HasStr2 = getConstantStringInfo(Str2P, Str2);
- // strcmp(x, y) -> cnst (if both x and y are constant strings)
- if (HasStr1 && HasStr2)
- return ConstantInt::get(CI->getType(), Str1.compare(Str2));
- if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
- return B.CreateNeg(
- B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
- if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
- return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
- // strcmp(P, "x") -> memcmp(P, "x", 2)
- uint64_t Len1 = GetStringLength(Str1P);
- uint64_t Len2 = GetStringLength(Str2P);
- if (Len1 && Len2) {
- return emitMemCmp(Str1P, Str2P,
- ConstantInt::get(DL.getIntPtrType(CI->getContext()),
- std::min(Len1, Len2)),
- B, DL, TLI);
- }
- // strcmp to memcmp
- if (!HasStr1 && HasStr2) {
- if (canTransformToMemCmp(CI, Str1P, Len2, DL))
- return emitMemCmp(
- Str1P, Str2P,
- ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
- TLI);
- } else if (HasStr1 && !HasStr2) {
- if (canTransformToMemCmp(CI, Str2P, Len1, DL))
- return emitMemCmp(
- Str1P, Str2P,
- ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
- TLI);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
- Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
- if (Str1P == Str2P) // strncmp(x,x,n) -> 0
- return ConstantInt::get(CI->getType(), 0);
- // Get the length argument if it is constant.
- uint64_t Length;
- if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
- Length = LengthArg->getZExtValue();
- else
- return nullptr;
- if (Length == 0) // strncmp(x,y,0) -> 0
- return ConstantInt::get(CI->getType(), 0);
- if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
- return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
- StringRef Str1, Str2;
- bool HasStr1 = getConstantStringInfo(Str1P, Str1);
- bool HasStr2 = getConstantStringInfo(Str2P, Str2);
- // strncmp(x, y) -> cnst (if both x and y are constant strings)
- if (HasStr1 && HasStr2) {
- StringRef SubStr1 = Str1.substr(0, Length);
- StringRef SubStr2 = Str2.substr(0, Length);
- return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
- }
- if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
- return B.CreateNeg(
- B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
- if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
- return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
- uint64_t Len1 = GetStringLength(Str1P);
- uint64_t Len2 = GetStringLength(Str2P);
- // strncmp to memcmp
- if (!HasStr1 && HasStr2) {
- Len2 = std::min(Len2, Length);
- if (canTransformToMemCmp(CI, Str1P, Len2, DL))
- return emitMemCmp(
- Str1P, Str2P,
- ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
- TLI);
- } else if (HasStr1 && !HasStr2) {
- Len1 = std::min(Len1, Length);
- if (canTransformToMemCmp(CI, Str2P, Len1, DL))
- return emitMemCmp(
- Str1P, Str2P,
- ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
- TLI);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
- Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
- if (Dst == Src) // strcpy(x,x) -> x
- return Src;
- // See if we can get the length of the input string.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0)
- return nullptr;
- // We have enough information to now generate the memcpy call to do the
- // copy for us. Make a memcpy to copy the nul byte with align = 1.
- B.CreateMemCpy(Dst, 1, Src, 1,
- ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
- return Dst;
- }
- Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
- if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
- Value *StrLen = emitStrLen(Src, B, DL, TLI);
- return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
- }
- // See if we can get the length of the input string.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0)
- return nullptr;
- Type *PT = Callee->getFunctionType()->getParamType(0);
- Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
- Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
- ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
- // We have enough information to now generate the memcpy call to do the
- // copy for us. Make a memcpy to copy the nul byte with align = 1.
- B.CreateMemCpy(Dst, 1, Src, 1, LenV);
- return DstEnd;
- }
- Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- Value *Dst = CI->getArgOperand(0);
- Value *Src = CI->getArgOperand(1);
- Value *LenOp = CI->getArgOperand(2);
- // See if we can get the length of the input string.
- uint64_t SrcLen = GetStringLength(Src);
- if (SrcLen == 0)
- return nullptr;
- --SrcLen;
- if (SrcLen == 0) {
- // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
- B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
- return Dst;
- }
- uint64_t Len;
- if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
- Len = LengthArg->getZExtValue();
- else
- return nullptr;
- if (Len == 0)
- return Dst; // strncpy(x, y, 0) -> x
- // Let strncpy handle the zero padding
- if (Len > SrcLen + 1)
- return nullptr;
- Type *PT = Callee->getFunctionType()->getParamType(0);
- // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
- B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len));
- return Dst;
- }
- Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
- unsigned CharSize) {
- Value *Src = CI->getArgOperand(0);
- // Constant folding: strlen("xyz") -> 3
- if (uint64_t Len = GetStringLength(Src, CharSize))
- return ConstantInt::get(CI->getType(), Len - 1);
- // If s is a constant pointer pointing to a string literal, we can fold
- // strlen(s + x) to strlen(s) - x, when x is known to be in the range
- // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
- // We only try to simplify strlen when the pointer s points to an array
- // of i8. Otherwise, we would need to scale the offset x before doing the
- // subtraction. This will make the optimization more complex, and it's not
- // very useful because calling strlen for a pointer of other types is
- // very uncommon.
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
- if (!isGEPBasedOnPointerToString(GEP, CharSize))
- return nullptr;
- ConstantDataArraySlice Slice;
- if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
- uint64_t NullTermIdx;
- if (Slice.Array == nullptr) {
- NullTermIdx = 0;
- } else {
- NullTermIdx = ~((uint64_t)0);
- for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
- if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
- NullTermIdx = I;
- break;
- }
- }
- // If the string does not have '\0', leave it to strlen to compute
- // its length.
- if (NullTermIdx == ~((uint64_t)0))
- return nullptr;
- }
- Value *Offset = GEP->getOperand(2);
- KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
- Known.Zero.flipAllBits();
- uint64_t ArrSize =
- cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
- // KnownZero's bits are flipped, so zeros in KnownZero now represent
- // bits known to be zeros in Offset, and ones in KnowZero represent
- // bits unknown in Offset. Therefore, Offset is known to be in range
- // [0, NullTermIdx] when the flipped KnownZero is non-negative and
- // unsigned-less-than NullTermIdx.
- //
- // If Offset is not provably in the range [0, NullTermIdx], we can still
- // optimize if we can prove that the program has undefined behavior when
- // Offset is outside that range. That is the case when GEP->getOperand(0)
- // is a pointer to an object whose memory extent is NullTermIdx+1.
- if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
- (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
- NullTermIdx == ArrSize - 1)) {
- Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
- return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
- Offset);
- }
- }
- return nullptr;
- }
- // strlen(x?"foo":"bars") --> x ? 3 : 4
- if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
- uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
- uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
- if (LenTrue && LenFalse) {
- ORE.emit([&]() {
- return OptimizationRemark("instcombine", "simplify-libcalls", CI)
- << "folded strlen(select) to select of constants";
- });
- return B.CreateSelect(SI->getCondition(),
- ConstantInt::get(CI->getType(), LenTrue - 1),
- ConstantInt::get(CI->getType(), LenFalse - 1));
- }
- }
- // strlen(x) != 0 --> *x != 0
- // strlen(x) == 0 --> *x == 0
- if (isOnlyUsedInZeroEqualityComparison(CI))
- return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
- return optimizeStringLength(CI, B, 8);
- }
- Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
- Module &M = *CI->getModule();
- unsigned WCharSize = TLI->getWCharSize(M) * 8;
- // We cannot perform this optimization without wchar_size metadata.
- if (WCharSize == 0)
- return nullptr;
- return optimizeStringLength(CI, B, WCharSize);
- }
- Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
- StringRef S1, S2;
- bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
- bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
- // strpbrk(s, "") -> nullptr
- // strpbrk("", s) -> nullptr
- if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
- return Constant::getNullValue(CI->getType());
- // Constant folding.
- if (HasS1 && HasS2) {
- size_t I = S1.find_first_of(S2);
- if (I == StringRef::npos) // No match.
- return Constant::getNullValue(CI->getType());
- return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
- "strpbrk");
- }
- // strpbrk(s, "a") -> strchr(s, 'a')
- if (HasS2 && S2.size() == 1)
- return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
- Value *EndPtr = CI->getArgOperand(1);
- if (isa<ConstantPointerNull>(EndPtr)) {
- // With a null EndPtr, this function won't capture the main argument.
- // It would be readonly too, except that it still may write to errno.
- CI->addParamAttr(0, Attribute::NoCapture);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
- StringRef S1, S2;
- bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
- bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
- // strspn(s, "") -> 0
- // strspn("", s) -> 0
- if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
- return Constant::getNullValue(CI->getType());
- // Constant folding.
- if (HasS1 && HasS2) {
- size_t Pos = S1.find_first_not_of(S2);
- if (Pos == StringRef::npos)
- Pos = S1.size();
- return ConstantInt::get(CI->getType(), Pos);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
- StringRef S1, S2;
- bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
- bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
- // strcspn("", s) -> 0
- if (HasS1 && S1.empty())
- return Constant::getNullValue(CI->getType());
- // Constant folding.
