123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323 |
- //===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // Parallel JIT
- //
- // This test program creates two LLVM functions then calls them from three
- // separate threads. It requires the pthreads library.
- // The three threads are created and then block waiting on a condition variable.
- // Once all threads are blocked on the conditional variable, the main thread
- // wakes them up. This complicated work is performed so that all three threads
- // call into the JIT at the same time (or the best possible approximation of the
- // same time). This test had assertion errors until I got the locking right.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ExecutionEngine/ExecutionEngine.h"
- #include "llvm/ExecutionEngine/GenericValue.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Type.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/TargetSelect.h"
- #include <algorithm>
- #include <cassert>
- #include <cstddef>
- #include <cstdint>
- #include <iostream>
- #include <memory>
- #include <vector>
- #include <pthread.h>
- using namespace llvm;
- static Function* createAdd1(Module *M) {
- // Create the add1 function entry and insert this entry into module M. The
- // function will have a return type of "int" and take an argument of "int".
- Function *Add1F =
- Function::Create(FunctionType::get(Type::getInt32Ty(Context),
- {Type::getInt32Ty(Context)}, false),
- Function::ExternalLinkage, "add1", M);
- // Add a basic block to the function. As before, it automatically inserts
- // because of the last argument.
- BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F);
- // Get pointers to the constant `1'.
- Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
- // Get pointers to the integer argument of the add1 function...
- assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg
- Argument *ArgX = &*Add1F->arg_begin(); // Get the arg
- ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
- // Create the add instruction, inserting it into the end of BB.
- Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB);
- // Create the return instruction and add it to the basic block
- ReturnInst::Create(M->getContext(), Add, BB);
- // Now, function add1 is ready.
- return Add1F;
- }
- static Function *CreateFibFunction(Module *M) {
- // Create the fib function and insert it into module M. This function is said
- // to return an int and take an int parameter.
- FunctionType *FibFTy = FunctionType::get(Type::getInt32Ty(Context),
- {Type::getInt32Ty(Context)}, false);
- Function *FibF =
- Function::Create(FibFTy, Function::ExternalLinkage, "fib", M);
- // Add a basic block to the function.
- BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF);
- // Get pointers to the constants.
- Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
- Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2);
- // Get pointer to the integer argument of the add1 function...
- Argument *ArgX = &*FibF->arg_begin(); // Get the arg.
- ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
- // Create the true_block.
- BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF);
- // Create an exit block.
- BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF);
- // Create the "if (arg < 2) goto exitbb"
- Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond");
- BranchInst::Create(RetBB, RecurseBB, CondInst, BB);
- // Create: ret int 1
- ReturnInst::Create(M->getContext(), One, RetBB);
- // create fib(x-1)
- Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB);
- Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB);
- // create fib(x-2)
- Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB);
- Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB);
- // fib(x-1)+fib(x-2)
- Value *Sum =
- BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB);
- // Create the return instruction and add it to the basic block
- ReturnInst::Create(M->getContext(), Sum, RecurseBB);
- return FibF;
- }
- struct threadParams {
- ExecutionEngine* EE;
- Function* F;
- int value;
- };
- // We block the subthreads just before they begin to execute:
- // we want all of them to call into the JIT at the same time,
- // to verify that the locking is working correctly.
