123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883 |
- //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass implements a simple loop unroller. It works best when loops have
- // been canonicalized by the -indvars pass, allowing it to determine the trip
- // counts of loops easily.
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/CodeMetrics.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DiagnosticInfo.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/UnrollLoop.h"
- #include "llvm/IR/InstVisitor.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include <climits>
- using namespace llvm;
- #define DEBUG_TYPE "loop-unroll"
- static cl::opt<unsigned>
- UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden,
- cl::desc("The cut-off point for automatic loop unrolling"));
- static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
- "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden,
- cl::desc("Don't allow loop unrolling to simulate more than this number of"
- "iterations when checking full unroll profitability"));
- static cl::opt<unsigned> UnrollMinPercentOfOptimized(
- "unroll-percent-of-optimized-for-complete-unroll", cl::init(20), cl::Hidden,
- cl::desc("If complete unrolling could trigger further optimizations, and, "
- "by that, remove the given percent of instructions, perform the "
- "complete unroll even if it's beyond the threshold"));
- static cl::opt<unsigned> UnrollAbsoluteThreshold(
- "unroll-absolute-threshold", cl::init(2000), cl::Hidden,
- cl::desc("Don't unroll if the unrolled size is bigger than this threshold,"
- " even if we can remove big portion of instructions later."));
- static cl::opt<unsigned>
- UnrollCount("unroll-count", cl::init(0), cl::Hidden,
- cl::desc("Use this unroll count for all loops including those with "
- "unroll_count pragma values, for testing purposes"));
- static cl::opt<bool>
- UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden,
- cl::desc("Allows loops to be partially unrolled until "
- "-unroll-threshold loop size is reached."));
- static cl::opt<bool>
- UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::init(false), cl::Hidden,
- cl::desc("Unroll loops with run-time trip counts"));
- static cl::opt<unsigned>
- PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
- cl::desc("Unrolled size limit for loops with an unroll(full) or "
- "unroll_count pragma."));
- namespace {
- class LoopUnroll : public LoopPass {
- public:
- static char ID; // Pass ID, replacement for typeid
- LoopUnroll(int T = -1, int C = -1, int P = -1, int R = -1) : LoopPass(ID) {
- CurrentThreshold = (T == -1) ? UnrollThreshold : unsigned(T);
- CurrentAbsoluteThreshold = UnrollAbsoluteThreshold;
- CurrentMinPercentOfOptimized = UnrollMinPercentOfOptimized;
- CurrentCount = (C == -1) ? UnrollCount : unsigned(C);
- CurrentAllowPartial = (P == -1) ? UnrollAllowPartial : (bool)P;
- CurrentRuntime = (R == -1) ? UnrollRuntime : (bool)R;
- UserThreshold = (T != -1) || (UnrollThreshold.getNumOccurrences() > 0);
- UserAbsoluteThreshold = (UnrollAbsoluteThreshold.getNumOccurrences() > 0);
- UserPercentOfOptimized =
- (UnrollMinPercentOfOptimized.getNumOccurrences() > 0);
- UserAllowPartial = (P != -1) ||
- (UnrollAllowPartial.getNumOccurrences() > 0);
- UserRuntime = (R != -1) || (UnrollRuntime.getNumOccurrences() > 0);
- UserCount = (C != -1) || (UnrollCount.getNumOccurrences() > 0);
- initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
- }
- /// A magic value for use with the Threshold parameter to indicate
- /// that the loop unroll should be performed regardless of how much
- /// code expansion would result.
- static const unsigned NoThreshold = UINT_MAX;
- // Threshold to use when optsize is specified (and there is no
- // explicit -unroll-threshold).
- static const unsigned OptSizeUnrollThreshold = 50;
- // Default unroll count for loops with run-time trip count if
- // -unroll-count is not set
- static const unsigned UnrollRuntimeCount = 8;
- unsigned CurrentCount;
- unsigned CurrentThreshold;
- unsigned CurrentAbsoluteThreshold;
- unsigned CurrentMinPercentOfOptimized;
- bool CurrentAllowPartial;
- bool CurrentRuntime;
- bool UserCount; // CurrentCount is user-specified.