- if (HasS1 && HasS2) {
- size_t Pos = S1.find_first_of(S2);
- if (Pos == StringRef::npos)
- Pos = S1.size();
- return ConstantInt::get(CI->getType(), Pos);
- }
- // strcspn(s, "") -> strlen(s)
- if (HasS2 && S2.empty())
- return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
- // fold strstr(x, x) -> x.
- if (CI->getArgOperand(0) == CI->getArgOperand(1))
- return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
- // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
- if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
- Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
- if (!StrLen)
- return nullptr;
- Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
- StrLen, B, DL, TLI);
- if (!StrNCmp)
- return nullptr;
- for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
- ICmpInst *Old = cast<ICmpInst>(*UI++);
- Value *Cmp =
- B.CreateICmp(Old->getPredicate(), StrNCmp,
- ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
- replaceAllUsesWith(Old, Cmp);
- }
- return CI;
- }
- // See if either input string is a constant string.
- StringRef SearchStr, ToFindStr;
- bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
- bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
- // fold strstr(x, "") -> x.
- if (HasStr2 && ToFindStr.empty())
- return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
- // If both strings are known, constant fold it.
- if (HasStr1 && HasStr2) {
- size_t Offset = SearchStr.find(ToFindStr);
- if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
- return Constant::getNullValue(CI->getType());
- // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
- Value *Result = castToCStr(CI->getArgOperand(0), B);
- Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
- return B.CreateBitCast(Result, CI->getType());
- }
- // fold strstr(x, "y") -> strchr(x, 'y').
- if (HasStr2 && ToFindStr.size() == 1) {
- Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
- return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
- Value *SrcStr = CI->getArgOperand(0);
- ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
- // memchr(x, y, 0) -> null
- if (LenC && LenC->isZero())
- return Constant::getNullValue(CI->getType());
- // From now on we need at least constant length and string.
- StringRef Str;
- if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
- return nullptr;
- // Truncate the string to LenC. If Str is smaller than LenC we will still only
- // scan the string, as reading past the end of it is undefined and we can just
- // return null if we don't find the char.
- Str = Str.substr(0, LenC->getZExtValue());
- // If the char is variable but the input str and length are not we can turn
- // this memchr call into a simple bit field test. Of course this only works
- // when the return value is only checked against null.
- //
- // It would be really nice to reuse switch lowering here but we can't change
- // the CFG at this point.
- //
- // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
- // after bounds check.
- if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
- unsigned char Max =
- *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
- reinterpret_cast<const unsigned char *>(Str.end()));
- // Make sure the bit field we're about to create fits in a register on the
- // target.
- // FIXME: On a 64 bit architecture this prevents us from using the
- // interesting range of alpha ascii chars. We could do better by emitting
- // two bitfields or shifting the range by 64 if no lower chars are used.
- if (!DL.fitsInLegalInteger(Max + 1))
- return nullptr;
- // For the bit field use a power-of-2 type with at least 8 bits to avoid
- // creating unnecessary illegal types.
- unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
- // Now build the bit field.
- APInt Bitfield(Width, 0);
- for (char C : Str)
- Bitfield.setBit((unsigned char)C);
- Value *BitfieldC = B.getInt(Bitfield);
- // Adjust width of "C" to the bitfield width, then mask off the high bits.
- Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
- C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
- // First check that the bit field access is within bounds.
- Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
- "memchr.bounds");
- // Create code that checks if the given bit is set in the field.
- Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
- Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
- // Finally merge both checks and cast to pointer type. The inttoptr
- // implicitly zexts the i1 to intptr type.
- return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
- }
- // Check if all arguments are constants. If so, we can constant fold.
- if (!CharC)
- return nullptr;
- // Compute the offset.
- size_t I = Str.find(CharC->getSExtValue() & 0xFF);
- if (I == StringRef::npos) // Didn't find the char. memchr returns null.
- return Constant::getNullValue(CI->getType());
- // memchr(s+n,c,l) -> gep(s+n+i,c)
- return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
- }
- Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
- Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
- if (LHS == RHS) // memcmp(s,s,x) -> 0
- return Constant::getNullValue(CI->getType());
- // Make sure we have a constant length.
- ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
- if (!LenC)
- return nullptr;
- uint64_t Len = LenC->getZExtValue();
- if (Len == 0) // memcmp(s1,s2,0) -> 0
- return Constant::getNullValue(CI->getType());
- // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
- if (Len == 1) {
- Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
- CI->getType(), "lhsv");
- Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
- CI->getType(), "rhsv");
- return B.CreateSub(LHSV, RHSV, "chardiff");
- }
- // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
- // TODO: The case where both inputs are constants does not need to be limited
- // to legal integers or equality comparison. See block below this.
- if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
- IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
- unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
- // First, see if we can fold either argument to a constant.
- Value *LHSV = nullptr;
- if (auto *LHSC = dyn_cast<Constant>(LHS)) {
- LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
- LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
- }
- Value *RHSV = nullptr;
- if (auto *RHSC = dyn_cast<Constant>(RHS)) {
- RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
- RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
- }
- // Don't generate unaligned loads. If either source is constant data,
- // alignment doesn't matter for that source because there is no load.
- if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
- (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
- if (!LHSV) {
- Type *LHSPtrTy =
- IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
- LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
- }
- if (!RHSV) {
- Type *RHSPtrTy =
- IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
- RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
- }
- return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
- }
- }
- // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
- // TODO: This is limited to i8 arrays.
- StringRef LHSStr, RHSStr;
- if (getConstantStringInfo(LHS, LHSStr) &&
- getConstantStringInfo(RHS, RHSStr)) {
- // Make sure we're not reading out-of-bounds memory.
- if (Len > LHSStr.size() || Len > RHSStr.size())
- return nullptr;
- // Fold the memcmp and normalize the result. This way we get consistent
- // results across multiple platforms.
- uint64_t Ret = 0;
- int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
- if (Cmp < 0)
- Ret = -1;
- else if (Cmp > 0)
- Ret = 1;
- return ConstantInt::get(CI->getType(), Ret);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
- // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
- B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
- CI->getArgOperand(2));
- return CI->getArgOperand(0);
- }
- Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
- // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
- B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
- CI->getArgOperand(2));
- return CI->getArgOperand(0);
- }
- /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
- Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) {
- // This has to be a memset of zeros (bzero).
- auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
- if (!FillValue || FillValue->getZExtValue() != 0)
- return nullptr;
- // TODO: We should handle the case where the malloc has more than one use.
- // This is necessary to optimize common patterns such as when the result of
- // the malloc is checked against null or when a memset intrinsic is used in
- // place of a memset library call.
- auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
- if (!Malloc || !Malloc->hasOneUse())
- return nullptr;
- // Is the inner call really malloc()?
- Function *InnerCallee = Malloc->getCalledFunction();
- if (!InnerCallee)
- return nullptr;
- LibFunc Func;
- if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
- Func != LibFunc_malloc)
- return nullptr;
- // The memset must cover the same number of bytes that are malloc'd.
- if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
- return nullptr;
- // Replace the malloc with a calloc. We need the data layout to know what the
- // actual size of a 'size_t' parameter is.
- B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
- const DataLayout &DL = Malloc->getModule()->getDataLayout();
- IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
- Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
- Malloc->getArgOperand(0), Malloc->getAttributes(),
- B, *TLI);
- if (!Calloc)
- return nullptr;
- Malloc->replaceAllUsesWith(Calloc);
- eraseFromParent(Malloc);
- return Calloc;
- }
- Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
- if (auto *Calloc = foldMallocMemset(CI, B))
- return Calloc;
- // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
- Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
- B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
- Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) {
- if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
- return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
- return nullptr;
- }
- //===----------------------------------------------------------------------===//
- // Math Library Optimizations
- //===----------------------------------------------------------------------===//
- // Replace a libcall \p CI with a call to intrinsic \p IID
- static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
- // Propagate fast-math flags from the existing call to the new call.
- IRBuilder<>::FastMathFlagGuard Guard(B);
- B.setFastMathFlags(CI->getFastMathFlags());
- Module *M = CI->getModule();
- Value *V = CI->getArgOperand(0);
- Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
- CallInst *NewCall = B.CreateCall(F, V);
- NewCall->takeName(CI);
- return NewCall;
- }
- /// Return a variant of Val with float type.
- /// Currently this works in two cases: If Val is an FPExtension of a float
- /// value to something bigger, simply return the operand.
- /// If Val is a ConstantFP but can be converted to a float ConstantFP without
- /// loss of precision do so.
- static Value *valueHasFloatPrecision(Value *Val) {
- if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
- Value *Op = Cast->getOperand(0);
- if (Op->getType()->isFloatTy())
- return Op;
- }
- if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
- APFloat F = Const->getValueAPF();
- bool losesInfo;
- (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
- &losesInfo);
- if (!losesInfo)
- return ConstantFP::get(Const->getContext(), F);
- }
- return nullptr;
- }
- /// Shrink double -> float functions.
