123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251 |
- //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// Replaces repeated sequences of instructions with function calls.
- ///
- /// This works by placing every instruction from every basic block in a
- /// suffix tree, and repeatedly querying that tree for repeated sequences of
- /// instructions. If a sequence of instructions appears often, then it ought
- /// to be beneficial to pull out into a function.
- ///
- /// This was originally presented at the 2016 LLVM Developers' Meeting in the
- /// talk "Reducing Code Size Using Outlining". For a high-level overview of
- /// how this pass works, the talk is available on YouTube at
- ///
- /// https://www.youtube.com/watch?v=yorld-WSOeU
- ///
- /// The slides for the talk are available at
- ///
- /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
- ///
- /// The talk provides an overview of how the outliner finds candidates and
- /// ultimately outlines them. It describes how the main data structure for this
- /// pass, the suffix tree, is queried and purged for candidates. It also gives
- /// a simplified suffix tree construction algorithm for suffix trees based off
- /// of the algorithm actually used here, Ukkonen's algorithm.
- ///
- /// For the original RFC for this pass, please see
- ///
- /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
- ///
- /// For more information on the suffix tree data structure, please see
- /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
- ///
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineModuleInfo.h"
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/Support/Allocator.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Target/TargetRegisterInfo.h"
- #include "llvm/Target/TargetSubtargetInfo.h"
- #include <functional>
- #include <map>
- #include <sstream>
- #include <tuple>
- #include <vector>
- #define DEBUG_TYPE "machine-outliner"
- using namespace llvm;
- STATISTIC(NumOutlined, "Number of candidates outlined");
- STATISTIC(FunctionsCreated, "Number of functions created");
- namespace {
- /// \brief An individual sequence of instructions to be replaced with a call to
- /// an outlined function.
- struct Candidate {
- /// Set to false if the candidate overlapped with another candidate.
- bool InCandidateList = true;
- /// The start index of this \p Candidate.
- size_t StartIdx;
- /// The number of instructions in this \p Candidate.
- size_t Len;
- /// The index of this \p Candidate's \p OutlinedFunction in the list of
- /// \p OutlinedFunctions.
- size_t FunctionIdx;
- /// \brief The number of instructions that would be saved by outlining every
- /// candidate of this type.
- ///
- /// This is a fixed value which is not updated during the candidate pruning
- /// process. It is only used for deciding which candidate to keep if two
- /// candidates overlap. The true benefit is stored in the OutlinedFunction
- /// for some given candidate.
- unsigned Benefit = 0;
- Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx)
- : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {}
- Candidate() {}
- /// \brief Used to ensure that \p Candidates are outlined in an order that
- /// preserves the start and end indices of other \p Candidates.
- bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; }
- };
- /// \brief The information necessary to create an outlined function for some
- /// class of candidate.
- struct OutlinedFunction {
- /// The actual outlined function created.
- /// This is initialized after we go through and create the actual function.
- MachineFunction *MF = nullptr;
- /// A number assigned to this function which appears at the end of its name.
- size_t Name;
- /// The number of candidates for this OutlinedFunction.
- size_t OccurrenceCount = 0;
- /// \brief The sequence of integers corresponding to the instructions in this
- /// function.
- std::vector<unsigned> Sequence;
- /// The number of instructions this function would save.
- unsigned Benefit = 0;
- /// \brief Set to true if candidates for this outlined function should be
- /// replaced with tail calls to this OutlinedFunction.
- bool IsTailCall = false;
- OutlinedFunction(size_t Name, size_t OccurrenceCount,
- const std::vector<unsigned> &Sequence,
- unsigned Benefit, bool IsTailCall)
- : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence),
- Benefit(Benefit), IsTailCall(IsTailCall)
- {}
- };
- /// Represents an undefined index in the suffix tree.
- const size_t EmptyIdx = -1;
- /// A node in a suffix tree which represents a substring or suffix.
- ///
- /// Each node has either no children or at least two children, with the root
- /// being a exception in the empty tree.
- ///
- /// Children are represented as a map between unsigned integers and nodes. If
- /// a node N has a child M on unsigned integer k, then the mapping represented
- /// by N is a proper prefix of the mapping represented by M. Note that this,
- /// although similar to a trie is somewhat different: each node stores a full
- /// substring of the full mapping rather than a single character state.
- ///
- /// Each internal node contains a pointer to the internal node representing
- /// the same string, but with the first character chopped off. This is stored
- /// in \p Link. Each leaf node stores the start index of its respective
- /// suffix in \p SuffixIdx.
- struct SuffixTreeNode {
- /// The children of this node.
- ///
- /// A child existing on an unsigned integer implies that from the mapping
- /// represented by the current node, there is a way to reach another
- /// mapping by tacking that character on the end of the current string.
- DenseMap<unsigned, SuffixTreeNode *> Children;
- /// A flag set to false if the node has been pruned from the tree.
- bool IsInTree = true;
- /// The start index of this node's substring in the main string.
