123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479 |
- //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// Replaces repeated sequences of instructions with function calls.
- ///
- /// This works by placing every instruction from every basic block in a
- /// suffix tree, and repeatedly querying that tree for repeated sequences of
- /// instructions. If a sequence of instructions appears often, then it ought
- /// to be beneficial to pull out into a function.
- ///
- /// The MachineOutliner communicates with a given target using hooks defined in
- /// TargetInstrInfo.h. The target supplies the outliner with information on how
- /// a specific sequence of instructions should be outlined. This information
- /// is used to deduce the number of instructions necessary to
- ///
- /// * Create an outlined function
- /// * Call that outlined function
- ///
- /// Targets must implement
- /// * getOutliningCandidateInfo
- /// * buildOutlinedFrame
- /// * insertOutlinedCall
- /// * isFunctionSafeToOutlineFrom
- ///
- /// in order to make use of the MachineOutliner.
- ///
- /// This was originally presented at the 2016 LLVM Developers' Meeting in the
- /// talk "Reducing Code Size Using Outlining". For a high-level overview of
- /// how this pass works, the talk is available on YouTube at
- ///
- /// https://www.youtube.com/watch?v=yorld-WSOeU
- ///
- /// The slides for the talk are available at
- ///
- /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
- ///
- /// The talk provides an overview of how the outliner finds candidates and
- /// ultimately outlines them. It describes how the main data structure for this
- /// pass, the suffix tree, is queried and purged for candidates. It also gives
- /// a simplified suffix tree construction algorithm for suffix trees based off
- /// of the algorithm actually used here, Ukkonen's algorithm.
- ///
- /// For the original RFC for this pass, please see
- ///
- /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
- ///
- /// For more information on the suffix tree data structure, please see
- /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
- ///
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/MachineOutliner.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineModuleInfo.h"
- #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/IR/DIBuilder.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Mangler.h"
- #include "llvm/Support/Allocator.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include <functional>
- #include <map>
- #include <sstream>
- #include <tuple>
- #include <vector>
- #define DEBUG_TYPE "machine-outliner"
- using namespace llvm;
- using namespace ore;
- using namespace outliner;
- STATISTIC(NumOutlined, "Number of candidates outlined");
- STATISTIC(FunctionsCreated, "Number of functions created");
- // Set to true if the user wants the outliner to run on linkonceodr linkage
- // functions. This is false by default because the linker can dedupe linkonceodr
- // functions. Since the outliner is confined to a single module (modulo LTO),
- // this is off by default. It should, however, be the default behaviour in
- // LTO.
- static cl::opt<bool> EnableLinkOnceODROutlining(
- "enable-linkonceodr-outlining",
- cl::Hidden,
- cl::desc("Enable the machine outliner on linkonceodr functions"),
- cl::init(false));
- namespace {
- /// Represents an undefined index in the suffix tree.
- const unsigned EmptyIdx = -1;
- /// A node in a suffix tree which represents a substring or suffix.
- ///
- /// Each node has either no children or at least two children, with the root
- /// being a exception in the empty tree.
- ///
- /// Children are represented as a map between unsigned integers and nodes. If
- /// a node N has a child M on unsigned integer k, then the mapping represented
- /// by N is a proper prefix of the mapping represented by M. Note that this,
- /// although similar to a trie is somewhat different: each node stores a full
- /// substring of the full mapping rather than a single character state.
- ///
- /// Each internal node contains a pointer to the internal node representing
- /// the same string, but with the first character chopped off. This is stored
- /// in \p Link. Each leaf node stores the start index of its respective
- /// suffix in \p SuffixIdx.
- struct SuffixTreeNode {
- /// The children of this node.
- ///
- /// A child existing on an unsigned integer implies that from the mapping
- /// represented by the current node, there is a way to reach another
- /// mapping by tacking that character on the end of the current string.
- DenseMap<unsigned, SuffixTreeNode *> Children;
- /// The start index of this node's substring in the main string.
- unsigned StartIdx = EmptyIdx;
- /// The end index of this node's substring in the main string.
- ///
- /// Every leaf node must have its \p EndIdx incremented at the end of every
- /// step in the construction algorithm. To avoid having to update O(N)
- /// nodes individually at the end of every step, the end index is stored
- /// as a pointer.
- unsigned *EndIdx = nullptr;
- /// For leaves, the start index of the suffix represented by this node.
- ///
- /// For all other nodes, this is ignored.
- unsigned SuffixIdx = EmptyIdx;
- /// For internal nodes, a pointer to the internal node representing
- /// the same sequence with the first character chopped off.
- ///
- /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
- /// Ukkonen's algorithm does to achieve linear-time construction is
- /// keep track of which node the next insert should be at. This makes each
- /// insert O(1), and there are a total of O(N) inserts. The suffix link
- /// helps with inserting children of internal nodes.
- ///
- /// Say we add a child to an internal node with associated mapping S. The
- /// next insertion must be at the node representing S - its first character.
- /// This is given by the way that we iteratively build the tree in Ukkonen's
- /// algorithm. The main idea is to look at the suffixes of each prefix in the
- /// string, starting with the longest suffix of the prefix, and ending with
- /// the shortest. Therefore, if we keep pointers between such nodes, we can
- /// move to the next insertion point in O(1) time. If we don't, then we'd
- /// have to query from the root, which takes O(N) time. This would make the
- /// construction algorithm O(N^2) rather than O(N).
- SuffixTreeNode *Link = nullptr;
- /// The length of the string formed by concatenating the edge labels from the
- /// root to this node.
- unsigned ConcatLen = 0;
- /// Returns true if this node is a leaf.
- bool isLeaf() const { return SuffixIdx != EmptyIdx; }
- /// Returns true if this node is the root of its owning \p SuffixTree.
- bool isRoot() const { return StartIdx == EmptyIdx; }
- /// Return the number of elements in the substring associated with this node.
- size_t size() const {
- // Is it the root? If so, it's the empty string so return 0.