- static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B,
- bool isBinary, bool isPrecise = false) {
- if (!CI->getType()->isDoubleTy())
- return nullptr;
- // If not all the uses of the function are converted to float, then bail out.
- // This matters if the precision of the result is more important than the
- // precision of the arguments.
- if (isPrecise)
- for (User *U : CI->users()) {
- FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
- if (!Cast || !Cast->getType()->isFloatTy())
- return nullptr;
- }
- // If this is something like 'g((double) float)', convert to 'gf(float)'.
- Value *V[2];
- V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
- V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
- if (!V[0] || (isBinary && !V[1]))
- return nullptr;
- // If call isn't an intrinsic, check that it isn't within a function with the
- // same name as the float version of this call, otherwise the result is an
- // infinite loop. For example, from MinGW-w64:
- //
- // float expf(float val) { return (float) exp((double) val); }
- Function *CalleeFn = CI->getCalledFunction();
- StringRef CalleeNm = CalleeFn->getName();
- AttributeList CalleeAt = CalleeFn->getAttributes();
- if (CalleeFn && !CalleeFn->isIntrinsic()) {
- const Function *Fn = CI->getFunction();
- StringRef FnName = Fn->getName();
- if (FnName.back() == 'f' &&
- FnName.size() == (CalleeNm.size() + 1) &&
- FnName.startswith(CalleeNm))
- return nullptr;
- }
- // Propagate the math semantics from the current function to the new function.
- IRBuilder<>::FastMathFlagGuard Guard(B);
- B.setFastMathFlags(CI->getFastMathFlags());
- // g((double) float) -> (double) gf(float)
- Value *R;
- if (CalleeFn->isIntrinsic()) {
- Module *M = CI->getModule();
- Intrinsic::ID IID = CalleeFn->getIntrinsicID();
- Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
- R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
- }
- else
- R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt)
- : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt);
- return B.CreateFPExt(R, B.getDoubleTy());
- }
- /// Shrink double -> float for unary functions.
- static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
- bool isPrecise = false) {
- return optimizeDoubleFP(CI, B, false, isPrecise);
- }
- /// Shrink double -> float for binary functions.
- static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B,
- bool isPrecise = false) {
- return optimizeDoubleFP(CI, B, true, isPrecise);
- }
- // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
- Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
- if (!CI->isFast())
- return nullptr;
- // Propagate fast-math flags from the existing call to new instructions.
- IRBuilder<>::FastMathFlagGuard Guard(B);
- B.setFastMathFlags(CI->getFastMathFlags());
- Value *Real, *Imag;
- if (CI->getNumArgOperands() == 1) {
- Value *Op = CI->getArgOperand(0);
- assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
- Real = B.CreateExtractValue(Op, 0, "real");
- Imag = B.CreateExtractValue(Op, 1, "imag");
- } else {
- assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
- Real = CI->getArgOperand(0);
- Imag = CI->getArgOperand(1);
- }
- Value *RealReal = B.CreateFMul(Real, Real);
- Value *ImagImag = B.CreateFMul(Imag, Imag);
- Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
- CI->getType());
- return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
- }
- static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
- IRBuilder<> &B) {
- if (!isa<FPMathOperator>(Call))
- return nullptr;
-
- IRBuilder<>::FastMathFlagGuard Guard(B);
- B.setFastMathFlags(Call->getFastMathFlags());
-
- // TODO: Can this be shared to also handle LLVM intrinsics?
- Value *X;
- switch (Func) {
- case LibFunc_sin:
- case LibFunc_sinf:
- case LibFunc_sinl:
- case LibFunc_tan:
- case LibFunc_tanf:
- case LibFunc_tanl:
- // sin(-X) --> -sin(X)
- // tan(-X) --> -tan(X)
- if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
- return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
- break;
- case LibFunc_cos:
- case LibFunc_cosf:
- case LibFunc_cosl:
- // cos(-X) --> cos(X)
- if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
- return B.CreateCall(Call->getCalledFunction(), X, "cos");
- break;
- default:
- break;
- }
- return nullptr;
- }
- static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
- // Multiplications calculated using Addition Chains.
- // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
- assert(Exp != 0 && "Incorrect exponent 0 not handled");
- if (InnerChain[Exp])
- return InnerChain[Exp];
- static const unsigned AddChain[33][2] = {
- {0, 0}, // Unused.
- {0, 0}, // Unused (base case = pow1).
- {1, 1}, // Unused (pre-computed).
- {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4},
- {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7},
- {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10},
- {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
- {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
- };
- InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
- getPow(InnerChain, AddChain[Exp][1], B));
- return InnerChain[Exp];
- }
- /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
- /// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x).
- Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) {
- Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
- AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
- Module *Mod = Pow->getModule();
- Type *Ty = Pow->getType();
- bool Ignored;
- // Evaluate special cases related to a nested function as the base.
- // pow(exp(x), y) -> exp(x * y)
- // pow(exp2(x), y) -> exp2(x * y)
- // If exp{,2}() is used only once, it is better to fold two transcendental
- // math functions into one. If used again, exp{,2}() would still have to be
- // called with the original argument, then keep both original transcendental
- // functions. However, this transformation is only safe with fully relaxed
- // math semantics, since, besides rounding differences, it changes overflow
- // and underflow behavior quite dramatically. For example:
- // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
- // Whereas:
- // exp(1000 * 0.001) = exp(1)
- // TODO: Loosen the requirement for fully relaxed math semantics.
- // TODO: Handle exp10() when more targets have it available.
- CallInst *BaseFn = dyn_cast<CallInst>(Base);
- if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
- LibFunc LibFn;
- Function *CalleeFn = BaseFn->getCalledFunction();
- if (CalleeFn &&
- TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
- StringRef ExpName;
- Intrinsic::ID ID;
- Value *ExpFn;
- LibFunc LibFnFloat;
- LibFunc LibFnDouble;
- LibFunc LibFnLongDouble;
- switch (LibFn) {
- default:
- return nullptr;
- case LibFunc_expf: case LibFunc_exp: case LibFunc_expl:
- ExpName = TLI->getName(LibFunc_exp);
- ID = Intrinsic::exp;
- LibFnFloat = LibFunc_expf;
- LibFnDouble = LibFunc_exp;
- LibFnLongDouble = LibFunc_expl;
- break;
- case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
- ExpName = TLI->getName(LibFunc_exp2);
- ID = Intrinsic::exp2;
- LibFnFloat = LibFunc_exp2f;
- LibFnDouble = LibFunc_exp2;
- LibFnLongDouble = LibFunc_exp2l;
- break;
- }
- // Create new exp{,2}() with the product as its argument.
- Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
- ExpFn = BaseFn->doesNotAccessMemory()
- ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
- FMul, ExpName)
- : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
- LibFnLongDouble, B,
- BaseFn->getAttributes());
- // Since the new exp{,2}() is different from the original one, dead code
- // elimination cannot be trusted to remove it, since it may have side
- // effects (e.g., errno). When the only consumer for the original
- // exp{,2}() is pow(), then it has to be explicitly erased.
- BaseFn->replaceAllUsesWith(ExpFn);
- eraseFromParent(BaseFn);
- return ExpFn;
- }
- }
- // Evaluate special cases related to a constant base.
- const APFloat *BaseF;
- if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
- return nullptr;
- // pow(2.0 ** n, x) -> exp2(n * x)
- if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
- APFloat BaseR = APFloat(1.0);
- BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
- BaseR = BaseR / *BaseF;
- bool IsInteger = BaseF->isInteger(),
- IsReciprocal = BaseR.isInteger();
- const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
- APSInt NI(64, false);
- if ((IsInteger || IsReciprocal) &&
- !NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) &&
- NI > 1 && NI.isPowerOf2()) {
- double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
- Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
- if (Pow->doesNotAccessMemory())
- return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
- FMul, "exp2");
- else
- return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
- LibFunc_exp2l, B, Attrs);
- }
- }
- // pow(10.0, x) -> exp10(x)
- // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
- if (match(Base, m_SpecificFP(10.0)) &&
- hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
- return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
- LibFunc_exp10l, B, Attrs);
- return nullptr;
- }
- static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
- Module *M, IRBuilder<> &B,
- const TargetLibraryInfo *TLI) {
- // If errno is never set, then use the intrinsic for sqrt().
- if (NoErrno) {
- Function *SqrtFn =
- Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
- return B.CreateCall(SqrtFn, V, "sqrt");
- }
- // Otherwise, use the libcall for sqrt().
- if (hasUnaryFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
- LibFunc_sqrtl))
- // TODO: We also should check that the target can in fact lower the sqrt()
- // libcall. We currently have no way to ask this question, so we ask if
- // the target has a sqrt() libcall, which is not exactly the same.