- size_t StartIdx = EmptyIdx;
- /// The end index of this node's substring in the main string.
- ///
- /// Every leaf node must have its \p EndIdx incremented at the end of every
- /// step in the construction algorithm. To avoid having to update O(N)
- /// nodes individually at the end of every step, the end index is stored
- /// as a pointer.
- size_t *EndIdx = nullptr;
- /// For leaves, the start index of the suffix represented by this node.
- ///
- /// For all other nodes, this is ignored.
- size_t SuffixIdx = EmptyIdx;
- /// \brief For internal nodes, a pointer to the internal node representing
- /// the same sequence with the first character chopped off.
- ///
- /// This has two major purposes in the suffix tree. The first is as a
- /// shortcut in Ukkonen's construction algorithm. One of the things that
- /// Ukkonen's algorithm does to achieve linear-time construction is
- /// keep track of which node the next insert should be at. This makes each
- /// insert O(1), and there are a total of O(N) inserts. The suffix link
- /// helps with inserting children of internal nodes.
- ///
- /// Say we add a child to an internal node with associated mapping S. The
- /// next insertion must be at the node representing S - its first character.
- /// This is given by the way that we iteratively build the tree in Ukkonen's
- /// algorithm. The main idea is to look at the suffixes of each prefix in the
- /// string, starting with the longest suffix of the prefix, and ending with
- /// the shortest. Therefore, if we keep pointers between such nodes, we can
- /// move to the next insertion point in O(1) time. If we don't, then we'd
- /// have to query from the root, which takes O(N) time. This would make the
- /// construction algorithm O(N^2) rather than O(N).
- ///
- /// The suffix link is also used during the tree pruning process to let us
- /// quickly throw out a bunch of potential overlaps. Say we have a sequence
- /// S we want to outline. Then each of its suffixes contribute to at least
- /// one overlapping case. Therefore, we can follow the suffix links
- /// starting at the node associated with S to the root and "delete" those
- /// nodes, save for the root. For each candidate, this removes
- /// O(|candidate|) overlaps from the search space. We don't actually
- /// completely invalidate these nodes though; doing that is far too
- /// aggressive. Consider the following pathological string:
- ///
- /// 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3
- ///
- /// If we, for the sake of example, outlined 1 2 3, then we would throw
- /// out all instances of 2 3. This isn't desirable. To get around this,
- /// when we visit a link node, we decrement its occurrence count by the
- /// number of sequences we outlined in the current step. In the pathological
- /// example, the 2 3 node would have an occurrence count of 8, while the
- /// 1 2 3 node would have an occurrence count of 2. Thus, the 2 3 node
- /// would survive to the next round allowing us to outline the extra
- /// instances of 2 3.
- SuffixTreeNode *Link = nullptr;
- /// The parent of this node. Every node except for the root has a parent.
- SuffixTreeNode *Parent = nullptr;
- /// The number of times this node's string appears in the tree.
- ///
- /// This is equal to the number of leaf children of the string. It represents
- /// the number of suffixes that the node's string is a prefix of.
- size_t OccurrenceCount = 0;
- /// The length of the string formed by concatenating the edge labels from the
- /// root to this node.
- size_t ConcatLen = 0;
- /// Returns true if this node is a leaf.
- bool isLeaf() const { return SuffixIdx != EmptyIdx; }
- /// Returns true if this node is the root of its owning \p SuffixTree.
- bool isRoot() const { return StartIdx == EmptyIdx; }
- /// Return the number of elements in the substring associated with this node.
- size_t size() const {
- // Is it the root? If so, it's the empty string so return 0.
- if (isRoot())
- return 0;
- assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
- // Size = the number of elements in the string.
- // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
- return *EndIdx - StartIdx + 1;
- }
- SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link,
- SuffixTreeNode *Parent)
- : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
- SuffixTreeNode() {}
- };
- /// A data structure for fast substring queries.
- ///
- /// Suffix trees represent the suffixes of their input strings in their leaves.
- /// A suffix tree is a type of compressed trie structure where each node
- /// represents an entire substring rather than a single character. Each leaf
- /// of the tree is a suffix.
- ///
- /// A suffix tree can be seen as a type of state machine where each state is a
- /// substring of the full string. The tree is structured so that, for a string
- /// of length N, there are exactly N leaves in the tree. This structure allows
- /// us to quickly find repeated substrings of the input string.
- ///
- /// In this implementation, a "string" is a vector of unsigned integers.
- /// These integers may result from hashing some data type. A suffix tree can
- /// contain 1 or many strings, which can then be queried as one large string.
- ///
- /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
- /// suffix tree construction. Ukkonen's algorithm is explained in more detail
- /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
- /// paper is available at
- ///
- /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
- class SuffixTree {
- private:
- /// Each element is an integer representing an instruction in the module.
- ArrayRef<unsigned> Str;
- /// Maintains each node in the tree.
- SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
- /// The root of the suffix tree.
- ///
- /// The root represents the empty string. It is maintained by the
- /// \p NodeAllocator like every other node in the tree.