- if (isRoot())
- return 0;
- assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
- // Size = the number of elements in the string.
- // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
- return *EndIdx - StartIdx + 1;
- }
- SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link)
- : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {}
- SuffixTreeNode() {}
- };
- /// A data structure for fast substring queries.
- ///
- /// Suffix trees represent the suffixes of their input strings in their leaves.
- /// A suffix tree is a type of compressed trie structure where each node
- /// represents an entire substring rather than a single character. Each leaf
- /// of the tree is a suffix.
- ///
- /// A suffix tree can be seen as a type of state machine where each state is a
- /// substring of the full string. The tree is structured so that, for a string
- /// of length N, there are exactly N leaves in the tree. This structure allows
- /// us to quickly find repeated substrings of the input string.
- ///
- /// In this implementation, a "string" is a vector of unsigned integers.
- /// These integers may result from hashing some data type. A suffix tree can
- /// contain 1 or many strings, which can then be queried as one large string.
- ///
- /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
- /// suffix tree construction. Ukkonen's algorithm is explained in more detail
- /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
- /// paper is available at
- ///
- /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
- class SuffixTree {
- public:
- /// Each element is an integer representing an instruction in the module.
- ArrayRef<unsigned> Str;
- /// A repeated substring in the tree.
- struct RepeatedSubstring {
- /// The length of the string.
- unsigned Length;
- /// The start indices of each occurrence.
- std::vector<unsigned> StartIndices;
- };
- private:
- /// Maintains each node in the tree.
- SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
- /// The root of the suffix tree.
- ///
- /// The root represents the empty string. It is maintained by the
- /// \p NodeAllocator like every other node in the tree.
- SuffixTreeNode *Root = nullptr;
- /// Maintains the end indices of the internal nodes in the tree.
- ///
- /// Each internal node is guaranteed to never have its end index change
- /// during the construction algorithm; however, leaves must be updated at
- /// every step. Therefore, we need to store leaf end indices by reference
- /// to avoid updating O(N) leaves at every step of construction. Thus,
- /// every internal node must be allocated its own end index.
- BumpPtrAllocator InternalEndIdxAllocator;
- /// The end index of each leaf in the tree.
- unsigned LeafEndIdx = -1;
- /// Helper struct which keeps track of the next insertion point in
- /// Ukkonen's algorithm.
- struct ActiveState {
- /// The next node to insert at.
- SuffixTreeNode *Node;
- /// The index of the first character in the substring currently being added.
- unsigned Idx = EmptyIdx;
- /// The length of the substring we have to add at the current step.
- unsigned Len = 0;
- };
- /// The point the next insertion will take place at in the
- /// construction algorithm.
- ActiveState Active;
- /// Allocate a leaf node and add it to the tree.
- ///
- /// \param Parent The parent of this node.
- /// \param StartIdx The start index of this node's associated string.
- /// \param Edge The label on the edge leaving \p Parent to this node.
- ///
- /// \returns A pointer to the allocated leaf node.
- SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
- unsigned Edge) {
- assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
- SuffixTreeNode *N = new (NodeAllocator.Allocate())
- SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr);
- Parent.Children[Edge] = N;
- return N;
- }
- /// Allocate an internal node and add it to the tree.
- ///
- /// \param Parent The parent of this node. Only null when allocating the root.
- /// \param StartIdx The start index of this node's associated string.
- /// \param EndIdx The end index of this node's associated string.
- /// \param Edge The label on the edge leaving \p Parent to this node.
- ///
- /// \returns A pointer to the allocated internal node.
- SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
- unsigned EndIdx, unsigned Edge) {
- assert(StartIdx <= EndIdx && "String can't start after it ends!");
- assert(!(!Parent && StartIdx != EmptyIdx) &&
- "Non-root internal nodes must have parents!");
- unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
- SuffixTreeNode *N = new (NodeAllocator.Allocate())
- SuffixTreeNode(StartIdx, E, Root);
- if (Parent)
- Parent->Children[Edge] = N;
- return N;
- }
- /// Set the suffix indices of the leaves to the start indices of their
- /// respective suffixes.
- ///
- /// \param[in] CurrNode The node currently being visited.
- /// \param CurrNodeLen The concatenation of all node sizes from the root to
- /// this node. Used to produce suffix indices.
- void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrNodeLen) {
- bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
- // Store the concatenation of lengths down from the root.
- CurrNode.ConcatLen = CurrNodeLen;
- // Traverse the tree depth-first.
- for (auto &ChildPair : CurrNode.Children) {
- assert(ChildPair.second && "Node had a null child!");
- setSuffixIndices(*ChildPair.second,
- CurrNodeLen + ChildPair.second->size());
- }
- // Is this node a leaf? If it is, give it a suffix index.
- if (IsLeaf)
- CurrNode.SuffixIdx = Str.size() - CurrNodeLen;
- }
- /// Construct the suffix tree for the prefix of the input ending at
- /// \p EndIdx.
- ///
- /// Used to construct the full suffix tree iteratively. At the end of each
- /// step, the constructed suffix tree is either a valid suffix tree, or a
- /// suffix tree with implicit suffixes. At the end of the final step, the
- /// suffix tree is a valid tree.
- ///
- /// \param EndIdx The end index of the current prefix in the main string.
- /// \param SuffixesToAdd The number of suffixes that must be added
- /// to complete the suffix tree at the current phase.
- ///
- /// \returns The number of suffixes that have not been added at the end of
- /// this step.
- unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
- SuffixTreeNode *NeedsLink = nullptr;
- while (SuffixesToAdd > 0) {
- // Are we waiting to add anything other than just the last character?
- if (Active.Len == 0) {
- // If not, then say the active index is the end index.
- Active.Idx = EndIdx;
- }
- assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
- // The first character in the current substring we're looking at.
- unsigned FirstChar = Str[Active.Idx];
- // Have we inserted anything starting with FirstChar at the current node?