- return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
- LibFunc_sqrtl, B, Attrs);
- return nullptr;
- }
- /// Use square root in place of pow(x, +/-0.5).
- Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
- Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
- AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
- Module *Mod = Pow->getModule();
- Type *Ty = Pow->getType();
- const APFloat *ExpoF;
- if (!match(Expo, m_APFloat(ExpoF)) ||
- (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
- return nullptr;
- Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
- if (!Sqrt)
- return nullptr;
- // Handle signed zero base by expanding to fabs(sqrt(x)).
- if (!Pow->hasNoSignedZeros()) {
- Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
- Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
- }
- // Handle non finite base by expanding to
- // (x == -infinity ? +infinity : sqrt(x)).
- if (!Pow->hasNoInfs()) {
- Value *PosInf = ConstantFP::getInfinity(Ty),
- *NegInf = ConstantFP::getInfinity(Ty, true);
- Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
- Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
- }
- // If the exponent is negative, then get the reciprocal.
- if (ExpoF->isNegative())
- Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
- return Sqrt;
- }
- Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
- Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
- Function *Callee = Pow->getCalledFunction();
- StringRef Name = Callee->getName();
- Type *Ty = Pow->getType();
- Value *Shrunk = nullptr;
- bool Ignored;
- // Bail out if simplifying libcalls to pow() is disabled.
- if (!hasUnaryFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl))
- return nullptr;
- // Propagate the math semantics from the call to any created instructions.
- IRBuilder<>::FastMathFlagGuard Guard(B);
- B.setFastMathFlags(Pow->getFastMathFlags());
- // Shrink pow() to powf() if the arguments are single precision,
- // unless the result is expected to be double precision.
- if (UnsafeFPShrink &&
- Name == TLI->getName(LibFunc_pow) && hasFloatVersion(Name))
- Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
- // Evaluate special cases related to the base.
- // pow(1.0, x) -> 1.0
- if (match(Base, m_FPOne()))
- return Base;
- if (Value *Exp = replacePowWithExp(Pow, B))
- return Exp;
- // Evaluate special cases related to the exponent.
- // pow(x, -1.0) -> 1.0 / x
- if (match(Expo, m_SpecificFP(-1.0)))
- return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
- // pow(x, 0.0) -> 1.0
- if (match(Expo, m_SpecificFP(0.0)))
- return ConstantFP::get(Ty, 1.0);
- // pow(x, 1.0) -> x
- if (match(Expo, m_FPOne()))
- return Base;
- // pow(x, 2.0) -> x * x
- if (match(Expo, m_SpecificFP(2.0)))
- return B.CreateFMul(Base, Base, "square");
- if (Value *Sqrt = replacePowWithSqrt(Pow, B))
- return Sqrt;
- // pow(x, n) -> x * x * x * ...
- const APFloat *ExpoF;
- if (Pow->isFast() && match(Expo, m_APFloat(ExpoF))) {
- // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
- // If the exponent is an integer+0.5 we generate a call to sqrt and an
- // additional fmul.
- // TODO: This whole transformation should be backend specific (e.g. some
- // backends might prefer libcalls or the limit for the exponent might
- // be different) and it should also consider optimizing for size.
- APFloat LimF(ExpoF->getSemantics(), 33.0),
- ExpoA(abs(*ExpoF));
- if (ExpoA.compare(LimF) == APFloat::cmpLessThan) {
- // This transformation applies to integer or integer+0.5 exponents only.
- // For integer+0.5, we create a sqrt(Base) call.
- Value *Sqrt = nullptr;
- if (!ExpoA.isInteger()) {
- APFloat Expo2 = ExpoA;
- // To check if ExpoA is an integer + 0.5, we add it to itself. If there
- // is no floating point exception and the result is an integer, then
- // ExpoA == integer + 0.5
- if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
- return nullptr;
- if (!Expo2.isInteger())
- return nullptr;
- Sqrt =
- getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
- Pow->doesNotAccessMemory(), Pow->getModule(), B, TLI);
- }
- // We will memoize intermediate products of the Addition Chain.
- Value *InnerChain[33] = {nullptr};
- InnerChain[1] = Base;
- InnerChain[2] = B.CreateFMul(Base, Base, "square");
- // We cannot readily convert a non-double type (like float) to a double.
- // So we first convert it to something which could be converted to double.
- ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
- Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
- // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
- if (Sqrt)
- FMul = B.CreateFMul(FMul, Sqrt);
- // If the exponent is negative, then get the reciprocal.
- if (ExpoF->isNegative())
- FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
- return FMul;
- }
- }
- return Shrunk;
- }
- Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- Value *Ret = nullptr;
- StringRef Name = Callee->getName();
- if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
- Ret = optimizeUnaryDoubleFP(CI, B, true);
- Value *Op = CI->getArgOperand(0);
- // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
- // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
- LibFunc LdExp = LibFunc_ldexpl;
- if (Op->getType()->isFloatTy())
- LdExp = LibFunc_ldexpf;
- else if (Op->getType()->isDoubleTy())
- LdExp = LibFunc_ldexp;
- if (TLI->has(LdExp)) {
- Value *LdExpArg = nullptr;
- if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
- if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
- LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
- } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
- if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
- LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
- }
- if (LdExpArg) {
- Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
- if (!Op->getType()->isFloatTy())
- One = ConstantExpr::getFPExtend(One, Op->getType());
- Module *M = CI->getModule();
- FunctionCallee NewCallee = M->getOrInsertFunction(
- TLI->getName(LdExp), Op->getType(), Op->getType(), B.getInt32Ty());
- CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
- if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
- CI->setCallingConv(F->getCallingConv());
- return CI;
- }
- }
- return Ret;
- }
- Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- // If we can shrink the call to a float function rather than a double
- // function, do that first.
- StringRef Name = Callee->getName();
- if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
- if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
- return Ret;
- IRBuilder<>::FastMathFlagGuard Guard(B);
- FastMathFlags FMF;
- if (CI->isFast()) {
- // If the call is 'fast', then anything we create here will also be 'fast'.
- FMF.setFast();
- } else {
- // At a minimum, no-nans-fp-math must be true.
- if (!CI->hasNoNaNs())
- return nullptr;
- // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
- // "Ideally, fmax would be sensitive to the sign of zero, for example
- // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
- // might be impractical."
- FMF.setNoSignedZeros();
- FMF.setNoNaNs();
- }
- B.setFastMathFlags(FMF);
- // We have a relaxed floating-point environment. We can ignore NaN-handling
- // and transform to a compare and select. We do not have to consider errno or
- // exceptions, because fmin/fmax do not have those.
- Value *Op0 = CI->getArgOperand(0);
- Value *Op1 = CI->getArgOperand(1);
- Value *Cmp = Callee->getName().startswith("fmin") ?
- B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
- return B.CreateSelect(Cmp, Op0, Op1);
- }
- Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- Value *Ret = nullptr;
- StringRef Name = Callee->getName();
- if (UnsafeFPShrink && hasFloatVersion(Name))
- Ret = optimizeUnaryDoubleFP(CI, B, true);
- if (!CI->isFast())
- return Ret;
- Value *Op1 = CI->getArgOperand(0);
- auto *OpC = dyn_cast<CallInst>(Op1);
- // The earlier call must also be 'fast' in order to do these transforms.
- if (!OpC || !OpC->isFast())
- return Ret;
- // log(pow(x,y)) -> y*log(x)
- // This is only applicable to log, log2, log10.
- if (Name != "log" && Name != "log2" && Name != "log10")
- return Ret;
- IRBuilder<>::FastMathFlagGuard Guard(B);
- FastMathFlags FMF;
- FMF.setFast();
- B.setFastMathFlags(FMF);
- LibFunc Func;
- Function *F = OpC->getCalledFunction();
- if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
- Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
- return B.CreateFMul(OpC->getArgOperand(1),
- emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
- Callee->getAttributes()), "mul");
- // log(exp2(y)) -> y*log(2)
- if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
- TLI->has(Func) && Func == LibFunc_exp2)
- return B.CreateFMul(
- OpC->getArgOperand(0),
- emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
- Callee->getName(), B, Callee->getAttributes()),
- "logmul");
- return Ret;
- }
- Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- Value *Ret = nullptr;
- // TODO: Once we have a way (other than checking for the existince of the
- // libcall) to tell whether our target can lower @llvm.sqrt, relax the
- // condition below.
- if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
- Callee->getIntrinsicID() == Intrinsic::sqrt))
- Ret = optimizeUnaryDoubleFP(CI, B, true);
- if (!CI->isFast())
- return Ret;
- Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
- if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
- return Ret;
- // We're looking for a repeated factor in a multiplication tree,
- // so we can do this fold: sqrt(x * x) -> fabs(x);
- // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
- Value *Op0 = I->getOperand(0);
- Value *Op1 = I->getOperand(1);
- Value *RepeatOp = nullptr;
- Value *OtherOp = nullptr;
- if (Op0 == Op1) {
- // Simple match: the operands of the multiply are identical.
