12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293 |
- //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the CodeGenDAGPatterns class, which is used to read and
- // represent the patterns present in a .td file for instructions.
- //
- //===----------------------------------------------------------------------===//
- #include "CodeGenDAGPatterns.h"
- #include "llvm/TableGen/Error.h"
- #include "llvm/TableGen/Record.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include <algorithm>
- #include <cstdio>
- #include <set>
- using namespace llvm;
- //===----------------------------------------------------------------------===//
- // EEVT::TypeSet Implementation
- //===----------------------------------------------------------------------===//
- static inline bool isInteger(MVT::SimpleValueType VT) {
- return EVT(VT).isInteger();
- }
- static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
- return EVT(VT).isFloatingPoint();
- }
- static inline bool isVector(MVT::SimpleValueType VT) {
- return EVT(VT).isVector();
- }
- static inline bool isScalar(MVT::SimpleValueType VT) {
- return !EVT(VT).isVector();
- }
- EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
- if (VT == MVT::iAny)
- EnforceInteger(TP);
- else if (VT == MVT::fAny)
- EnforceFloatingPoint(TP);
- else if (VT == MVT::vAny)
- EnforceVector(TP);
- else {
- assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
- VT == MVT::iPTRAny) && "Not a concrete type!");
- TypeVec.push_back(VT);
- }
- }
- EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) {
- assert(!VTList.empty() && "empty list?");
- TypeVec.append(VTList.begin(), VTList.end());
- if (!VTList.empty())
- assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
- VTList[0] != MVT::fAny);
- // Verify no duplicates.
- array_pod_sort(TypeVec.begin(), TypeVec.end());
- assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
- }
- /// FillWithPossibleTypes - Set to all legal types and return true, only valid
- /// on completely unknown type sets.
- bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
- bool (*Pred)(MVT::SimpleValueType),
- const char *PredicateName) {
- assert(isCompletelyUnknown());
- const std::vector<MVT::SimpleValueType> &LegalTypes =
- TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
- for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
- if (Pred == 0 || Pred(LegalTypes[i]))
- TypeVec.push_back(LegalTypes[i]);
- // If we have nothing that matches the predicate, bail out.
- if (TypeVec.empty())
- TP.error("Type inference contradiction found, no " +
- std::string(PredicateName) + " types found");
- // No need to sort with one element.
- if (TypeVec.size() == 1) return true;
- // Remove duplicates.
- array_pod_sort(TypeVec.begin(), TypeVec.end());
- TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
- return true;
- }
- /// hasIntegerTypes - Return true if this TypeSet contains iAny or an
- /// integer value type.
- bool EEVT::TypeSet::hasIntegerTypes() const {
- for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
- if (isInteger(TypeVec[i]))
- return true;
- return false;
- }
- /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
- /// a floating point value type.
- bool EEVT::TypeSet::hasFloatingPointTypes() const {
- for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
- if (isFloatingPoint(TypeVec[i]))
- return true;
- return false;
- }
- /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
- /// value type.
- bool EEVT::TypeSet::hasVectorTypes() const {
- for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
- if (isVector(TypeVec[i]))
- return true;
- return false;
- }
- std::string EEVT::TypeSet::getName() const {
- if (TypeVec.empty()) return "<empty>";
- std::string Result;
- for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
- std::string VTName = llvm::getEnumName(TypeVec[i]);
- // Strip off MVT:: prefix if present.
- if (VTName.substr(0,5) == "MVT::")
- VTName = VTName.substr(5);
- if (i) Result += ':';
- Result += VTName;
- }
- if (TypeVec.size() == 1)
- return Result;
- return "{" + Result + "}";
- }
- /// MergeInTypeInfo - This merges in type information from the specified
- /// argument. If 'this' changes, it returns true. If the two types are
- /// contradictory (e.g. merge f32 into i32) then this throws an exception.
- bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
- if (InVT.isCompletelyUnknown() || *this == InVT)
- return false;
- if (isCompletelyUnknown()) {
- *this = InVT;
- return true;
- }
- assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
- // Handle the abstract cases, seeing if we can resolve them better.
- switch (TypeVec[0]) {
- default: break;
- case MVT::iPTR:
- case MVT::iPTRAny:
- if (InVT.hasIntegerTypes()) {
- EEVT::TypeSet InCopy(InVT);
- InCopy.EnforceInteger(TP);
- InCopy.EnforceScalar(TP);
- if (InCopy.isConcrete()) {
- // If the RHS has one integer type, upgrade iPTR to i32.
- TypeVec[0] = InVT.TypeVec[0];
- return true;
- }
- // If the input has multiple scalar integers, this doesn't add any info.
- if (!InCopy.isCompletelyUnknown())
- return false;
- }
- break;
- }
- // If the input constraint is iAny/iPTR and this is an integer type list,
- // remove non-integer types from the list.
- if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
- hasIntegerTypes()) {
- bool MadeChange = EnforceInteger(TP);
- // If we're merging in iPTR/iPTRAny and the node currently has a list of
- // multiple different integer types, replace them with a single iPTR.
- if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
- TypeVec.size() != 1) {
- TypeVec.resize(1);
- TypeVec[0] = InVT.TypeVec[0];
- MadeChange = true;
- }
- return MadeChange;
- }
- // If this is a type list and the RHS is a typelist as well, eliminate entries
- // from this list that aren't in the other one.
- bool MadeChange = false;
- TypeSet InputSet(*this);
- for (unsigned i = 0; i != TypeVec.size(); ++i) {
- bool InInVT = false;
- for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
- if (TypeVec[i] == InVT.TypeVec[j]) {
- InInVT = true;
- break;
- }
- if (InInVT) continue;
- TypeVec.erase(TypeVec.begin()+i--);
- MadeChange = true;
- }
- // If we removed all of our types, we have a type contradiction.
- if (!TypeVec.empty())
- return MadeChange;
- // FIXME: Really want an SMLoc here!
- TP.error("Type inference contradiction found, merging '" +
- InVT.getName() + "' into '" + InputSet.getName() + "'");
- return true; // unreachable
- }
- /// EnforceInteger - Remove all non-integer types from this set.
- bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
- // If we know nothing, then get the full set.
- if (TypeVec.empty())
- return FillWithPossibleTypes(TP, isInteger, "integer");
- if (!hasFloatingPointTypes())
- return false;
- TypeSet InputSet(*this);
- // Filter out all the fp types.
- for (unsigned i = 0; i != TypeVec.size(); ++i)
- if (!isInteger(TypeVec[i]))
- TypeVec.erase(TypeVec.begin()+i--);
- if (TypeVec.empty())
- TP.error("Type inference contradiction found, '" +
- InputSet.getName() + "' needs to be integer");
- return true;
- }
- /// EnforceFloatingPoint - Remove all integer types from this set.
- bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
- // If we know nothing, then get the full set.
- if (TypeVec.empty())
- return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
- if (!hasIntegerTypes())
- return false;
- TypeSet InputSet(*this);
- // Filter out all the fp types.
- for (unsigned i = 0; i != TypeVec.size(); ++i)
- if (!isFloatingPoint(TypeVec[i]))
- TypeVec.erase(TypeVec.begin()+i--);
- if (TypeVec.empty())
- TP.error("Type inference contradiction found, '" +
- InputSet.getName() + "' needs to be floating point");
- return true;
- }
- /// EnforceScalar - Remove all vector types from this.
- bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
- // If we know nothing, then get the full set.
- if (TypeVec.empty())
- return FillWithPossibleTypes(TP, isScalar, "scalar");
- if (!hasVectorTypes())
- return false;
- TypeSet InputSet(*this);
- // Filter out all the vector types.
- for (unsigned i = 0; i != TypeVec.size(); ++i)
- if (!isScalar(TypeVec[i]))
- TypeVec.erase(TypeVec.begin()+i--);
- if (TypeVec.empty())
- TP.error("Type inference contradiction found, '" +
- InputSet.getName() + "' needs to be scalar");
- return true;
- }
- /// EnforceVector - Remove all vector types from this.
- bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
- // If we know nothing, then get the full set.
- if (TypeVec.empty())
- return FillWithPossibleTypes(TP, isVector, "vector");
- TypeSet InputSet(*this);
- bool MadeChange = false;
- // Filter out all the scalar types.
- for (unsigned i = 0; i != TypeVec.size(); ++i)
- if (!isVector(TypeVec[i])) {
- TypeVec.erase(TypeVec.begin()+i--);
- MadeChange = true;
- }
- if (TypeVec.empty())
- TP.error("Type inference contradiction found, '" +
- InputSet.getName() + "' needs to be a vector");
- return MadeChange;
- }
- /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update
- /// this an other based on this information.
- bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
- // Both operands must be integer or FP, but we don't care which.
- bool MadeChange = false;
- if (isCompletelyUnknown())
- MadeChange = FillWithPossibleTypes(TP);
- if (Other.isCompletelyUnknown())
- MadeChange = Other.FillWithPossibleTypes(TP);
- // If one side is known to be integer or known to be FP but the other side has
- // no information, get at least the type integrality info in there.
- if (!hasFloatingPointTypes())
- MadeChange |= Other.EnforceInteger(TP);
- else if (!hasIntegerTypes())
- MadeChange |= Other.EnforceFloatingPoint(TP);
- if (!Other.hasFloatingPointTypes())
- MadeChange |= EnforceInteger(TP);
- else if (!Other.hasIntegerTypes())
- MadeChange |= EnforceFloatingPoint(TP);
- assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
- "Should have a type list now");
- // If one contains vectors but the other doesn't pull vectors out.
- if (!hasVectorTypes())
- MadeChange |= Other.EnforceScalar(TP);
- if (!hasVectorTypes())
- MadeChange |= EnforceScalar(TP);
- if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
- // If we are down to concrete types, this code does not currently
- // handle nodes which have multiple types, where some types are
- // integer, and some are fp. Assert that this is not the case.
- assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
- !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
- "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
- // Otherwise, if these are both vector types, either this vector
- // must have a larger bitsize than the other, or this element type
- // must be larger than the other.
- EVT Type(TypeVec[0]);
- EVT OtherType(Other.TypeVec[0]);
- if (hasVectorTypes() && Other.hasVectorTypes()) {
- if (Type.getSizeInBits() >= OtherType.getSizeInBits())
- if (Type.getVectorElementType().getSizeInBits()
- >= OtherType.getVectorElementType().getSizeInBits())
- TP.error("Type inference contradiction found, '" +
- getName() + "' element type not smaller than '" +
- Other.getName() +"'!");
- }
- else
- // For scalar types, the bitsize of this type must be larger
- // than that of the other.
- if (Type.getSizeInBits() >= OtherType.getSizeInBits())
- TP.error("Type inference contradiction found, '" +
- getName() + "' is not smaller than '" +
- Other.getName() +"'!");
- }
-
- // Handle int and fp as disjoint sets. This won't work for patterns
- // that have mixed fp/int types but those are likely rare and would
- // not have been accepted by this code previously.
- // Okay, find the smallest type from the current set and remove it from the
- // largest set.
- MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
- for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
- if (isInteger(TypeVec[i])) {
- SmallestInt = TypeVec[i];
- break;
- }
- for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
- if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
- SmallestInt = TypeVec[i];
- MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
- for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
- if (isFloatingPoint(TypeVec[i])) {
- SmallestFP = TypeVec[i];
- break;
- }
- for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
- if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
- SmallestFP = TypeVec[i];
- int OtherIntSize = 0;
- int OtherFPSize = 0;
- for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
- Other.TypeVec.begin();
- TVI != Other.TypeVec.end();
- /* NULL */) {
- if (isInteger(*TVI)) {
- ++OtherIntSize;
- if (*TVI == SmallestInt) {
- TVI = Other.TypeVec.erase(TVI);
- --OtherIntSize;
- MadeChange = true;
- continue;
- }
- }
- else if (isFloatingPoint(*TVI)) {
- ++OtherFPSize;
- if (*TVI == SmallestFP) {
- TVI = Other.TypeVec.erase(TVI);
- --OtherFPSize;
- MadeChange = true;
- continue;
- }
- }
- ++TVI;
- }
- // If this is the only type in the large set, the constraint can never be
- // satisfied.
