12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414 |
- //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This is a utility pass used for testing the InstructionSimplify analysis.
- // The analysis is applied to every instruction, and if it simplifies then the
- // instruction is replaced by the simplification. If you are looking for a pass
- // that performs serious instruction folding, use the instcombine pass instead.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
- #include "llvm/ADT/SmallString.h"
- #include "llvm/ADT/StringMap.h"
- #include "llvm/ADT/Triple.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DiagnosticInfo.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Transforms/Utils/BuildLibCalls.h"
- #include "llvm/Transforms/Utils/Local.h"
- using namespace llvm;
- using namespace PatternMatch;
- static cl::opt<bool>
- ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
- cl::desc("Treat error-reporting calls as cold"));
- static cl::opt<bool>
- EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
- cl::init(false),
- cl::desc("Enable unsafe double to float "
- "shrinking for math lib calls"));
- //===----------------------------------------------------------------------===//
- // Helper Functions
- //===----------------------------------------------------------------------===//
- static bool ignoreCallingConv(LibFunc Func) {
- return Func == LibFunc_abs || Func == LibFunc_labs ||
- Func == LibFunc_llabs || Func == LibFunc_strlen;
- }
- static bool isCallingConvCCompatible(CallInst *CI) {
- switch(CI->getCallingConv()) {
- default:
- return false;
- case llvm::CallingConv::C:
- return true;
- case llvm::CallingConv::ARM_APCS:
- case llvm::CallingConv::ARM_AAPCS:
- case llvm::CallingConv::ARM_AAPCS_VFP: {
- // The iOS ABI diverges from the standard in some cases, so for now don't
- // try to simplify those calls.
- if (Triple(CI->getModule()->getTargetTriple()).isiOS())
- return false;
- auto *FuncTy = CI->getFunctionType();
- if (!FuncTy->getReturnType()->isPointerTy() &&
- !FuncTy->getReturnType()->isIntegerTy() &&
- !FuncTy->getReturnType()->isVoidTy())
- return false;
- for (auto Param : FuncTy->params()) {
- if (!Param->isPointerTy() && !Param->isIntegerTy())
- return false;
- }
- return true;
- }
- }
- return false;
- }
- /// Return true if it only matters that the value is equal or not-equal to zero.
- static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
- for (User *U : V->users()) {
- if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
- if (IC->isEquality())
- if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
- if (C->isNullValue())
- continue;
- // Unknown instruction.
- return false;
- }
- return true;
- }
- /// Return true if it is only used in equality comparisons with With.
- static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
- for (User *U : V->users()) {
- if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
- if (IC->isEquality() && IC->getOperand(1) == With)
- continue;
- // Unknown instruction.
- return false;
- }
- return true;
- }
- static bool callHasFloatingPointArgument(const CallInst *CI) {
- return any_of(CI->operands(), [](const Use &OI) {
- return OI->getType()->isFloatingPointTy();
- });
- }
- /// \brief Check whether the overloaded unary floating point function
- /// corresponding to \a Ty is available.
- static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
- LibFunc DoubleFn, LibFunc FloatFn,
- LibFunc LongDoubleFn) {
- switch (Ty->getTypeID()) {
- case Type::FloatTyID:
- return TLI->has(FloatFn);
- case Type::DoubleTyID:
- return TLI->has(DoubleFn);
- default:
- return TLI->has(LongDoubleFn);
- }
- }
- //===----------------------------------------------------------------------===//
- // String and Memory Library Call Optimizations
- //===----------------------------------------------------------------------===//
- Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
- // Extract some information from the instruction
- Value *Dst = CI->getArgOperand(0);
- Value *Src = CI->getArgOperand(1);
- // See if we can get the length of the input string.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0)
- return nullptr;
- --Len; // Unbias length.
- // Handle the simple, do-nothing case: strcat(x, "") -> x
- if (Len == 0)
- return Dst;
- return emitStrLenMemCpy(Src, Dst, Len, B);
- }
- Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
- IRBuilder<> &B) {
- // We need to find the end of the destination string. That's where the
- // memory is to be moved to. We just generate a call to strlen.
- Value *DstLen = emitStrLen(Dst, B, DL, TLI);
- if (!DstLen)
- return nullptr;
- // Now that we have the destination's length, we must index into the
- // destination's pointer to get the actual memcpy destination (end of
- // the string .. we're concatenating).
- Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
- // We have enough information to now generate the memcpy call to do the
- // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
- B.CreateMemCpy(CpyDst, Src,
- ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
- 1);
- return Dst;
- }
- Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
- // Extract some information from the instruction.
- Value *Dst = CI->getArgOperand(0);
- Value *Src = CI->getArgOperand(1);
- uint64_t Len;
- // We don't do anything if length is not constant.
- if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
- Len = LengthArg->getZExtValue();
- else
- return nullptr;
- // See if we can get the length of the input string.
- uint64_t SrcLen = GetStringLength(Src);
- if (SrcLen == 0)
- return nullptr;
- --SrcLen; // Unbias length.
- // Handle the simple, do-nothing cases:
- // strncat(x, "", c) -> x
- // strncat(x, c, 0) -> x
- if (SrcLen == 0 || Len == 0)
- return Dst;
- // We don't optimize this case.
- if (Len < SrcLen)
- return nullptr;
- // strncat(x, s, c) -> strcat(x, s)
- // s is constant so the strcat can be optimized further.
- return emitStrLenMemCpy(Src, Dst, SrcLen, B);
- }
- Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- Value *SrcStr = CI->getArgOperand(0);
- // If the second operand is non-constant, see if we can compute the length
- // of the input string and turn this into memchr.
- ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- if (!CharC) {
- uint64_t Len = GetStringLength(SrcStr);
- if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
- return nullptr;
- return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
- ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
- B, DL, TLI);
- }
- // Otherwise, the character is a constant, see if the first argument is
- // a string literal. If so, we can constant fold.
- StringRef Str;
- if (!getConstantStringInfo(SrcStr, Str)) {
- if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
- return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
- "strchr");
- return nullptr;
- }
- // Compute the offset, make sure to handle the case when we're searching for
- // zero (a weird way to spell strlen).
- size_t I = (0xFF & CharC->getSExtValue()) == 0
- ? Str.size()
- : Str.find(CharC->getSExtValue());
- if (I == StringRef::npos) // Didn't find the char. strchr returns null.
- return Constant::getNullValue(CI->getType());
- // strchr(s+n,c) -> gep(s+n+i,c)
- return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
- }
- Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
- Value *SrcStr = CI->getArgOperand(0);
- ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- // Cannot fold anything if we're not looking for a constant.
- if (!CharC)
- return nullptr;
- StringRef Str;
- if (!getConstantStringInfo(SrcStr, Str)) {
- // strrchr(s, 0) -> strchr(s, 0)
- if (CharC->isZero())
- return emitStrChr(SrcStr, '\0', B, TLI);
- return nullptr;
- }
- // Compute the offset.
- size_t I = (0xFF & CharC->getSExtValue()) == 0
- ? Str.size()
- : Str.rfind(CharC->getSExtValue());
- if (I == StringRef::npos) // Didn't find the char. Return null.
- return Constant::getNullValue(CI->getType());
- // strrchr(s+n,c) -> gep(s+n+i,c)
- return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
- }
- Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
- Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
- if (Str1P == Str2P) // strcmp(x,x) -> 0
- return ConstantInt::get(CI->getType(), 0);
- StringRef Str1, Str2;
- bool HasStr1 = getConstantStringInfo(Str1P, Str1);
- bool HasStr2 = getConstantStringInfo(Str2P, Str2);
- // strcmp(x, y) -> cnst (if both x and y are constant strings)
- if (HasStr1 && HasStr2)
- return ConstantInt::get(CI->getType(), Str1.compare(Str2));
- if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
- return B.CreateNeg(
- B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
- if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
- return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
- // strcmp(P, "x") -> memcmp(P, "x", 2)
- uint64_t Len1 = GetStringLength(Str1P);
- uint64_t Len2 = GetStringLength(Str2P);
- if (Len1 && Len2) {
- return emitMemCmp(Str1P, Str2P,
- ConstantInt::get(DL.getIntPtrType(CI->getContext()),
- std::min(Len1, Len2)),
- B, DL, TLI);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
- Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
- if (Str1P == Str2P) // strncmp(x,x,n) -> 0
- return ConstantInt::get(CI->getType(), 0);
- // Get the length argument if it is constant.