- RepeatOp = Op0;
- } else {
- // Look for a more complicated pattern: one of the operands is itself
- // a multiply, so search for a common factor in that multiply.
- // Note: We don't bother looking any deeper than this first level or for
- // variations of this pattern because instcombine's visitFMUL and/or the
- // reassociation pass should give us this form.
- Value *OtherMul0, *OtherMul1;
- if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
- // Pattern: sqrt((x * y) * z)
- if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
- // Matched: sqrt((x * x) * z)
- RepeatOp = OtherMul0;
- OtherOp = Op1;
- }
- }
- }
- if (!RepeatOp)
- return Ret;
- // Fast math flags for any created instructions should match the sqrt
- // and multiply.
- IRBuilder<>::FastMathFlagGuard Guard(B);
- B.setFastMathFlags(I->getFastMathFlags());
- // If we found a repeated factor, hoist it out of the square root and
- // replace it with the fabs of that factor.
- Module *M = Callee->getParent();
- Type *ArgType = I->getType();
- Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
- Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
- if (OtherOp) {
- // If we found a non-repeated factor, we still need to get its square
- // root. We then multiply that by the value that was simplified out
- // of the square root calculation.
- Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
- Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
- return B.CreateFMul(FabsCall, SqrtCall);
- }
- return FabsCall;
- }
- // TODO: Generalize to handle any trig function and its inverse.
- Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- Value *Ret = nullptr;
- StringRef Name = Callee->getName();
- if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
- Ret = optimizeUnaryDoubleFP(CI, B, true);
- Value *Op1 = CI->getArgOperand(0);
- auto *OpC = dyn_cast<CallInst>(Op1);
- if (!OpC)
- return Ret;
- // Both calls must be 'fast' in order to remove them.
- if (!CI->isFast() || !OpC->isFast())
- return Ret;
- // tan(atan(x)) -> x
- // tanf(atanf(x)) -> x
- // tanl(atanl(x)) -> x
- LibFunc Func;
- Function *F = OpC->getCalledFunction();
- if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
- ((Func == LibFunc_atan && Callee->getName() == "tan") ||
- (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
- (Func == LibFunc_atanl && Callee->getName() == "tanl")))
- Ret = OpC->getArgOperand(0);
- return Ret;
- }
- static bool isTrigLibCall(CallInst *CI) {
- // We can only hope to do anything useful if we can ignore things like errno
- // and floating-point exceptions.
- // We already checked the prototype.
- return CI->hasFnAttr(Attribute::NoUnwind) &&
- CI->hasFnAttr(Attribute::ReadNone);
- }
- static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
- bool UseFloat, Value *&Sin, Value *&Cos,
- Value *&SinCos) {
- Type *ArgTy = Arg->getType();
- Type *ResTy;
- StringRef Name;
- Triple T(OrigCallee->getParent()->getTargetTriple());
- if (UseFloat) {
- Name = "__sincospif_stret";
- assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
- // x86_64 can't use {float, float} since that would be returned in both
- // xmm0 and xmm1, which isn't what a real struct would do.
- ResTy = T.getArch() == Triple::x86_64
- ? static_cast<Type *>(VectorType::get(ArgTy, 2))
- : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
- } else {
- Name = "__sincospi_stret";
- ResTy = StructType::get(ArgTy, ArgTy);
- }
- Module *M = OrigCallee->getParent();
- FunctionCallee Callee =
- M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
- if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
- // If the argument is an instruction, it must dominate all uses so put our
- // sincos call there.
- B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
- } else {
- // Otherwise (e.g. for a constant) the beginning of the function is as
- // good a place as any.
- BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
- B.SetInsertPoint(&EntryBB, EntryBB.begin());
- }
- SinCos = B.CreateCall(Callee, Arg, "sincospi");
- if (SinCos->getType()->isStructTy()) {
- Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
- Cos = B.CreateExtractValue(SinCos, 1, "cospi");
- } else {
- Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
- "sinpi");
- Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
- "cospi");
- }
- }
- Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
- // Make sure the prototype is as expected, otherwise the rest of the
- // function is probably invalid and likely to abort.
- if (!isTrigLibCall(CI))
- return nullptr;
- Value *Arg = CI->getArgOperand(0);
- SmallVector<CallInst *, 1> SinCalls;
- SmallVector<CallInst *, 1> CosCalls;
- SmallVector<CallInst *, 1> SinCosCalls;
- bool IsFloat = Arg->getType()->isFloatTy();
- // Look for all compatible sinpi, cospi and sincospi calls with the same
- // argument. If there are enough (in some sense) we can make the
- // substitution.
- Function *F = CI->getFunction();
- for (User *U : Arg->users())
- classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
- // It's only worthwhile if both sinpi and cospi are actually used.
- if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
- return nullptr;
- Value *Sin, *Cos, *SinCos;
- insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
- auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
- Value *Res) {
- for (CallInst *C : Calls)
- replaceAllUsesWith(C, Res);
- };
- replaceTrigInsts(SinCalls, Sin);
- replaceTrigInsts(CosCalls, Cos);
- replaceTrigInsts(SinCosCalls, SinCos);
- return nullptr;
- }
- void LibCallSimplifier::classifyArgUse(
- Value *Val, Function *F, bool IsFloat,
- SmallVectorImpl<CallInst *> &SinCalls,
- SmallVectorImpl<CallInst *> &CosCalls,
- SmallVectorImpl<CallInst *> &SinCosCalls) {
- CallInst *CI = dyn_cast<CallInst>(Val);
- if (!CI)
- return;
- // Don't consider calls in other functions.
- if (CI->getFunction() != F)
- return;
- Function *Callee = CI->getCalledFunction();
- LibFunc Func;
- if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
- !isTrigLibCall(CI))
- return;
- if (IsFloat) {
- if (Func == LibFunc_sinpif)
- SinCalls.push_back(CI);
- else if (Func == LibFunc_cospif)
- CosCalls.push_back(CI);
- else if (Func == LibFunc_sincospif_stret)
- SinCosCalls.push_back(CI);
- } else {
- if (Func == LibFunc_sinpi)
- SinCalls.push_back(CI);
- else if (Func == LibFunc_cospi)
- CosCalls.push_back(CI);
- else if (Func == LibFunc_sincospi_stret)
- SinCosCalls.push_back(CI);
- }
- }
- //===----------------------------------------------------------------------===//
- // Integer Library Call Optimizations
- //===----------------------------------------------------------------------===//
- Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
- // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
- Value *Op = CI->getArgOperand(0);
- Type *ArgType = Op->getType();
- Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
- Intrinsic::cttz, ArgType);
- Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
- V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
- V = B.CreateIntCast(V, B.getInt32Ty(), false);
- Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
- return B.CreateSelect(Cond, V, B.getInt32(0));
- }
- Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
- // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
- Value *Op = CI->getArgOperand(0);
- Type *ArgType = Op->getType();
- Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
- Intrinsic::ctlz, ArgType);
- Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
- V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
- V);
- return B.CreateIntCast(V, CI->getType(), false);
- }
- Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
- // abs(x) -> x <s 0 ? -x : x
- // The negation has 'nsw' because abs of INT_MIN is undefined.
- Value *X = CI->getArgOperand(0);
- Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
- Value *NegX = B.CreateNSWNeg(X, "neg");
- return B.CreateSelect(IsNeg, NegX, X);
- }
- Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
- // isdigit(c) -> (c-'0') <u 10
- Value *Op = CI->getArgOperand(0);
- Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
- Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
- return B.CreateZExt(Op, CI->getType());
- }
- Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
- // isascii(c) -> c <u 128
- Value *Op = CI->getArgOperand(0);
- Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
- return B.CreateZExt(Op, CI->getType());
- }
- Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
- // toascii(c) -> c & 0x7f
- return B.CreateAnd(CI->getArgOperand(0),
- ConstantInt::get(CI->getType(), 0x7F));
- }
- Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) {
- StringRef Str;
- if (!getConstantStringInfo(CI->getArgOperand(0), Str))
- return nullptr;
- return convertStrToNumber(CI, Str, 10);
- }
- Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) {
- StringRef Str;
- if (!getConstantStringInfo(CI->getArgOperand(0), Str))
- return nullptr;
- if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
- return nullptr;
- if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
- return convertStrToNumber(CI, Str, CInt->getSExtValue());
- }
- return nullptr;
- }
- //===----------------------------------------------------------------------===//
- // Formatting and IO Library Call Optimizations
- //===----------------------------------------------------------------------===//
- static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
- Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
- int StreamArg) {
- Function *Callee = CI->getCalledFunction();
- // Error reporting calls should be cold, mark them as such.
- // This applies even to non-builtin calls: it is only a hint and applies to
- // functions that the frontend might not understand as builtins.