- class WaitForThreads
- {
- public:
- WaitForThreads()
- {
- n = 0;
- waitFor = 0;
- int result = pthread_cond_init( &condition, nullptr );
- (void)result;
- assert( result == 0 );
- result = pthread_mutex_init( &mutex, nullptr );
- assert( result == 0 );
- }
- ~WaitForThreads()
- {
- int result = pthread_cond_destroy( &condition );
- (void)result;
- assert( result == 0 );
- result = pthread_mutex_destroy( &mutex );
- assert( result == 0 );
- }
- // All threads will stop here until another thread calls releaseThreads
- void block()
- {
- int result = pthread_mutex_lock( &mutex );
- (void)result;
- assert( result == 0 );
- n ++;
- //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl;
- assert( waitFor == 0 || n <= waitFor );
- if ( waitFor > 0 && n == waitFor )
- {
- // There are enough threads blocked that we can release all of them
- std::cout << "Unblocking threads from block()" << std::endl;
- unblockThreads();
- }
- else
- {
- // We just need to wait until someone unblocks us
- result = pthread_cond_wait( &condition, &mutex );
- assert( result == 0 );
- }
- // unlock the mutex before returning
- result = pthread_mutex_unlock( &mutex );
- assert( result == 0 );
- }
- // If there are num or more threads blocked, it will signal them all
- // Otherwise, this thread blocks until there are enough OTHER threads
- // blocked
- void releaseThreads( size_t num )
- {
- int result = pthread_mutex_lock( &mutex );
- (void)result;
- assert( result == 0 );
- if ( n >= num ) {
- std::cout << "Unblocking threads from releaseThreads()" << std::endl;
- unblockThreads();
- }
- else
- {
- waitFor = num;
- pthread_cond_wait( &condition, &mutex );
- }
- // unlock the mutex before returning
- result = pthread_mutex_unlock( &mutex );
- assert( result == 0 );
- }
- private:
- void unblockThreads()
- {
- // Reset the counters to zero: this way, if any new threads
- // enter while threads are exiting, they will block instead
- // of triggering a new release of threads
- n = 0;
- // Reset waitFor to zero: this way, if waitFor threads enter
- // while threads are exiting, they will block instead of
- // triggering a new release of threads
- waitFor = 0;
- int result = pthread_cond_broadcast( &condition );
- (void)result;
- assert(result == 0);
- }
- size_t n;
- size_t waitFor;
- pthread_cond_t condition;
- pthread_mutex_t mutex;
- };
- static WaitForThreads synchronize;
- void* callFunc( void* param )
- {
- struct threadParams* p = (struct threadParams*) param;
- // Call the `foo' function with no arguments:
- std::vector<GenericValue> Args(1);
- Args[0].IntVal = APInt(32, p->value);
- synchronize.block(); // wait until other threads are at this point
- GenericValue gv = p->EE->runFunction(p->F, Args);
- return (void*)(intptr_t)gv.IntVal.getZExtValue();
- }
- int main() {
- InitializeNativeTarget();
- LLVMContext Context;
- // Create some module to put our function into it.
- std::unique_ptr<Module> Owner = make_unique<Module>("test", Context);
- Module *M = Owner.get();
- Function* add1F = createAdd1( M );
- Function* fibF = CreateFibFunction( M );
- // Now we create the JIT.
- ExecutionEngine* EE = EngineBuilder(std::move(Owner)).create();
- //~ std::cout << "We just constructed this LLVM module:\n\n" << *M;
- //~ std::cout << "\n\nRunning foo: " << std::flush;
- // Create one thread for add1 and two threads for fib
- struct threadParams add1 = { EE, add1F, 1000 };
- struct threadParams fib1 = { EE, fibF, 39 };
- struct threadParams fib2 = { EE, fibF, 42 };
- pthread_t add1Thread;
- int result = pthread_create( &add1Thread, nullptr, callFunc, &add1 );
- if ( result != 0 ) {
- std::cerr << "Could not create thread" << std::endl;
- return 1;
- }
- pthread_t fibThread1;
- result = pthread_create( &fibThread1, nullptr, callFunc, &fib1 );
- if ( result != 0 ) {
- std::cerr << "Could not create thread" << std::endl;
- return 1;
- }
- pthread_t fibThread2;
- result = pthread_create( &fibThread2, nullptr, callFunc, &fib2 );
- if ( result != 0 ) {
- std::cerr << "Could not create thread" << std::endl;
- return 1;
- }
- synchronize.releaseThreads(3); // wait until other threads are at this point
- void* returnValue;
- result = pthread_join( add1Thread, &returnValue );
- if ( result != 0 ) {
- std::cerr << "Could not join thread" << std::endl;
- return 1;
- }
- std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl;
- result = pthread_join( fibThread1, &returnValue );
- if ( result != 0 ) {
- std::cerr << "Could not join thread" << std::endl;
- return 1;
- }
- std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl;
- result = pthread_join( fibThread2, &returnValue );
- if ( result != 0 ) {
- std::cerr << "Could not join thread" << std::endl;
- return 1;
- }
- std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl;
- return 0;
- }
|