- uint64_t Length;
- if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
- Length = LengthArg->getZExtValue();
- else
- return nullptr;
- if (Length == 0) // strncmp(x,y,0) -> 0
- return ConstantInt::get(CI->getType(), 0);
- if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
- return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
- StringRef Str1, Str2;
- bool HasStr1 = getConstantStringInfo(Str1P, Str1);
- bool HasStr2 = getConstantStringInfo(Str2P, Str2);
- // strncmp(x, y) -> cnst (if both x and y are constant strings)
- if (HasStr1 && HasStr2) {
- StringRef SubStr1 = Str1.substr(0, Length);
- StringRef SubStr2 = Str2.substr(0, Length);
- return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
- }
- if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
- return B.CreateNeg(
- B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
- if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
- return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
- Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
- if (Dst == Src) // strcpy(x,x) -> x
- return Src;
- // See if we can get the length of the input string.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0)
- return nullptr;
- // We have enough information to now generate the memcpy call to do the
- // copy for us. Make a memcpy to copy the nul byte with align = 1.
- B.CreateMemCpy(Dst, Src,
- ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
- return Dst;
- }
- Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
- if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
- Value *StrLen = emitStrLen(Src, B, DL, TLI);
- return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
- }
- // See if we can get the length of the input string.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0)
- return nullptr;
- Type *PT = Callee->getFunctionType()->getParamType(0);
- Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
- Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
- ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
- // We have enough information to now generate the memcpy call to do the
- // copy for us. Make a memcpy to copy the nul byte with align = 1.
- B.CreateMemCpy(Dst, Src, LenV, 1);
- return DstEnd;
- }
- Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- Value *Dst = CI->getArgOperand(0);
- Value *Src = CI->getArgOperand(1);
- Value *LenOp = CI->getArgOperand(2);
- // See if we can get the length of the input string.
- uint64_t SrcLen = GetStringLength(Src);
- if (SrcLen == 0)
- return nullptr;
- --SrcLen;
- if (SrcLen == 0) {
- // strncpy(x, "", y) -> memset(x, '\0', y, 1)
- B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
- return Dst;
- }
- uint64_t Len;
- if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
- Len = LengthArg->getZExtValue();
- else
- return nullptr;
- if (Len == 0)
- return Dst; // strncpy(x, y, 0) -> x
- // Let strncpy handle the zero padding
- if (Len > SrcLen + 1)
- return nullptr;
- Type *PT = Callee->getFunctionType()->getParamType(0);
- // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
- B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
- return Dst;
- }
- Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
- Value *Src = CI->getArgOperand(0);
- // Constant folding: strlen("xyz") -> 3
- if (uint64_t Len = GetStringLength(Src))
- return ConstantInt::get(CI->getType(), Len - 1);
- // If s is a constant pointer pointing to a string literal, we can fold
- // strlen(s + x) to strlen(s) - x, when x is known to be in the range
- // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
- // We only try to simplify strlen when the pointer s points to an array
- // of i8. Otherwise, we would need to scale the offset x before doing the
- // subtraction. This will make the optimization more complex, and it's not
- // very useful because calling strlen for a pointer of other types is
- // very uncommon.
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
- if (!isGEPBasedOnPointerToString(GEP))
- return nullptr;
- StringRef Str;
- if (getConstantStringInfo(GEP->getOperand(0), Str, 0, false)) {
- size_t NullTermIdx = Str.find('\0');
-
- // If the string does not have '\0', leave it to strlen to compute
- // its length.
- if (NullTermIdx == StringRef::npos)
- return nullptr;
-
- Value *Offset = GEP->getOperand(2);
- unsigned BitWidth = Offset->getType()->getIntegerBitWidth();
- APInt KnownZero(BitWidth, 0);
- APInt KnownOne(BitWidth, 0);
- computeKnownBits(Offset, KnownZero, KnownOne, DL, 0, nullptr, CI,
- nullptr);
- KnownZero.flipAllBits();
- size_t ArrSize =
- cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
- // KnownZero's bits are flipped, so zeros in KnownZero now represent
- // bits known to be zeros in Offset, and ones in KnowZero represent
- // bits unknown in Offset. Therefore, Offset is known to be in range
- // [0, NullTermIdx] when the flipped KnownZero is non-negative and
- // unsigned-less-than NullTermIdx.
- //
- // If Offset is not provably in the range [0, NullTermIdx], we can still
- // optimize if we can prove that the program has undefined behavior when
- // Offset is outside that range. That is the case when GEP->getOperand(0)
- // is a pointer to an object whose memory extent is NullTermIdx+1.
- if ((KnownZero.isNonNegative() && KnownZero.ule(NullTermIdx)) ||
- (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
- NullTermIdx == ArrSize - 1))
- return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
- Offset);
- }
- return nullptr;
- }
- // strlen(x?"foo":"bars") --> x ? 3 : 4
- if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
- uint64_t LenTrue = GetStringLength(SI->getTrueValue());
- uint64_t LenFalse = GetStringLength(SI->getFalseValue());
- if (LenTrue && LenFalse) {
- Function *Caller = CI->getParent()->getParent();
- emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
- SI->getDebugLoc(),
- "folded strlen(select) to select of constants");
- return B.CreateSelect(SI->getCondition(),
- ConstantInt::get(CI->getType(), LenTrue - 1),
- ConstantInt::get(CI->getType(), LenFalse - 1));
- }
- }
- // strlen(x) != 0 --> *x != 0
- // strlen(x) == 0 --> *x == 0
- if (isOnlyUsedInZeroEqualityComparison(CI))
- return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
- StringRef S1, S2;
- bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
- bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
- // strpbrk(s, "") -> nullptr
- // strpbrk("", s) -> nullptr
- if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
- return Constant::getNullValue(CI->getType());
- // Constant folding.
- if (HasS1 && HasS2) {
- size_t I = S1.find_first_of(S2);
- if (I == StringRef::npos) // No match.
- return Constant::getNullValue(CI->getType());
- return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
- "strpbrk");
- }
- // strpbrk(s, "a") -> strchr(s, 'a')
- if (HasS2 && S2.size() == 1)
- return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
- Value *EndPtr = CI->getArgOperand(1);
- if (isa<ConstantPointerNull>(EndPtr)) {
- // With a null EndPtr, this function won't capture the main argument.
- // It would be readonly too, except that it still may write to errno.
- CI->addAttribute(1, Attribute::NoCapture);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
- StringRef S1, S2;
- bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
- bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
- // strspn(s, "") -> 0
- // strspn("", s) -> 0
- if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
- return Constant::getNullValue(CI->getType());
- // Constant folding.
- if (HasS1 && HasS2) {
- size_t Pos = S1.find_first_not_of(S2);
- if (Pos == StringRef::npos)
- Pos = S1.size();
- return ConstantInt::get(CI->getType(), Pos);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
- StringRef S1, S2;
- bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
- bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
- // strcspn("", s) -> 0
- if (HasS1 && S1.empty())
- return Constant::getNullValue(CI->getType());
- // Constant folding.
- if (HasS1 && HasS2) {
- size_t Pos = S1.find_first_of(S2);
- if (Pos == StringRef::npos)
- Pos = S1.size();
- return ConstantInt::get(CI->getType(), Pos);
- }
- // strcspn(s, "") -> strlen(s)
- if (HasS2 && S2.empty())
- return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
- // fold strstr(x, x) -> x.
- if (CI->getArgOperand(0) == CI->getArgOperand(1))
- return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
- // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
- if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
- Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
- if (!StrLen)
- return nullptr;
- Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
- StrLen, B, DL, TLI);
- if (!StrNCmp)
- return nullptr;
- for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
- ICmpInst *Old = cast<ICmpInst>(*UI++);
- Value *Cmp =
- B.CreateICmp(Old->getPredicate(), StrNCmp,
- ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
- replaceAllUsesWith(Old, Cmp);
- }
- return CI;
- }
- // See if either input string is a constant string.
- StringRef SearchStr, ToFindStr;
- bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
- bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
- // fold strstr(x, "") -> x.
- if (HasStr2 && ToFindStr.empty())
- return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
- // If both strings are known, constant fold it.