- // This heuristic was suggested in:
- // Improving Static Branch Prediction in a Compiler
- // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
- // Proceedings of PACT'98, Oct. 1998, IEEE
- if (!CI->hasFnAttr(Attribute::Cold) &&
- isReportingError(Callee, CI, StreamArg)) {
- CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
- }
- return nullptr;
- }
- static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
- if (!Callee || !Callee->isDeclaration())
- return false;
- if (StreamArg < 0)
- return true;
- // These functions might be considered cold, but only if their stream
- // argument is stderr.
- if (StreamArg >= (int)CI->getNumArgOperands())
- return false;
- LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
- if (!LI)
- return false;
- GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
- if (!GV || !GV->isDeclaration())
- return false;
- return GV->getName() == "stderr";
- }
- Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
- // Check for a fixed format string.
- StringRef FormatStr;
- if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
- return nullptr;
- // Empty format string -> noop.
- if (FormatStr.empty()) // Tolerate printf's declared void.
- return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
- // Do not do any of the following transformations if the printf return value
- // is used, in general the printf return value is not compatible with either
- // putchar() or puts().
- if (!CI->use_empty())
- return nullptr;
- // printf("x") -> putchar('x'), even for "%" and "%%".
- if (FormatStr.size() == 1 || FormatStr == "%%")
- return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
- // printf("%s", "a") --> putchar('a')
- if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
- StringRef ChrStr;
- if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
- return nullptr;
- if (ChrStr.size() != 1)
- return nullptr;
- return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
- }
- // printf("foo\n") --> puts("foo")
- if (FormatStr[FormatStr.size() - 1] == '\n' &&
- FormatStr.find('%') == StringRef::npos) { // No format characters.
- // Create a string literal with no \n on it. We expect the constant merge
- // pass to be run after this pass, to merge duplicate strings.
- FormatStr = FormatStr.drop_back();
- Value *GV = B.CreateGlobalString(FormatStr, "str");
- return emitPutS(GV, B, TLI);
- }
- // Optimize specific format strings.
- // printf("%c", chr) --> putchar(chr)
- if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
- CI->getArgOperand(1)->getType()->isIntegerTy())
- return emitPutChar(CI->getArgOperand(1), B, TLI);
- // printf("%s\n", str) --> puts(str)
- if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
- CI->getArgOperand(1)->getType()->isPointerTy())
- return emitPutS(CI->getArgOperand(1), B, TLI);
- return nullptr;
- }
- Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- if (Value *V = optimizePrintFString(CI, B)) {
- return V;
- }
- // printf(format, ...) -> iprintf(format, ...) if no floating point
- // arguments.
- if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- FunctionCallee IPrintFFn =
- M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
- CallInst *New = cast<CallInst>(CI->clone());
- New->setCalledFunction(IPrintFFn);
- B.Insert(New);
- return New;
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
- // Check for a fixed format string.
- StringRef FormatStr;
- if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
- return nullptr;
- // If we just have a format string (nothing else crazy) transform it.
- if (CI->getNumArgOperands() == 2) {
- // Make sure there's no % in the constant array. We could try to handle
- // %% -> % in the future if we cared.
- if (FormatStr.find('%') != StringRef::npos)
- return nullptr; // we found a format specifier, bail out.
- // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
- B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
- ConstantInt::get(DL.getIntPtrType(CI->getContext()),
- FormatStr.size() + 1)); // Copy the null byte.
- return ConstantInt::get(CI->getType(), FormatStr.size());
- }
- // The remaining optimizations require the format string to be "%s" or "%c"
- // and have an extra operand.
- if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
- CI->getNumArgOperands() < 3)
- return nullptr;
- // Decode the second character of the format string.
- if (FormatStr[1] == 'c') {
- // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
- if (!CI->getArgOperand(2)->getType()->isIntegerTy())
- return nullptr;
- Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
- Value *Ptr = castToCStr(CI->getArgOperand(0), B);
- B.CreateStore(V, Ptr);
- Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
- B.CreateStore(B.getInt8(0), Ptr);
- return ConstantInt::get(CI->getType(), 1);
- }
- if (FormatStr[1] == 's') {
- // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
- if (!CI->getArgOperand(2)->getType()->isPointerTy())
- return nullptr;
- Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
- if (!Len)
- return nullptr;
- Value *IncLen =
- B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
- B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen);
- // The sprintf result is the unincremented number of bytes in the string.
- return B.CreateIntCast(Len, CI->getType(), false);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- if (Value *V = optimizeSPrintFString(CI, B)) {
- return V;
- }
- // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
- // point arguments.
- if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- FunctionCallee SIPrintFFn =
- M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
- CallInst *New = cast<CallInst>(CI->clone());
- New->setCalledFunction(SIPrintFFn);
- B.Insert(New);
- return New;
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) {
- // Check for a fixed format string.
- StringRef FormatStr;
- if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
- return nullptr;
- // Check for size
- ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- if (!Size)
- return nullptr;
- uint64_t N = Size->getZExtValue();
- // If we just have a format string (nothing else crazy) transform it.
- if (CI->getNumArgOperands() == 3) {
- // Make sure there's no % in the constant array. We could try to handle
- // %% -> % in the future if we cared.
- if (FormatStr.find('%') != StringRef::npos)
- return nullptr; // we found a format specifier, bail out.
- if (N == 0)
- return ConstantInt::get(CI->getType(), FormatStr.size());
- else if (N < FormatStr.size() + 1)
- return nullptr;
- // sprintf(str, size, fmt) -> llvm.memcpy(align 1 str, align 1 fmt,
- // strlen(fmt)+1)
- B.CreateMemCpy(
- CI->getArgOperand(0), 1, CI->getArgOperand(2), 1,
- ConstantInt::get(DL.getIntPtrType(CI->getContext()),
- FormatStr.size() + 1)); // Copy the null byte.
- return ConstantInt::get(CI->getType(), FormatStr.size());
- }
- // The remaining optimizations require the format string to be "%s" or "%c"
- // and have an extra operand.
- if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
- CI->getNumArgOperands() == 4) {
- // Decode the second character of the format string.
- if (FormatStr[1] == 'c') {
- if (N == 0)
- return ConstantInt::get(CI->getType(), 1);
- else if (N == 1)
- return nullptr;
- // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
- if (!CI->getArgOperand(3)->getType()->isIntegerTy())
- return nullptr;
- Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
- Value *Ptr = castToCStr(CI->getArgOperand(0), B);
- B.CreateStore(V, Ptr);
- Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
- B.CreateStore(B.getInt8(0), Ptr);
- return ConstantInt::get(CI->getType(), 1);
- }
- if (FormatStr[1] == 's') {
- // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
- StringRef Str;
- if (!getConstantStringInfo(CI->getArgOperand(3), Str))
- return nullptr;
- if (N == 0)
- return ConstantInt::get(CI->getType(), Str.size());
- else if (N < Str.size() + 1)
- return nullptr;
- B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1,
- ConstantInt::get(CI->getType(), Str.size() + 1));
- // The snprintf result is the unincremented number of bytes in the string.
- return ConstantInt::get(CI->getType(), Str.size());
- }
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) {
- if (Value *V = optimizeSnPrintFString(CI, B)) {
- return V;
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
- optimizeErrorReporting(CI, B, 0);
- // All the optimizations depend on the format string.
- StringRef FormatStr;
- if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
- return nullptr;
- // Do not do any of the following transformations if the fprintf return
- // value is used, in general the fprintf return value is not compatible
- // with fwrite(), fputc() or fputs().
- if (!CI->use_empty())
- return nullptr;
- // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
- if (CI->getNumArgOperands() == 2) {
- // Could handle %% -> % if we cared.
- if (FormatStr.find('%') != StringRef::npos)
- return nullptr; // We found a format specifier.
- return emitFWrite(
- CI->getArgOperand(1),
- ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
- CI->getArgOperand(0), B, DL, TLI);
- }
- // The remaining optimizations require the format string to be "%s" or "%c"
- // and have an extra operand.
- if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
- CI->getNumArgOperands() < 3)
- return nullptr;
- // Decode the second character of the format string.
- if (FormatStr[1] == 'c') {
- // fprintf(F, "%c", chr) --> fputc(chr, F)
- if (!CI->getArgOperand(2)->getType()->isIntegerTy())
- return nullptr;
- return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
- }
- if (FormatStr[1] == 's') {
- // fprintf(F, "%s", str) --> fputs(str, F)
- if (!CI->getArgOperand(2)->getType()->isPointerTy())
- return nullptr;
- return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- if (Value *V = optimizeFPrintFString(CI, B)) {
- return V;
- }
- // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
- // floating point arguments.
- if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- FunctionCallee FIPrintFFn =
- M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
- CallInst *New = cast<CallInst>(CI->clone());
- New->setCalledFunction(FIPrintFFn);
- B.Insert(New);
- return New;
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
- optimizeErrorReporting(CI, B, 3);
- // Get the element size and count.
- ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
- if (SizeC && CountC) {
- uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
- // If this is writing zero records, remove the call (it's a noop).