- if (Active.Node->Children.count(FirstChar) == 0) {
- // If not, then we can just insert a leaf and move too the next step.
- insertLeaf(*Active.Node, EndIdx, FirstChar);
- // The active node is an internal node, and we visited it, so it must
- // need a link if it doesn't have one.
- if (NeedsLink) {
- NeedsLink->Link = Active.Node;
- NeedsLink = nullptr;
- }
- } else {
- // There's a match with FirstChar, so look for the point in the tree to
- // insert a new node.
- SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
- unsigned SubstringLen = NextNode->size();
- // Is the current suffix we're trying to insert longer than the size of
- // the child we want to move to?
- if (Active.Len >= SubstringLen) {
- // If yes, then consume the characters we've seen and move to the next
- // node.
- Active.Idx += SubstringLen;
- Active.Len -= SubstringLen;
- Active.Node = NextNode;
- continue;
- }
- // Otherwise, the suffix we're trying to insert must be contained in the
- // next node we want to move to.
- unsigned LastChar = Str[EndIdx];
- // Is the string we're trying to insert a substring of the next node?
- if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
- // If yes, then we're done for this step. Remember our insertion point
- // and move to the next end index. At this point, we have an implicit
- // suffix tree.
- if (NeedsLink && !Active.Node->isRoot()) {
- NeedsLink->Link = Active.Node;
- NeedsLink = nullptr;
- }
- Active.Len++;
- break;
- }
- // The string we're trying to insert isn't a substring of the next node,
- // but matches up to a point. Split the node.
- //
- // For example, say we ended our search at a node n and we're trying to
- // insert ABD. Then we'll create a new node s for AB, reduce n to just
- // representing C, and insert a new leaf node l to represent d. This
- // allows us to ensure that if n was a leaf, it remains a leaf.
- //
- // | ABC ---split---> | AB
- // n s
- // C / \ D
- // n l
- // The node s from the diagram
- SuffixTreeNode *SplitNode =
- insertInternalNode(Active.Node, NextNode->StartIdx,
- NextNode->StartIdx + Active.Len - 1, FirstChar);
- // Insert the new node representing the new substring into the tree as
- // a child of the split node. This is the node l from the diagram.
- insertLeaf(*SplitNode, EndIdx, LastChar);
- // Make the old node a child of the split node and update its start
- // index. This is the node n from the diagram.
- NextNode->StartIdx += Active.Len;
- SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
- // SplitNode is an internal node, update the suffix link.
- if (NeedsLink)
- NeedsLink->Link = SplitNode;
- NeedsLink = SplitNode;
- }
- // We've added something new to the tree, so there's one less suffix to
- // add.
- SuffixesToAdd--;
- if (Active.Node->isRoot()) {
- if (Active.Len > 0) {
- Active.Len--;
- Active.Idx = EndIdx - SuffixesToAdd + 1;
- }
- } else {
- // Start the next phase at the next smallest suffix.
- Active.Node = Active.Node->Link;
- }
- }
- return SuffixesToAdd;
- }
- public:
- /// Construct a suffix tree from a sequence of unsigned integers.
- ///
- /// \param Str The string to construct the suffix tree for.
- SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
- Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
- Active.Node = Root;
- // Keep track of the number of suffixes we have to add of the current
- // prefix.
- unsigned SuffixesToAdd = 0;
- Active.Node = Root;
- // Construct the suffix tree iteratively on each prefix of the string.
- // PfxEndIdx is the end index of the current prefix.
- // End is one past the last element in the string.
- for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
- PfxEndIdx++) {
- SuffixesToAdd++;
- LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
- SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
- }
- // Set the suffix indices of each leaf.
- assert(Root && "Root node can't be nullptr!");
- setSuffixIndices(*Root, 0);
- }
- /// Iterator for finding all repeated substrings in the suffix tree.
- struct RepeatedSubstringIterator {
- private:
- /// The current node we're visiting.
- SuffixTreeNode *N = nullptr;
- /// The repeated substring associated with this node.
- RepeatedSubstring RS;
- /// The nodes left to visit.
- std::vector<SuffixTreeNode *> ToVisit;
- /// The minimum length of a repeated substring to find.
- /// Since we're outlining, we want at least two instructions in the range.
- /// FIXME: This may not be true for targets like X86 which support many
- /// instruction lengths.
- const unsigned MinLength = 2;
- /// Move the iterator to the next repeated substring.
- void advance() {
- // Clear the current state. If we're at the end of the range, then this
- // is the state we want to be in.
- RS = RepeatedSubstring();
- N = nullptr;
- // Each leaf node represents a repeat of a string.
- std::vector<SuffixTreeNode *> LeafChildren;
- // Continue visiting nodes until we find one which repeats more than once.
- while (!ToVisit.empty()) {
- SuffixTreeNode *Curr = ToVisit.back();
- ToVisit.pop_back();
- LeafChildren.clear();
- // Keep track of the length of the string associated with the node. If
- // it's too short, we'll quit.
- unsigned Length = Curr->ConcatLen;
- // Iterate over each child, saving internal nodes for visiting, and
- // leaf nodes in LeafChildren. Internal nodes represent individual
- // strings, which may repeat.
- for (auto &ChildPair : Curr->Children) {
- // Save all of this node's children for processing.
- if (!ChildPair.second->isLeaf())
- ToVisit.push_back(ChildPair.second);
- // It's not an internal node, so it must be a leaf. If we have a
- // long enough string, then save the leaf children.
- else if (Length >= MinLength)
- LeafChildren.push_back(ChildPair.second);
- }
- // The root never represents a repeated substring. If we're looking at
- // that, then skip it.
- if (Curr->isRoot())
- continue;
- // Do we have any repeated substrings?
- if (LeafChildren.size() >= 2) {
- // Yes. Update the state to reflect this, and then bail out.