- bool UserThreshold; // CurrentThreshold is user-specified.
- bool UserAbsoluteThreshold; // CurrentAbsoluteThreshold is
- // user-specified.
- bool UserPercentOfOptimized; // CurrentMinPercentOfOptimized is
- // user-specified.
- bool UserAllowPartial; // CurrentAllowPartial is user-specified.
- bool UserRuntime; // CurrentRuntime is user-specified.
- bool runOnLoop(Loop *L, LPPassManager &LPM) override;
- /// This transformation requires natural loop information & requires that
- /// loop preheaders be inserted into the CFG...
- ///
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addRequiredID(LoopSimplifyID);
- AU.addPreservedID(LoopSimplifyID);
- AU.addRequiredID(LCSSAID);
- AU.addPreservedID(LCSSAID);
- AU.addRequired<ScalarEvolution>();
- AU.addPreserved<ScalarEvolution>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
- // If loop unroll does not preserve dom info then LCSSA pass on next
- // loop will receive invalid dom info.
- // For now, recreate dom info, if loop is unrolled.
- AU.addPreserved<DominatorTreeWrapperPass>();
- }
- // Fill in the UnrollingPreferences parameter with values from the
- // TargetTransformationInfo.
- void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI,
- TargetTransformInfo::UnrollingPreferences &UP) {
- UP.Threshold = CurrentThreshold;
- UP.AbsoluteThreshold = CurrentAbsoluteThreshold;
- UP.MinPercentOfOptimized = CurrentMinPercentOfOptimized;
- UP.OptSizeThreshold = OptSizeUnrollThreshold;
- UP.PartialThreshold = CurrentThreshold;
- UP.PartialOptSizeThreshold = OptSizeUnrollThreshold;
- UP.Count = CurrentCount;
- UP.MaxCount = UINT_MAX;
- UP.Partial = CurrentAllowPartial;
- UP.Runtime = CurrentRuntime;
- TTI.getUnrollingPreferences(L, UP);
- }
- // Select and return an unroll count based on parameters from
- // user, unroll preferences, unroll pragmas, or a heuristic.
- // SetExplicitly is set to true if the unroll count is is set by
- // the user or a pragma rather than selected heuristically.
- unsigned
- selectUnrollCount(const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
- unsigned PragmaCount,
- const TargetTransformInfo::UnrollingPreferences &UP,
- bool &SetExplicitly);
- // Select threshold values used to limit unrolling based on a
- // total unrolled size. Parameters Threshold and PartialThreshold
- // are set to the maximum unrolled size for fully and partially
- // unrolled loops respectively.
- void selectThresholds(const Loop *L, bool HasPragma,
- const TargetTransformInfo::UnrollingPreferences &UP,
- unsigned &Threshold, unsigned &PartialThreshold,
- unsigned NumberOfOptimizedInstructions) {
- // Determine the current unrolling threshold. While this is
- // normally set from UnrollThreshold, it is overridden to a
- // smaller value if the current function is marked as
- // optimize-for-size, and the unroll threshold was not user
- // specified.
- Threshold = UserThreshold ? CurrentThreshold : UP.Threshold;
- // If we are allowed to completely unroll if we can remove M% of
- // instructions, and we know that with complete unrolling we'll be able
- // to kill N instructions, then we can afford to completely unroll loops
- // with unrolled size up to N*100/M.
- // Adjust the threshold according to that:
- unsigned PercentOfOptimizedForCompleteUnroll =
- UserPercentOfOptimized ? CurrentMinPercentOfOptimized
- : UP.MinPercentOfOptimized;
- unsigned AbsoluteThreshold = UserAbsoluteThreshold
- ? CurrentAbsoluteThreshold
- : UP.AbsoluteThreshold;
- if (PercentOfOptimizedForCompleteUnroll)
- Threshold = std::max<unsigned>(Threshold,
- NumberOfOptimizedInstructions * 100 /
- PercentOfOptimizedForCompleteUnroll);
- // But don't allow unrolling loops bigger than absolute threshold.