- if ((Other.hasIntegerTypes() && OtherIntSize == 0)
- || (Other.hasFloatingPointTypes() && OtherFPSize == 0))
- TP.error("Type inference contradiction found, '" +
- Other.getName() + "' has nothing larger than '" + getName() +"'!");
- // Okay, find the largest type in the Other set and remove it from the
- // current set.
- MVT::SimpleValueType LargestInt = MVT::Other;
- for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
- if (isInteger(Other.TypeVec[i])) {
- LargestInt = Other.TypeVec[i];
- break;
- }
- for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
- if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
- LargestInt = Other.TypeVec[i];
- MVT::SimpleValueType LargestFP = MVT::Other;
- for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
- if (isFloatingPoint(Other.TypeVec[i])) {
- LargestFP = Other.TypeVec[i];
- break;
- }
- for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
- if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
- LargestFP = Other.TypeVec[i];
- int IntSize = 0;
- int FPSize = 0;
- for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
- TypeVec.begin();
- TVI != TypeVec.end();
- /* NULL */) {
- if (isInteger(*TVI)) {
- ++IntSize;
- if (*TVI == LargestInt) {
- TVI = TypeVec.erase(TVI);
- --IntSize;
- MadeChange = true;
- continue;
- }
- }
- else if (isFloatingPoint(*TVI)) {
- ++FPSize;
- if (*TVI == LargestFP) {
- TVI = TypeVec.erase(TVI);
- --FPSize;
- MadeChange = true;
- continue;
- }
- }
- ++TVI;
- }
- // If this is the only type in the small set, the constraint can never be
- // satisfied.
- if ((hasIntegerTypes() && IntSize == 0)
- || (hasFloatingPointTypes() && FPSize == 0))
- TP.error("Type inference contradiction found, '" +
- getName() + "' has nothing smaller than '" + Other.getName()+"'!");
- return MadeChange;
- }
- /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
- /// whose element is specified by VTOperand.
- bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
- TreePattern &TP) {
- // "This" must be a vector and "VTOperand" must be a scalar.
- bool MadeChange = false;
- MadeChange |= EnforceVector(TP);
- MadeChange |= VTOperand.EnforceScalar(TP);
- // If we know the vector type, it forces the scalar to agree.
- if (isConcrete()) {
- EVT IVT = getConcrete();
- IVT = IVT.getVectorElementType();
- return MadeChange |
- VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
- }
- // If the scalar type is known, filter out vector types whose element types
- // disagree.
- if (!VTOperand.isConcrete())
- return MadeChange;
- MVT::SimpleValueType VT = VTOperand.getConcrete();
- TypeSet InputSet(*this);
- // Filter out all the types which don't have the right element type.
- for (unsigned i = 0; i != TypeVec.size(); ++i) {
- assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
- if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
- TypeVec.erase(TypeVec.begin()+i--);
- MadeChange = true;
- }
- }
- if (TypeVec.empty()) // FIXME: Really want an SMLoc here!
- TP.error("Type inference contradiction found, forcing '" +
- InputSet.getName() + "' to have a vector element");
- return MadeChange;
- }
- /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
- /// vector type specified by VTOperand.
- bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
- TreePattern &TP) {
- // "This" must be a vector and "VTOperand" must be a vector.
- bool MadeChange = false;
- MadeChange |= EnforceVector(TP);
- MadeChange |= VTOperand.EnforceVector(TP);
- // "This" must be larger than "VTOperand."
- MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
- // If we know the vector type, it forces the scalar types to agree.
- if (isConcrete()) {
- EVT IVT = getConcrete();
- IVT = IVT.getVectorElementType();
- EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
- MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
- } else if (VTOperand.isConcrete()) {
- EVT IVT = VTOperand.getConcrete();
- IVT = IVT.getVectorElementType();
- EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
- MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
- }
- return MadeChange;
- }
- //===----------------------------------------------------------------------===//
- // Helpers for working with extended types.
- bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const {
- return LHS->getID() < RHS->getID();
- }
- /// Dependent variable map for CodeGenDAGPattern variant generation
- typedef std::map<std::string, int> DepVarMap;
- /// Const iterator shorthand for DepVarMap
- typedef DepVarMap::const_iterator DepVarMap_citer;
- static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
- if (N->isLeaf()) {
- if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL)
- DepMap[N->getName()]++;
- } else {
- for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
- FindDepVarsOf(N->getChild(i), DepMap);
- }
- }
-
- /// Find dependent variables within child patterns
- static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
- DepVarMap depcounts;
- FindDepVarsOf(N, depcounts);
- for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
- if (i->second > 1) // std::pair<std::string, int>
- DepVars.insert(i->first);
- }
- }
- #ifndef NDEBUG
- /// Dump the dependent variable set:
- static void DumpDepVars(MultipleUseVarSet &DepVars) {
- if (DepVars.empty()) {
- DEBUG(errs() << "<empty set>");
- } else {
- DEBUG(errs() << "[ ");
- for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
- e = DepVars.end(); i != e; ++i) {
- DEBUG(errs() << (*i) << " ");
- }
- DEBUG(errs() << "]");
- }
- }
- #endif
- //===----------------------------------------------------------------------===//
- // TreePredicateFn Implementation
- //===----------------------------------------------------------------------===//
- /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
- TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
- assert((getPredCode().empty() || getImmCode().empty()) &&
- ".td file corrupt: can't have a node predicate *and* an imm predicate");
- }
- std::string TreePredicateFn::getPredCode() const {
- return PatFragRec->getRecord()->getValueAsString("PredicateCode");
- }
- std::string TreePredicateFn::getImmCode() const {
- return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
- }
- /// isAlwaysTrue - Return true if this is a noop predicate.
- bool TreePredicateFn::isAlwaysTrue() const {
- return getPredCode().empty() && getImmCode().empty();
- }
- /// Return the name to use in the generated code to reference this, this is
- /// "Predicate_foo" if from a pattern fragment "foo".
- std::string TreePredicateFn::getFnName() const {
- return "Predicate_" + PatFragRec->getRecord()->getName();
- }
- /// getCodeToRunOnSDNode - Return the code for the function body that
- /// evaluates this predicate. The argument is expected to be in "Node",
- /// not N. This handles casting and conversion to a concrete node type as
- /// appropriate.
- std::string TreePredicateFn::getCodeToRunOnSDNode() const {
- // Handle immediate predicates first.
- std::string ImmCode = getImmCode();
- if (!ImmCode.empty()) {
- std::string Result =
- " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
- return Result + ImmCode;
- }
-
- // Handle arbitrary node predicates.
- assert(!getPredCode().empty() && "Don't have any predicate code!");
- std::string ClassName;
- if (PatFragRec->getOnlyTree()->isLeaf())
- ClassName = "SDNode";
- else {
- Record *Op = PatFragRec->getOnlyTree()->getOperator();
- ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
- }
- std::string Result;
- if (ClassName == "SDNode")
- Result = " SDNode *N = Node;\n";
- else
- Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
-
- return Result + getPredCode();
- }
- //===----------------------------------------------------------------------===//
- // PatternToMatch implementation
- //
- /// getPatternSize - Return the 'size' of this pattern. We want to match large
- /// patterns before small ones. This is used to determine the size of a
- /// pattern.
- static unsigned getPatternSize(const TreePatternNode *P,
- const CodeGenDAGPatterns &CGP) {
- unsigned Size = 3; // The node itself.
- // If the root node is a ConstantSDNode, increases its size.
- // e.g. (set R32:$dst, 0).
- if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
- Size += 2;
- // FIXME: This is a hack to statically increase the priority of patterns
- // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
- // Later we can allow complexity / cost for each pattern to be (optionally)
- // specified. To get best possible pattern match we'll need to dynamically
- // calculate the complexity of all patterns a dag can potentially map to.
- const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
- if (AM)
- Size += AM->getNumOperands() * 3;
- // If this node has some predicate function that must match, it adds to the
- // complexity of this node.
- if (!P->getPredicateFns().empty())
- ++Size;
- // Count children in the count if they are also nodes.
- for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
- TreePatternNode *Child = P->getChild(i);
- if (!Child->isLeaf() && Child->getNumTypes() &&
- Child->getType(0) != MVT::Other)
- Size += getPatternSize(Child, CGP);
- else if (Child->isLeaf()) {
- if (dynamic_cast<IntInit*>(Child->getLeafValue()))
- Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
- else if (Child->getComplexPatternInfo(CGP))
- Size += getPatternSize(Child, CGP);
- else if (!Child->getPredicateFns().empty())
- ++Size;
- }
- }
- return Size;
- }
- /// Compute the complexity metric for the input pattern. This roughly
- /// corresponds to the number of nodes that are covered.
- unsigned PatternToMatch::
- getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
- return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
- }
- /// getPredicateCheck - Return a single string containing all of this
- /// pattern's predicates concatenated with "&&" operators.
- ///
- std::string PatternToMatch::getPredicateCheck() const {
- std::string PredicateCheck;
- for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
- if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
- Record *Def = Pred->getDef();
- if (!Def->isSubClassOf("Predicate")) {
- #ifndef NDEBUG
- Def->dump();
- #endif
- llvm_unreachable("Unknown predicate type!");
- }
- if (!PredicateCheck.empty())
- PredicateCheck += " && ";
- PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
- }
- }
- return PredicateCheck;
- }
- //===----------------------------------------------------------------------===//
- // SDTypeConstraint implementation
- //
- SDTypeConstraint::SDTypeConstraint(Record *R) {
- OperandNo = R->getValueAsInt("OperandNum");
- if (R->isSubClassOf("SDTCisVT")) {
- ConstraintType = SDTCisVT;
- x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
- if (x.SDTCisVT_Info.VT == MVT::isVoid)
- throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
- } else if (R->isSubClassOf("SDTCisPtrTy")) {
- ConstraintType = SDTCisPtrTy;
- } else if (R->isSubClassOf("SDTCisInt")) {
- ConstraintType = SDTCisInt;
- } else if (R->isSubClassOf("SDTCisFP")) {
- ConstraintType = SDTCisFP;
- } else if (R->isSubClassOf("SDTCisVec")) {
- ConstraintType = SDTCisVec;
- } else if (R->isSubClassOf("SDTCisSameAs")) {
- ConstraintType = SDTCisSameAs;
- x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
- } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
- ConstraintType = SDTCisVTSmallerThanOp;
- x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
- R->getValueAsInt("OtherOperandNum");
- } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
- ConstraintType = SDTCisOpSmallerThanOp;
- x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
- R->getValueAsInt("BigOperandNum");
- } else if (R->isSubClassOf("SDTCisEltOfVec")) {
- ConstraintType = SDTCisEltOfVec;
- x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
- } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
- ConstraintType = SDTCisSubVecOfVec;
- x.SDTCisSubVecOfVec_Info.OtherOperandNum =
- R->getValueAsInt("OtherOpNum");
- } else {
- errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
- exit(1);
- }
- }
- /// getOperandNum - Return the node corresponding to operand #OpNo in tree
- /// N, and the result number in ResNo.
- static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
- const SDNodeInfo &NodeInfo,
- unsigned &ResNo) {
- unsigned NumResults = NodeInfo.getNumResults();
- if (OpNo < NumResults) {
- ResNo = OpNo;
- return N;
- }
- OpNo -= NumResults;
- if (OpNo >= N->getNumChildren()) {
- errs() << "Invalid operand number in type constraint "
- << (OpNo+NumResults) << " ";
- N->dump();
- errs() << '\n';
- exit(1);
- }
- return N->getChild(OpNo);
- }
- /// ApplyTypeConstraint - Given a node in a pattern, apply this type
- /// constraint to the nodes operands. This returns true if it makes a
- /// change, false otherwise. If a type contradiction is found, throw an
- /// exception.
- bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
- const SDNodeInfo &NodeInfo,
- TreePattern &TP) const {
- unsigned ResNo = 0; // The result number being referenced.
- TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
- switch (ConstraintType) {
- case SDTCisVT:
- // Operand must be a particular type.
- return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
- case SDTCisPtrTy:
- // Operand must be same as target pointer type.