- N = Curr;
- RS.Length = Length;
- for (SuffixTreeNode *Leaf : LeafChildren)
- RS.StartIndices.push_back(Leaf->SuffixIdx);
- break;
- }
- }
- // At this point, either NewRS is an empty RepeatedSubstring, or it was
- // set in the above loop. Similarly, N is either nullptr, or the node
- // associated with NewRS.
- }
- public:
- /// Return the current repeated substring.
- RepeatedSubstring &operator*() { return RS; }
- RepeatedSubstringIterator &operator++() {
- advance();
- return *this;
- }
- RepeatedSubstringIterator operator++(int I) {
- RepeatedSubstringIterator It(*this);
- advance();
- return It;
- }
- bool operator==(const RepeatedSubstringIterator &Other) {
- return N == Other.N;
- }
- bool operator!=(const RepeatedSubstringIterator &Other) {
- return !(*this == Other);
- }
- RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) {
- // Do we have a non-null node?
- if (N) {
- // Yes. At the first step, we need to visit all of N's children.
- // Note: This means that we visit N last.
- ToVisit.push_back(N);
- advance();
- }
- }
- };
- typedef RepeatedSubstringIterator iterator;
- iterator begin() { return iterator(Root); }
- iterator end() { return iterator(nullptr); }
- };
- /// Maps \p MachineInstrs to unsigned integers and stores the mappings.
- struct InstructionMapper {
- /// The next available integer to assign to a \p MachineInstr that
- /// cannot be outlined.
- ///
- /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
- unsigned IllegalInstrNumber = -3;
- /// The next available integer to assign to a \p MachineInstr that can
- /// be outlined.
- unsigned LegalInstrNumber = 0;
- /// Correspondence from \p MachineInstrs to unsigned integers.
- DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
- InstructionIntegerMap;
- /// Correspondence between \p MachineBasicBlocks and target-defined flags.
- DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap;
- /// The vector of unsigned integers that the module is mapped to.
- std::vector<unsigned> UnsignedVec;
- /// Stores the location of the instruction associated with the integer
- /// at index i in \p UnsignedVec for each index i.
- std::vector<MachineBasicBlock::iterator> InstrList;
- // Set if we added an illegal number in the previous step.
- // Since each illegal number is unique, we only need one of them between
- // each range of legal numbers. This lets us make sure we don't add more
- // than one illegal number per range.
- bool AddedIllegalLastTime = false;
- /// Maps \p *It to a legal integer.
- ///
- /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB,
- /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber.
- ///
- /// \returns The integer that \p *It was mapped to.
- unsigned mapToLegalUnsigned(
- MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr,
- bool &HaveLegalRange, unsigned &NumLegalInBlock,
- std::vector<unsigned> &UnsignedVecForMBB,
- std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
- // We added something legal, so we should unset the AddedLegalLastTime
- // flag.
- AddedIllegalLastTime = false;
- // If we have at least two adjacent legal instructions (which may have
- // invisible instructions in between), remember that.
- if (CanOutlineWithPrevInstr)
- HaveLegalRange = true;
- CanOutlineWithPrevInstr = true;
- // Keep track of the number of legal instructions we insert.
- NumLegalInBlock++;
- // Get the integer for this instruction or give it the current
- // LegalInstrNumber.
- InstrListForMBB.push_back(It);
- MachineInstr &MI = *It;
- bool WasInserted;
- DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
- ResultIt;
- std::tie(ResultIt, WasInserted) =
- InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
- unsigned MINumber = ResultIt->second;
- // There was an insertion.
- if (WasInserted)
- LegalInstrNumber++;
- UnsignedVecForMBB.push_back(MINumber);
- // Make sure we don't overflow or use any integers reserved by the DenseMap.
- if (LegalInstrNumber >= IllegalInstrNumber)
- report_fatal_error("Instruction mapping overflow!");
- assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
- "Tried to assign DenseMap tombstone or empty key to instruction.");
- assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
- "Tried to assign DenseMap tombstone or empty key to instruction.");
- return MINumber;
- }
- /// Maps \p *It to an illegal integer.
- ///
- /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p
- /// IllegalInstrNumber.
- ///
- /// \returns The integer that \p *It was mapped to.
- unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It,
- bool &CanOutlineWithPrevInstr, std::vector<unsigned> &UnsignedVecForMBB,
- std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
- // Can't outline an illegal instruction. Set the flag.
- CanOutlineWithPrevInstr = false;
- // Only add one illegal number per range of legal numbers.
- if (AddedIllegalLastTime)
- return IllegalInstrNumber;
- // Remember that we added an illegal number last time.
- AddedIllegalLastTime = true;
- unsigned MINumber = IllegalInstrNumber;
- InstrListForMBB.push_back(It);
- UnsignedVecForMBB.push_back(IllegalInstrNumber);
- IllegalInstrNumber--;
- assert(LegalInstrNumber < IllegalInstrNumber &&
- "Instruction mapping overflow!");
- assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
- "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
- assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
- "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
- return MINumber;
- }
- /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
- /// and appends it to \p UnsignedVec and \p InstrList.
- ///
- /// Two instructions are assigned the same integer if they are identical.
- /// If an instruction is deemed unsafe to outline, then it will be assigned an
- /// unique integer. The resulting mapping is placed into a suffix tree and
- /// queried for candidates.
- ///
- /// \param MBB The \p MachineBasicBlock to be translated into integers.
- /// \param TII \p TargetInstrInfo for the function.
- void convertToUnsignedVec(MachineBasicBlock &MBB,
- const TargetInstrInfo &TII) {
- unsigned Flags = 0;
- // Don't even map in this case.
- if (!TII.isMBBSafeToOutlineFrom(MBB, Flags))
- return;
- // Store info for the MBB for later outlining.
- MBBFlagsMap[&MBB] = Flags;
- MachineBasicBlock::iterator It = MBB.begin();
- // The number of instructions in this block that will be considered for
- // outlining.
- unsigned NumLegalInBlock = 0;
- // True if we have at least two legal instructions which aren't separated
- // by an illegal instruction.