- Threshold = std::min<unsigned>(Threshold, AbsoluteThreshold);
- PartialThreshold = UserThreshold ? CurrentThreshold : UP.PartialThreshold;
- if (!UserThreshold &&
- L->getHeader()->getParent()->hasFnAttribute(
- Attribute::OptimizeForSize)) {
- Threshold = UP.OptSizeThreshold;
- PartialThreshold = UP.PartialOptSizeThreshold;
- }
- if (HasPragma) {
- // If the loop has an unrolling pragma, we want to be more
- // aggressive with unrolling limits. Set thresholds to at
- // least the PragmaTheshold value which is larger than the
- // default limits.
- if (Threshold != NoThreshold)
- Threshold = std::max<unsigned>(Threshold, PragmaUnrollThreshold);
- if (PartialThreshold != NoThreshold)
- PartialThreshold =
- std::max<unsigned>(PartialThreshold, PragmaUnrollThreshold);
- }
- }
- };
- }
- char LoopUnroll::ID = 0;
- INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
- INITIALIZE_PASS_DEPENDENCY(LCSSA)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
- INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
- Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
- int Runtime) {
- return new LoopUnroll(Threshold, Count, AllowPartial, Runtime);
- }
- Pass *llvm::createSimpleLoopUnrollPass() {
- return llvm::createLoopUnrollPass(-1, -1, 0, 0);
- }
- static bool isLoadFromConstantInitializer(Value *V) {
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
- if (GV->isConstant() && GV->hasDefinitiveInitializer())
- return GV->getInitializer();
- return false;
- }
- struct FindConstantPointers {
- bool LoadCanBeConstantFolded;
- bool IndexIsConstant;
- APInt Step;
- APInt StartValue;
- Value *BaseAddress;
- const Loop *L;
- ScalarEvolution &SE;
- FindConstantPointers(const Loop *loop, ScalarEvolution &SE)
- : LoadCanBeConstantFolded(true), IndexIsConstant(true), L(loop), SE(SE) {}
- bool follow(const SCEV *S) {
- if (const SCEVUnknown *SC = dyn_cast<SCEVUnknown>(S)) {
- // We've reached the leaf node of SCEV, it's most probably just a
- // variable. Now it's time to see if it corresponds to a global constant
- // global (in which case we can eliminate the load), or not.
- BaseAddress = SC->getValue();
- LoadCanBeConstantFolded =
- IndexIsConstant && isLoadFromConstantInitializer(BaseAddress);
- return false;
- }
- if (isa<SCEVConstant>(S))
- return true;
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
- // If the current SCEV expression is AddRec, and its loop isn't the loop
- // we are about to unroll, then we won't get a constant address after
- // unrolling, and thus, won't be able to eliminate the load.
- if (AR->getLoop() != L)
- return IndexIsConstant = false;
- // If the step isn't constant, we won't get constant addresses in unrolled
- // version. Bail out.
- if (const SCEVConstant *StepSE =
- dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
- Step = StepSE->getValue()->getValue();
- else
- return IndexIsConstant = false;
- return IndexIsConstant;
- }
- // If Result is true, continue traversal.
- // Otherwise, we have found something that prevents us from (possible) load
- // elimination.
- return IndexIsConstant;
- }
- bool isDone() const { return !IndexIsConstant; }
- };
- // This class is used to get an estimate of the optimization effects that we
- // could get from complete loop unrolling. It comes from the fact that some
- // loads might be replaced with concrete constant values and that could trigger
- // a chain of instruction simplifications.