- if (HasStr1 && HasStr2) {
- size_t Offset = SearchStr.find(ToFindStr);
- if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
- return Constant::getNullValue(CI->getType());
- // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
- Value *Result = castToCStr(CI->getArgOperand(0), B);
- Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
- return B.CreateBitCast(Result, CI->getType());
- }
- // fold strstr(x, "y") -> strchr(x, 'y').
- if (HasStr2 && ToFindStr.size() == 1) {
- Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
- return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
- Value *SrcStr = CI->getArgOperand(0);
- ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
- // memchr(x, y, 0) -> null
- if (LenC && LenC->isNullValue())
- return Constant::getNullValue(CI->getType());
- // From now on we need at least constant length and string.
- StringRef Str;
- if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
- return nullptr;
- // Truncate the string to LenC. If Str is smaller than LenC we will still only
- // scan the string, as reading past the end of it is undefined and we can just
- // return null if we don't find the char.
- Str = Str.substr(0, LenC->getZExtValue());
- // If the char is variable but the input str and length are not we can turn
- // this memchr call into a simple bit field test. Of course this only works
- // when the return value is only checked against null.
- //
- // It would be really nice to reuse switch lowering here but we can't change
- // the CFG at this point.
- //
- // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
- // after bounds check.
- if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
- unsigned char Max =
- *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
- reinterpret_cast<const unsigned char *>(Str.end()));
- // Make sure the bit field we're about to create fits in a register on the
- // target.
- // FIXME: On a 64 bit architecture this prevents us from using the
- // interesting range of alpha ascii chars. We could do better by emitting
- // two bitfields or shifting the range by 64 if no lower chars are used.
- if (!DL.fitsInLegalInteger(Max + 1))
- return nullptr;
- // For the bit field use a power-of-2 type with at least 8 bits to avoid
- // creating unnecessary illegal types.
- unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
- // Now build the bit field.
- APInt Bitfield(Width, 0);
- for (char C : Str)
- Bitfield.setBit((unsigned char)C);
- Value *BitfieldC = B.getInt(Bitfield);
- // First check that the bit field access is within bounds.
- Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
- Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
- "memchr.bounds");
- // Create code that checks if the given bit is set in the field.
- Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
- Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
- // Finally merge both checks and cast to pointer type. The inttoptr
- // implicitly zexts the i1 to intptr type.
- return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
- }
- // Check if all arguments are constants. If so, we can constant fold.
- if (!CharC)
- return nullptr;
- // Compute the offset.
- size_t I = Str.find(CharC->getSExtValue() & 0xFF);
- if (I == StringRef::npos) // Didn't find the char. memchr returns null.
- return Constant::getNullValue(CI->getType());
- // memchr(s+n,c,l) -> gep(s+n+i,c)
- return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
- }
- Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
- Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
- if (LHS == RHS) // memcmp(s,s,x) -> 0
- return Constant::getNullValue(CI->getType());
- // Make sure we have a constant length.
- ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
- if (!LenC)
- return nullptr;
- uint64_t Len = LenC->getZExtValue();
- if (Len == 0) // memcmp(s1,s2,0) -> 0
- return Constant::getNullValue(CI->getType());
- // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
- if (Len == 1) {
- Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
- CI->getType(), "lhsv");
- Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
- CI->getType(), "rhsv");
- return B.CreateSub(LHSV, RHSV, "chardiff");
- }
- // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
- if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
- IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
- unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
- if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment &&
- getKnownAlignment(RHS, DL, CI) >= PrefAlignment) {
- Type *LHSPtrTy =
- IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
- Type *RHSPtrTy =
- IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
- Value *LHSV =
- B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv");
- Value *RHSV =
- B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv");
- return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
- }
- }
- // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
- StringRef LHSStr, RHSStr;
- if (getConstantStringInfo(LHS, LHSStr) &&
- getConstantStringInfo(RHS, RHSStr)) {
- // Make sure we're not reading out-of-bounds memory.
- if (Len > LHSStr.size() || Len > RHSStr.size())
- return nullptr;
- // Fold the memcmp and normalize the result. This way we get consistent
- // results across multiple platforms.
- uint64_t Ret = 0;
- int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
- if (Cmp < 0)
- Ret = -1;
- else if (Cmp > 0)
- Ret = 1;
- return ConstantInt::get(CI->getType(), Ret);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
- // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
- B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
- Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
- // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
- B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
- // TODO: Does this belong in BuildLibCalls or should all of those similar
- // functions be moved here?
- static Value *emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs,
- IRBuilder<> &B, const TargetLibraryInfo &TLI) {
- LibFunc Func;
- if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func))
- return nullptr;
- Module *M = B.GetInsertBlock()->getModule();
- const DataLayout &DL = M->getDataLayout();
- IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext()));
- Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(),
- PtrType, PtrType);
- CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc");
- if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts()))
- CI->setCallingConv(F->getCallingConv());
- return CI;
- }
- /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
- static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B,
- const TargetLibraryInfo &TLI) {
- // This has to be a memset of zeros (bzero).
- auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
- if (!FillValue || FillValue->getZExtValue() != 0)
- return nullptr;
- // TODO: We should handle the case where the malloc has more than one use.
- // This is necessary to optimize common patterns such as when the result of
- // the malloc is checked against null or when a memset intrinsic is used in
- // place of a memset library call.
- auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
- if (!Malloc || !Malloc->hasOneUse())
- return nullptr;
- // Is the inner call really malloc()?
- Function *InnerCallee = Malloc->getCalledFunction();
- LibFunc Func;
- if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
- Func != LibFunc_malloc)
- return nullptr;
- // The memset must cover the same number of bytes that are malloc'd.
- if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
- return nullptr;
- // Replace the malloc with a calloc. We need the data layout to know what the
- // actual size of a 'size_t' parameter is.
- B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
- const DataLayout &DL = Malloc->getModule()->getDataLayout();
- IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
- Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
- Malloc->getArgOperand(0), Malloc->getAttributes(),
- B, TLI);
- if (!Calloc)
- return nullptr;
- Malloc->replaceAllUsesWith(Calloc);
- Malloc->eraseFromParent();
- return Calloc;
- }
- Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
- if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
- return Calloc;
- // memset(p, v, n) -> llvm.memset(p, v, n, 1)
- Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
- B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
- //===----------------------------------------------------------------------===//
- // Math Library Optimizations
- //===----------------------------------------------------------------------===//
- /// Return a variant of Val with float type.
- /// Currently this works in two cases: If Val is an FPExtension of a float
- /// value to something bigger, simply return the operand.
- /// If Val is a ConstantFP but can be converted to a float ConstantFP without
- /// loss of precision do so.
- static Value *valueHasFloatPrecision(Value *Val) {
- if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
- Value *Op = Cast->getOperand(0);
- if (Op->getType()->isFloatTy())
- return Op;
- }
- if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
- APFloat F = Const->getValueAPF();
- bool losesInfo;
- (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
- &losesInfo);
- if (!losesInfo)
- return ConstantFP::get(Const->getContext(), F);
- }
- return nullptr;
- }
- /// Shrink double -> float for unary functions like 'floor'.
- static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
- bool CheckRetType) {
- Function *Callee = CI->getCalledFunction();
- // We know this libcall has a valid prototype, but we don't know which.
- if (!CI->getType()->isDoubleTy())
- return nullptr;
- if (CheckRetType) {
- // Check if all the uses for function like 'sin' are converted to float.
- for (User *U : CI->users()) {
- FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
- if (!Cast || !Cast->getType()->isFloatTy())
- return nullptr;
- }
- }
- // If this is something like 'floor((double)floatval)', convert to floorf.
- Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
- if (V == nullptr)
- return nullptr;
-
- // Propagate fast-math flags from the existing call to the new call.
- IRBuilder<>::FastMathFlagGuard Guard(B);
- B.setFastMathFlags(CI->getFastMathFlags());
- // floor((double)floatval) -> (double)floorf(floatval)
- if (Callee->isIntrinsic()) {
- Module *M = CI->getModule();
- Intrinsic::ID IID = Callee->getIntrinsicID();
- Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
- V = B.CreateCall(F, V);
- } else {
- // The call is a library call rather than an intrinsic.
- V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
- }
- return B.CreateFPExt(V, B.getDoubleTy());
- }
- // Replace a libcall \p CI with a call to intrinsic \p IID
- static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
- // Propagate fast-math flags from the existing call to the new call.