- bool HaveLegalRange = false;
- // True if we can perform outlining given the last mapped (non-invisible)
- // instruction. This lets us know if we have a legal range.
- bool CanOutlineWithPrevInstr = false;
- // FIXME: Should this all just be handled in the target, rather than using
- // repeated calls to getOutliningType?
- std::vector<unsigned> UnsignedVecForMBB;
- std::vector<MachineBasicBlock::iterator> InstrListForMBB;
- for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; It++) {
- // Keep track of where this instruction is in the module.
- switch (TII.getOutliningType(It, Flags)) {
- case InstrType::Illegal:
- mapToIllegalUnsigned(It, CanOutlineWithPrevInstr,
- UnsignedVecForMBB, InstrListForMBB);
- break;
- case InstrType::Legal:
- mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
- NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
- break;
- case InstrType::LegalTerminator:
- mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
- NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
- // The instruction also acts as a terminator, so we have to record that
- // in the string.
- mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
- InstrListForMBB);
- break;
- case InstrType::Invisible:
- // Normally this is set by mapTo(Blah)Unsigned, but we just want to
- // skip this instruction. So, unset the flag here.
- AddedIllegalLastTime = false;
- break;
- }
- }
- // Are there enough legal instructions in the block for outlining to be
- // possible?
- if (HaveLegalRange) {
- // After we're done every insertion, uniquely terminate this part of the
- // "string". This makes sure we won't match across basic block or function
- // boundaries since the "end" is encoded uniquely and thus appears in no
- // repeated substring.
- mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
- InstrListForMBB);
- InstrList.insert(InstrList.end(), InstrListForMBB.begin(),
- InstrListForMBB.end());
- UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(),
- UnsignedVecForMBB.end());
- }
- }
- InstructionMapper() {
- // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
- // changed.
- assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
- "DenseMapInfo<unsigned>'s empty key isn't -1!");
- assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
- "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
- }
- };
- /// An interprocedural pass which finds repeated sequences of
- /// instructions and replaces them with calls to functions.
- ///
- /// Each instruction is mapped to an unsigned integer and placed in a string.
- /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
- /// is then repeatedly queried for repeated sequences of instructions. Each
- /// non-overlapping repeated sequence is then placed in its own
- /// \p MachineFunction and each instance is then replaced with a call to that
- /// function.
- struct MachineOutliner : public ModulePass {
- static char ID;
- /// Set to true if the outliner should consider functions with
- /// linkonceodr linkage.
- bool OutlineFromLinkOnceODRs = false;
- /// Set to true if the outliner should run on all functions in the module
- /// considered safe for outlining.
- /// Set to true by default for compatibility with llc's -run-pass option.
- /// Set when the pass is constructed in TargetPassConfig.
- bool RunOnAllFunctions = true;
- StringRef getPassName() const override { return "Machine Outliner"; }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<MachineModuleInfo>();
- AU.addPreserved<MachineModuleInfo>();
- AU.setPreservesAll();
- ModulePass::getAnalysisUsage(AU);
- }
- MachineOutliner() : ModulePass(ID) {
- initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
- }
- /// Remark output explaining that not outlining a set of candidates would be
- /// better than outlining that set.
- void emitNotOutliningCheaperRemark(
- unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
- OutlinedFunction &OF);
- /// Remark output explaining that a function was outlined.
- void emitOutlinedFunctionRemark(OutlinedFunction &OF);
- /// Find all repeated substrings that satisfy the outlining cost model by
- /// constructing a suffix tree.
- ///
- /// If a substring appears at least twice, then it must be represented by
- /// an internal node which appears in at least two suffixes. Each suffix
- /// is represented by a leaf node. To do this, we visit each internal node
- /// in the tree, using the leaf children of each internal node. If an
- /// internal node represents a beneficial substring, then we use each of
- /// its leaf children to find the locations of its substring.
- ///
- /// \param Mapper Contains outlining mapping information.
- /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions
- /// each type of candidate.
- void findCandidates(InstructionMapper &Mapper,
- std::vector<OutlinedFunction> &FunctionList);
- /// Replace the sequences of instructions represented by \p OutlinedFunctions
- /// with calls to functions.
- ///
- /// \param M The module we are outlining from.
- /// \param FunctionList A list of functions to be inserted into the module.
- /// \param Mapper Contains the instruction mappings for the module.
- bool outline(Module &M, std::vector<OutlinedFunction> &FunctionList,
- InstructionMapper &Mapper);
- /// Creates a function for \p OF and inserts it into the module.
- MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF,
- InstructionMapper &Mapper,
- unsigned Name);
- /// Construct a suffix tree on the instructions in \p M and outline repeated
- /// strings from that tree.
- bool runOnModule(Module &M) override;
- /// Return a DISubprogram for OF if one exists, and null otherwise. Helper
- /// function for remark emission.
- DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) {
- DISubprogram *SP;
- for (const Candidate &C : OF.Candidates)
- if (C.getMF() && (SP = C.getMF()->getFunction().getSubprogram()))
- return SP;
- return nullptr;
- }
- /// Populate and \p InstructionMapper with instruction-to-integer mappings.
- /// These are used to construct a suffix tree.
- void populateMapper(InstructionMapper &Mapper, Module &M,
- MachineModuleInfo &MMI);
- /// Initialize information necessary to output a size remark.
- /// FIXME: This should be handled by the pass manager, not the outliner.
- /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy
- /// pass manager.
- void initSizeRemarkInfo(
- const Module &M, const MachineModuleInfo &MMI,
- StringMap<unsigned> &FunctionToInstrCount);
- /// Emit the remark.
- // FIXME: This should be handled by the pass manager, not the outliner.
- void emitInstrCountChangedRemark(
- const Module &M, const MachineModuleInfo &MMI,
- const StringMap<unsigned> &FunctionToInstrCount);
- };
- } // Anonymous namespace.