- return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
- case SDTCisInt:
- // Require it to be one of the legal integer VTs.
- return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
- case SDTCisFP:
- // Require it to be one of the legal fp VTs.
- return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
- case SDTCisVec:
- // Require it to be one of the legal vector VTs.
- return NodeToApply->getExtType(ResNo).EnforceVector(TP);
- case SDTCisSameAs: {
- unsigned OResNo = 0;
- TreePatternNode *OtherNode =
- getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
- return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
- OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
- }
- case SDTCisVTSmallerThanOp: {
- // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
- // have an integer type that is smaller than the VT.
- if (!NodeToApply->isLeaf() ||
- !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
- !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
- ->isSubClassOf("ValueType"))
- TP.error(N->getOperator()->getName() + " expects a VT operand!");
- MVT::SimpleValueType VT =
- getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
- EEVT::TypeSet TypeListTmp(VT, TP);
- unsigned OResNo = 0;
- TreePatternNode *OtherNode =
- getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
- OResNo);
- return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
- }
- case SDTCisOpSmallerThanOp: {
- unsigned BResNo = 0;
- TreePatternNode *BigOperand =
- getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
- BResNo);
- return NodeToApply->getExtType(ResNo).
- EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
- }
- case SDTCisEltOfVec: {
- unsigned VResNo = 0;
- TreePatternNode *VecOperand =
- getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
- VResNo);
- // Filter vector types out of VecOperand that don't have the right element
- // type.
- return VecOperand->getExtType(VResNo).
- EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
- }
- case SDTCisSubVecOfVec: {
- unsigned VResNo = 0;
- TreePatternNode *BigVecOperand =
- getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
- VResNo);
- // Filter vector types out of BigVecOperand that don't have the
- // right subvector type.
- return BigVecOperand->getExtType(VResNo).
- EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
- }
- }
- llvm_unreachable("Invalid ConstraintType!");
- }
- //===----------------------------------------------------------------------===//
- // SDNodeInfo implementation
- //
- SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
- EnumName = R->getValueAsString("Opcode");
- SDClassName = R->getValueAsString("SDClass");
- Record *TypeProfile = R->getValueAsDef("TypeProfile");
- NumResults = TypeProfile->getValueAsInt("NumResults");
- NumOperands = TypeProfile->getValueAsInt("NumOperands");
- // Parse the properties.
- Properties = 0;
- std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
- for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
- if (PropList[i]->getName() == "SDNPCommutative") {
- Properties |= 1 << SDNPCommutative;
- } else if (PropList[i]->getName() == "SDNPAssociative") {
- Properties |= 1 << SDNPAssociative;
- } else if (PropList[i]->getName() == "SDNPHasChain") {
- Properties |= 1 << SDNPHasChain;
- } else if (PropList[i]->getName() == "SDNPOutGlue") {
- Properties |= 1 << SDNPOutGlue;
- } else if (PropList[i]->getName() == "SDNPInGlue") {
- Properties |= 1 << SDNPInGlue;
- } else if (PropList[i]->getName() == "SDNPOptInGlue") {
- Properties |= 1 << SDNPOptInGlue;
- } else if (PropList[i]->getName() == "SDNPMayStore") {
- Properties |= 1 << SDNPMayStore;
- } else if (PropList[i]->getName() == "SDNPMayLoad") {
- Properties |= 1 << SDNPMayLoad;
- } else if (PropList[i]->getName() == "SDNPSideEffect") {
- Properties |= 1 << SDNPSideEffect;
- } else if (PropList[i]->getName() == "SDNPMemOperand") {
- Properties |= 1 << SDNPMemOperand;
- } else if (PropList[i]->getName() == "SDNPVariadic") {
- Properties |= 1 << SDNPVariadic;
- } else {
- errs() << "Unknown SD Node property '" << PropList[i]->getName()
- << "' on node '" << R->getName() << "'!\n";
- exit(1);
- }
- }
- // Parse the type constraints.
- std::vector<Record*> ConstraintList =
- TypeProfile->getValueAsListOfDefs("Constraints");
- TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
- }
- /// getKnownType - If the type constraints on this node imply a fixed type
- /// (e.g. all stores return void, etc), then return it as an
- /// MVT::SimpleValueType. Otherwise, return EEVT::Other.
- MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
- unsigned NumResults = getNumResults();
- assert(NumResults <= 1 &&
- "We only work with nodes with zero or one result so far!");
- assert(ResNo == 0 && "Only handles single result nodes so far");
- for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
- // Make sure that this applies to the correct node result.
- if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value #
- continue;
- switch (TypeConstraints[i].ConstraintType) {
- default: break;
- case SDTypeConstraint::SDTCisVT:
- return TypeConstraints[i].x.SDTCisVT_Info.VT;
- case SDTypeConstraint::SDTCisPtrTy:
- return MVT::iPTR;
- }
- }
- return MVT::Other;
- }
- //===----------------------------------------------------------------------===//
- // TreePatternNode implementation
- //
- TreePatternNode::~TreePatternNode() {
- #if 0 // FIXME: implement refcounted tree nodes!
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- delete getChild(i);
- #endif
- }
- static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
- if (Operator->getName() == "set" ||
- Operator->getName() == "implicit")
- return 0; // All return nothing.
- if (Operator->isSubClassOf("Intrinsic"))
- return CDP.getIntrinsic(Operator).IS.RetVTs.size();
- if (Operator->isSubClassOf("SDNode"))
- return CDP.getSDNodeInfo(Operator).getNumResults();
- if (Operator->isSubClassOf("PatFrag")) {
- // If we've already parsed this pattern fragment, get it. Otherwise, handle
- // the forward reference case where one pattern fragment references another
- // before it is processed.
- if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
- return PFRec->getOnlyTree()->getNumTypes();
- // Get the result tree.
- DagInit *Tree = Operator->getValueAsDag("Fragment");
- Record *Op = 0;
- if (Tree && dynamic_cast<DefInit*>(Tree->getOperator()))
- Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef();
- assert(Op && "Invalid Fragment");
- return GetNumNodeResults(Op, CDP);
- }
- if (Operator->isSubClassOf("Instruction")) {
- CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
- // FIXME: Should allow access to all the results here.
- unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
- // Add on one implicit def if it has a resolvable type.
- if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
- ++NumDefsToAdd;
- return NumDefsToAdd;
- }
- if (Operator->isSubClassOf("SDNodeXForm"))
- return 1; // FIXME: Generalize SDNodeXForm
- Operator->dump();
- errs() << "Unhandled node in GetNumNodeResults\n";
- exit(1);
- }
- void TreePatternNode::print(raw_ostream &OS) const {
- if (isLeaf())
- OS << *getLeafValue();
- else
- OS << '(' << getOperator()->getName();
- for (unsigned i = 0, e = Types.size(); i != e; ++i)
- OS << ':' << getExtType(i).getName();
- if (!isLeaf()) {
- if (getNumChildren() != 0) {
- OS << " ";
- getChild(0)->print(OS);
- for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
- OS << ", ";
- getChild(i)->print(OS);
- }
- }
- OS << ")";
- }
- for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
- OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
- if (TransformFn)
- OS << "<<X:" << TransformFn->getName() << ">>";
- if (!getName().empty())
- OS << ":$" << getName();
- }
- void TreePatternNode::dump() const {
- print(errs());
- }
- /// isIsomorphicTo - Return true if this node is recursively
- /// isomorphic to the specified node. For this comparison, the node's
- /// entire state is considered. The assigned name is ignored, since
- /// nodes with differing names are considered isomorphic. However, if
- /// the assigned name is present in the dependent variable set, then
- /// the assigned name is considered significant and the node is
- /// isomorphic if the names match.
- bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
- const MultipleUseVarSet &DepVars) const {
- if (N == this) return true;
- if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
- getPredicateFns() != N->getPredicateFns() ||
- getTransformFn() != N->getTransformFn())
- return false;
- if (isLeaf()) {
- if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
- if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) {
- return ((DI->getDef() == NDI->getDef())
- && (DepVars.find(getName()) == DepVars.end()
- || getName() == N->getName()));
- }
- }
- return getLeafValue() == N->getLeafValue();
- }
- if (N->getOperator() != getOperator() ||
- N->getNumChildren() != getNumChildren()) return false;
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
- return false;
- return true;
- }
- /// clone - Make a copy of this tree and all of its children.
- ///
- TreePatternNode *TreePatternNode::clone() const {
- TreePatternNode *New;
- if (isLeaf()) {
- New = new TreePatternNode(getLeafValue(), getNumTypes());
- } else {
- std::vector<TreePatternNode*> CChildren;
- CChildren.reserve(Children.size());
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- CChildren.push_back(getChild(i)->clone());
- New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
- }
- New->setName(getName());
- New->Types = Types;
- New->setPredicateFns(getPredicateFns());
- New->setTransformFn(getTransformFn());
- return New;
- }
- /// RemoveAllTypes - Recursively strip all the types of this tree.
- void TreePatternNode::RemoveAllTypes() {
- for (unsigned i = 0, e = Types.size(); i != e; ++i)
- Types[i] = EEVT::TypeSet(); // Reset to unknown type.
- if (isLeaf()) return;
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- getChild(i)->RemoveAllTypes();
- }
- /// SubstituteFormalArguments - Replace the formal arguments in this tree
- /// with actual values specified by ArgMap.
- void TreePatternNode::
- SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
- if (isLeaf()) return;
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
- TreePatternNode *Child = getChild(i);
- if (Child->isLeaf()) {
- Init *Val = Child->getLeafValue();
- if (dynamic_cast<DefInit*>(Val) &&
- static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
- // We found a use of a formal argument, replace it with its value.
- TreePatternNode *NewChild = ArgMap[Child->getName()];
- assert(NewChild && "Couldn't find formal argument!");
- assert((Child->getPredicateFns().empty() ||
- NewChild->getPredicateFns() == Child->getPredicateFns()) &&
- "Non-empty child predicate clobbered!");
- setChild(i, NewChild);
- }
- } else {
- getChild(i)->SubstituteFormalArguments(ArgMap);
- }
- }
- }
- /// InlinePatternFragments - If this pattern refers to any pattern
- /// fragments, inline them into place, giving us a pattern without any
- /// PatFrag references.
- TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
- if (isLeaf()) return this; // nothing to do.
- Record *Op = getOperator();
- if (!Op->isSubClassOf("PatFrag")) {
- // Just recursively inline children nodes.
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
- TreePatternNode *Child = getChild(i);
- TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
- assert((Child->getPredicateFns().empty() ||
- NewChild->getPredicateFns() == Child->getPredicateFns()) &&
- "Non-empty child predicate clobbered!");
- setChild(i, NewChild);
- }
- return this;
- }
- // Otherwise, we found a reference to a fragment. First, look up its
- // TreePattern record.
- TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
- // Verify that we are passing the right number of operands.
- if (Frag->getNumArgs() != Children.size())
- TP.error("'" + Op->getName() + "' fragment requires " +
- utostr(Frag->getNumArgs()) + " operands!");
- TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
- TreePredicateFn PredFn(Frag);
- if (!PredFn.isAlwaysTrue())
- FragTree->addPredicateFn(PredFn);
- // Resolve formal arguments to their actual value.
- if (Frag->getNumArgs()) {
- // Compute the map of formal to actual arguments.
- std::map<std::string, TreePatternNode*> ArgMap;
- for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
- ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
- FragTree->SubstituteFormalArguments(ArgMap);
- }
- FragTree->setName(getName());
- for (unsigned i = 0, e = Types.size(); i != e; ++i)
- FragTree->UpdateNodeType(i, getExtType(i), TP);
- // Transfer in the old predicates.
- for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
- FragTree->addPredicateFn(getPredicateFns()[i]);
- // Get a new copy of this fragment to stitch into here.
- //delete this; // FIXME: implement refcounting!
- // The fragment we inlined could have recursive inlining that is needed. See
- // if there are any pattern fragments in it and inline them as needed.
- return FragTree->InlinePatternFragments(TP);
- }
- /// getImplicitType - Check to see if the specified record has an implicit
- /// type which should be applied to it. This will infer the type of register
- /// references from the register file information, for example.