- IRBuilder<>::FastMathFlagGuard Guard(B);
- B.setFastMathFlags(CI->getFastMathFlags());
- Module *M = CI->getModule();
- Value *V = CI->getArgOperand(0);
- Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
- CallInst *NewCall = B.CreateCall(F, V);
- NewCall->takeName(CI);
- return NewCall;
- }
- /// Shrink double -> float for binary functions like 'fmin/fmax'.
- static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- // We know this libcall has a valid prototype, but we don't know which.
- if (!CI->getType()->isDoubleTy())
- return nullptr;
- // If this is something like 'fmin((double)floatval1, (double)floatval2)',
- // or fmin(1.0, (double)floatval), then we convert it to fminf.
- Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
- if (V1 == nullptr)
- return nullptr;
- Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
- if (V2 == nullptr)
- return nullptr;
- // Propagate fast-math flags from the existing call to the new call.
- IRBuilder<>::FastMathFlagGuard Guard(B);
- B.setFastMathFlags(CI->getFastMathFlags());
- // fmin((double)floatval1, (double)floatval2)
- // -> (double)fminf(floatval1, floatval2)
- // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
- Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
- Callee->getAttributes());
- return B.CreateFPExt(V, B.getDoubleTy());
- }
- Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- Value *Ret = nullptr;
- StringRef Name = Callee->getName();
- if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
- Ret = optimizeUnaryDoubleFP(CI, B, true);
- // cos(-x) -> cos(x)
- Value *Op1 = CI->getArgOperand(0);
- if (BinaryOperator::isFNeg(Op1)) {
- BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
- return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
- }
- return Ret;
- }
- static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
- // Multiplications calculated using Addition Chains.
- // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
- assert(Exp != 0 && "Incorrect exponent 0 not handled");
- if (InnerChain[Exp])
- return InnerChain[Exp];
- static const unsigned AddChain[33][2] = {
- {0, 0}, // Unused.
- {0, 0}, // Unused (base case = pow1).
- {1, 1}, // Unused (pre-computed).
- {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4},
- {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7},
- {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10},
- {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
- {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
- };
- InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
- getPow(InnerChain, AddChain[Exp][1], B));
- return InnerChain[Exp];
- }
- Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- Value *Ret = nullptr;
- StringRef Name = Callee->getName();
- if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
- Ret = optimizeUnaryDoubleFP(CI, B, true);
- Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
- // pow(1.0, x) -> 1.0
- if (match(Op1, m_SpecificFP(1.0)))
- return Op1;
- // pow(2.0, x) -> llvm.exp2(x)
- if (match(Op1, m_SpecificFP(2.0))) {
- Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2,
- CI->getType());
- return B.CreateCall(Exp2, Op2, "exp2");
- }
- // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will
- // be one.
- if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
- // pow(10.0, x) -> exp10(x)
- if (Op1C->isExactlyValue(10.0) &&
- hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f,
- LibFunc_exp10l))
- return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B,
- Callee->getAttributes());
- }
- // pow(exp(x), y) -> exp(x * y)
- // pow(exp2(x), y) -> exp2(x * y)
- // We enable these only with fast-math. Besides rounding differences, the
- // transformation changes overflow and underflow behavior quite dramatically.
- // Example: x = 1000, y = 0.001.
- // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
- auto *OpC = dyn_cast<CallInst>(Op1);
- if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) {
- LibFunc Func;
- Function *OpCCallee = OpC->getCalledFunction();
- if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
- TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) {
- IRBuilder<>::FastMathFlagGuard Guard(B);
- B.setFastMathFlags(CI->getFastMathFlags());
- Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul");
- return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B,
- OpCCallee->getAttributes());
- }
- }
- ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
- if (!Op2C)
- return Ret;
- if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
- return ConstantFP::get(CI->getType(), 1.0);
- if (Op2C->isExactlyValue(-0.5) &&
- hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf,
- LibFunc_sqrtl)) {
- // If -ffast-math:
- // pow(x, -0.5) -> 1.0 / sqrt(x)
- if (CI->hasUnsafeAlgebra()) {
- IRBuilder<>::FastMathFlagGuard Guard(B);
- B.setFastMathFlags(CI->getFastMathFlags());
- // TODO: If the pow call is an intrinsic, we should lower to the sqrt
- // intrinsic, so we match errno semantics. We also should check that the
- // target can in fact lower the sqrt intrinsic -- we currently have no way
- // to ask this question other than asking whether the target has a sqrt
- // libcall, which is a sufficient but not necessary condition.
- Value *Sqrt = emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B,
- Callee->getAttributes());
- return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Sqrt, "sqrtrecip");
- }
- }
- if (Op2C->isExactlyValue(0.5) &&
- hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf,
- LibFunc_sqrtl)) {
- // In -ffast-math, pow(x, 0.5) -> sqrt(x).
- if (CI->hasUnsafeAlgebra()) {
- IRBuilder<>::FastMathFlagGuard Guard(B);
- B.setFastMathFlags(CI->getFastMathFlags());
- // TODO: As above, we should lower to the sqrt intrinsic if the pow is an
- // intrinsic, to match errno semantics.
- return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B,
- Callee->getAttributes());
- }
- // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
- // This is faster than calling pow, and still handles negative zero
- // and negative infinity correctly.
- // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
- Value *Inf = ConstantFP::getInfinity(CI->getType());
- Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
- // TODO: As above, we should lower to the sqrt intrinsic if the pow is an
- // intrinsic, to match errno semantics.
- Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
- Module *M = Callee->getParent();
- Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs,
- CI->getType());
- Value *FAbs = B.CreateCall(FabsF, Sqrt);
- Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
- Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
- return Sel;
- }
- if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
- return Op1;
- if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
- return B.CreateFMul(Op1, Op1, "pow2");
- if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
- return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
- // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
- if (CI->hasUnsafeAlgebra()) {
- APFloat V = abs(Op2C->getValueAPF());
- // We limit to a max of 7 fmul(s). Thus max exponent is 32.
- // This transformation applies to integer exponents only.
- if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
- !V.isInteger())
- return nullptr;
- // Propagate fast math flags.
- IRBuilder<>::FastMathFlagGuard Guard(B);
- B.setFastMathFlags(CI->getFastMathFlags());
- // We will memoize intermediate products of the Addition Chain.
- Value *InnerChain[33] = {nullptr};
- InnerChain[1] = Op1;
- InnerChain[2] = B.CreateFMul(Op1, Op1);
- // We cannot readily convert a non-double type (like float) to a double.
- // So we first convert V to something which could be converted to double.
- bool ignored;
- V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &ignored);
-
- Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
- // For negative exponents simply compute the reciprocal.
- if (Op2C->isNegative())
- FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
- return FMul;
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- Value *Ret = nullptr;
- StringRef Name = Callee->getName();
- if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
- Ret = optimizeUnaryDoubleFP(CI, B, true);
- Value *Op = CI->getArgOperand(0);
- // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
- // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
- LibFunc LdExp = LibFunc_ldexpl;
- if (Op->getType()->isFloatTy())
- LdExp = LibFunc_ldexpf;
- else if (Op->getType()->isDoubleTy())
- LdExp = LibFunc_ldexp;
- if (TLI->has(LdExp)) {
- Value *LdExpArg = nullptr;
- if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
- if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
- LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
- } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
- if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
- LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
- }
- if (LdExpArg) {
- Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
- if (!Op->getType()->isFloatTy())
- One = ConstantExpr::getFPExtend(One, Op->getType());
- Module *M = CI->getModule();
- Value *NewCallee =
- M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
- Op->getType(), B.getInt32Ty());
- CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
- if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
- CI->setCallingConv(F->getCallingConv());
- return CI;
- }
- }
- return Ret;
- }
- Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- // If we can shrink the call to a float function rather than a double
- // function, do that first.
- StringRef Name = Callee->getName();
- if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
- if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
- return Ret;
- IRBuilder<>::FastMathFlagGuard Guard(B);
- FastMathFlags FMF;
- if (CI->hasUnsafeAlgebra()) {
- // Unsafe algebra sets all fast-math-flags to true.
- FMF.setUnsafeAlgebra();
- } else {
- // At a minimum, no-nans-fp-math must be true.
- if (!CI->hasNoNaNs())
- return nullptr;
- // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
- // "Ideally, fmax would be sensitive to the sign of zero, for example
- // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
- // might be impractical."