- //
- // E.g. we might have:
- // int a[] = {0, 1, 0};
- // v = 0;
- // for (i = 0; i < 3; i ++)
- // v += b[i]*a[i];
- // If we completely unroll the loop, we would get:
- // v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2]
- // Which then will be simplified to:
- // v = b[0]* 0 + b[1]* 1 + b[2]* 0
- // And finally:
- // v = b[1]
- class UnrollAnalyzer : public InstVisitor<UnrollAnalyzer, bool> {
- typedef InstVisitor<UnrollAnalyzer, bool> Base;
- friend class InstVisitor<UnrollAnalyzer, bool>;
- const Loop *L;
- unsigned TripCount;
- ScalarEvolution &SE;
- const TargetTransformInfo &TTI;
- DenseMap<Value *, Constant *> SimplifiedValues;
- DenseMap<LoadInst *, Value *> LoadBaseAddresses;
- SmallPtrSet<Instruction *, 32> CountedInstructions;
- /// \brief Count the number of optimized instructions.
- unsigned NumberOfOptimizedInstructions;
- // Provide base case for our instruction visit.
- bool visitInstruction(Instruction &I) { return false; };
- // TODO: We should also visit ICmp, FCmp, GetElementPtr, Trunc, ZExt, SExt,
- // FPTrunc, FPExt, FPToUI, FPToSI, UIToFP, SIToFP, BitCast, Select,
- // ExtractElement, InsertElement, ShuffleVector, ExtractValue, InsertValue.
- //
- // Probaly it's worth to hoist the code for estimating the simplifications
- // effects to a separate class, since we have a very similar code in
- // InlineCost already.
- bool visitBinaryOperator(BinaryOperator &I) {
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- if (!isa<Constant>(LHS))
- if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
- LHS = SimpleLHS;
- if (!isa<Constant>(RHS))
- if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
- RHS = SimpleRHS;
- Value *SimpleV = nullptr;
- if (auto FI = dyn_cast<FPMathOperator>(&I))
- SimpleV =
- SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags());
- else
- SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS);
- if (SimpleV && CountedInstructions.insert(&I).second)
- NumberOfOptimizedInstructions += TTI.getUserCost(&I);
- if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
- SimplifiedValues[&I] = C;
- return true;
- }
- return false;
- }
- Constant *computeLoadValue(LoadInst *LI, unsigned Iteration) {
- if (!LI)
- return nullptr;
- Value *BaseAddr = LoadBaseAddresses[LI];
- if (!BaseAddr)
- return nullptr;
- auto GV = dyn_cast<GlobalVariable>(BaseAddr);
- if (!GV)
- return nullptr;
- ConstantDataSequential *CDS =
- dyn_cast<ConstantDataSequential>(GV->getInitializer());
- if (!CDS)
- return nullptr;
- const SCEV *BaseAddrSE = SE.getSCEV(BaseAddr);
- const SCEV *S = SE.getSCEV(LI->getPointerOperand());
- const SCEV *OffSE = SE.getMinusSCEV(S, BaseAddrSE);
- APInt StepC, StartC;
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OffSE);
- if (!AR)
- return nullptr;
- if (const SCEVConstant *StepSE =
- dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
- StepC = StepSE->getValue()->getValue();
- else
- return nullptr;
- if (const SCEVConstant *StartSE = dyn_cast<SCEVConstant>(AR->getStart()))
- StartC = StartSE->getValue()->getValue();
- else
- return nullptr;
- unsigned ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
- unsigned Start = StartC.getLimitedValue();
- unsigned Step = StepC.getLimitedValue();
- unsigned Index = (Start + Step * Iteration) / ElemSize;
- if (Index >= CDS->getNumElements())
- return nullptr;
- Constant *CV = CDS->getElementAsConstant(Index);
- return CV;
- }
- public:
- UnrollAnalyzer(const Loop *L, unsigned TripCount, ScalarEvolution &SE,
- const TargetTransformInfo &TTI)
- : L(L), TripCount(TripCount), SE(SE), TTI(TTI),
- NumberOfOptimizedInstructions(0) {}
- // Visit all loads the loop L, and for those that, after complete loop
- // unrolling, would have a constant address and it will point to a known
- // constant initializer, record its base address for future use. It is used
- // when we estimate number of potentially simplified instructions.