- ///
- static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
- bool NotRegisters, TreePattern &TP) {
- // Check to see if this is a register operand.
- if (R->isSubClassOf("RegisterOperand")) {
- assert(ResNo == 0 && "Regoperand ref only has one result!");
- if (NotRegisters)
- return EEVT::TypeSet(); // Unknown.
- Record *RegClass = R->getValueAsDef("RegClass");
- const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
- return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
- }
- // Check to see if this is a register or a register class.
- if (R->isSubClassOf("RegisterClass")) {
- assert(ResNo == 0 && "Regclass ref only has one result!");
- if (NotRegisters)
- return EEVT::TypeSet(); // Unknown.
- const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
- return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
- }
- if (R->isSubClassOf("PatFrag")) {
- assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
- // Pattern fragment types will be resolved when they are inlined.
- return EEVT::TypeSet(); // Unknown.
- }
- if (R->isSubClassOf("Register")) {
- assert(ResNo == 0 && "Registers only produce one result!");
- if (NotRegisters)
- return EEVT::TypeSet(); // Unknown.
- const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
- return EEVT::TypeSet(T.getRegisterVTs(R));
- }
- if (R->isSubClassOf("SubRegIndex")) {
- assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
- return EEVT::TypeSet();
- }
- if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
- assert(ResNo == 0 && "This node only has one result!");
- // Using a VTSDNode or CondCodeSDNode.
- return EEVT::TypeSet(MVT::Other, TP);
- }
- if (R->isSubClassOf("ComplexPattern")) {
- assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
- if (NotRegisters)
- return EEVT::TypeSet(); // Unknown.
- return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
- TP);
- }
- if (R->isSubClassOf("PointerLikeRegClass")) {
- assert(ResNo == 0 && "Regclass can only have one result!");
- return EEVT::TypeSet(MVT::iPTR, TP);
- }
- if (R->getName() == "node" || R->getName() == "srcvalue" ||
- R->getName() == "zero_reg") {
- // Placeholder.
- return EEVT::TypeSet(); // Unknown.
- }
- TP.error("Unknown node flavor used in pattern: " + R->getName());
- return EEVT::TypeSet(MVT::Other, TP);
- }
- /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
- /// CodeGenIntrinsic information for it, otherwise return a null pointer.
- const CodeGenIntrinsic *TreePatternNode::
- getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
- if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
- getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
- getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
- return 0;
- unsigned IID =
- dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
- return &CDP.getIntrinsicInfo(IID);
- }
- /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
- /// return the ComplexPattern information, otherwise return null.
- const ComplexPattern *
- TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
- if (!isLeaf()) return 0;
- DefInit *DI = dynamic_cast<DefInit*>(getLeafValue());
- if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
- return &CGP.getComplexPattern(DI->getDef());
- return 0;
- }
- /// NodeHasProperty - Return true if this node has the specified property.
- bool TreePatternNode::NodeHasProperty(SDNP Property,
- const CodeGenDAGPatterns &CGP) const {
- if (isLeaf()) {
- if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
- return CP->hasProperty(Property);
- return false;
- }
- Record *Operator = getOperator();
- if (!Operator->isSubClassOf("SDNode")) return false;
- return CGP.getSDNodeInfo(Operator).hasProperty(Property);
- }
- /// TreeHasProperty - Return true if any node in this tree has the specified
- /// property.
- bool TreePatternNode::TreeHasProperty(SDNP Property,
- const CodeGenDAGPatterns &CGP) const {
- if (NodeHasProperty(Property, CGP))
- return true;
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- if (getChild(i)->TreeHasProperty(Property, CGP))
- return true;
- return false;
- }
- /// isCommutativeIntrinsic - Return true if the node corresponds to a
- /// commutative intrinsic.
- bool
- TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
- if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
- return Int->isCommutative;
- return false;
- }
- /// ApplyTypeConstraints - Apply all of the type constraints relevant to
- /// this node and its children in the tree. This returns true if it makes a
- /// change, false otherwise. If a type contradiction is found, throw an
- /// exception.
- bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
- CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
- if (isLeaf()) {
- if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
- // If it's a regclass or something else known, include the type.
- bool MadeChange = false;
- for (unsigned i = 0, e = Types.size(); i != e; ++i)
- MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
- NotRegisters, TP), TP);
- return MadeChange;
- }
- if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
- assert(Types.size() == 1 && "Invalid IntInit");
- // Int inits are always integers. :)
- bool MadeChange = Types[0].EnforceInteger(TP);
- if (!Types[0].isConcrete())
- return MadeChange;
- MVT::SimpleValueType VT = getType(0);
- if (VT == MVT::iPTR || VT == MVT::iPTRAny)
- return MadeChange;
- unsigned Size = EVT(VT).getSizeInBits();
- // Make sure that the value is representable for this type.
- if (Size >= 32) return MadeChange;
- int Val = (II->getValue() << (32-Size)) >> (32-Size);
- if (Val == II->getValue()) return MadeChange;
- // If sign-extended doesn't fit, does it fit as unsigned?
- unsigned ValueMask;
- unsigned UnsignedVal;
- ValueMask = unsigned(~uint32_t(0UL) >> (32-Size));
- UnsignedVal = unsigned(II->getValue());
- if ((ValueMask & UnsignedVal) == UnsignedVal)
- return MadeChange;
- TP.error("Integer value '" + itostr(II->getValue())+
- "' is out of range for type '" + getEnumName(getType(0)) + "'!");
- return MadeChange;
- }
- return false;
- }
- // special handling for set, which isn't really an SDNode.
- if (getOperator()->getName() == "set") {
- assert(getNumTypes() == 0 && "Set doesn't produce a value");
- assert(getNumChildren() >= 2 && "Missing RHS of a set?");
- unsigned NC = getNumChildren();
- TreePatternNode *SetVal = getChild(NC-1);
- bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
- for (unsigned i = 0; i < NC-1; ++i) {
- TreePatternNode *Child = getChild(i);
- MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
- // Types of operands must match.
- MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
- MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
- }
- return MadeChange;
- }
- if (getOperator()->getName() == "implicit") {
- assert(getNumTypes() == 0 && "Node doesn't produce a value");
- bool MadeChange = false;
- for (unsigned i = 0; i < getNumChildren(); ++i)
- MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
- return MadeChange;
- }
- if (getOperator()->getName() == "COPY_TO_REGCLASS") {
- bool MadeChange = false;
- MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
- MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
- assert(getChild(0)->getNumTypes() == 1 &&
- getChild(1)->getNumTypes() == 1 && "Unhandled case");
- // child #1 of COPY_TO_REGCLASS should be a register class. We don't care
- // what type it gets, so if it didn't get a concrete type just give it the
- // first viable type from the reg class.
- if (!getChild(1)->hasTypeSet(0) &&
- !getChild(1)->getExtType(0).isCompletelyUnknown()) {
- MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0];
- MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP);
- }
- return MadeChange;
- }
- if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
- bool MadeChange = false;
- // Apply the result type to the node.
- unsigned NumRetVTs = Int->IS.RetVTs.size();
- unsigned NumParamVTs = Int->IS.ParamVTs.size();
- for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
- MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
- if (getNumChildren() != NumParamVTs + 1)
- TP.error("Intrinsic '" + Int->Name + "' expects " +
- utostr(NumParamVTs) + " operands, not " +
- utostr(getNumChildren() - 1) + " operands!");
- // Apply type info to the intrinsic ID.
- MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
- for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
- MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
- MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
- assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
- MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
- }
- return MadeChange;
- }
- if (getOperator()->isSubClassOf("SDNode")) {
- const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
- // Check that the number of operands is sane. Negative operands -> varargs.
- if (NI.getNumOperands() >= 0 &&
- getNumChildren() != (unsigned)NI.getNumOperands())
- TP.error(getOperator()->getName() + " node requires exactly " +
- itostr(NI.getNumOperands()) + " operands!");
- bool MadeChange = NI.ApplyTypeConstraints(this, TP);
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
- return MadeChange;
- }
- if (getOperator()->isSubClassOf("Instruction")) {
- const DAGInstruction &Inst = CDP.getInstruction(getOperator());
- CodeGenInstruction &InstInfo =
- CDP.getTargetInfo().getInstruction(getOperator());
- bool MadeChange = false;
- // Apply the result types to the node, these come from the things in the
- // (outs) list of the instruction.
- // FIXME: Cap at one result so far.
- unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
- for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) {
- Record *ResultNode = Inst.getResult(ResNo);
- if (ResultNode->isSubClassOf("PointerLikeRegClass")) {
- MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP);
- } else if (ResultNode->isSubClassOf("RegisterOperand")) {
- Record *RegClass = ResultNode->getValueAsDef("RegClass");
- const CodeGenRegisterClass &RC =
- CDP.getTargetInfo().getRegisterClass(RegClass);
- MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
- } else if (ResultNode->getName() == "unknown") {
- // Nothing to do.
- } else {
- assert(ResultNode->isSubClassOf("RegisterClass") &&
- "Operands should be register classes!");
- const CodeGenRegisterClass &RC =
- CDP.getTargetInfo().getRegisterClass(ResultNode);
- MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
- }
- }
- // If the instruction has implicit defs, we apply the first one as a result.
- // FIXME: This sucks, it should apply all implicit defs.
- if (!InstInfo.ImplicitDefs.empty()) {
- unsigned ResNo = NumResultsToAdd;
- // FIXME: Generalize to multiple possible types and multiple possible
- // ImplicitDefs.
- MVT::SimpleValueType VT =
- InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
- if (VT != MVT::Other)
- MadeChange |= UpdateNodeType(ResNo, VT, TP);
- }
- // If this is an INSERT_SUBREG, constrain the source and destination VTs to
- // be the same.
- if (getOperator()->getName() == "INSERT_SUBREG") {
- assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
- MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
- MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
- }
- unsigned ChildNo = 0;
- for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
- Record *OperandNode = Inst.getOperand(i);
- // If the instruction expects a predicate or optional def operand, we
- // codegen this by setting the operand to it's default value if it has a
- // non-empty DefaultOps field.
- if ((OperandNode->isSubClassOf("PredicateOperand") ||
- OperandNode->isSubClassOf("OptionalDefOperand")) &&
- !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
- continue;
- // Verify that we didn't run out of provided operands.
- if (ChildNo >= getNumChildren())
- TP.error("Instruction '" + getOperator()->getName() +
- "' expects more operands than were provided.");
- MVT::SimpleValueType VT;
- TreePatternNode *Child = getChild(ChildNo++);
- unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
- if (OperandNode->isSubClassOf("RegisterClass")) {
- const CodeGenRegisterClass &RC =
- CDP.getTargetInfo().getRegisterClass(OperandNode);
- MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
- } else if (OperandNode->isSubClassOf("RegisterOperand")) {
- Record *RegClass = OperandNode->getValueAsDef("RegClass");
- const CodeGenRegisterClass &RC =
- CDP.getTargetInfo().getRegisterClass(RegClass);
- MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
- } else if (OperandNode->isSubClassOf("Operand")) {
- VT = getValueType(OperandNode->getValueAsDef("Type"));
- MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP);
- } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) {
- MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP);
- } else if (OperandNode->getName() == "unknown") {
- // Nothing to do.
- } else
- llvm_unreachable("Unknown operand type!");
- MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
- }
- if (ChildNo != getNumChildren())
- TP.error("Instruction '" + getOperator()->getName() +
- "' was provided too many operands!");
- return MadeChange;
- }
- assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
- // Node transforms always take one operand.
- if (getNumChildren() != 1)
- TP.error("Node transform '" + getOperator()->getName() +
- "' requires one operand!");
- bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
- // If either the output or input of the xform does not have exact
- // type info. We assume they must be the same. Otherwise, it is perfectly
- // legal to transform from one type to a completely different type.
- #if 0
- if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
- bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
- MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
- return MadeChange;
- }
- #endif
- return MadeChange;
- }
- /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
- /// RHS of a commutative operation, not the on LHS.