- FMF.setNoSignedZeros();
- FMF.setNoNaNs();
- }
- B.setFastMathFlags(FMF);
- // We have a relaxed floating-point environment. We can ignore NaN-handling
- // and transform to a compare and select. We do not have to consider errno or
- // exceptions, because fmin/fmax do not have those.
- Value *Op0 = CI->getArgOperand(0);
- Value *Op1 = CI->getArgOperand(1);
- Value *Cmp = Callee->getName().startswith("fmin") ?
- B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
- return B.CreateSelect(Cmp, Op0, Op1);
- }
- Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- Value *Ret = nullptr;
- StringRef Name = Callee->getName();
- if (UnsafeFPShrink && hasFloatVersion(Name))
- Ret = optimizeUnaryDoubleFP(CI, B, true);
- if (!CI->hasUnsafeAlgebra())
- return Ret;
- Value *Op1 = CI->getArgOperand(0);
- auto *OpC = dyn_cast<CallInst>(Op1);
- // The earlier call must also be unsafe in order to do these transforms.
- if (!OpC || !OpC->hasUnsafeAlgebra())
- return Ret;
- // log(pow(x,y)) -> y*log(x)
- // This is only applicable to log, log2, log10.
- if (Name != "log" && Name != "log2" && Name != "log10")
- return Ret;
- IRBuilder<>::FastMathFlagGuard Guard(B);
- FastMathFlags FMF;
- FMF.setUnsafeAlgebra();
- B.setFastMathFlags(FMF);
- LibFunc Func;
- Function *F = OpC->getCalledFunction();
- if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
- Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
- return B.CreateFMul(OpC->getArgOperand(1),
- emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
- Callee->getAttributes()), "mul");
- // log(exp2(y)) -> y*log(2)
- if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
- TLI->has(Func) && Func == LibFunc_exp2)
- return B.CreateFMul(
- OpC->getArgOperand(0),
- emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
- Callee->getName(), B, Callee->getAttributes()),
- "logmul");
- return Ret;
- }
- Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- Value *Ret = nullptr;
- // TODO: Once we have a way (other than checking for the existince of the
- // libcall) to tell whether our target can lower @llvm.sqrt, relax the
- // condition below.
- if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
- Callee->getIntrinsicID() == Intrinsic::sqrt))
- Ret = optimizeUnaryDoubleFP(CI, B, true);
- if (!CI->hasUnsafeAlgebra())
- return Ret;
- Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
- if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
- return Ret;
- // We're looking for a repeated factor in a multiplication tree,
- // so we can do this fold: sqrt(x * x) -> fabs(x);
- // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
- Value *Op0 = I->getOperand(0);
- Value *Op1 = I->getOperand(1);
- Value *RepeatOp = nullptr;
- Value *OtherOp = nullptr;
- if (Op0 == Op1) {
- // Simple match: the operands of the multiply are identical.
- RepeatOp = Op0;
- } else {
- // Look for a more complicated pattern: one of the operands is itself
- // a multiply, so search for a common factor in that multiply.
- // Note: We don't bother looking any deeper than this first level or for
- // variations of this pattern because instcombine's visitFMUL and/or the
- // reassociation pass should give us this form.
- Value *OtherMul0, *OtherMul1;
- if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
- // Pattern: sqrt((x * y) * z)
- if (OtherMul0 == OtherMul1 &&
- cast<Instruction>(Op0)->hasUnsafeAlgebra()) {
- // Matched: sqrt((x * x) * z)
- RepeatOp = OtherMul0;
- OtherOp = Op1;
- }
- }
- }
- if (!RepeatOp)
- return Ret;
- // Fast math flags for any created instructions should match the sqrt
- // and multiply.
- IRBuilder<>::FastMathFlagGuard Guard(B);
- B.setFastMathFlags(I->getFastMathFlags());
- // If we found a repeated factor, hoist it out of the square root and
- // replace it with the fabs of that factor.
- Module *M = Callee->getParent();
- Type *ArgType = I->getType();
- Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
- Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
- if (OtherOp) {
- // If we found a non-repeated factor, we still need to get its square
- // root. We then multiply that by the value that was simplified out
- // of the square root calculation.
- Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
- Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
- return B.CreateFMul(FabsCall, SqrtCall);
- }
- return FabsCall;
- }
- // TODO: Generalize to handle any trig function and its inverse.
- Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- Value *Ret = nullptr;
- StringRef Name = Callee->getName();
- if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
- Ret = optimizeUnaryDoubleFP(CI, B, true);
- Value *Op1 = CI->getArgOperand(0);
- auto *OpC = dyn_cast<CallInst>(Op1);
- if (!OpC)
- return Ret;
- // Both calls must allow unsafe optimizations in order to remove them.
- if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra())
- return Ret;
- // tan(atan(x)) -> x
- // tanf(atanf(x)) -> x
- // tanl(atanl(x)) -> x
- LibFunc Func;
- Function *F = OpC->getCalledFunction();
- if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
- ((Func == LibFunc_atan && Callee->getName() == "tan") ||
- (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
- (Func == LibFunc_atanl && Callee->getName() == "tanl")))
- Ret = OpC->getArgOperand(0);
- return Ret;
- }
- static bool isTrigLibCall(CallInst *CI) {
- // We can only hope to do anything useful if we can ignore things like errno
- // and floating-point exceptions.
- // We already checked the prototype.
- return CI->hasFnAttr(Attribute::NoUnwind) &&
- CI->hasFnAttr(Attribute::ReadNone);
- }
- static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
- bool UseFloat, Value *&Sin, Value *&Cos,
- Value *&SinCos) {
- Type *ArgTy = Arg->getType();
- Type *ResTy;
- StringRef Name;
- Triple T(OrigCallee->getParent()->getTargetTriple());
- if (UseFloat) {
- Name = "__sincospif_stret";
- assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
- // x86_64 can't use {float, float} since that would be returned in both
- // xmm0 and xmm1, which isn't what a real struct would do.
- ResTy = T.getArch() == Triple::x86_64
- ? static_cast<Type *>(VectorType::get(ArgTy, 2))
- : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr));
- } else {
- Name = "__sincospi_stret";
- ResTy = StructType::get(ArgTy, ArgTy, nullptr);
- }
- Module *M = OrigCallee->getParent();
- Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
- ResTy, ArgTy);
- if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
- // If the argument is an instruction, it must dominate all uses so put our
- // sincos call there.
- B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
- } else {
- // Otherwise (e.g. for a constant) the beginning of the function is as
- // good a place as any.
- BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
- B.SetInsertPoint(&EntryBB, EntryBB.begin());
- }
- SinCos = B.CreateCall(Callee, Arg, "sincospi");
- if (SinCos->getType()->isStructTy()) {
- Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
- Cos = B.CreateExtractValue(SinCos, 1, "cospi");
- } else {
- Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
- "sinpi");
- Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
- "cospi");
- }
- }
- Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
- // Make sure the prototype is as expected, otherwise the rest of the
- // function is probably invalid and likely to abort.
- if (!isTrigLibCall(CI))
- return nullptr;
- Value *Arg = CI->getArgOperand(0);
- SmallVector<CallInst *, 1> SinCalls;
- SmallVector<CallInst *, 1> CosCalls;
- SmallVector<CallInst *, 1> SinCosCalls;
- bool IsFloat = Arg->getType()->isFloatTy();
- // Look for all compatible sinpi, cospi and sincospi calls with the same
- // argument. If there are enough (in some sense) we can make the
- // substitution.
- Function *F = CI->getFunction();
- for (User *U : Arg->users())
- classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
- // It's only worthwhile if both sinpi and cospi are actually used.
- if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
- return nullptr;
- Value *Sin, *Cos, *SinCos;
- insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
- auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
- Value *Res) {
- for (CallInst *C : Calls)
- replaceAllUsesWith(C, Res);
- };
- replaceTrigInsts(SinCalls, Sin);
- replaceTrigInsts(CosCalls, Cos);
- replaceTrigInsts(SinCosCalls, SinCos);
- return nullptr;
- }
- void LibCallSimplifier::classifyArgUse(
- Value *Val, Function *F, bool IsFloat,
- SmallVectorImpl<CallInst *> &SinCalls,
- SmallVectorImpl<CallInst *> &CosCalls,
- SmallVectorImpl<CallInst *> &SinCosCalls) {
- CallInst *CI = dyn_cast<CallInst>(Val);
- if (!CI)
- return;
- // Don't consider calls in other functions.