- char MachineOutliner::ID = 0;
- namespace llvm {
- ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) {
- MachineOutliner *OL = new MachineOutliner();
- OL->RunOnAllFunctions = RunOnAllFunctions;
- return OL;
- }
- } // namespace llvm
- INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
- false)
- void MachineOutliner::emitNotOutliningCheaperRemark(
- unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
- OutlinedFunction &OF) {
- // FIXME: Right now, we arbitrarily choose some Candidate from the
- // OutlinedFunction. This isn't necessarily fixed, nor does it have to be.
- // We should probably sort these by function name or something to make sure
- // the remarks are stable.
- Candidate &C = CandidatesForRepeatedSeq.front();
- MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr);
- MORE.emit([&]() {
- MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
- C.front()->getDebugLoc(), C.getMBB());
- R << "Did not outline " << NV("Length", StringLen) << " instructions"
- << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size())
- << " locations."
- << " Bytes from outlining all occurrences ("
- << NV("OutliningCost", OF.getOutliningCost()) << ")"
- << " >= Unoutlined instruction bytes ("
- << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")"
- << " (Also found at: ";
- // Tell the user the other places the candidate was found.
- for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) {
- R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
- CandidatesForRepeatedSeq[i].front()->getDebugLoc());
- if (i != e - 1)
- R << ", ";
- }
- R << ")";
- return R;
- });
- }
- void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) {
- MachineBasicBlock *MBB = &*OF.MF->begin();
- MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
- MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
- MBB->findDebugLoc(MBB->begin()), MBB);
- R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by "
- << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions "
- << "from " << NV("NumOccurrences", OF.getOccurrenceCount())
- << " locations. "
- << "(Found at: ";
- // Tell the user the other places the candidate was found.
- for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {
- R << NV((Twine("StartLoc") + Twine(i)).str(),
- OF.Candidates[i].front()->getDebugLoc());
- if (i != e - 1)
- R << ", ";
- }
- R << ")";
- MORE.emit(R);
- }
- void
- MachineOutliner::findCandidates(InstructionMapper &Mapper,
- std::vector<OutlinedFunction> &FunctionList) {
- FunctionList.clear();
- SuffixTree ST(Mapper.UnsignedVec);
- // First, find dall of the repeated substrings in the tree of minimum length
- // 2.
- std::vector<Candidate> CandidatesForRepeatedSeq;
- for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) {
- CandidatesForRepeatedSeq.clear();
- SuffixTree::RepeatedSubstring RS = *It;
- unsigned StringLen = RS.Length;
- for (const unsigned &StartIdx : RS.StartIndices) {
- unsigned EndIdx = StartIdx + StringLen - 1;
- // Trick: Discard some candidates that would be incompatible with the
- // ones we've already found for this sequence. This will save us some
- // work in candidate selection.
- //
- // If two candidates overlap, then we can't outline them both. This
- // happens when we have candidates that look like, say
- //
- // AA (where each "A" is an instruction).
- //
- // We might have some portion of the module that looks like this:
- // AAAAAA (6 A's)
- //
- // In this case, there are 5 different copies of "AA" in this range, but
- // at most 3 can be outlined. If only outlining 3 of these is going to
- // be unbeneficial, then we ought to not bother.
- //
- // Note that two things DON'T overlap when they look like this:
- // start1...end1 .... start2...end2
- // That is, one must either
- // * End before the other starts
- // * Start after the other ends
- if (std::all_of(
- CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(),
- [&StartIdx, &EndIdx](const Candidate &C) {
- return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx());
- })) {
- // It doesn't overlap with anything, so we can outline it.
- // Each sequence is over [StartIt, EndIt].
- // Save the candidate and its location.
- MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx];
- MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
- MachineBasicBlock *MBB = StartIt->getParent();
- CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt,
- EndIt, MBB, FunctionList.size(),
- Mapper.MBBFlagsMap[MBB]);
- }
- }
- // We've found something we might want to outline.
- // Create an OutlinedFunction to store it and check if it'd be beneficial
- // to outline.
- if (CandidatesForRepeatedSeq.size() < 2)
- continue;
- // Arbitrarily choose a TII from the first candidate.
- // FIXME: Should getOutliningCandidateInfo move to TargetMachine?
- const TargetInstrInfo *TII =
- CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo();
- OutlinedFunction OF =
- TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq);
- // If we deleted too many candidates, then there's nothing worth outlining.
- // FIXME: This should take target-specified instruction sizes into account.
- if (OF.Candidates.size() < 2)
- continue;
- // Is it better to outline this candidate than not?
- if (OF.getBenefit() < 1) {
- emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF);
- continue;
- }
- FunctionList.push_back(OF);
- }
- }
- MachineFunction *
- MachineOutliner::createOutlinedFunction(Module &M, OutlinedFunction &OF,
- InstructionMapper &Mapper,
- unsigned Name) {
- // Create the function name. This should be unique. For now, just hash the
- // module name and include it in the function name plus the number of this
- // function.
- std::ostringstream NameStream;
- // FIXME: We should have a better naming scheme. This should be stable,
- // regardless of changes to the outliner's cost model/traversal order.
- NameStream << "OUTLINED_FUNCTION_" << Name;
- // Create the function using an IR-level function.
- LLVMContext &C = M.getContext();
- Function *F =
- Function::Create(FunctionType::get(Type::getVoidTy(C), false),
- Function::ExternalLinkage, NameStream.str(), M);
- // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
- // which gives us better results when we outline from linkonceodr functions.
- F->setLinkage(GlobalValue::InternalLinkage);
- F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
- // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's
- // necessary.
- // Set optsize/minsize, so we don't insert padding between outlined
- // functions.
- F->addFnAttr(Attribute::OptimizeForSize);
- F->addFnAttr(Attribute::MinSize);
- // Include target features from an arbitrary candidate for the outlined
- // function. This makes sure the outlined function knows what kinds of
- // instructions are going into it. This is fine, since all parent functions
- // must necessarily support the instructions that are in the outlined region.