- static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
- if (!N->isLeaf() && N->getOperator()->getName() == "imm")
- return true;
- if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
- return true;
- return false;
- }
- /// canPatternMatch - If it is impossible for this pattern to match on this
- /// target, fill in Reason and return false. Otherwise, return true. This is
- /// used as a sanity check for .td files (to prevent people from writing stuff
- /// that can never possibly work), and to prevent the pattern permuter from
- /// generating stuff that is useless.
- bool TreePatternNode::canPatternMatch(std::string &Reason,
- const CodeGenDAGPatterns &CDP) {
- if (isLeaf()) return true;
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- if (!getChild(i)->canPatternMatch(Reason, CDP))
- return false;
- // If this is an intrinsic, handle cases that would make it not match. For
- // example, if an operand is required to be an immediate.
- if (getOperator()->isSubClassOf("Intrinsic")) {
- // TODO:
- return true;
- }
- // If this node is a commutative operator, check that the LHS isn't an
- // immediate.
- const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
- bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
- if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
- // Scan all of the operands of the node and make sure that only the last one
- // is a constant node, unless the RHS also is.
- if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
- bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
- for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
- if (OnlyOnRHSOfCommutative(getChild(i))) {
- Reason="Immediate value must be on the RHS of commutative operators!";
- return false;
- }
- }
- }
- return true;
- }
- //===----------------------------------------------------------------------===//
- // TreePattern implementation
- //
- TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
- CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
- isInputPattern = isInput;
- for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
- Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
- }
- TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
- CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
- isInputPattern = isInput;
- Trees.push_back(ParseTreePattern(Pat, ""));
- }
- TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
- CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
- isInputPattern = isInput;
- Trees.push_back(Pat);
- }
- void TreePattern::error(const std::string &Msg) const {
- dump();
- throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
- }
- void TreePattern::ComputeNamedNodes() {
- for (unsigned i = 0, e = Trees.size(); i != e; ++i)
- ComputeNamedNodes(Trees[i]);
- }
- void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
- if (!N->getName().empty())
- NamedNodes[N->getName()].push_back(N);
- for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
- ComputeNamedNodes(N->getChild(i));
- }
- TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
- if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) {
- Record *R = DI->getDef();
- // Direct reference to a leaf DagNode or PatFrag? Turn it into a
- // TreePatternNode of its own. For example:
- /// (foo GPR, imm) -> (foo GPR, (imm))
- if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
- return ParseTreePattern(
- DagInit::get(DI, "",
- std::vector<std::pair<Init*, std::string> >()),
- OpName);
- // Input argument?
- TreePatternNode *Res = new TreePatternNode(DI, 1);
- if (R->getName() == "node" && !OpName.empty()) {
- if (OpName.empty())
- error("'node' argument requires a name to match with operand list");
- Args.push_back(OpName);
- }
- Res->setName(OpName);
- return Res;
- }
- if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) {
- if (!OpName.empty())
- error("Constant int argument should not have a name!");
- return new TreePatternNode(II, 1);
- }
- if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) {
- // Turn this into an IntInit.
- Init *II = BI->convertInitializerTo(IntRecTy::get());
- if (II == 0 || !dynamic_cast<IntInit*>(II))
- error("Bits value must be constants!");
- return ParseTreePattern(II, OpName);
- }
- DagInit *Dag = dynamic_cast<DagInit*>(TheInit);
- if (!Dag) {
- TheInit->dump();
- error("Pattern has unexpected init kind!");
- }
- DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
- if (!OpDef) error("Pattern has unexpected operator type!");
- Record *Operator = OpDef->getDef();
- if (Operator->isSubClassOf("ValueType")) {
- // If the operator is a ValueType, then this must be "type cast" of a leaf
- // node.
- if (Dag->getNumArgs() != 1)
- error("Type cast only takes one operand!");
- TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
- // Apply the type cast.
- assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
- New->UpdateNodeType(0, getValueType(Operator), *this);
- if (!OpName.empty())
- error("ValueType cast should not have a name!");
- return New;
- }
- // Verify that this is something that makes sense for an operator.
- if (!Operator->isSubClassOf("PatFrag") &&
- !Operator->isSubClassOf("SDNode") &&
- !Operator->isSubClassOf("Instruction") &&
- !Operator->isSubClassOf("SDNodeXForm") &&
- !Operator->isSubClassOf("Intrinsic") &&
- Operator->getName() != "set" &&
- Operator->getName() != "implicit")
- error("Unrecognized node '" + Operator->getName() + "'!");
- // Check to see if this is something that is illegal in an input pattern.
- if (isInputPattern) {
- if (Operator->isSubClassOf("Instruction") ||
- Operator->isSubClassOf("SDNodeXForm"))
- error("Cannot use '" + Operator->getName() + "' in an input pattern!");
- } else {
- if (Operator->isSubClassOf("Intrinsic"))
- error("Cannot use '" + Operator->getName() + "' in an output pattern!");
- if (Operator->isSubClassOf("SDNode") &&
- Operator->getName() != "imm" &&
- Operator->getName() != "fpimm" &&
- Operator->getName() != "tglobaltlsaddr" &&
- Operator->getName() != "tconstpool" &&
- Operator->getName() != "tjumptable" &&
- Operator->getName() != "tframeindex" &&
- Operator->getName() != "texternalsym" &&
- Operator->getName() != "tblockaddress" &&
- Operator->getName() != "tglobaladdr" &&
- Operator->getName() != "bb" &&
- Operator->getName() != "vt")
- error("Cannot use '" + Operator->getName() + "' in an output pattern!");
- }
- std::vector<TreePatternNode*> Children;
- // Parse all the operands.
- for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
- Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
- // If the operator is an intrinsic, then this is just syntactic sugar for for
- // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
- // convert the intrinsic name to a number.
- if (Operator->isSubClassOf("Intrinsic")) {
- const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
- unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
- // If this intrinsic returns void, it must have side-effects and thus a
- // chain.
- if (Int.IS.RetVTs.empty())
- Operator = getDAGPatterns().get_intrinsic_void_sdnode();
- else if (Int.ModRef != CodeGenIntrinsic::NoMem)
- // Has side-effects, requires chain.
- Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
- else // Otherwise, no chain.
- Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
- TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
- Children.insert(Children.begin(), IIDNode);
- }
- unsigned NumResults = GetNumNodeResults(Operator, CDP);
- TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
- Result->setName(OpName);
- if (!Dag->getName().empty()) {
- assert(Result->getName().empty());
- Result->setName(Dag->getName());
- }
- return Result;
- }
- /// SimplifyTree - See if we can simplify this tree to eliminate something that
- /// will never match in favor of something obvious that will. This is here
- /// strictly as a convenience to target authors because it allows them to write
- /// more type generic things and have useless type casts fold away.
- ///
- /// This returns true if any change is made.
- static bool SimplifyTree(TreePatternNode *&N) {
- if (N->isLeaf())
- return false;
- // If we have a bitconvert with a resolved type and if the source and
- // destination types are the same, then the bitconvert is useless, remove it.
- if (N->getOperator()->getName() == "bitconvert" &&
- N->getExtType(0).isConcrete() &&
- N->getExtType(0) == N->getChild(0)->getExtType(0) &&
- N->getName().empty()) {
- N = N->getChild(0);
- SimplifyTree(N);
- return true;
- }
- // Walk all children.
- bool MadeChange = false;
- for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
- TreePatternNode *Child = N->getChild(i);
- MadeChange |= SimplifyTree(Child);
- N->setChild(i, Child);
- }
- return MadeChange;
- }
- /// InferAllTypes - Infer/propagate as many types throughout the expression
- /// patterns as possible. Return true if all types are inferred, false
- /// otherwise. Throw an exception if a type contradiction is found.
- bool TreePattern::
- InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
- if (NamedNodes.empty())
- ComputeNamedNodes();
- bool MadeChange = true;
- while (MadeChange) {
- MadeChange = false;
- for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
- MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
- MadeChange |= SimplifyTree(Trees[i]);
- }
- // If there are constraints on our named nodes, apply them.
- for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
- I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
- SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
- // If we have input named node types, propagate their types to the named
- // values here.
- if (InNamedTypes) {
- // FIXME: Should be error?
- assert(InNamedTypes->count(I->getKey()) &&
- "Named node in output pattern but not input pattern?");
- const SmallVectorImpl<TreePatternNode*> &InNodes =
- InNamedTypes->find(I->getKey())->second;
- // The input types should be fully resolved by now.
- for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
- // If this node is a register class, and it is the root of the pattern
- // then we're mapping something onto an input register. We allow
- // changing the type of the input register in this case. This allows
- // us to match things like:
- // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
- if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
- DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue());
- if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
- DI->getDef()->isSubClassOf("RegisterOperand")))
- continue;
- }
- assert(Nodes[i]->getNumTypes() == 1 &&
- InNodes[0]->getNumTypes() == 1 &&
- "FIXME: cannot name multiple result nodes yet");
- MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
- *this);
- }
- }
- // If there are multiple nodes with the same name, they must all have the
- // same type.
- if (I->second.size() > 1) {
- for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
- TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
- assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
- "FIXME: cannot name multiple result nodes yet");
- MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
- MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
- }
- }
- }
- }
- bool HasUnresolvedTypes = false;
- for (unsigned i = 0, e = Trees.size(); i != e; ++i)
- HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
- return !HasUnresolvedTypes;
- }
- void TreePattern::print(raw_ostream &OS) const {
- OS << getRecord()->getName();
- if (!Args.empty()) {
- OS << "(" << Args[0];
- for (unsigned i = 1, e = Args.size(); i != e; ++i)
- OS << ", " << Args[i];
- OS << ")";
- }
- OS << ": ";
- if (Trees.size() > 1)
- OS << "[\n";
- for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
- OS << "\t";
- Trees[i]->print(OS);
- OS << "\n";
- }
- if (Trees.size() > 1)
- OS << "]\n";
- }
- void TreePattern::dump() const { print(errs()); }
- //===----------------------------------------------------------------------===//
- // CodeGenDAGPatterns implementation
- //
- CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
- Records(R), Target(R) {
- Intrinsics = LoadIntrinsics(Records, false);
- TgtIntrinsics = LoadIntrinsics(Records, true);
- ParseNodeInfo();
- ParseNodeTransforms();
- ParseComplexPatterns();
- ParsePatternFragments();
- ParseDefaultOperands();
- ParseInstructions();
- ParsePatterns();
- // Generate variants. For example, commutative patterns can match
- // multiple ways. Add them to PatternsToMatch as well.
- GenerateVariants();
- // Infer instruction flags. For example, we can detect loads,
- // stores, and side effects in many cases by examining an
- // instruction's pattern.
- InferInstructionFlags();
- }
- CodeGenDAGPatterns::~CodeGenDAGPatterns() {
- for (pf_iterator I = PatternFragments.begin(),
- E = PatternFragments.end(); I != E; ++I)
- delete I->second;
- }
- Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
- Record *N = Records.getDef(Name);
- if (!N || !N->isSubClassOf("SDNode")) {
- errs() << "Error getting SDNode '" << Name << "'!\n";
- exit(1);
- }
- return N;
- }
- // Parse all of the SDNode definitions for the target, populating SDNodes.
- void CodeGenDAGPatterns::ParseNodeInfo() {
- std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
- while (!Nodes.empty()) {
- SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
- Nodes.pop_back();
- }
- // Get the builtin intrinsic nodes.
- intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
- intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
- intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
- }
- /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
- /// map, and emit them to the file as functions.
- void CodeGenDAGPatterns::ParseNodeTransforms() {
- std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
- while (!Xforms.empty()) {
- Record *XFormNode = Xforms.back();
- Record *SDNode = XFormNode->getValueAsDef("Opcode");
- std::string Code = XFormNode->getValueAsString("XFormFunction");
- SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
- Xforms.pop_back();
- }
- }
- void CodeGenDAGPatterns::ParseComplexPatterns() {
- std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
- while (!AMs.empty()) {
- ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
- AMs.pop_back();
- }
- }
- /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
- /// file, building up the PatternFragments map. After we've collected them all,
- /// inline fragments together as necessary, so that there are no references left
- /// inside a pattern fragment to a pattern fragment.
- ///
- void CodeGenDAGPatterns::ParsePatternFragments() {
- std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
- // First step, parse all of the fragments.