- if (Bytes == 0)
- return ConstantInt::get(CI->getType(), 0);
- // If this is writing one byte, turn it into fputc.
- // This optimisation is only valid, if the return value is unused.
- if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
- Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
- Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
- return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
- }
- }
- if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
- return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
- TLI);
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
- optimizeErrorReporting(CI, B, 1);
- // Don't rewrite fputs to fwrite when optimising for size because fwrite
- // requires more arguments and thus extra MOVs are required.
- if (CI->getFunction()->optForSize())
- return nullptr;
- // Check if has any use
- if (!CI->use_empty()) {
- if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
- return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
- TLI);
- else
- // We can't optimize if return value is used.
- return nullptr;
- }
- // fputs(s,F) --> fwrite(s,1,strlen(s),F)
- uint64_t Len = GetStringLength(CI->getArgOperand(0));
- if (!Len)
- return nullptr;
- // Known to have no uses (see above).
- return emitFWrite(
- CI->getArgOperand(0),
- ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
- CI->getArgOperand(1), B, DL, TLI);
- }
- Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) {
- optimizeErrorReporting(CI, B, 1);
- if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
- return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
- TLI);
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) {
- if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI))
- return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI);
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) {
- if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI))
- return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), B, TLI);
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) {
- if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
- return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
- TLI);
- return nullptr;
- }
- Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
- // Check for a constant string.
- StringRef Str;
- if (!getConstantStringInfo(CI->getArgOperand(0), Str))
- return nullptr;
- if (Str.empty() && CI->use_empty()) {
- // puts("") -> putchar('\n')
- Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
- if (CI->use_empty() || !Res)
- return Res;
- return B.CreateIntCast(Res, CI->getType(), true);
- }
- return nullptr;
- }
- bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
- LibFunc Func;
- SmallString<20> FloatFuncName = FuncName;
- FloatFuncName += 'f';
- if (TLI->getLibFunc(FloatFuncName, Func))
- return TLI->has(Func);
- return false;
- }
- Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
- IRBuilder<> &Builder) {
- LibFunc Func;
- Function *Callee = CI->getCalledFunction();
- // Check for string/memory library functions.
- if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
- // Make sure we never change the calling convention.
- assert((ignoreCallingConv(Func) ||
- isCallingConvCCompatible(CI)) &&
- "Optimizing string/memory libcall would change the calling convention");
- switch (Func) {
- case LibFunc_strcat:
- return optimizeStrCat(CI, Builder);
- case LibFunc_strncat:
- return optimizeStrNCat(CI, Builder);
- case LibFunc_strchr:
- return optimizeStrChr(CI, Builder);
- case LibFunc_strrchr:
- return optimizeStrRChr(CI, Builder);
- case LibFunc_strcmp:
- return optimizeStrCmp(CI, Builder);
- case LibFunc_strncmp:
- return optimizeStrNCmp(CI, Builder);
- case LibFunc_strcpy:
- return optimizeStrCpy(CI, Builder);
- case LibFunc_stpcpy:
- return optimizeStpCpy(CI, Builder);
- case LibFunc_strncpy:
- return optimizeStrNCpy(CI, Builder);
- case LibFunc_strlen:
- return optimizeStrLen(CI, Builder);
- case LibFunc_strpbrk:
- return optimizeStrPBrk(CI, Builder);
- case LibFunc_strtol:
- case LibFunc_strtod:
- case LibFunc_strtof:
- case LibFunc_strtoul:
- case LibFunc_strtoll:
- case LibFunc_strtold:
- case LibFunc_strtoull:
- return optimizeStrTo(CI, Builder);
- case LibFunc_strspn:
- return optimizeStrSpn(CI, Builder);
- case LibFunc_strcspn:
- return optimizeStrCSpn(CI, Builder);
- case LibFunc_strstr:
- return optimizeStrStr(CI, Builder);
- case LibFunc_memchr:
- return optimizeMemChr(CI, Builder);
- case LibFunc_memcmp:
- return optimizeMemCmp(CI, Builder);
- case LibFunc_memcpy:
- return optimizeMemCpy(CI, Builder);
- case LibFunc_memmove:
- return optimizeMemMove(CI, Builder);
- case LibFunc_memset:
- return optimizeMemSet(CI, Builder);
- case LibFunc_realloc:
- return optimizeRealloc(CI, Builder);
- case LibFunc_wcslen:
- return optimizeWcslen(CI, Builder);
- default:
- break;
- }
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
- LibFunc Func,
- IRBuilder<> &Builder) {
- // Don't optimize calls that require strict floating point semantics.
- if (CI->isStrictFP())
- return nullptr;
- if (Value *V = optimizeTrigReflections(CI, Func, Builder))
- return V;
- switch (Func) {
- case LibFunc_sinpif:
- case LibFunc_sinpi:
- case LibFunc_cospif:
- case LibFunc_cospi:
- return optimizeSinCosPi(CI, Builder);
- case LibFunc_powf:
- case LibFunc_pow:
- case LibFunc_powl:
- return optimizePow(CI, Builder);
- case LibFunc_exp2l:
- case LibFunc_exp2:
- case LibFunc_exp2f:
- return optimizeExp2(CI, Builder);
- case LibFunc_fabsf:
- case LibFunc_fabs:
- case LibFunc_fabsl:
- return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
- case LibFunc_sqrtf:
- case LibFunc_sqrt:
- case LibFunc_sqrtl:
- return optimizeSqrt(CI, Builder);
- case LibFunc_log:
- case LibFunc_log10:
- case LibFunc_log1p:
- case LibFunc_log2:
- case LibFunc_logb:
- return optimizeLog(CI, Builder);
- case LibFunc_tan:
- case LibFunc_tanf:
- case LibFunc_tanl:
- return optimizeTan(CI, Builder);
- case LibFunc_ceil:
- return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
- case LibFunc_floor:
- return replaceUnaryCall(CI, Builder, Intrinsic::floor);
- case LibFunc_round:
- return replaceUnaryCall(CI, Builder, Intrinsic::round);
- case LibFunc_nearbyint:
- return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
- case LibFunc_rint:
- return replaceUnaryCall(CI, Builder, Intrinsic::rint);
- case LibFunc_trunc:
- return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
- case LibFunc_acos:
- case LibFunc_acosh:
- case LibFunc_asin:
- case LibFunc_asinh:
- case LibFunc_atan:
- case LibFunc_atanh:
- case LibFunc_cbrt:
- case LibFunc_cosh:
- case LibFunc_exp:
- case LibFunc_exp10:
- case LibFunc_expm1:
- case LibFunc_cos:
- case LibFunc_sin:
- case LibFunc_sinh:
- case LibFunc_tanh:
- if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
- return optimizeUnaryDoubleFP(CI, Builder, true);
- return nullptr;
- case LibFunc_copysign:
- if (hasFloatVersion(CI->getCalledFunction()->getName()))
- return optimizeBinaryDoubleFP(CI, Builder);
- return nullptr;
- case LibFunc_fminf:
- case LibFunc_fmin:
- case LibFunc_fminl:
- case LibFunc_fmaxf:
- case LibFunc_fmax:
- case LibFunc_fmaxl:
- return optimizeFMinFMax(CI, Builder);
- case LibFunc_cabs:
- case LibFunc_cabsf:
- case LibFunc_cabsl:
- return optimizeCAbs(CI, Builder);
- default:
- return nullptr;
- }
- }
- Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
- // TODO: Split out the code below that operates on FP calls so that
- // we can all non-FP calls with the StrictFP attribute to be
- // optimized.
- if (CI->isNoBuiltin())
- return nullptr;
- LibFunc Func;
- Function *Callee = CI->getCalledFunction();
- SmallVector<OperandBundleDef, 2> OpBundles;
- CI->getOperandBundlesAsDefs(OpBundles);
- IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
- bool isCallingConvC = isCallingConvCCompatible(CI);
- // Command-line parameter overrides instruction attribute.
- // This can't be moved to optimizeFloatingPointLibCall() because it may be
- // used by the intrinsic optimizations.
- if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
- UnsafeFPShrink = EnableUnsafeFPShrink;
- else if (isa<FPMathOperator>(CI) && CI->isFast())
- UnsafeFPShrink = true;
- // First, check for intrinsics.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
- if (!isCallingConvC)
- return nullptr;
- // The FP intrinsics have corresponding constrained versions so we don't
- // need to check for the StrictFP attribute here.
- switch (II->getIntrinsicID()) {
- case Intrinsic::pow:
- return optimizePow(CI, Builder);
- case Intrinsic::exp2:
- return optimizeExp2(CI, Builder);
- case Intrinsic::log:
- return optimizeLog(CI, Builder);
- case Intrinsic::sqrt:
- return optimizeSqrt(CI, Builder);
- // TODO: Use foldMallocMemset() with memset intrinsic.
- default:
- return nullptr;
- }
- }
- // Also try to simplify calls to fortified library functions.
- if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
- // Try to further simplify the result.
- CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
- if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
- // Use an IR Builder from SimplifiedCI if available instead of CI
- // to guarantee we reach all uses we might replace later on.
- IRBuilder<> TmpBuilder(SimplifiedCI);
- if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
- // If we were able to further simplify, remove the now redundant call.
- SimplifiedCI->replaceAllUsesWith(V);
- eraseFromParent(SimplifiedCI);
- return V;
- }
- }
- return SimplifiedFortifiedCI;
- }
- // Then check for known library functions.
- if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
- // We never change the calling convention.
- if (!ignoreCallingConv(Func) && !isCallingConvC)
- return nullptr;
- if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
- return V;
- if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
- return V;
- switch (Func) {
- case LibFunc_ffs:
- case LibFunc_ffsl:
- case LibFunc_ffsll:
- return optimizeFFS(CI, Builder);
- case LibFunc_fls:
- case LibFunc_flsl:
- case LibFunc_flsll:
- return optimizeFls(CI, Builder);
- case LibFunc_abs:
- case LibFunc_labs:
- case LibFunc_llabs:
- return optimizeAbs(CI, Builder);
- case LibFunc_isdigit:
- return optimizeIsDigit(CI, Builder);
- case LibFunc_isascii:
- return optimizeIsAscii(CI, Builder);
- case LibFunc_toascii:
- return optimizeToAscii(CI, Builder);
- case LibFunc_atoi:
- case LibFunc_atol:
- case LibFunc_atoll:
- return optimizeAtoi(CI, Builder);
- case LibFunc_strtol:
- case LibFunc_strtoll:
- return optimizeStrtol(CI, Builder);
- case LibFunc_printf:
- return optimizePrintF(CI, Builder);
- case LibFunc_sprintf:
- return optimizeSPrintF(CI, Builder);
- case LibFunc_snprintf:
- return optimizeSnPrintF(CI, Builder);
- case LibFunc_fprintf:
- return optimizeFPrintF(CI, Builder);
- case LibFunc_fwrite:
- return optimizeFWrite(CI, Builder);
- case LibFunc_fread:
- return optimizeFRead(CI, Builder);
- case LibFunc_fputs:
- return optimizeFPuts(CI, Builder);
- case LibFunc_fgets:
- return optimizeFGets(CI, Builder);
- case LibFunc_fputc:
- return optimizeFPutc(CI, Builder);
- case LibFunc_fgetc:
- return optimizeFGetc(CI, Builder);
- case LibFunc_puts:
- return optimizePuts(CI, Builder);
- case LibFunc_perror:
- return optimizeErrorReporting(CI, Builder);
- case LibFunc_vfprintf:
- case LibFunc_fiprintf:
- return optimizeErrorReporting(CI, Builder, 0);
- default:
- return nullptr;
- }
- }
- return nullptr;
- }
- LibCallSimplifier::LibCallSimplifier(
- const DataLayout &DL, const TargetLibraryInfo *TLI,
- OptimizationRemarkEmitter &ORE,
- function_ref<void(Instruction *, Value *)> Replacer,
- function_ref<void(Instruction *)> Eraser)
- : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE),
- UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
- void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
- // Indirect through the replacer used in this instance.
- Replacer(I, With);
- }
- void LibCallSimplifier::eraseFromParent(Instruction *I) {
- Eraser(I);
- }
- // TODO:
- // Additional cases that we need to add to this file:
- //
- // cbrt:
- // * cbrt(expN(X)) -> expN(x/3)
- // * cbrt(sqrt(x)) -> pow(x,1/6)
- // * cbrt(cbrt(x)) -> pow(x,1/9)
- //
- // exp, expf, expl:
- // * exp(log(x)) -> x
- //
- // log, logf, logl:
- // * log(exp(x)) -> x
- // * log(exp(y)) -> y*log(e)
- // * log(exp10(y)) -> y*log(10)
- // * log(sqrt(x)) -> 0.5*log(x)
- //
- // pow, powf, powl:
- // * pow(sqrt(x),y) -> pow(x,y*0.5)
- // * pow(pow(x,y),z)-> pow(x,y*z)
- //
- // signbit:
- // * signbit(cnst) -> cnst'
- // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
- //
- // sqrt, sqrtf, sqrtl:
- // * sqrt(expN(x)) -> expN(x*0.5)
- // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
- // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
- //
- //===----------------------------------------------------------------------===//
- // Fortified Library Call Optimizations
- //===----------------------------------------------------------------------===//
- bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
- unsigned ObjSizeOp,
- unsigned SizeOp,
- bool isString) {
- if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
- return true;
- if (ConstantInt *ObjSizeCI =
- dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
- if (ObjSizeCI->isMinusOne())
- return true;
- // If the object size wasn't -1 (unknown), bail out if we were asked to.
- if (OnlyLowerUnknownSize)
- return false;
- if (isString) {
- uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
- // If the length is 0 we don't know how long it is and so we can't
- // remove the check.
- if (Len == 0)
- return false;
- return ObjSizeCI->getZExtValue() >= Len;
- }
- if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
- return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
- }
- return false;
- }
- Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
- IRBuilder<> &B) {
- if (isFortifiedCallFoldable(CI, 3, 2, false)) {
- B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
- CI->getArgOperand(2));
- return CI->getArgOperand(0);
- }
- return nullptr;
- }
- Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
- IRBuilder<> &B) {
- if (isFortifiedCallFoldable(CI, 3, 2, false)) {
- B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
- CI->getArgOperand(2));
- return CI->getArgOperand(0);
- }
- return nullptr;
- }
- Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
- IRBuilder<> &B) {
- // TODO: Try foldMallocMemset() here.
- if (isFortifiedCallFoldable(CI, 3, 2, false)) {
- Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
- B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
- return nullptr;
- }
- Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
- IRBuilder<> &B,
- LibFunc Func) {
- Function *Callee = CI->getCalledFunction();
- StringRef Name = Callee->getName();
- const DataLayout &DL = CI->getModule()->getDataLayout();
- Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
- *ObjSize = CI->getArgOperand(2);
- // __stpcpy_chk(x,x,...) -> x+strlen(x)
- if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
- Value *StrLen = emitStrLen(Src, B, DL, TLI);
- return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
- }
- // If a) we don't have any length information, or b) we know this will
- // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
- // st[rp]cpy_chk call which may fail at runtime if the size is too long.
- // TODO: It might be nice to get a maximum length out of the possible
- // string lengths for varying.
- if (isFortifiedCallFoldable(CI, 2, 1, true))
- return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
- if (OnlyLowerUnknownSize)
- return nullptr;
- // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0)
- return nullptr;
- Type *SizeTTy = DL.getIntPtrType(CI->getContext());
- Value *LenV = ConstantInt::get(SizeTTy, Len);
- Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
- // If the function was an __stpcpy_chk, and we were able to fold it into
- // a __memcpy_chk, we still need to return the correct end pointer.
- if (Ret && Func == LibFunc_stpcpy_chk)
- return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
- return Ret;
- }
- Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
- IRBuilder<> &B,
- LibFunc Func) {
- Function *Callee = CI->getCalledFunction();
- StringRef Name = Callee->getName();
- if (isFortifiedCallFoldable(CI, 3, 2, false)) {
- Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
- return Ret;
- }
- return nullptr;
- }
- Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
- // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
- // Some clang users checked for _chk libcall availability using:
- // __has_builtin(__builtin___memcpy_chk)
- // When compiling with -fno-builtin, this is always true.
- // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
- // end up with fortified libcalls, which isn't acceptable in a freestanding
- // environment which only provides their non-fortified counterparts.
- //
- // Until we change clang and/or teach external users to check for availability
- // differently, disregard the "nobuiltin" attribute and TLI::has.
- //
- // PR23093.
- LibFunc Func;
- Function *Callee = CI->getCalledFunction();
- SmallVector<OperandBundleDef, 2> OpBundles;
- CI->getOperandBundlesAsDefs(OpBundles);
- IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
- bool isCallingConvC = isCallingConvCCompatible(CI);
- // First, check that this is a known library functions and that the prototype
- // is correct.
- if (!TLI->getLibFunc(*Callee, Func))
- return nullptr;
- // We never change the calling convention.
- if (!ignoreCallingConv(Func) && !isCallingConvC)
- return nullptr;
- switch (Func) {
- case LibFunc_memcpy_chk:
- return optimizeMemCpyChk(CI, Builder);
- case LibFunc_memmove_chk:
- return optimizeMemMoveChk(CI, Builder);
- case LibFunc_memset_chk:
- return optimizeMemSetChk(CI, Builder);
- case LibFunc_stpcpy_chk:
- case LibFunc_strcpy_chk:
- return optimizeStrpCpyChk(CI, Builder, Func);
- case LibFunc_stpncpy_chk:
- case LibFunc_strncpy_chk:
- return optimizeStrpNCpyChk(CI, Builder, Func);
- default:
- break;
- }
- return nullptr;
- }
- FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
- const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
- : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
|