- Candidate &FirstCand = OF.Candidates.front();
- const Function &ParentFn = FirstCand.getMF()->getFunction();
- if (ParentFn.hasFnAttribute("target-features"))
- F->addFnAttr(ParentFn.getFnAttribute("target-features"));
- BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
- IRBuilder<> Builder(EntryBB);
- Builder.CreateRetVoid();
- MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
- MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
- MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
- const TargetSubtargetInfo &STI = MF.getSubtarget();
- const TargetInstrInfo &TII = *STI.getInstrInfo();
- // Insert the new function into the module.
- MF.insert(MF.begin(), &MBB);
- for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E;
- ++I) {
- MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
- NewMI->dropMemRefs(MF);
- // Don't keep debug information for outlined instructions.
- NewMI->setDebugLoc(DebugLoc());
- MBB.insert(MBB.end(), NewMI);
- }
- TII.buildOutlinedFrame(MBB, MF, OF);
- // Outlined functions shouldn't preserve liveness.
- MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness);
- MF.getRegInfo().freezeReservedRegs(MF);
- // If there's a DISubprogram associated with this outlined function, then
- // emit debug info for the outlined function.
- if (DISubprogram *SP = getSubprogramOrNull(OF)) {
- // We have a DISubprogram. Get its DICompileUnit.
- DICompileUnit *CU = SP->getUnit();
- DIBuilder DB(M, true, CU);
- DIFile *Unit = SP->getFile();
- Mangler Mg;
- // Get the mangled name of the function for the linkage name.
- std::string Dummy;
- llvm::raw_string_ostream MangledNameStream(Dummy);
- Mg.getNameWithPrefix(MangledNameStream, F, false);
- DISubprogram *OutlinedSP = DB.createFunction(
- Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()),
- Unit /* File */,
- 0 /* Line 0 is reserved for compiler-generated code. */,
- DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
- 0, /* Line 0 is reserved for compiler-generated code. */
- DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
- /* Outlined code is optimized code by definition. */
- DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
- // Don't add any new variables to the subprogram.
- DB.finalizeSubprogram(OutlinedSP);
- // Attach subprogram to the function.
- F->setSubprogram(OutlinedSP);
- // We're done with the DIBuilder.
- DB.finalize();
- }
- return &MF;
- }
- bool MachineOutliner::outline(Module &M,
- std::vector<OutlinedFunction> &FunctionList,
- InstructionMapper &Mapper) {
- bool OutlinedSomething = false;
- // Number to append to the current outlined function.
- unsigned OutlinedFunctionNum = 0;
- // Sort by benefit. The most beneficial functions should be outlined first.
- std::stable_sort(
- FunctionList.begin(), FunctionList.end(),
- [](const OutlinedFunction &LHS, const OutlinedFunction &RHS) {
- return LHS.getBenefit() > RHS.getBenefit();
- });
- // Walk over each function, outlining them as we go along. Functions are
- // outlined greedily, based off the sort above.
- for (OutlinedFunction &OF : FunctionList) {
- // If we outlined something that overlapped with a candidate in a previous
- // step, then we can't outline from it.
- erase_if(OF.Candidates, [&Mapper](Candidate &C) {
- return std::any_of(
- Mapper.UnsignedVec.begin() + C.getStartIdx(),
- Mapper.UnsignedVec.begin() + C.getEndIdx() + 1,
- [](unsigned I) { return (I == static_cast<unsigned>(-1)); });
- });
- // If we made it unbeneficial to outline this function, skip it.
- if (OF.getBenefit() < 1)
- continue;
- // It's beneficial. Create the function and outline its sequence's
- // occurrences.
- OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum);
- emitOutlinedFunctionRemark(OF);
- FunctionsCreated++;
- OutlinedFunctionNum++; // Created a function, move to the next name.
- MachineFunction *MF = OF.MF;
- const TargetSubtargetInfo &STI = MF->getSubtarget();
- const TargetInstrInfo &TII = *STI.getInstrInfo();
- // Replace occurrences of the sequence with calls to the new function.
- for (Candidate &C : OF.Candidates) {
- MachineBasicBlock &MBB = *C.getMBB();
- MachineBasicBlock::iterator StartIt = C.front();
- MachineBasicBlock::iterator EndIt = C.back();
- // Insert the call.
- auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C);
- // If the caller tracks liveness, then we need to make sure that
- // anything we outline doesn't break liveness assumptions. The outlined
- // functions themselves currently don't track liveness, but we should
- // make sure that the ranges we yank things out of aren't wrong.
- if (MBB.getParent()->getProperties().hasProperty(
- MachineFunctionProperties::Property::TracksLiveness)) {
- // Helper lambda for adding implicit def operands to the call
- // instruction.
- auto CopyDefs = [&CallInst](MachineInstr &MI) {
- for (MachineOperand &MOP : MI.operands()) {
- // Skip over anything that isn't a register.
- if (!MOP.isReg())
- continue;
- // If it's a def, add it to the call instruction.
- if (MOP.isDef())
- CallInst->addOperand(MachineOperand::CreateReg(
- MOP.getReg(), true, /* isDef = true */
- true /* isImp = true */));
- }
- };
- // Copy over the defs in the outlined range.
- // First inst in outlined range <-- Anything that's defined in this
- // ... .. range has to be added as an
- // implicit Last inst in outlined range <-- def to the call
- // instruction.
- std::for_each(CallInst, std::next(EndIt), CopyDefs);
- }
- // Erase from the point after where the call was inserted up to, and
- // including, the final instruction in the sequence.
- // Erase needs one past the end, so we need std::next there too.
- MBB.erase(std::next(StartIt), std::next(EndIt));
- // Keep track of what we removed by marking them all as -1.
- std::for_each(Mapper.UnsignedVec.begin() + C.getStartIdx(),
- Mapper.UnsignedVec.begin() + C.getEndIdx() + 1,
- [](unsigned &I) { I = static_cast<unsigned>(-1); });
- OutlinedSomething = true;
- // Statistics.