- for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
- DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
- TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
- PatternFragments[Fragments[i]] = P;
- // Validate the argument list, converting it to set, to discard duplicates.
- std::vector<std::string> &Args = P->getArgList();
- std::set<std::string> OperandsSet(Args.begin(), Args.end());
- if (OperandsSet.count(""))
- P->error("Cannot have unnamed 'node' values in pattern fragment!");
- // Parse the operands list.
- DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
- DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
- // Special cases: ops == outs == ins. Different names are used to
- // improve readability.
- if (!OpsOp ||
- (OpsOp->getDef()->getName() != "ops" &&
- OpsOp->getDef()->getName() != "outs" &&
- OpsOp->getDef()->getName() != "ins"))
- P->error("Operands list should start with '(ops ... '!");
- // Copy over the arguments.
- Args.clear();
- for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
- if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
- static_cast<DefInit*>(OpsList->getArg(j))->
- getDef()->getName() != "node")
- P->error("Operands list should all be 'node' values.");
- if (OpsList->getArgName(j).empty())
- P->error("Operands list should have names for each operand!");
- if (!OperandsSet.count(OpsList->getArgName(j)))
- P->error("'" + OpsList->getArgName(j) +
- "' does not occur in pattern or was multiply specified!");
- OperandsSet.erase(OpsList->getArgName(j));
- Args.push_back(OpsList->getArgName(j));
- }
- if (!OperandsSet.empty())
- P->error("Operands list does not contain an entry for operand '" +
- *OperandsSet.begin() + "'!");
- // If there is a code init for this fragment, keep track of the fact that
- // this fragment uses it.
- TreePredicateFn PredFn(P);
- if (!PredFn.isAlwaysTrue())
- P->getOnlyTree()->addPredicateFn(PredFn);
- // If there is a node transformation corresponding to this, keep track of
- // it.
- Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
- if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
- P->getOnlyTree()->setTransformFn(Transform);
- }
- // Now that we've parsed all of the tree fragments, do a closure on them so
- // that there are not references to PatFrags left inside of them.
- for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
- TreePattern *ThePat = PatternFragments[Fragments[i]];
- ThePat->InlinePatternFragments();
- // Infer as many types as possible. Don't worry about it if we don't infer
- // all of them, some may depend on the inputs of the pattern.
- try {
- ThePat->InferAllTypes();
- } catch (...) {
- // If this pattern fragment is not supported by this target (no types can
- // satisfy its constraints), just ignore it. If the bogus pattern is
- // actually used by instructions, the type consistency error will be
- // reported there.
- }
- // If debugging, print out the pattern fragment result.
- DEBUG(ThePat->dump());
- }
- }
- void CodeGenDAGPatterns::ParseDefaultOperands() {
- std::vector<Record*> DefaultOps[2];
- DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
- DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
- // Find some SDNode.
- assert(!SDNodes.empty() && "No SDNodes parsed?");
- Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
- for (unsigned iter = 0; iter != 2; ++iter) {
- for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
- DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
- // Clone the DefaultInfo dag node, changing the operator from 'ops' to
- // SomeSDnode so that we can parse this.
- std::vector<std::pair<Init*, std::string> > Ops;
- for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
- Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
- DefaultInfo->getArgName(op)));
- DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
- // Create a TreePattern to parse this.
- TreePattern P(DefaultOps[iter][i], DI, false, *this);
- assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
- // Copy the operands over into a DAGDefaultOperand.
- DAGDefaultOperand DefaultOpInfo;
- TreePatternNode *T = P.getTree(0);
- for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
- TreePatternNode *TPN = T->getChild(op);
- while (TPN->ApplyTypeConstraints(P, false))
- /* Resolve all types */;
- if (TPN->ContainsUnresolvedType()) {
- if (iter == 0)
- throw "Value #" + utostr(i) + " of PredicateOperand '" +
- DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!";
- else
- throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
- DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!";
- }
- DefaultOpInfo.DefaultOps.push_back(TPN);
- }
- // Insert it into the DefaultOperands map so we can find it later.
- DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
- }
- }
- }
- /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
- /// instruction input. Return true if this is a real use.
- static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
- std::map<std::string, TreePatternNode*> &InstInputs) {
- // No name -> not interesting.
- if (Pat->getName().empty()) {
- if (Pat->isLeaf()) {
- DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
- if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
- DI->getDef()->isSubClassOf("RegisterOperand")))
- I->error("Input " + DI->getDef()->getName() + " must be named!");
- }
- return false;
- }
- Record *Rec;
- if (Pat->isLeaf()) {
- DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
- if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
- Rec = DI->getDef();
- } else {
- Rec = Pat->getOperator();
- }
- // SRCVALUE nodes are ignored.
- if (Rec->getName() == "srcvalue")
- return false;
- TreePatternNode *&Slot = InstInputs[Pat->getName()];
- if (!Slot) {
- Slot = Pat;
- return true;
- }
- Record *SlotRec;
- if (Slot->isLeaf()) {
- SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
- } else {
- assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
- SlotRec = Slot->getOperator();
- }
- // Ensure that the inputs agree if we've already seen this input.
- if (Rec != SlotRec)
- I->error("All $" + Pat->getName() + " inputs must agree with each other");
- if (Slot->getExtTypes() != Pat->getExtTypes())
- I->error("All $" + Pat->getName() + " inputs must agree with each other");
- return true;
- }
- /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
- /// part of "I", the instruction), computing the set of inputs and outputs of
- /// the pattern. Report errors if we see anything naughty.
- void CodeGenDAGPatterns::
- FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
- std::map<std::string, TreePatternNode*> &InstInputs,
- std::map<std::string, TreePatternNode*>&InstResults,
- std::vector<Record*> &InstImpResults) {
- if (Pat->isLeaf()) {
- bool isUse = HandleUse(I, Pat, InstInputs);
- if (!isUse && Pat->getTransformFn())
- I->error("Cannot specify a transform function for a non-input value!");
- return;
- }
- if (Pat->getOperator()->getName() == "implicit") {
- for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
- TreePatternNode *Dest = Pat->getChild(i);
- if (!Dest->isLeaf())
- I->error("implicitly defined value should be a register!");
- DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
- if (!Val || !Val->getDef()->isSubClassOf("Register"))
- I->error("implicitly defined value should be a register!");
- InstImpResults.push_back(Val->getDef());
- }
- return;
- }
- if (Pat->getOperator()->getName() != "set") {
- // If this is not a set, verify that the children nodes are not void typed,
- // and recurse.
- for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
- if (Pat->getChild(i)->getNumTypes() == 0)
- I->error("Cannot have void nodes inside of patterns!");
- FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
- InstImpResults);
- }
- // If this is a non-leaf node with no children, treat it basically as if
- // it were a leaf. This handles nodes like (imm).
- bool isUse = HandleUse(I, Pat, InstInputs);
- if (!isUse && Pat->getTransformFn())
- I->error("Cannot specify a transform function for a non-input value!");
- return;
- }
- // Otherwise, this is a set, validate and collect instruction results.
- if (Pat->getNumChildren() == 0)
- I->error("set requires operands!");
- if (Pat->getTransformFn())
- I->error("Cannot specify a transform function on a set node!");
- // Check the set destinations.
- unsigned NumDests = Pat->getNumChildren()-1;
- for (unsigned i = 0; i != NumDests; ++i) {
- TreePatternNode *Dest = Pat->getChild(i);
- if (!Dest->isLeaf())
- I->error("set destination should be a register!");
- DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
- if (!Val)
- I->error("set destination should be a register!");
- if (Val->getDef()->isSubClassOf("RegisterClass") ||
- Val->getDef()->isSubClassOf("RegisterOperand") ||
- Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
- if (Dest->getName().empty())
- I->error("set destination must have a name!");
- if (InstResults.count(Dest->getName()))
- I->error("cannot set '" + Dest->getName() +"' multiple times");
- InstResults[Dest->getName()] = Dest;
- } else if (Val->getDef()->isSubClassOf("Register")) {
- InstImpResults.push_back(Val->getDef());
- } else {
- I->error("set destination should be a register!");
- }
- }
- // Verify and collect info from the computation.
- FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
- InstInputs, InstResults, InstImpResults);
- }
- //===----------------------------------------------------------------------===//
- // Instruction Analysis
- //===----------------------------------------------------------------------===//
- class InstAnalyzer {
- const CodeGenDAGPatterns &CDP;
- bool &mayStore;
- bool &mayLoad;
- bool &IsBitcast;
- bool &HasSideEffects;
- bool &IsVariadic;
- public:
- InstAnalyzer(const CodeGenDAGPatterns &cdp,
- bool &maystore, bool &mayload, bool &isbc, bool &hse, bool &isv)
- : CDP(cdp), mayStore(maystore), mayLoad(mayload), IsBitcast(isbc),
- HasSideEffects(hse), IsVariadic(isv) {
- }
- /// Analyze - Analyze the specified instruction, returning true if the
- /// instruction had a pattern.
- bool Analyze(Record *InstRecord) {
- const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern();
- if (Pattern == 0) {
- HasSideEffects = 1;
- return false; // No pattern.
- }
- // FIXME: Assume only the first tree is the pattern. The others are clobber
- // nodes.
- AnalyzeNode(Pattern->getTree(0));
- return true;
- }
- private:
- bool IsNodeBitcast(const TreePatternNode *N) const {
- if (HasSideEffects || mayLoad || mayStore || IsVariadic)
- return false;
- if (N->getNumChildren() != 2)
- return false;
- const TreePatternNode *N0 = N->getChild(0);
- if (!N0->isLeaf() || !dynamic_cast<DefInit*>(N0->getLeafValue()))
- return false;
- const TreePatternNode *N1 = N->getChild(1);
- if (N1->isLeaf())
- return false;
- if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
- return false;
- const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
- if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
- return false;
- return OpInfo.getEnumName() == "ISD::BITCAST";
- }
- void AnalyzeNode(const TreePatternNode *N) {
- if (N->isLeaf()) {
- if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
- Record *LeafRec = DI->getDef();
- // Handle ComplexPattern leaves.
- if (LeafRec->isSubClassOf("ComplexPattern")) {
- const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
- if (CP.hasProperty(SDNPMayStore)) mayStore = true;
- if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
- if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true;
- }
- }
- return;
- }
- // Analyze children.
- for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
- AnalyzeNode(N->getChild(i));
- // Ignore set nodes, which are not SDNodes.
- if (N->getOperator()->getName() == "set") {
- IsBitcast = IsNodeBitcast(N);
- return;
- }
- // Get information about the SDNode for the operator.
- const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
- // Notice properties of the node.
- if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
- if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
- if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true;
- if (OpInfo.hasProperty(SDNPVariadic)) IsVariadic = true;
- if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
- // If this is an intrinsic, analyze it.
- if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
- mayLoad = true;// These may load memory.
- if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
- mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
- if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
- // WriteMem intrinsics can have other strange effects.
- HasSideEffects = true;
- }
- }
- };
- static void InferFromPattern(const CodeGenInstruction &Inst,
- bool &MayStore, bool &MayLoad,
- bool &IsBitcast,
- bool &HasSideEffects, bool &IsVariadic,
- const CodeGenDAGPatterns &CDP) {
- MayStore = MayLoad = IsBitcast = HasSideEffects = IsVariadic = false;
- bool HadPattern =
- InstAnalyzer(CDP, MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic)
- .Analyze(Inst.TheDef);
- // InstAnalyzer only correctly analyzes mayStore/mayLoad so far.
- if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it.
- // If we decided that this is a store from the pattern, then the .td file
- // entry is redundant.
- if (MayStore)
- fprintf(stderr,
- "Warning: mayStore flag explicitly set on instruction '%s'"
- " but flag already inferred from pattern.\n",
- Inst.TheDef->getName().c_str());
- MayStore = true;
- }
- if (Inst.mayLoad) { // If the .td file explicitly sets mayLoad, use it.
- // If we decided that this is a load from the pattern, then the .td file
- // entry is redundant.