- void findConstFoldableLoads() {
- for (auto BB : L->getBlocks()) {
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- if (!LI->isSimple())
- continue;
- Value *AddrOp = LI->getPointerOperand();
- const SCEV *S = SE.getSCEV(AddrOp);
- FindConstantPointers Visitor(L, SE);
- SCEVTraversal<FindConstantPointers> T(Visitor);
- T.visitAll(S);
- if (Visitor.IndexIsConstant && Visitor.LoadCanBeConstantFolded) {
- LoadBaseAddresses[LI] = Visitor.BaseAddress;
- }
- }
- }
- }
- }
- // Given a list of loads that could be constant-folded (LoadBaseAddresses),
- // estimate number of optimized instructions after substituting the concrete
- // values for the given Iteration. Also track how many instructions become
- // dead through this process.
- unsigned estimateNumberOfOptimizedInstructions(unsigned Iteration) {
- // We keep a set vector for the worklist so that we don't wast space in the
- // worklist queuing up the same instruction repeatedly. This can happen due
- // to multiple operands being the same instruction or due to the same
- // instruction being an operand of lots of things that end up dead or
- // simplified.
- SmallSetVector<Instruction *, 8> Worklist;
- // Clear the simplified values and counts for this iteration.
- SimplifiedValues.clear();
- CountedInstructions.clear();
- NumberOfOptimizedInstructions = 0;
- // We start by adding all loads to the worklist.
- for (auto &LoadDescr : LoadBaseAddresses) {
- LoadInst *LI = LoadDescr.first;
- SimplifiedValues[LI] = computeLoadValue(LI, Iteration);
- if (CountedInstructions.insert(LI).second)
- NumberOfOptimizedInstructions += TTI.getUserCost(LI);
- for (User *U : LI->users())
- Worklist.insert(cast<Instruction>(U));
- }
- // And then we try to simplify every user of every instruction from the
- // worklist. If we do simplify a user, add it to the worklist to process
- // its users as well.
- while (!Worklist.empty()) {
- Instruction *I = Worklist.pop_back_val();
- if (!L->contains(I))
- continue;
- if (!visit(I))
- continue;
- for (User *U : I->users())
- Worklist.insert(cast<Instruction>(U));
- }
- // Now that we know the potentially simplifed instructions, estimate number
- // of instructions that would become dead if we do perform the
- // simplification.
- // The dead instructions are held in a separate set. This is used to
- // prevent us from re-examining instructions and make sure we only count
- // the benifit once. The worklist's internal set handles insertion
- // deduplication.
- SmallPtrSet<Instruction *, 16> DeadInstructions;
- // Lambda to enque operands onto the worklist.
- auto EnqueueOperands = [&](Instruction &I) {
- for (auto *Op : I.operand_values())
- if (auto *OpI = dyn_cast<Instruction>(Op))
- if (!OpI->use_empty())
- Worklist.insert(OpI);
- };
- // Start by initializing worklist with simplified instructions.
- for (auto &FoldedKeyValue : SimplifiedValues)
- if (auto *FoldedInst = dyn_cast<Instruction>(FoldedKeyValue.first)) {
- DeadInstructions.insert(FoldedInst);
- // Add each instruction operand of this dead instruction to the
- // worklist.
- EnqueueOperands(*FoldedInst);
- }
- // If a definition of an insn is only used by simplified or dead
- // instructions, it's also dead. Check defs of all instructions from the
- // worklist.
- while (!Worklist.empty()) {
- Instruction *I = Worklist.pop_back_val();
- if (!L->contains(I))
- continue;
- if (DeadInstructions.count(I))
- continue;
- if (std::all_of(I->user_begin(), I->user_end(), [&](User *U) {
- return DeadInstructions.count(cast<Instruction>(U));
- })) {
- NumberOfOptimizedInstructions += TTI.getUserCost(I);
- DeadInstructions.insert(I);
- EnqueueOperands(*I);
- }
- }
- return NumberOfOptimizedInstructions;
- }
- };
- // Complete loop unrolling can make some loads constant, and we need to know if
- // that would expose any further optimization opportunities.