- NumOutlined++;
- }
- }
- LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
- return OutlinedSomething;
- }
- void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M,
- MachineModuleInfo &MMI) {
- // Build instruction mappings for each function in the module. Start by
- // iterating over each Function in M.
- for (Function &F : M) {
- // If there's nothing in F, then there's no reason to try and outline from
- // it.
- if (F.empty())
- continue;
- // There's something in F. Check if it has a MachineFunction associated with
- // it.
- MachineFunction *MF = MMI.getMachineFunction(F);
- // If it doesn't, then there's nothing to outline from. Move to the next
- // Function.
- if (!MF)
- continue;
- const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
- if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF))
- continue;
- // We have a MachineFunction. Ask the target if it's suitable for outlining.
- // If it isn't, then move on to the next Function in the module.
- if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs))
- continue;
- // We have a function suitable for outlining. Iterate over every
- // MachineBasicBlock in MF and try to map its instructions to a list of
- // unsigned integers.
- for (MachineBasicBlock &MBB : *MF) {
- // If there isn't anything in MBB, then there's no point in outlining from
- // it.
- // If there are fewer than 2 instructions in the MBB, then it can't ever
- // contain something worth outlining.
- // FIXME: This should be based off of the maximum size in B of an outlined
- // call versus the size in B of the MBB.
- if (MBB.empty() || MBB.size() < 2)
- continue;
- // Check if MBB could be the target of an indirect branch. If it is, then
- // we don't want to outline from it.
- if (MBB.hasAddressTaken())
- continue;
- // MBB is suitable for outlining. Map it to a list of unsigneds.
- Mapper.convertToUnsignedVec(MBB, *TII);
- }
- }
- }
- void MachineOutliner::initSizeRemarkInfo(
- const Module &M, const MachineModuleInfo &MMI,
- StringMap<unsigned> &FunctionToInstrCount) {
- // Collect instruction counts for every function. We'll use this to emit
- // per-function size remarks later.
- for (const Function &F : M) {
- MachineFunction *MF = MMI.getMachineFunction(F);
- // We only care about MI counts here. If there's no MachineFunction at this
- // point, then there won't be after the outliner runs, so let's move on.
- if (!MF)
- continue;
- FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount();
- }
- }
- void MachineOutliner::emitInstrCountChangedRemark(
- const Module &M, const MachineModuleInfo &MMI,
- const StringMap<unsigned> &FunctionToInstrCount) {
- // Iterate over each function in the module and emit remarks.
- // Note that we won't miss anything by doing this, because the outliner never
- // deletes functions.
- for (const Function &F : M) {
- MachineFunction *MF = MMI.getMachineFunction(F);
- // The outliner never deletes functions. If we don't have a MF here, then we
- // didn't have one prior to outlining either.
- if (!MF)
- continue;
- std::string Fname = F.getName();
- unsigned FnCountAfter = MF->getInstructionCount();
- unsigned FnCountBefore = 0;
- // Check if the function was recorded before.
- auto It = FunctionToInstrCount.find(Fname);
- // Did we have a previously-recorded size? If yes, then set FnCountBefore
- // to that.
- if (It != FunctionToInstrCount.end())
- FnCountBefore = It->second;
- // Compute the delta and emit a remark if there was a change.
- int64_t FnDelta = static_cast<int64_t>(FnCountAfter) -
- static_cast<int64_t>(FnCountBefore);
- if (FnDelta == 0)
- continue;
- MachineOptimizationRemarkEmitter MORE(*MF, nullptr);
- MORE.emit([&]() {
- MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange",
- DiagnosticLocation(),
- &MF->front());
- R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner")
- << ": Function: "
- << DiagnosticInfoOptimizationBase::Argument("Function", F.getName())
- << ": MI instruction count changed from "
- << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore",
- FnCountBefore)
- << " to "
- << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter",
- FnCountAfter)
- << "; Delta: "
- << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta);
- return R;
- });
- }
- }
- bool MachineOutliner::runOnModule(Module &M) {
- // Check if there's anything in the module. If it's empty, then there's
- // nothing to outline.
- if (M.empty())
- return false;
- MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
- // If the user passed -enable-machine-outliner=always or
- // -enable-machine-outliner, the pass will run on all functions in the module.
- // Otherwise, if the target supports default outlining, it will run on all
- // functions deemed by the target to be worth outlining from by default. Tell
- // the user how the outliner is running.
- LLVM_DEBUG(
- dbgs() << "Machine Outliner: Running on ";
- if (RunOnAllFunctions)
- dbgs() << "all functions";
- else
- dbgs() << "target-default functions";
- dbgs() << "\n"
- );
- // If the user specifies that they want to outline from linkonceodrs, set
- // it here.
- OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining;
- InstructionMapper Mapper;
- // Prepare instruction mappings for the suffix tree.
- populateMapper(Mapper, M, MMI);
- std::vector<OutlinedFunction> FunctionList;
- // Find all of the outlining candidates.
- findCandidates(Mapper, FunctionList);
- // If we've requested size remarks, then collect the MI counts of every
- // function before outlining, and the MI counts after outlining.
- // FIXME: This shouldn't be in the outliner at all; it should ultimately be
- // the pass manager's responsibility.
- // This could pretty easily be placed in outline instead, but because we
- // really ultimately *don't* want this here, it's done like this for now
- // instead.
- // Check if we want size remarks.
- bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark();
- StringMap<unsigned> FunctionToInstrCount;
- if (ShouldEmitSizeRemarks)
- initSizeRemarkInfo(M, MMI, FunctionToInstrCount);
- // Outline each of the candidates and return true if something was outlined.
- bool OutlinedSomething = outline(M, FunctionList, Mapper);
- // If we outlined something, we definitely changed the MI count of the
- // module. If we've asked for size remarks, then output them.
- // FIXME: This should be in the pass manager.
- if (ShouldEmitSizeRemarks && OutlinedSomething)
- emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount);
- return OutlinedSomething;
- }
|