- if (MayLoad)
- fprintf(stderr,
- "Warning: mayLoad flag explicitly set on instruction '%s'"
- " but flag already inferred from pattern.\n",
- Inst.TheDef->getName().c_str());
- MayLoad = true;
- }
- if (Inst.neverHasSideEffects) {
- if (HadPattern)
- fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' "
- "which already has a pattern\n", Inst.TheDef->getName().c_str());
- HasSideEffects = false;
- }
- if (Inst.hasSideEffects) {
- if (HasSideEffects)
- fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' "
- "which already inferred this.\n", Inst.TheDef->getName().c_str());
- HasSideEffects = true;
- }
- if (Inst.Operands.isVariadic)
- IsVariadic = true; // Can warn if we want.
- }
- /// ParseInstructions - Parse all of the instructions, inlining and resolving
- /// any fragments involved. This populates the Instructions list with fully
- /// resolved instructions.
- void CodeGenDAGPatterns::ParseInstructions() {
- std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
- for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
- ListInit *LI = 0;
- if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
- LI = Instrs[i]->getValueAsListInit("Pattern");
- // If there is no pattern, only collect minimal information about the
- // instruction for its operand list. We have to assume that there is one
- // result, as we have no detailed info.
- if (!LI || LI->getSize() == 0) {
- std::vector<Record*> Results;
- std::vector<Record*> Operands;
- CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
- if (InstInfo.Operands.size() != 0) {
- if (InstInfo.Operands.NumDefs == 0) {
- // These produce no results
- for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j)
- Operands.push_back(InstInfo.Operands[j].Rec);
- } else {
- // Assume the first operand is the result.
- Results.push_back(InstInfo.Operands[0].Rec);
- // The rest are inputs.
- for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j)
- Operands.push_back(InstInfo.Operands[j].Rec);
- }
- }
- // Create and insert the instruction.
- std::vector<Record*> ImpResults;
- Instructions.insert(std::make_pair(Instrs[i],
- DAGInstruction(0, Results, Operands, ImpResults)));
- continue; // no pattern.
- }
- // Parse the instruction.
- TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
- // Inline pattern fragments into it.
- I->InlinePatternFragments();
- // Infer as many types as possible. If we cannot infer all of them, we can
- // never do anything with this instruction pattern: report it to the user.
- if (!I->InferAllTypes())
- I->error("Could not infer all types in pattern!");
- // InstInputs - Keep track of all of the inputs of the instruction, along
- // with the record they are declared as.
- std::map<std::string, TreePatternNode*> InstInputs;
- // InstResults - Keep track of all the virtual registers that are 'set'
- // in the instruction, including what reg class they are.
- std::map<std::string, TreePatternNode*> InstResults;
- std::vector<Record*> InstImpResults;
- // Verify that the top-level forms in the instruction are of void type, and
- // fill in the InstResults map.
- for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
- TreePatternNode *Pat = I->getTree(j);
- if (Pat->getNumTypes() != 0)
- I->error("Top-level forms in instruction pattern should have"
- " void types");
- // Find inputs and outputs, and verify the structure of the uses/defs.
- FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
- InstImpResults);
- }
- // Now that we have inputs and outputs of the pattern, inspect the operands
- // list for the instruction. This determines the order that operands are
- // added to the machine instruction the node corresponds to.
- unsigned NumResults = InstResults.size();
- // Parse the operands list from the (ops) list, validating it.
- assert(I->getArgList().empty() && "Args list should still be empty here!");
- CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
- // Check that all of the results occur first in the list.
- std::vector<Record*> Results;
- TreePatternNode *Res0Node = 0;
- for (unsigned i = 0; i != NumResults; ++i) {
- if (i == CGI.Operands.size())
- I->error("'" + InstResults.begin()->first +
- "' set but does not appear in operand list!");
- const std::string &OpName = CGI.Operands[i].Name;
- // Check that it exists in InstResults.
- TreePatternNode *RNode = InstResults[OpName];
- if (RNode == 0)
- I->error("Operand $" + OpName + " does not exist in operand list!");
- if (i == 0)
- Res0Node = RNode;
- Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
- if (R == 0)
- I->error("Operand $" + OpName + " should be a set destination: all "
- "outputs must occur before inputs in operand list!");
- if (CGI.Operands[i].Rec != R)
- I->error("Operand $" + OpName + " class mismatch!");
- // Remember the return type.
- Results.push_back(CGI.Operands[i].Rec);
- // Okay, this one checks out.
- InstResults.erase(OpName);
- }
- // Loop over the inputs next. Make a copy of InstInputs so we can destroy
- // the copy while we're checking the inputs.
- std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
- std::vector<TreePatternNode*> ResultNodeOperands;
- std::vector<Record*> Operands;
- for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
- CGIOperandList::OperandInfo &Op = CGI.Operands[i];
- const std::string &OpName = Op.Name;
- if (OpName.empty())
- I->error("Operand #" + utostr(i) + " in operands list has no name!");
- if (!InstInputsCheck.count(OpName)) {
- // If this is an predicate operand or optional def operand with an
- // DefaultOps set filled in, we can ignore this. When we codegen it,
- // we will do so as always executed.
- if (Op.Rec->isSubClassOf("PredicateOperand") ||
- Op.Rec->isSubClassOf("OptionalDefOperand")) {
- // Does it have a non-empty DefaultOps field? If so, ignore this
- // operand.
- if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
- continue;
- }
- I->error("Operand $" + OpName +
- " does not appear in the instruction pattern");
- }
- TreePatternNode *InVal = InstInputsCheck[OpName];
- InstInputsCheck.erase(OpName); // It occurred, remove from map.
- if (InVal->isLeaf() &&
- dynamic_cast<DefInit*>(InVal->getLeafValue())) {
- Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
- if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
- I->error("Operand $" + OpName + "'s register class disagrees"
- " between the operand and pattern");
- }
- Operands.push_back(Op.Rec);
- // Construct the result for the dest-pattern operand list.
- TreePatternNode *OpNode = InVal->clone();
- // No predicate is useful on the result.
- OpNode->clearPredicateFns();
- // Promote the xform function to be an explicit node if set.
- if (Record *Xform = OpNode->getTransformFn()) {
- OpNode->setTransformFn(0);
- std::vector<TreePatternNode*> Children;
- Children.push_back(OpNode);
- OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
- }
- ResultNodeOperands.push_back(OpNode);
- }
- if (!InstInputsCheck.empty())
- I->error("Input operand $" + InstInputsCheck.begin()->first +
- " occurs in pattern but not in operands list!");
- TreePatternNode *ResultPattern =
- new TreePatternNode(I->getRecord(), ResultNodeOperands,
- GetNumNodeResults(I->getRecord(), *this));
- // Copy fully inferred output node type to instruction result pattern.
- for (unsigned i = 0; i != NumResults; ++i)
- ResultPattern->setType(i, Res0Node->getExtType(i));
- // Create and insert the instruction.
- // FIXME: InstImpResults should not be part of DAGInstruction.
- DAGInstruction TheInst(I, Results, Operands, InstImpResults);
- Instructions.insert(std::make_pair(I->getRecord(), TheInst));
- // Use a temporary tree pattern to infer all types and make sure that the
- // constructed result is correct. This depends on the instruction already
- // being inserted into the Instructions map.
- TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
- Temp.InferAllTypes(&I->getNamedNodesMap());
- DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
- TheInsertedInst.setResultPattern(Temp.getOnlyTree());
- DEBUG(I->dump());
- }
- // If we can, convert the instructions to be patterns that are matched!
- for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II =
- Instructions.begin(),
- E = Instructions.end(); II != E; ++II) {
- DAGInstruction &TheInst = II->second;
- const TreePattern *I = TheInst.getPattern();
- if (I == 0) continue; // No pattern.
- // FIXME: Assume only the first tree is the pattern. The others are clobber
- // nodes.
- TreePatternNode *Pattern = I->getTree(0);
- TreePatternNode *SrcPattern;
- if (Pattern->getOperator()->getName() == "set") {
- SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
- } else{
- // Not a set (store or something?)
- SrcPattern = Pattern;
- }
- Record *Instr = II->first;
- AddPatternToMatch(I,
- PatternToMatch(Instr,
- Instr->getValueAsListInit("Predicates"),
- SrcPattern,
- TheInst.getResultPattern(),
- TheInst.getImpResults(),
- Instr->getValueAsInt("AddedComplexity"),
- Instr->getID()));
- }
- }
- typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
- static void FindNames(const TreePatternNode *P,
- std::map<std::string, NameRecord> &Names,
- const TreePattern *PatternTop) {
- if (!P->getName().empty()) {
- NameRecord &Rec = Names[P->getName()];
- // If this is the first instance of the name, remember the node.
- if (Rec.second++ == 0)
- Rec.first = P;
- else if (Rec.first->getExtTypes() != P->getExtTypes())
- PatternTop->error("repetition of value: $" + P->getName() +
- " where different uses have different types!");
- }
- if (!P->isLeaf()) {
- for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
- FindNames(P->getChild(i), Names, PatternTop);
- }
- }
- void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern,
- const PatternToMatch &PTM) {
- // Do some sanity checking on the pattern we're about to match.
- std::string Reason;
- if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this))
- Pattern->error("Pattern can never match: " + Reason);
- // If the source pattern's root is a complex pattern, that complex pattern
- // must specify the nodes it can potentially match.
- if (const ComplexPattern *CP =
- PTM.getSrcPattern()->getComplexPatternInfo(*this))
- if (CP->getRootNodes().empty())
- Pattern->error("ComplexPattern at root must specify list of opcodes it"
- " could match");
- // Find all of the named values in the input and output, ensure they have the
- // same type.
- std::map<std::string, NameRecord> SrcNames, DstNames;
- FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
- FindNames(PTM.getDstPattern(), DstNames, Pattern);
- // Scan all of the named values in the destination pattern, rejecting them if
- // they don't exist in the input pattern.
- for (std::map<std::string, NameRecord>::iterator
- I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
- if (SrcNames[I->first].first == 0)
- Pattern->error("Pattern has input without matching name in output: $" +
- I->first);
- }
- // Scan all of the named values in the source pattern, rejecting them if the
- // name isn't used in the dest, and isn't used to tie two values together.
- for (std::map<std::string, NameRecord>::iterator
- I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
- if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1)
- Pattern->error("Pattern has dead named input: $" + I->first);
- PatternsToMatch.push_back(PTM);
- }
- void CodeGenDAGPatterns::InferInstructionFlags() {
- const std::vector<const CodeGenInstruction*> &Instructions =
- Target.getInstructionsByEnumValue();
- for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
- CodeGenInstruction &InstInfo =
- const_cast<CodeGenInstruction &>(*Instructions[i]);
- // Determine properties of the instruction from its pattern.
- bool MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic;
- InferFromPattern(InstInfo, MayStore, MayLoad, IsBitcast,
- HasSideEffects, IsVariadic, *this);
- InstInfo.mayStore = MayStore;
- InstInfo.mayLoad = MayLoad;
- InstInfo.isBitcast = IsBitcast;
- InstInfo.hasSideEffects = HasSideEffects;
- InstInfo.Operands.isVariadic = IsVariadic;
- // Sanity checks.
- if (InstInfo.isReMaterializable && InstInfo.hasSideEffects)
- throw TGError(InstInfo.TheDef->getLoc(), "The instruction " +
- InstInfo.TheDef->getName() +
- " is rematerializable AND has unmodeled side effects?");
- }
- }
- /// Given a pattern result with an unresolved type, see if we can find one
- /// instruction with an unresolved result type. Force this result type to an
- /// arbitrary element if it's possible types to converge results.
- static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
- if (N->isLeaf())
- return false;
- // Analyze children.
- for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
- if (ForceArbitraryInstResultType(N->getChild(i), TP))
- return true;
- if (!N->getOperator()->isSubClassOf("Instruction"))
- return false;
- // If this type is already concrete or completely unknown we can't do
- // anything.
- for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
- if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
- continue;
- // Otherwise, force its type to the first possibility (an arbitrary choice).
- if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
- return true;
- }
- return false;
- }
- void CodeGenDAGPatterns::ParsePatterns() {
- std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
- for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
- Record *CurPattern = Patterns[i];
- DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
- TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
- // Inline pattern fragments into it.