- SuffixTreeNode *Root = nullptr;
- /// Stores each leaf node in the tree.
- ///
- /// This is used for finding outlining candidates.
- std::vector<SuffixTreeNode *> LeafVector;
- /// Maintains the end indices of the internal nodes in the tree.
- ///
- /// Each internal node is guaranteed to never have its end index change
- /// during the construction algorithm; however, leaves must be updated at
- /// every step. Therefore, we need to store leaf end indices by reference
- /// to avoid updating O(N) leaves at every step of construction. Thus,
- /// every internal node must be allocated its own end index.
- BumpPtrAllocator InternalEndIdxAllocator;
- /// The end index of each leaf in the tree.
- size_t LeafEndIdx = -1;
- /// \brief Helper struct which keeps track of the next insertion point in
- /// Ukkonen's algorithm.
- struct ActiveState {
- /// The next node to insert at.
- SuffixTreeNode *Node;
- /// The index of the first character in the substring currently being added.
- size_t Idx = EmptyIdx;
- /// The length of the substring we have to add at the current step.
- size_t Len = 0;
- };
- /// \brief The point the next insertion will take place at in the
- /// construction algorithm.
- ActiveState Active;
- /// Allocate a leaf node and add it to the tree.
- ///
- /// \param Parent The parent of this node.
- /// \param StartIdx The start index of this node's associated string.
- /// \param Edge The label on the edge leaving \p Parent to this node.
- ///
- /// \returns A pointer to the allocated leaf node.
- SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx,
- unsigned Edge) {
- assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
- SuffixTreeNode *N = new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx,
- &LeafEndIdx,
- nullptr,
- &Parent);
- Parent.Children[Edge] = N;
- return N;
- }
- /// Allocate an internal node and add it to the tree.
- ///
- /// \param Parent The parent of this node. Only null when allocating the root.
- /// \param StartIdx The start index of this node's associated string.
- /// \param EndIdx The end index of this node's associated string.
- /// \param Edge The label on the edge leaving \p Parent to this node.
- ///
- /// \returns A pointer to the allocated internal node.
- SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx,
- size_t EndIdx, unsigned Edge) {
- assert(StartIdx <= EndIdx && "String can't start after it ends!");
- assert(!(!Parent && StartIdx != EmptyIdx) &&
- "Non-root internal nodes must have parents!");
- size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx);
- SuffixTreeNode *N = new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx,
- E,
- Root,
- Parent);
- if (Parent)
- Parent->Children[Edge] = N;
- return N;
- }
- /// \brief Set the suffix indices of the leaves to the start indices of their
- /// respective suffixes. Also stores each leaf in \p LeafVector at its
- /// respective suffix index.
- ///
- /// \param[in] CurrNode The node currently being visited.
- /// \param CurrIdx The current index of the string being visited.
- void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) {
- bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
- // Store the length of the concatenation of all strings from the root to
- // this node.
- if (!CurrNode.isRoot()) {
- if (CurrNode.ConcatLen == 0)
- CurrNode.ConcatLen = CurrNode.size();
- if (CurrNode.Parent)
- CurrNode.ConcatLen += CurrNode.Parent->ConcatLen;
- }
- // Traverse the tree depth-first.
- for (auto &ChildPair : CurrNode.Children) {
- assert(ChildPair.second && "Node had a null child!");
- setSuffixIndices(*ChildPair.second,
- CurrIdx + ChildPair.second->size());
- }
- // Is this node a leaf?
- if (IsLeaf) {
- // If yes, give it a suffix index and bump its parent's occurrence count.
- CurrNode.SuffixIdx = Str.size() - CurrIdx;
- assert(CurrNode.Parent && "CurrNode had no parent!");
- CurrNode.Parent->OccurrenceCount++;
- // Store the leaf in the leaf vector for pruning later.
- LeafVector[CurrNode.SuffixIdx] = &CurrNode;
- }
- }
- /// \brief Construct the suffix tree for the prefix of the input ending at
- /// \p EndIdx.
- ///
- /// Used to construct the full suffix tree iteratively. At the end of each
- /// step, the constructed suffix tree is either a valid suffix tree, or a
- /// suffix tree with implicit suffixes. At the end of the final step, the
- /// suffix tree is a valid tree.
- ///
- /// \param EndIdx The end index of the current prefix in the main string.
- /// \param SuffixesToAdd The number of suffixes that must be added
- /// to complete the suffix tree at the current phase.
- ///
- /// \returns The number of suffixes that have not been added at the end of
- /// this step.
- unsigned extend(size_t EndIdx, size_t SuffixesToAdd) {
- SuffixTreeNode *NeedsLink = nullptr;
- while (SuffixesToAdd > 0) {
-
- // Are we waiting to add anything other than just the last character?
- if (Active.Len == 0) {
- // If not, then say the active index is the end index.
- Active.Idx = EndIdx;
- }
- assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
- // The first character in the current substring we're looking at.