- // This routine estimates this optimization effect and returns the number of
- // instructions, that potentially might be optimized away.
- static unsigned
- approximateNumberOfOptimizedInstructions(const Loop *L, ScalarEvolution &SE,
- unsigned TripCount,
- const TargetTransformInfo &TTI) {
- if (!TripCount || !UnrollMaxIterationsCountToAnalyze)
- return 0;
- UnrollAnalyzer UA(L, TripCount, SE, TTI);
- UA.findConstFoldableLoads();
- // Estimate number of instructions, that could be simplified if we replace a
- // load with the corresponding constant. Since the same load will take
- // different values on different iterations, we have to go through all loop's
- // iterations here. To limit ourselves here, we check only first N
- // iterations, and then scale the found number, if necessary.
- unsigned IterationsNumberForEstimate =
- std::min<unsigned>(UnrollMaxIterationsCountToAnalyze, TripCount);
- unsigned NumberOfOptimizedInstructions = 0;
- for (unsigned i = 0; i < IterationsNumberForEstimate; ++i)
- NumberOfOptimizedInstructions +=
- UA.estimateNumberOfOptimizedInstructions(i);
- NumberOfOptimizedInstructions *= TripCount / IterationsNumberForEstimate;
- return NumberOfOptimizedInstructions;
- }
- /// ApproximateLoopSize - Approximate the size of the loop.
- static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
- bool &NotDuplicatable,
- const TargetTransformInfo &TTI,
- AssumptionCache *AC) {
- SmallPtrSet<const Value *, 32> EphValues;
- CodeMetrics::collectEphemeralValues(L, AC, EphValues);
- CodeMetrics Metrics;
- for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
- I != E; ++I)
- Metrics.analyzeBasicBlock(*I, TTI, EphValues);
- NumCalls = Metrics.NumInlineCandidates;
- NotDuplicatable = Metrics.notDuplicatable;
- unsigned LoopSize = Metrics.NumInsts;
- // Don't allow an estimate of size zero. This would allows unrolling of loops
- // with huge iteration counts, which is a compile time problem even if it's
- // not a problem for code quality. Also, the code using this size may assume
- // that each loop has at least three instructions (likely a conditional
- // branch, a comparison feeding that branch, and some kind of loop increment
- // feeding that comparison instruction).
- LoopSize = std::max(LoopSize, 3u);
- return LoopSize;
- }
- // Returns the loop hint metadata node with the given name (for example,
- // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
- // returned.
- static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
- if (MDNode *LoopID = L->getLoopID())
- return GetUnrollMetadata(LoopID, Name);
- return nullptr;
- }
- // Returns true if the loop has an unroll(full) pragma.
- static bool HasUnrollFullPragma(const Loop *L) {
- return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
- }
- // Returns true if the loop has an unroll(disable) pragma.
- static bool HasUnrollDisablePragma(const Loop *L) {
- return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
- }
- // If loop has an unroll_count pragma return the (necessarily
- // positive) value from the pragma. Otherwise return 0.
- static unsigned UnrollCountPragmaValue(const Loop *L) {
- MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
- if (MD) {
- assert(MD->getNumOperands() == 2 &&
- "Unroll count hint metadata should have two operands.");
- unsigned Count =
- mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
- assert(Count >= 1 && "Unroll count must be positive.");
- return Count;
- }
- return 0;
- }
- // Remove existing unroll metadata and add unroll disable metadata to
- // indicate the loop has already been unrolled. This prevents a loop
- // from being unrolled more than is directed by a pragma if the loop
- // unrolling pass is run more than once (which it generally is).
- static void SetLoopAlreadyUnrolled(Loop *L) {
- MDNode *LoopID = L->getLoopID();
- if (!LoopID) return;
- // First remove any existing loop unrolling metadata.