- if (CI->getFunction() != F)
- return;
- Function *Callee = CI->getCalledFunction();
- LibFunc Func;
- if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
- !isTrigLibCall(CI))
- return;
- if (IsFloat) {
- if (Func == LibFunc_sinpif)
- SinCalls.push_back(CI);
- else if (Func == LibFunc_cospif)
- CosCalls.push_back(CI);
- else if (Func == LibFunc_sincospif_stret)
- SinCosCalls.push_back(CI);
- } else {
- if (Func == LibFunc_sinpi)
- SinCalls.push_back(CI);
- else if (Func == LibFunc_cospi)
- CosCalls.push_back(CI);
- else if (Func == LibFunc_sincospi_stret)
- SinCosCalls.push_back(CI);
- }
- }
- //===----------------------------------------------------------------------===//
- // Integer Library Call Optimizations
- //===----------------------------------------------------------------------===//
- Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
- // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
- Value *Op = CI->getArgOperand(0);
- Type *ArgType = Op->getType();
- Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
- Intrinsic::cttz, ArgType);
- Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
- V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
- V = B.CreateIntCast(V, B.getInt32Ty(), false);
- Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
- return B.CreateSelect(Cond, V, B.getInt32(0));
- }
- Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
- // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
- Value *Op = CI->getArgOperand(0);
- Type *ArgType = Op->getType();
- Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
- Intrinsic::ctlz, ArgType);
- Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
- V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
- V);
- return B.CreateIntCast(V, CI->getType(), false);
- }
- Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
- // abs(x) -> x >s -1 ? x : -x
- Value *Op = CI->getArgOperand(0);
- Value *Pos =
- B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
- Value *Neg = B.CreateNeg(Op, "neg");
- return B.CreateSelect(Pos, Op, Neg);
- }
- Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
- // isdigit(c) -> (c-'0') <u 10
- Value *Op = CI->getArgOperand(0);
- Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
- Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
- return B.CreateZExt(Op, CI->getType());
- }
- Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
- // isascii(c) -> c <u 128
- Value *Op = CI->getArgOperand(0);
- Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
- return B.CreateZExt(Op, CI->getType());
- }
- Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
- // toascii(c) -> c & 0x7f
- return B.CreateAnd(CI->getArgOperand(0),
- ConstantInt::get(CI->getType(), 0x7F));
- }
- //===----------------------------------------------------------------------===//
- // Formatting and IO Library Call Optimizations
- //===----------------------------------------------------------------------===//
- static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
- Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
- int StreamArg) {
- Function *Callee = CI->getCalledFunction();
- // Error reporting calls should be cold, mark them as such.
- // This applies even to non-builtin calls: it is only a hint and applies to
- // functions that the frontend might not understand as builtins.
- // This heuristic was suggested in:
- // Improving Static Branch Prediction in a Compiler
- // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
- // Proceedings of PACT'98, Oct. 1998, IEEE
- if (!CI->hasFnAttr(Attribute::Cold) &&
- isReportingError(Callee, CI, StreamArg)) {
- CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
- }
- return nullptr;
- }
- static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
- if (!ColdErrorCalls || !Callee || !Callee->isDeclaration())
- return false;
- if (StreamArg < 0)
- return true;
- // These functions might be considered cold, but only if their stream
- // argument is stderr.
- if (StreamArg >= (int)CI->getNumArgOperands())
- return false;
- LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
- if (!LI)
- return false;
- GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
- if (!GV || !GV->isDeclaration())
- return false;
- return GV->getName() == "stderr";
- }
- Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
- // Check for a fixed format string.
- StringRef FormatStr;
- if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
- return nullptr;
- // Empty format string -> noop.
- if (FormatStr.empty()) // Tolerate printf's declared void.
- return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
- // Do not do any of the following transformations if the printf return value
- // is used, in general the printf return value is not compatible with either
- // putchar() or puts().
- if (!CI->use_empty())
- return nullptr;
- // printf("x") -> putchar('x'), even for "%" and "%%".
- if (FormatStr.size() == 1 || FormatStr == "%%")
- return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
- // printf("%s", "a") --> putchar('a')
- if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
- StringRef ChrStr;
- if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
- return nullptr;
- if (ChrStr.size() != 1)
- return nullptr;
- return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
- }
- // printf("foo\n") --> puts("foo")
- if (FormatStr[FormatStr.size() - 1] == '\n' &&
- FormatStr.find('%') == StringRef::npos) { // No format characters.
- // Create a string literal with no \n on it. We expect the constant merge
- // pass to be run after this pass, to merge duplicate strings.
- FormatStr = FormatStr.drop_back();
- Value *GV = B.CreateGlobalString(FormatStr, "str");
- return emitPutS(GV, B, TLI);
- }
- // Optimize specific format strings.
- // printf("%c", chr) --> putchar(chr)
- if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
- CI->getArgOperand(1)->getType()->isIntegerTy())
- return emitPutChar(CI->getArgOperand(1), B, TLI);
- // printf("%s\n", str) --> puts(str)
- if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
- CI->getArgOperand(1)->getType()->isPointerTy())
- return emitPutS(CI->getArgOperand(1), B, TLI);
- return nullptr;
- }
- Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- if (Value *V = optimizePrintFString(CI, B)) {
- return V;
- }
- // printf(format, ...) -> iprintf(format, ...) if no floating point
- // arguments.
- if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- Constant *IPrintFFn =
- M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
- CallInst *New = cast<CallInst>(CI->clone());
- New->setCalledFunction(IPrintFFn);
- B.Insert(New);
- return New;
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
- // Check for a fixed format string.
- StringRef FormatStr;
- if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
- return nullptr;
- // If we just have a format string (nothing else crazy) transform it.
- if (CI->getNumArgOperands() == 2) {
- // Make sure there's no % in the constant array. We could try to handle
- // %% -> % in the future if we cared.
- for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
- if (FormatStr[i] == '%')
- return nullptr; // we found a format specifier, bail out.
- // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
- B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- ConstantInt::get(DL.getIntPtrType(CI->getContext()),
- FormatStr.size() + 1),
- 1); // Copy the null byte.
- return ConstantInt::get(CI->getType(), FormatStr.size());
- }
- // The remaining optimizations require the format string to be "%s" or "%c"
- // and have an extra operand.
- if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
- CI->getNumArgOperands() < 3)
- return nullptr;
- // Decode the second character of the format string.
- if (FormatStr[1] == 'c') {
- // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
- if (!CI->getArgOperand(2)->getType()->isIntegerTy())
- return nullptr;
- Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
- Value *Ptr = castToCStr(CI->getArgOperand(0), B);
- B.CreateStore(V, Ptr);
- Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
- B.CreateStore(B.getInt8(0), Ptr);
- return ConstantInt::get(CI->getType(), 1);
- }
- if (FormatStr[1] == 's') {
- // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
- if (!CI->getArgOperand(2)->getType()->isPointerTy())
- return nullptr;
- Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
- if (!Len)
- return nullptr;
- Value *IncLen =
- B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
- B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
- // The sprintf result is the unincremented number of bytes in the string.
- return B.CreateIntCast(Len, CI->getType(), false);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- if (Value *V = optimizeSPrintFString(CI, B)) {
- return V;
- }
- // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
- // point arguments.
- if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- Constant *SIPrintFFn =
- M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
- CallInst *New = cast<CallInst>(CI->clone());
- New->setCalledFunction(SIPrintFFn);
- B.Insert(New);
- return New;
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
- optimizeErrorReporting(CI, B, 0);
- // All the optimizations depend on the format string.
- StringRef FormatStr;
- if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
- return nullptr;
- // Do not do any of the following transformations if the fprintf return
- // value is used, in general the fprintf return value is not compatible
- // with fwrite(), fputc() or fputs().
- if (!CI->use_empty())
- return nullptr;
- // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
- if (CI->getNumArgOperands() == 2) {
- for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
- if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
- return nullptr; // We found a format specifier.
- return emitFWrite(
- CI->getArgOperand(1),
- ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
- CI->getArgOperand(0), B, DL, TLI);
- }
- // The remaining optimizations require the format string to be "%s" or "%c"
- // and have an extra operand.
- if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
- CI->getNumArgOperands() < 3)
- return nullptr;
- // Decode the second character of the format string.