- Pattern->InlinePatternFragments();
- ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
- if (LI->getSize() == 0) continue; // no pattern.
- // Parse the instruction.
- TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
- // Inline pattern fragments into it.
- Result->InlinePatternFragments();
- if (Result->getNumTrees() != 1)
- Result->error("Cannot handle instructions producing instructions "
- "with temporaries yet!");
- bool IterateInference;
- bool InferredAllPatternTypes, InferredAllResultTypes;
- do {
- // Infer as many types as possible. If we cannot infer all of them, we
- // can never do anything with this pattern: report it to the user.
- InferredAllPatternTypes =
- Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
- // Infer as many types as possible. If we cannot infer all of them, we
- // can never do anything with this pattern: report it to the user.
- InferredAllResultTypes =
- Result->InferAllTypes(&Pattern->getNamedNodesMap());
- IterateInference = false;
- // Apply the type of the result to the source pattern. This helps us
- // resolve cases where the input type is known to be a pointer type (which
- // is considered resolved), but the result knows it needs to be 32- or
- // 64-bits. Infer the other way for good measure.
- for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
- Pattern->getTree(0)->getNumTypes());
- i != e; ++i) {
- IterateInference = Pattern->getTree(0)->
- UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
- IterateInference |= Result->getTree(0)->
- UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
- }
- // If our iteration has converged and the input pattern's types are fully
- // resolved but the result pattern is not fully resolved, we may have a
- // situation where we have two instructions in the result pattern and
- // the instructions require a common register class, but don't care about
- // what actual MVT is used. This is actually a bug in our modelling:
- // output patterns should have register classes, not MVTs.
- //
- // In any case, to handle this, we just go through and disambiguate some
- // arbitrary types to the result pattern's nodes.
- if (!IterateInference && InferredAllPatternTypes &&
- !InferredAllResultTypes)
- IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
- *Result);
- } while (IterateInference);
- // Verify that we inferred enough types that we can do something with the
- // pattern and result. If these fire the user has to add type casts.
- if (!InferredAllPatternTypes)
- Pattern->error("Could not infer all types in pattern!");
- if (!InferredAllResultTypes) {
- Pattern->dump();
- Result->error("Could not infer all types in pattern result!");
- }
- // Validate that the input pattern is correct.
- std::map<std::string, TreePatternNode*> InstInputs;
- std::map<std::string, TreePatternNode*> InstResults;
- std::vector<Record*> InstImpResults;
- for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
- FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
- InstInputs, InstResults,
- InstImpResults);
- // Promote the xform function to be an explicit node if set.
- TreePatternNode *DstPattern = Result->getOnlyTree();
- std::vector<TreePatternNode*> ResultNodeOperands;
- for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
- TreePatternNode *OpNode = DstPattern->getChild(ii);
- if (Record *Xform = OpNode->getTransformFn()) {
- OpNode->setTransformFn(0);
- std::vector<TreePatternNode*> Children;
- Children.push_back(OpNode);
- OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
- }
- ResultNodeOperands.push_back(OpNode);
- }
- DstPattern = Result->getOnlyTree();
- if (!DstPattern->isLeaf())
- DstPattern = new TreePatternNode(DstPattern->getOperator(),
- ResultNodeOperands,
- DstPattern->getNumTypes());
- for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
- DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
- TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
- Temp.InferAllTypes();
- AddPatternToMatch(Pattern,
- PatternToMatch(CurPattern,
- CurPattern->getValueAsListInit("Predicates"),
- Pattern->getTree(0),
- Temp.getOnlyTree(), InstImpResults,
- CurPattern->getValueAsInt("AddedComplexity"),
- CurPattern->getID()));
- }
- }
- /// CombineChildVariants - Given a bunch of permutations of each child of the
- /// 'operator' node, put them together in all possible ways.
- static void CombineChildVariants(TreePatternNode *Orig,
- const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
- std::vector<TreePatternNode*> &OutVariants,
- CodeGenDAGPatterns &CDP,
- const MultipleUseVarSet &DepVars) {
- // Make sure that each operand has at least one variant to choose from.
- for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
- if (ChildVariants[i].empty())
- return;
- // The end result is an all-pairs construction of the resultant pattern.
- std::vector<unsigned> Idxs;
- Idxs.resize(ChildVariants.size());
- bool NotDone;
- do {
- #ifndef NDEBUG
- DEBUG(if (!Idxs.empty()) {
- errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
- for (unsigned i = 0; i < Idxs.size(); ++i) {
- errs() << Idxs[i] << " ";
- }
- errs() << "]\n";
- });
- #endif
- // Create the variant and add it to the output list.
- std::vector<TreePatternNode*> NewChildren;
- for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
- NewChildren.push_back(ChildVariants[i][Idxs[i]]);
- TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
- Orig->getNumTypes());
- // Copy over properties.
- R->setName(Orig->getName());
- R->setPredicateFns(Orig->getPredicateFns());
- R->setTransformFn(Orig->getTransformFn());
- for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
- R->setType(i, Orig->getExtType(i));
- // If this pattern cannot match, do not include it as a variant.
- std::string ErrString;
- if (!R->canPatternMatch(ErrString, CDP)) {
- delete R;
- } else {
- bool AlreadyExists = false;
- // Scan to see if this pattern has already been emitted. We can get
- // duplication due to things like commuting:
- // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
- // which are the same pattern. Ignore the dups.
- for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
- if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
- AlreadyExists = true;
- break;
- }
- if (AlreadyExists)
- delete R;
- else
- OutVariants.push_back(R);
- }
- // Increment indices to the next permutation by incrementing the
- // indicies from last index backward, e.g., generate the sequence
- // [0, 0], [0, 1], [1, 0], [1, 1].
- int IdxsIdx;
- for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
- if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
- Idxs[IdxsIdx] = 0;
- else
- break;
- }
- NotDone = (IdxsIdx >= 0);
- } while (NotDone);
- }
- /// CombineChildVariants - A helper function for binary operators.
- ///
- static void CombineChildVariants(TreePatternNode *Orig,
- const std::vector<TreePatternNode*> &LHS,
- const std::vector<TreePatternNode*> &RHS,
- std::vector<TreePatternNode*> &OutVariants,
- CodeGenDAGPatterns &CDP,
- const MultipleUseVarSet &DepVars) {
- std::vector<std::vector<TreePatternNode*> > ChildVariants;
- ChildVariants.push_back(LHS);
- ChildVariants.push_back(RHS);
- CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
- }
- static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
- std::vector<TreePatternNode *> &Children) {
- assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
- Record *Operator = N->getOperator();
- // Only permit raw nodes.
- if (!N->getName().empty() || !N->getPredicateFns().empty() ||
- N->getTransformFn()) {
- Children.push_back(N);
- return;
- }
- if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
- Children.push_back(N->getChild(0));
- else
- GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
- if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
- Children.push_back(N->getChild(1));
- else
- GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
- }
- /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
- /// the (potentially recursive) pattern by using algebraic laws.
- ///
- static void GenerateVariantsOf(TreePatternNode *N,
- std::vector<TreePatternNode*> &OutVariants,
- CodeGenDAGPatterns &CDP,
- const MultipleUseVarSet &DepVars) {
- // We cannot permute leaves.
- if (N->isLeaf()) {
- OutVariants.push_back(N);
- return;
- }
- // Look up interesting info about the node.
- const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
- // If this node is associative, re-associate.
- if (NodeInfo.hasProperty(SDNPAssociative)) {
- // Re-associate by pulling together all of the linked operators
- std::vector<TreePatternNode*> MaximalChildren;
- GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
- // Only handle child sizes of 3. Otherwise we'll end up trying too many
- // permutations.
- if (MaximalChildren.size() == 3) {
- // Find the variants of all of our maximal children.
- std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
- GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
- GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
- GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
- // There are only two ways we can permute the tree:
- // (A op B) op C and A op (B op C)
- // Within these forms, we can also permute A/B/C.
- // Generate legal pair permutations of A/B/C.
- std::vector<TreePatternNode*> ABVariants;
- std::vector<TreePatternNode*> BAVariants;
- std::vector<TreePatternNode*> ACVariants;
- std::vector<TreePatternNode*> CAVariants;
- std::vector<TreePatternNode*> BCVariants;
- std::vector<TreePatternNode*> CBVariants;
- CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
- CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
- CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
- CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
- CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
- CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
- // Combine those into the result: (x op x) op x
- CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
- // Combine those into the result: x op (x op x)
- CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
- return;
- }
- }
- // Compute permutations of all children.
- std::vector<std::vector<TreePatternNode*> > ChildVariants;
- ChildVariants.resize(N->getNumChildren());
- for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
- GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
- // Build all permutations based on how the children were formed.
- CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
- // If this node is commutative, consider the commuted order.
- bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
- if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
- assert((N->getNumChildren()==2 || isCommIntrinsic) &&
- "Commutative but doesn't have 2 children!");
- // Don't count children which are actually register references.
- unsigned NC = 0;
- for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
- TreePatternNode *Child = N->getChild(i);
- if (Child->isLeaf())
- if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
- Record *RR = DI->getDef();
- if (RR->isSubClassOf("Register"))
- continue;
- }
- NC++;
- }
- // Consider the commuted order.
- if (isCommIntrinsic) {
- // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
- // operands are the commutative operands, and there might be more operands
- // after those.
- assert(NC >= 3 &&
- "Commutative intrinsic should have at least 3 childrean!");
- std::vector<std::vector<TreePatternNode*> > Variants;
- Variants.push_back(ChildVariants[0]); // Intrinsic id.
- Variants.push_back(ChildVariants[2]);
- Variants.push_back(ChildVariants[1]);
- for (unsigned i = 3; i != NC; ++i)
- Variants.push_back(ChildVariants[i]);
- CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
- } else if (NC == 2)
- CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
- OutVariants, CDP, DepVars);
- }
- }
- // GenerateVariants - Generate variants. For example, commutative patterns can
- // match multiple ways. Add them to PatternsToMatch as well.
- void CodeGenDAGPatterns::GenerateVariants() {
- DEBUG(errs() << "Generating instruction variants.\n");
- // Loop over all of the patterns we've collected, checking to see if we can
- // generate variants of the instruction, through the exploitation of
- // identities. This permits the target to provide aggressive matching without
- // the .td file having to contain tons of variants of instructions.
- //
- // Note that this loop adds new patterns to the PatternsToMatch list, but we
- // intentionally do not reconsider these. Any variants of added patterns have
- // already been added.
- //
- for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
- MultipleUseVarSet DepVars;
- std::vector<TreePatternNode*> Variants;
- FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
- DEBUG(errs() << "Dependent/multiply used variables: ");
- DEBUG(DumpDepVars(DepVars));
- DEBUG(errs() << "\n");
- GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
- DepVars);
- assert(!Variants.empty() && "Must create at least original variant!");
- Variants.erase(Variants.begin()); // Remove the original pattern.
- if (Variants.empty()) // No variants for this pattern.
- continue;
- DEBUG(errs() << "FOUND VARIANTS OF: ";
- PatternsToMatch[i].getSrcPattern()->dump();
- errs() << "\n");
- for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
- TreePatternNode *Variant = Variants[v];
- DEBUG(errs() << " VAR#" << v << ": ";
- Variant->dump();
- errs() << "\n");
- // Scan to see if an instruction or explicit pattern already matches this.
- bool AlreadyExists = false;
- for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
- // Skip if the top level predicates do not match.
- if (PatternsToMatch[i].getPredicates() !=
- PatternsToMatch[p].getPredicates())
- continue;
- // Check to see if this variant already exists.
- if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
- DepVars)) {
- DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
- AlreadyExists = true;
- break;
- }
- }
- // If we already have it, ignore the variant.
- if (AlreadyExists) continue;
- // Otherwise, add it to the list of patterns we have.
- PatternsToMatch.
- push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(),
- PatternsToMatch[i].getPredicates(),
- Variant, PatternsToMatch[i].getDstPattern(),
- PatternsToMatch[i].getDstRegs(),
- PatternsToMatch[i].getAddedComplexity(),
- Record::getNewUID()));
- }
- DEBUG(errs() << "\n");
- }
- }
|