- unsigned FirstChar = Str[Active.Idx];
- // Have we inserted anything starting with FirstChar at the current node?
- if (Active.Node->Children.count(FirstChar) == 0) {
- // If not, then we can just insert a leaf and move too the next step.
- insertLeaf(*Active.Node, EndIdx, FirstChar);
- // The active node is an internal node, and we visited it, so it must
- // need a link if it doesn't have one.
- if (NeedsLink) {
- NeedsLink->Link = Active.Node;
- NeedsLink = nullptr;
- }
- } else {
- // There's a match with FirstChar, so look for the point in the tree to
- // insert a new node.
- SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
- size_t SubstringLen = NextNode->size();
- // Is the current suffix we're trying to insert longer than the size of
- // the child we want to move to?
- if (Active.Len >= SubstringLen) {
- // If yes, then consume the characters we've seen and move to the next
- // node.
- Active.Idx += SubstringLen;
- Active.Len -= SubstringLen;
- Active.Node = NextNode;
- continue;
- }
- // Otherwise, the suffix we're trying to insert must be contained in the
- // next node we want to move to.
- unsigned LastChar = Str[EndIdx];
- // Is the string we're trying to insert a substring of the next node?
- if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
- // If yes, then we're done for this step. Remember our insertion point
- // and move to the next end index. At this point, we have an implicit
- // suffix tree.
- if (NeedsLink && !Active.Node->isRoot()) {
- NeedsLink->Link = Active.Node;
- NeedsLink = nullptr;
- }
- Active.Len++;
- break;
- }
- // The string we're trying to insert isn't a substring of the next node,
- // but matches up to a point. Split the node.
- //
- // For example, say we ended our search at a node n and we're trying to
- // insert ABD. Then we'll create a new node s for AB, reduce n to just
- // representing C, and insert a new leaf node l to represent d. This
- // allows us to ensure that if n was a leaf, it remains a leaf.
- //
- // | ABC ---split---> | AB
- // n s
- // C / \ D
- // n l
- // The node s from the diagram
- SuffixTreeNode *SplitNode =
- insertInternalNode(Active.Node,
- NextNode->StartIdx,
- NextNode->StartIdx + Active.Len - 1,
- FirstChar);
- // Insert the new node representing the new substring into the tree as
- // a child of the split node. This is the node l from the diagram.
- insertLeaf(*SplitNode, EndIdx, LastChar);
- // Make the old node a child of the split node and update its start
- // index. This is the node n from the diagram.
- NextNode->StartIdx += Active.Len;
- NextNode->Parent = SplitNode;
- SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
- // SplitNode is an internal node, update the suffix link.
- if (NeedsLink)
- NeedsLink->Link = SplitNode;
- NeedsLink = SplitNode;
- }
- // We've added something new to the tree, so there's one less suffix to
- // add.
- SuffixesToAdd--;
- if (Active.Node->isRoot()) {
- if (Active.Len > 0) {
- Active.Len--;
- Active.Idx = EndIdx - SuffixesToAdd + 1;
- }
- } else {
- // Start the next phase at the next smallest suffix.
- Active.Node = Active.Node->Link;
- }
- }
- return SuffixesToAdd;
- }
- public:
- /// Find all repeated substrings that satisfy \p BenefitFn.
- ///
- /// If a substring appears at least twice, then it must be represented by
- /// an internal node which appears in at least two suffixes. Each suffix is
- /// represented by a leaf node. To do this, we visit each internal node in
- /// the tree, using the leaf children of each internal node. If an internal
- /// node represents a beneficial substring, then we use each of its leaf
- /// children to find the locations of its substring.
- ///
- /// \param[out] CandidateList Filled with candidates representing each
- /// beneficial substring.
- /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each
- /// type of candidate.
- /// \param BenefitFn The function to satisfy.
- ///
- /// \returns The length of the longest candidate found.
- size_t findCandidates(std::vector<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- const std::function<unsigned(SuffixTreeNode &, size_t, unsigned)>
- &BenefitFn) {
- CandidateList.clear();
- FunctionList.clear();
- size_t FnIdx = 0;
- size_t MaxLen = 0;
- for (SuffixTreeNode* Leaf : LeafVector) {
- assert(Leaf && "Leaves in LeafVector cannot be null!");
- if (!Leaf->IsInTree)
- continue;
- assert(Leaf->Parent && "All leaves must have parents!");
- SuffixTreeNode &Parent = *(Leaf->Parent);
- // If it doesn't appear enough, or we already outlined from it, skip it.
- if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree)
- continue;
- size_t StringLen = Leaf->ConcatLen - Leaf->size();
- // How many instructions would outlining this string save?
- unsigned Benefit = BenefitFn(Parent,
- StringLen, Str[Leaf->SuffixIdx + StringLen - 1]);
- // If it's not beneficial, skip it.
- if (Benefit < 1)
- continue;
- if (StringLen > MaxLen)
- MaxLen = StringLen;
- unsigned OccurrenceCount = 0;
- for (auto &ChildPair : Parent.Children) {
- SuffixTreeNode *M = ChildPair.second;
- // Is it a leaf? If so, we have an occurrence of this candidate.