- if (FormatStr[1] == 'c') {
- // fprintf(F, "%c", chr) --> fputc(chr, F)
- if (!CI->getArgOperand(2)->getType()->isIntegerTy())
- return nullptr;
- return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
- }
- if (FormatStr[1] == 's') {
- // fprintf(F, "%s", str) --> fputs(str, F)
- if (!CI->getArgOperand(2)->getType()->isPointerTy())
- return nullptr;
- return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- if (Value *V = optimizeFPrintFString(CI, B)) {
- return V;
- }
- // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
- // floating point arguments.
- if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- Constant *FIPrintFFn =
- M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
- CallInst *New = cast<CallInst>(CI->clone());
- New->setCalledFunction(FIPrintFFn);
- B.Insert(New);
- return New;
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
- optimizeErrorReporting(CI, B, 3);
- // Get the element size and count.
- ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
- if (!SizeC || !CountC)
- return nullptr;
- uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
- // If this is writing zero records, remove the call (it's a noop).
- if (Bytes == 0)
- return ConstantInt::get(CI->getType(), 0);
- // If this is writing one byte, turn it into fputc.
- // This optimisation is only valid, if the return value is unused.
- if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
- Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
- Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
- return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
- optimizeErrorReporting(CI, B, 1);
- // Don't rewrite fputs to fwrite when optimising for size because fwrite
- // requires more arguments and thus extra MOVs are required.
- if (CI->getParent()->getParent()->optForSize())
- return nullptr;
- // We can't optimize if return value is used.
- if (!CI->use_empty())
- return nullptr;
- // fputs(s,F) --> fwrite(s,1,strlen(s),F)
- uint64_t Len = GetStringLength(CI->getArgOperand(0));
- if (!Len)
- return nullptr;
- // Known to have no uses (see above).
- return emitFWrite(
- CI->getArgOperand(0),
- ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
- CI->getArgOperand(1), B, DL, TLI);
- }
- Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
- // Check for a constant string.
- StringRef Str;
- if (!getConstantStringInfo(CI->getArgOperand(0), Str))
- return nullptr;
- if (Str.empty() && CI->use_empty()) {
- // puts("") -> putchar('\n')
- Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
- if (CI->use_empty() || !Res)
- return Res;
- return B.CreateIntCast(Res, CI->getType(), true);
- }
- return nullptr;
- }
- bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
- LibFunc Func;
- SmallString<20> FloatFuncName = FuncName;
- FloatFuncName += 'f';
- if (TLI->getLibFunc(FloatFuncName, Func))
- return TLI->has(Func);
- return false;
- }
- Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
- IRBuilder<> &Builder) {
- LibFunc Func;
- Function *Callee = CI->getCalledFunction();
- // Check for string/memory library functions.
- if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
- // Make sure we never change the calling convention.
- assert((ignoreCallingConv(Func) ||
- isCallingConvCCompatible(CI)) &&
- "Optimizing string/memory libcall would change the calling convention");
- switch (Func) {
- case LibFunc_strcat:
- return optimizeStrCat(CI, Builder);
- case LibFunc_strncat:
- return optimizeStrNCat(CI, Builder);
- case LibFunc_strchr:
- return optimizeStrChr(CI, Builder);
- case LibFunc_strrchr:
- return optimizeStrRChr(CI, Builder);
- case LibFunc_strcmp:
- return optimizeStrCmp(CI, Builder);
- case LibFunc_strncmp:
- return optimizeStrNCmp(CI, Builder);
- case LibFunc_strcpy:
- return optimizeStrCpy(CI, Builder);
- case LibFunc_stpcpy:
- return optimizeStpCpy(CI, Builder);
- case LibFunc_strncpy:
- return optimizeStrNCpy(CI, Builder);
- case LibFunc_strlen:
- return optimizeStrLen(CI, Builder);
- case LibFunc_strpbrk:
- return optimizeStrPBrk(CI, Builder);
- case LibFunc_strtol:
- case LibFunc_strtod:
- case LibFunc_strtof:
- case LibFunc_strtoul:
- case LibFunc_strtoll:
- case LibFunc_strtold:
- case LibFunc_strtoull:
- return optimizeStrTo(CI, Builder);
- case LibFunc_strspn:
- return optimizeStrSpn(CI, Builder);
- case LibFunc_strcspn:
- return optimizeStrCSpn(CI, Builder);
- case LibFunc_strstr:
- return optimizeStrStr(CI, Builder);
- case LibFunc_memchr:
- return optimizeMemChr(CI, Builder);
- case LibFunc_memcmp:
- return optimizeMemCmp(CI, Builder);
- case LibFunc_memcpy:
- return optimizeMemCpy(CI, Builder);
- case LibFunc_memmove:
- return optimizeMemMove(CI, Builder);
- case LibFunc_memset:
- return optimizeMemSet(CI, Builder);
- default:
- break;
- }
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
- if (CI->isNoBuiltin())
- return nullptr;
- LibFunc Func;
- Function *Callee = CI->getCalledFunction();
- StringRef FuncName = Callee->getName();
- SmallVector<OperandBundleDef, 2> OpBundles;
- CI->getOperandBundlesAsDefs(OpBundles);
- IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
- bool isCallingConvC = isCallingConvCCompatible(CI);
- // Command-line parameter overrides instruction attribute.
- if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
- UnsafeFPShrink = EnableUnsafeFPShrink;
- else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra())
- UnsafeFPShrink = true;
- // First, check for intrinsics.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
- if (!isCallingConvC)
- return nullptr;
- switch (II->getIntrinsicID()) {
- case Intrinsic::pow:
- return optimizePow(CI, Builder);
- case Intrinsic::exp2:
- return optimizeExp2(CI, Builder);
- case Intrinsic::log:
- return optimizeLog(CI, Builder);
- case Intrinsic::sqrt:
- return optimizeSqrt(CI, Builder);
- // TODO: Use foldMallocMemset() with memset intrinsic.
- default:
- return nullptr;
- }
- }
- // Also try to simplify calls to fortified library functions.
- if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
- // Try to further simplify the result.
- CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
- if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
- // Use an IR Builder from SimplifiedCI if available instead of CI
- // to guarantee we reach all uses we might replace later on.
- IRBuilder<> TmpBuilder(SimplifiedCI);
- if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
- // If we were able to further simplify, remove the now redundant call.
- SimplifiedCI->replaceAllUsesWith(V);
- SimplifiedCI->eraseFromParent();
- return V;
- }
- }
- return SimplifiedFortifiedCI;
- }
- // Then check for known library functions.
- if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
- // We never change the calling convention.