- if (M && M->IsInTree && M->isLeaf()) {
- OccurrenceCount++;
- CandidateList.emplace_back(M->SuffixIdx, StringLen, FnIdx);
- CandidateList.back().Benefit = Benefit;
- M->IsInTree = false;
- }
- }
- // Save the function for the new candidate sequence.
- std::vector<unsigned> CandidateSequence;
- for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++)
- CandidateSequence.push_back(Str[i]);
- FunctionList.emplace_back(FnIdx, OccurrenceCount, CandidateSequence,
- Benefit, false);
- // Move to the next function.
- FnIdx++;
- Parent.IsInTree = false;
- }
- return MaxLen;
- }
-
- /// Construct a suffix tree from a sequence of unsigned integers.
- ///
- /// \param Str The string to construct the suffix tree for.
- SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
- Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
- Root->IsInTree = true;
- Active.Node = Root;
- LeafVector = std::vector<SuffixTreeNode*>(Str.size());
- // Keep track of the number of suffixes we have to add of the current
- // prefix.
- size_t SuffixesToAdd = 0;
- Active.Node = Root;
- // Construct the suffix tree iteratively on each prefix of the string.
- // PfxEndIdx is the end index of the current prefix.
- // End is one past the last element in the string.
- for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) {
- SuffixesToAdd++;
- LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
- SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
- }
- // Set the suffix indices of each leaf.
- assert(Root && "Root node can't be nullptr!");
- setSuffixIndices(*Root, 0);
- }
- };
- /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
- struct InstructionMapper {
- /// \brief The next available integer to assign to a \p MachineInstr that
- /// cannot be outlined.
- ///
- /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
- unsigned IllegalInstrNumber = -3;
- /// \brief The next available integer to assign to a \p MachineInstr that can
- /// be outlined.
- unsigned LegalInstrNumber = 0;
- /// Correspondence from \p MachineInstrs to unsigned integers.
- DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
- InstructionIntegerMap;
- /// Corresponcence from unsigned integers to \p MachineInstrs.
- /// Inverse of \p InstructionIntegerMap.
- DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
- /// The vector of unsigned integers that the module is mapped to.
- std::vector<unsigned> UnsignedVec;
- /// \brief Stores the location of the instruction associated with the integer
- /// at index i in \p UnsignedVec for each index i.
- std::vector<MachineBasicBlock::iterator> InstrList;
- /// \brief Maps \p *It to a legal integer.
- ///
- /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
- /// \p IntegerInstructionMap, and \p LegalInstrNumber.
- ///
- /// \returns The integer that \p *It was mapped to.
- unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
- // Get the integer for this instruction or give it the current
- // LegalInstrNumber.
- InstrList.push_back(It);
- MachineInstr &MI = *It;
- bool WasInserted;
- DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
- ResultIt;
- std::tie(ResultIt, WasInserted) =
- InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
- unsigned MINumber = ResultIt->second;
- // There was an insertion.
- if (WasInserted) {
- LegalInstrNumber++;
- IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
- }
- UnsignedVec.push_back(MINumber);
- // Make sure we don't overflow or use any integers reserved by the DenseMap.
- if (LegalInstrNumber >= IllegalInstrNumber)
- report_fatal_error("Instruction mapping overflow!");
- assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey()
- && "Tried to assign DenseMap tombstone or empty key to instruction.");
- assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey()
- && "Tried to assign DenseMap tombstone or empty key to instruction.");
- return MINumber;
- }
- /// Maps \p *It to an illegal integer.
- ///
- /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
- ///
- /// \returns The integer that \p *It was mapped to.
- unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
- unsigned MINumber = IllegalInstrNumber;
- InstrList.push_back(It);
- UnsignedVec.push_back(IllegalInstrNumber);
- IllegalInstrNumber--;
- assert(LegalInstrNumber < IllegalInstrNumber &&
- "Instruction mapping overflow!");
- assert(IllegalInstrNumber !=
- DenseMapInfo<unsigned>::getEmptyKey() &&
- "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
- assert(IllegalInstrNumber !=
- DenseMapInfo<unsigned>::getTombstoneKey() &&
- "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
- return MINumber;
- }
- /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
- /// and appends it to \p UnsignedVec and \p InstrList.
- ///
- /// Two instructions are assigned the same integer if they are identical.
- /// If an instruction is deemed unsafe to outline, then it will be assigned an
- /// unique integer. The resulting mapping is placed into a suffix tree and
- /// queried for candidates.
- ///
- /// \param MBB The \p MachineBasicBlock to be translated into integers.
- /// \param TRI \p TargetRegisterInfo for the module.
- /// \param TII \p TargetInstrInfo for the module.
- void convertToUnsignedVec(MachineBasicBlock &MBB,
- const TargetRegisterInfo &TRI,
- const TargetInstrInfo &TII) {
- for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
- It++) {
- // Keep track of where this instruction is in the module.
- switch(TII.getOutliningType(*It)) {
- case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
- mapToIllegalUnsigned(It);
- break;
- case TargetInstrInfo::MachineOutlinerInstrType::Legal:
- mapToLegalUnsigned(It);
- break;
- case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
- break;
- }
- }
- // After we're done every insertion, uniquely terminate this part of the
- // "string". This makes sure we won't match across basic block or function
- // boundaries since the "end" is encoded uniquely and thus appears in no
- // repeated substring.
- InstrList.push_back(MBB.end());
- UnsignedVec.push_back(IllegalInstrNumber);
- IllegalInstrNumber--;
- }
- InstructionMapper() {
- // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
- // changed.
- assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
- "DenseMapInfo<unsigned>'s empty key isn't -1!");
- assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
- "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
- }
- };
- /// \brief An interprocedural pass which finds repeated sequences of
- /// instructions and replaces them with calls to functions.
- ///
- /// Each instruction is mapped to an unsigned integer and placed in a string.
- /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
- /// is then repeatedly queried for repeated sequences of instructions. Each
- /// non-overlapping repeated sequence is then placed in its own
- /// \p MachineFunction and each instance is then replaced with a call to that
- /// function.
- struct MachineOutliner : public ModulePass {
- static char ID;
- StringRef getPassName() const override { return "Machine Outliner"; }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<MachineModuleInfo>();
- AU.addPreserved<MachineModuleInfo>();
- AU.setPreservesAll();
- ModulePass::getAnalysisUsage(AU);
- }
- MachineOutliner() : ModulePass(ID) {
- initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
- }
- /// \brief Replace the sequences of instructions represented by the
- /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
- /// described in \p FunctionList.
- ///
- /// \param M The module we are outlining from.
- /// \param CandidateList A list of candidates to be outlined.
- /// \param FunctionList A list of functions to be inserted into the module.
- /// \param Mapper Contains the instruction mappings for the module.
- bool outline(Module &M, const ArrayRef<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- InstructionMapper &Mapper);
- /// Creates a function for \p OF and inserts it into the module.
- MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
- InstructionMapper &Mapper);
- /// Find potential outlining candidates and store them in \p CandidateList.
- ///
- /// For each type of potential candidate, also build an \p OutlinedFunction
- /// struct containing the information to build the function for that
- /// candidate.
- ///
- /// \param[out] CandidateList Filled with outlining candidates for the module.
- /// \param[out] FunctionList Filled with functions corresponding to each type
- /// of \p Candidate.
- /// \param ST The suffix tree for the module.
- /// \param TII TargetInstrInfo for the module.
- ///
- /// \returns The length of the longest candidate found. 0 if there are none.
- unsigned buildCandidateList(std::vector<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- SuffixTree &ST,
- InstructionMapper &Mapper,
- const TargetInstrInfo &TII);
- /// \brief Remove any overlapping candidates that weren't handled by the
- /// suffix tree's pruning method.
- ///
- /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
- /// If a short candidate is chosen for outlining, then a longer candidate
- /// which has that short candidate as a suffix is chosen, the tree's pruning
- /// method will not find it. Thus, we need to prune before outlining as well.
- ///
- /// \param[in,out] CandidateList A list of outlining candidates.
- /// \param[in,out] FunctionList A list of functions to be outlined.
- /// \param MaxCandidateLen The length of the longest candidate.
- /// \param TII TargetInstrInfo for the module.
- void pruneOverlaps(std::vector<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- unsigned MaxCandidateLen,
- const TargetInstrInfo &TII);
- /// Construct a suffix tree on the instructions in \p M and outline repeated
- /// strings from that tree.
- bool runOnModule(Module &M) override;
- };
- } // Anonymous namespace.
- char MachineOutliner::ID = 0;
- namespace llvm {
- ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); }
- }
- INITIALIZE_PASS(MachineOutliner, "machine-outliner",
- "Machine Function Outliner", false, false)
- void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- unsigned MaxCandidateLen,
- const TargetInstrInfo &TII) {
- // TODO: Experiment with interval trees or other interval-checking structures
- // to lower the time complexity of this function.
- // TODO: Can we do better than the simple greedy choice?
- // Check for overlaps in the range.
- // This is O(MaxCandidateLen * CandidateList.size()).
- for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
- It++) {
- Candidate &C1 = *It;
- OutlinedFunction &F1 = FunctionList[C1.FunctionIdx];
- // If we removed this candidate, skip it.
- if (!C1.InCandidateList)
- continue;
- // Is it still worth it to outline C1?
- if (F1.Benefit < 1 || F1.OccurrenceCount < 2) {
- assert(F1.OccurrenceCount > 0 &&
- "Can't remove OutlinedFunction with no occurrences!");
- F1.OccurrenceCount--;
- C1.InCandidateList = false;
- continue;
- }
- // The minimum start index of any candidate that could overlap with this
- // one.
- unsigned FarthestPossibleIdx = 0;
- // Either the index is 0, or it's at most MaxCandidateLen indices away.