- if (!ignoreCallingConv(Func) && !isCallingConvC)
- return nullptr;
- if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
- return V;
- switch (Func) {
- case LibFunc_cosf:
- case LibFunc_cos:
- case LibFunc_cosl:
- return optimizeCos(CI, Builder);
- case LibFunc_sinpif:
- case LibFunc_sinpi:
- case LibFunc_cospif:
- case LibFunc_cospi:
- return optimizeSinCosPi(CI, Builder);
- case LibFunc_powf:
- case LibFunc_pow:
- case LibFunc_powl:
- return optimizePow(CI, Builder);
- case LibFunc_exp2l:
- case LibFunc_exp2:
- case LibFunc_exp2f:
- return optimizeExp2(CI, Builder);
- case LibFunc_fabsf:
- case LibFunc_fabs:
- case LibFunc_fabsl:
- return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
- case LibFunc_sqrtf:
- case LibFunc_sqrt:
- case LibFunc_sqrtl:
- return optimizeSqrt(CI, Builder);
- case LibFunc_ffs:
- case LibFunc_ffsl:
- case LibFunc_ffsll:
- return optimizeFFS(CI, Builder);
- case LibFunc_fls:
- case LibFunc_flsl:
- case LibFunc_flsll:
- return optimizeFls(CI, Builder);
- case LibFunc_abs:
- case LibFunc_labs:
- case LibFunc_llabs:
- return optimizeAbs(CI, Builder);
- case LibFunc_isdigit:
- return optimizeIsDigit(CI, Builder);
- case LibFunc_isascii:
- return optimizeIsAscii(CI, Builder);
- case LibFunc_toascii:
- return optimizeToAscii(CI, Builder);
- case LibFunc_printf:
- return optimizePrintF(CI, Builder);
- case LibFunc_sprintf:
- return optimizeSPrintF(CI, Builder);
- case LibFunc_fprintf:
- return optimizeFPrintF(CI, Builder);
- case LibFunc_fwrite:
- return optimizeFWrite(CI, Builder);
- case LibFunc_fputs:
- return optimizeFPuts(CI, Builder);
- case LibFunc_log:
- case LibFunc_log10:
- case LibFunc_log1p:
- case LibFunc_log2:
- case LibFunc_logb:
- return optimizeLog(CI, Builder);
- case LibFunc_puts:
- return optimizePuts(CI, Builder);
- case LibFunc_tan:
- case LibFunc_tanf:
- case LibFunc_tanl:
- return optimizeTan(CI, Builder);
- case LibFunc_perror:
- return optimizeErrorReporting(CI, Builder);
- case LibFunc_vfprintf:
- case LibFunc_fiprintf:
- return optimizeErrorReporting(CI, Builder, 0);
- case LibFunc_fputc:
- return optimizeErrorReporting(CI, Builder, 1);
- case LibFunc_ceil:
- return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
- case LibFunc_floor:
- return replaceUnaryCall(CI, Builder, Intrinsic::floor);
- case LibFunc_round:
- return replaceUnaryCall(CI, Builder, Intrinsic::round);
- case LibFunc_nearbyint:
- return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
- case LibFunc_rint:
- return replaceUnaryCall(CI, Builder, Intrinsic::rint);
- case LibFunc_trunc:
- return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
- case LibFunc_acos:
- case LibFunc_acosh:
- case LibFunc_asin:
- case LibFunc_asinh:
- case LibFunc_atan:
- case LibFunc_atanh:
- case LibFunc_cbrt:
- case LibFunc_cosh:
- case LibFunc_exp:
- case LibFunc_exp10:
- case LibFunc_expm1:
- case LibFunc_sin:
- case LibFunc_sinh:
- case LibFunc_tanh:
- if (UnsafeFPShrink && hasFloatVersion(FuncName))
- return optimizeUnaryDoubleFP(CI, Builder, true);
- return nullptr;
- case LibFunc_copysign:
- if (hasFloatVersion(FuncName))
- return optimizeBinaryDoubleFP(CI, Builder);
- return nullptr;
- case LibFunc_fminf:
- case LibFunc_fmin:
- case LibFunc_fminl:
- case LibFunc_fmaxf:
- case LibFunc_fmax:
- case LibFunc_fmaxl:
- return optimizeFMinFMax(CI, Builder);
- default:
- return nullptr;
- }
- }
- return nullptr;
- }
- LibCallSimplifier::LibCallSimplifier(
- const DataLayout &DL, const TargetLibraryInfo *TLI,
- function_ref<void(Instruction *, Value *)> Replacer)
- : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false),
- Replacer(Replacer) {}
- void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
- // Indirect through the replacer used in this instance.
- Replacer(I, With);
- }
- // TODO:
- // Additional cases that we need to add to this file:
- //
- // cbrt:
- // * cbrt(expN(X)) -> expN(x/3)
- // * cbrt(sqrt(x)) -> pow(x,1/6)
- // * cbrt(cbrt(x)) -> pow(x,1/9)
- //
- // exp, expf, expl:
- // * exp(log(x)) -> x
- //
- // log, logf, logl:
- // * log(exp(x)) -> x
- // * log(exp(y)) -> y*log(e)
- // * log(exp10(y)) -> y*log(10)
- // * log(sqrt(x)) -> 0.5*log(x)
- //
- // pow, powf, powl:
- // * pow(sqrt(x),y) -> pow(x,y*0.5)
- // * pow(pow(x,y),z)-> pow(x,y*z)
- //
- // signbit:
- // * signbit(cnst) -> cnst'
- // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
- //
- // sqrt, sqrtf, sqrtl:
- // * sqrt(expN(x)) -> expN(x*0.5)
- // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
- // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
- //
- //===----------------------------------------------------------------------===//
- // Fortified Library Call Optimizations
- //===----------------------------------------------------------------------===//
- bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
- unsigned ObjSizeOp,
- unsigned SizeOp,
- bool isString) {
- if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
- return true;
- if (ConstantInt *ObjSizeCI =
- dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
- if (ObjSizeCI->isAllOnesValue())
- return true;
- // If the object size wasn't -1 (unknown), bail out if we were asked to.
- if (OnlyLowerUnknownSize)
- return false;
- if (isString) {
- uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
- // If the length is 0 we don't know how long it is and so we can't
- // remove the check.
- if (Len == 0)
- return false;
- return ObjSizeCI->getZExtValue() >= Len;
- }
- if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
- return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
- }
- return false;
- }
- Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
- IRBuilder<> &B) {
- if (isFortifiedCallFoldable(CI, 3, 2, false)) {
- B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
- return nullptr;
- }
- Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
- IRBuilder<> &B) {
- if (isFortifiedCallFoldable(CI, 3, 2, false)) {
- B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
- return nullptr;
- }
- Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
- IRBuilder<> &B) {
- // TODO: Try foldMallocMemset() here.
- if (isFortifiedCallFoldable(CI, 3, 2, false)) {
- Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
- B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
- return nullptr;
- }
- Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
- IRBuilder<> &B,
- LibFunc Func) {
- Function *Callee = CI->getCalledFunction();
- StringRef Name = Callee->getName();
- const DataLayout &DL = CI->getModule()->getDataLayout();
- Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
- *ObjSize = CI->getArgOperand(2);
- // __stpcpy_chk(x,x,...) -> x+strlen(x)
- if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
- Value *StrLen = emitStrLen(Src, B, DL, TLI);
- return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
- }
- // If a) we don't have any length information, or b) we know this will
- // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
- // st[rp]cpy_chk call which may fail at runtime if the size is too long.
- // TODO: It might be nice to get a maximum length out of the possible
- // string lengths for varying.
- if (isFortifiedCallFoldable(CI, 2, 1, true))
- return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
- if (OnlyLowerUnknownSize)
- return nullptr;
- // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0)
- return nullptr;
- Type *SizeTTy = DL.getIntPtrType(CI->getContext());
- Value *LenV = ConstantInt::get(SizeTTy, Len);
- Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
- // If the function was an __stpcpy_chk, and we were able to fold it into
- // a __memcpy_chk, we still need to return the correct end pointer.
- if (Ret && Func == LibFunc_stpcpy_chk)
- return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
- return Ret;
- }
- Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
- IRBuilder<> &B,
- LibFunc Func) {
- Function *Callee = CI->getCalledFunction();
- StringRef Name = Callee->getName();
- if (isFortifiedCallFoldable(CI, 3, 2, false)) {
- Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
- return Ret;
- }
- return nullptr;
- }
- Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
- // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
- // Some clang users checked for _chk libcall availability using:
- // __has_builtin(__builtin___memcpy_chk)
- // When compiling with -fno-builtin, this is always true.
- // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
- // end up with fortified libcalls, which isn't acceptable in a freestanding
- // environment which only provides their non-fortified counterparts.
- //
- // Until we change clang and/or teach external users to check for availability
- // differently, disregard the "nobuiltin" attribute and TLI::has.
- //
- // PR23093.
- LibFunc Func;
- Function *Callee = CI->getCalledFunction();
- SmallVector<OperandBundleDef, 2> OpBundles;
- CI->getOperandBundlesAsDefs(OpBundles);
- IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
- bool isCallingConvC = isCallingConvCCompatible(CI);
- // First, check that this is a known library functions and that the prototype
- // is correct.
- if (!TLI->getLibFunc(*Callee, Func))
- return nullptr;
- // We never change the calling convention.
- if (!ignoreCallingConv(Func) && !isCallingConvC)
- return nullptr;
- switch (Func) {
- case LibFunc_memcpy_chk:
- return optimizeMemCpyChk(CI, Builder);
- case LibFunc_memmove_chk:
- return optimizeMemMoveChk(CI, Builder);
- case LibFunc_memset_chk:
- return optimizeMemSetChk(CI, Builder);
- case LibFunc_stpcpy_chk:
- case LibFunc_strcpy_chk:
- return optimizeStrpCpyChk(CI, Builder, Func);
- case LibFunc_stpncpy_chk:
- case LibFunc_strncpy_chk:
- return optimizeStrpNCpyChk(CI, Builder, Func);
- default:
- break;
- }
- return nullptr;
- }
- FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
- const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
- : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
|