- if (C1.StartIdx > MaxCandidateLen)
- FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen;
- // Compare against the candidates in the list that start at at most
- // FarthestPossibleIdx indices away from C1. There are at most
- // MaxCandidateLen of these.
- for (auto Sit = It + 1; Sit != Et; Sit++) {
- Candidate &C2 = *Sit;
- OutlinedFunction &F2 = FunctionList[C2.FunctionIdx];
- // Is this candidate too far away to overlap?
- if (C2.StartIdx < FarthestPossibleIdx)
- break;
- // Did we already remove this candidate in a previous step?
- if (!C2.InCandidateList)
- continue;
- // Is the function beneficial to outline?
- if (F2.OccurrenceCount < 2 || F2.Benefit < 1) {
- // If not, remove this candidate and move to the next one.
- assert(F2.OccurrenceCount > 0 &&
- "Can't remove OutlinedFunction with no occurrences!");
- F2.OccurrenceCount--;
- C2.InCandidateList = false;
- continue;
- }
- size_t C2End = C2.StartIdx + C2.Len - 1;
- // Do C1 and C2 overlap?
- //
- // Not overlapping:
- // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
- //
- // We sorted our candidate list so C2Start <= C1Start. We know that
- // C2End > C2Start since each candidate has length >= 2. Therefore, all we
- // have to check is C2End < C2Start to see if we overlap.
- if (C2End < C1.StartIdx)
- continue;
- // C1 and C2 overlap.
- // We need to choose the better of the two.
- //
- // Approximate this by picking the one which would have saved us the
- // most instructions before any pruning.
- if (C1.Benefit >= C2.Benefit) {
- // C1 is better, so remove C2 and update C2's OutlinedFunction to
- // reflect the removal.
- assert(F2.OccurrenceCount > 0 &&
- "Can't remove OutlinedFunction with no occurrences!");
- F2.OccurrenceCount--;
- F2.Benefit = TII.getOutliningBenefit(F2.Sequence.size(),
- F2.OccurrenceCount,
- F2.IsTailCall
- );
- C2.InCandidateList = false;
- DEBUG (
- dbgs() << "- Removed C2. \n";
- dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount << "\n";
- dbgs() << "--- C2's benefit: " << F2.Benefit << "\n";
- );
- } else {
- // C2 is better, so remove C1 and update C1's OutlinedFunction to
- // reflect the removal.
- assert(F1.OccurrenceCount > 0 &&
- "Can't remove OutlinedFunction with no occurrences!");
- F1.OccurrenceCount--;
- F1.Benefit = TII.getOutliningBenefit(F1.Sequence.size(),
- F1.OccurrenceCount,
- F1.IsTailCall
- );
- C1.InCandidateList = false;
- DEBUG (
- dbgs() << "- Removed C1. \n";
- dbgs() << "--- Num fns left for C1: " << F1.OccurrenceCount << "\n";
- dbgs() << "--- C1's benefit: " << F1.Benefit << "\n";
- );
- // C1 is out, so we don't have to compare it against anyone else.
- break;
- }
- }
- }
- }
- unsigned
- MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- SuffixTree &ST,
- InstructionMapper &Mapper,
- const TargetInstrInfo &TII) {
- std::vector<unsigned> CandidateSequence; // Current outlining candidate.
- size_t MaxCandidateLen = 0; // Length of the longest candidate.
- // Function for maximizing query in the suffix tree.
- // This allows us to define more fine-grained types of things to outline in
- // the target without putting target-specific info in the suffix tree.
- auto BenefitFn = [&TII, &Mapper](const SuffixTreeNode &Curr,
- size_t StringLen, unsigned EndVal) {
- // The root represents the empty string.
- if (Curr.isRoot())
- return 0u;
- // Is this long enough to outline?
- // TODO: Let the target decide how "long" a string is in terms of the sizes
- // of the instructions in the string. For example, if a call instruction
- // is smaller than a one instruction string, we should outline that string.
- if (StringLen < 2)
- return 0u;
- size_t Occurrences = Curr.OccurrenceCount;
- // Anything we want to outline has to appear at least twice.
- if (Occurrences < 2)
- return 0u;
- // Check if the last instruction in the sequence is a return.
- MachineInstr *LastInstr =
- Mapper.IntegerInstructionMap[EndVal];
- assert(LastInstr && "Last instruction in sequence was unmapped!");
- // The only way a terminator could be mapped as legal is if it was safe to
- // tail call.
- bool IsTailCall = LastInstr->isTerminator();
- return TII.getOutliningBenefit(StringLen, Occurrences, IsTailCall);
- };
- MaxCandidateLen = ST.findCandidates(CandidateList, FunctionList, BenefitFn);
- for (auto &OF : FunctionList)
- OF.IsTailCall = Mapper.
- IntegerInstructionMap[OF.Sequence.back()]->isTerminator();
- // Sort the candidates in decending order. This will simplify the outlining
- // process when we have to remove the candidates from the mapping by
- // allowing us to cut them out without keeping track of an offset.
- std::stable_sort(CandidateList.begin(), CandidateList.end());
- return MaxCandidateLen;
- }
- MachineFunction *
- MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
- InstructionMapper &Mapper) {
- // Create the function name. This should be unique. For now, just hash the
- // module name and include it in the function name plus the number of this
- // function.
- std::ostringstream NameStream;
- NameStream << "OUTLINED_FUNCTION" << "_" << OF.Name;
- // Create the function using an IR-level function.
- LLVMContext &C = M.getContext();
- Function *F = dyn_cast<Function>(
- M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C)));
- assert(F && "Function was null!");
- // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
- // which gives us better results when we outline from linkonceodr functions.
- F->setLinkage(GlobalValue::PrivateLinkage);
- F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
- BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
- IRBuilder<> Builder(EntryBB);
- Builder.CreateRetVoid();
- MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
- MachineFunction &MF = MMI.getMachineFunction(*F);
- MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
- const TargetSubtargetInfo &STI = MF.getSubtarget();
- const TargetInstrInfo &TII = *STI.getInstrInfo();
- // Insert the new function into the module.
- MF.insert(MF.begin(), &MBB);
- TII.insertOutlinerPrologue(MBB, MF, OF.IsTailCall);
- // Copy over the instructions for the function using the integer mappings in
- // its sequence.
- for (unsigned Str : OF.Sequence) {
- MachineInstr *NewMI =
- MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
- NewMI->dropMemRefs();
- // Don't keep debug information for outlined instructions.
- // FIXME: This means outlined functions are currently undebuggable.
- NewMI->setDebugLoc(DebugLoc());
- MBB.insert(MBB.end(), NewMI);
- }
- TII.insertOutlinerEpilogue(MBB, MF, OF.IsTailCall);
- return &MF;
- }
- bool MachineOutliner::outline(Module &M,
- const ArrayRef<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- InstructionMapper &Mapper) {
- bool OutlinedSomething = false;
- // Replace the candidates with calls to their respective outlined functions.
- for (const Candidate &C : CandidateList) {
- // Was the candidate removed during pruneOverlaps?
- if (!C.InCandidateList)
- continue;
- // If not, then look at its OutlinedFunction.
- OutlinedFunction &OF = FunctionList[C.FunctionIdx];
- // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
- if (OF.OccurrenceCount < 2 || OF.Benefit < 1)
- continue;
- // If not, then outline it.
- assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
- MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent();
- MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx];
- unsigned EndIdx = C.StartIdx + C.Len - 1;
- assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
- MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
- assert(EndIt != MBB->end() && "EndIt out of bounds!");
- EndIt++; // Erase needs one past the end index.
- // Does this candidate have a function yet?
- if (!OF.MF) {
- OF.MF = createOutlinedFunction(M, OF, Mapper);
- FunctionsCreated++;
- }
- MachineFunction *MF = OF.MF;
- const TargetSubtargetInfo &STI = MF->getSubtarget();
- const TargetInstrInfo &TII = *STI.getInstrInfo();
- // Insert a call to the new function and erase the old sequence.
- TII.insertOutlinedCall(M, *MBB, StartIt, *MF, OF.IsTailCall);
- StartIt = Mapper.InstrList[C.StartIdx];
- MBB->erase(StartIt, EndIt);
- OutlinedSomething = true;
- // Statistics.
- NumOutlined++;
- }
- DEBUG (
- dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";
- );
- return OutlinedSomething;
- }
- bool MachineOutliner::runOnModule(Module &M) {
- // Is there anything in the module at all?
- if (M.empty())
- return false;
- MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
- const TargetSubtargetInfo &STI = MMI.getMachineFunction(*M.begin())
- .getSubtarget();
- const TargetRegisterInfo *TRI = STI.getRegisterInfo();
- const TargetInstrInfo *TII = STI.getInstrInfo();
- InstructionMapper Mapper;
- // Build instruction mappings for each function in the module.
- for (Function &F : M) {
- MachineFunction &MF = MMI.getMachineFunction(F);
- // Is the function empty? Safe to outline from?
- if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF))
- continue;
- // If it is, look at each MachineBasicBlock in the function.
- for (MachineBasicBlock &MBB : MF) {
- // Is there anything in MBB?
- if (MBB.empty())
- continue;
- // If yes, map it.
- Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
- }
- }
- // Construct a suffix tree, use it to find candidates, and then outline them.
- SuffixTree ST(Mapper.UnsignedVec);
- std::vector<Candidate> CandidateList;
- std::vector<OutlinedFunction> FunctionList;
- // Find all of the outlining candidates.
- unsigned MaxCandidateLen =
- buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII);
- // Remove candidates that overlap with other candidates.
- pruneOverlaps(CandidateList, FunctionList, MaxCandidateLen, *TII);
- // Outline each of the candidates and return true if something was outlined.
- return outline(M, CandidateList, FunctionList, Mapper);
- }
|