- SmallVector<Metadata *, 4> MDs;
- // Reserve first location for self reference to the LoopID metadata node.
- MDs.push_back(nullptr);
- for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
- bool IsUnrollMetadata = false;
- MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
- if (MD) {
- const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
- IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
- }
- if (!IsUnrollMetadata)
- MDs.push_back(LoopID->getOperand(i));
- }
- // Add unroll(disable) metadata to disable future unrolling.
- LLVMContext &Context = L->getHeader()->getContext();
- SmallVector<Metadata *, 1> DisableOperands;
- DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
- MDNode *DisableNode = MDNode::get(Context, DisableOperands);
- MDs.push_back(DisableNode);
- MDNode *NewLoopID = MDNode::get(Context, MDs);
- // Set operand 0 to refer to the loop id itself.
- NewLoopID->replaceOperandWith(0, NewLoopID);
- L->setLoopID(NewLoopID);
- }
- unsigned LoopUnroll::selectUnrollCount(
- const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
- unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP,
- bool &SetExplicitly) {
- SetExplicitly = true;
- // User-specified count (either as a command-line option or
- // constructor parameter) has highest precedence.
- unsigned Count = UserCount ? CurrentCount : 0;
- // If there is no user-specified count, unroll pragmas have the next
- // highest precendence.
- if (Count == 0) {
- if (PragmaCount) {
- Count = PragmaCount;
- } else if (PragmaFullUnroll) {
- Count = TripCount;
- }
- }
- if (Count == 0)
- Count = UP.Count;
- if (Count == 0) {
- SetExplicitly = false;
- if (TripCount == 0)
- // Runtime trip count.
- Count = UnrollRuntimeCount;
- else
- // Conservative heuristic: if we know the trip count, see if we can
- // completely unroll (subject to the threshold, checked below); otherwise
- // try to find greatest modulo of the trip count which is still under
- // threshold value.
- Count = TripCount;
- }
- if (TripCount && Count > TripCount)
- return TripCount;
- return Count;
- }
- bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
- if (skipOptnoneFunction(L))
- return false;
- Function &F = *L->getHeader()->getParent();
- LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- ScalarEvolution *SE = &getAnalysis<ScalarEvolution>();
- const TargetTransformInfo &TTI =
- getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- BasicBlock *Header = L->getHeader();
- DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
- << "] Loop %" << Header->getName() << "\n");
- if (HasUnrollDisablePragma(L)) {
- return false;
- }
- bool PragmaFullUnroll = HasUnrollFullPragma(L);
- unsigned PragmaCount = UnrollCountPragmaValue(L);
- bool HasPragma = PragmaFullUnroll || PragmaCount > 0;
- TargetTransformInfo::UnrollingPreferences UP;
- getUnrollingPreferences(L, TTI, UP);
- // Find trip count and trip multiple if count is not available
- unsigned TripCount = 0;
- unsigned TripMultiple = 1;
- // If there are multiple exiting blocks but one of them is the latch, use the
- // latch for the trip count estimation. Otherwise insist on a single exiting
- // block for the trip count estimation.
- BasicBlock *ExitingBlock = L->getLoopLatch();
- if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
- ExitingBlock = L->getExitingBlock();
- if (ExitingBlock) {
- TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
- TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
- }
- // Select an initial unroll count. This may be reduced later based
- // on size thresholds.
- bool CountSetExplicitly;
- unsigned Count = selectUnrollCount(L, TripCount, PragmaFullUnroll,
- PragmaCount, UP, CountSetExplicitly);
- unsigned NumInlineCandidates;
- bool notDuplicatable;
- unsigned LoopSize =
- ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC);
- DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
- // When computing the unrolled size, note that the conditional branch on the
- // backedge and the comparison feeding it are not replicated like the rest of
- // the loop body (which is why 2 is subtracted).
- uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2;
- if (notDuplicatable) {
- DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
- << " instructions.\n");
- return false;
- }
- if (NumInlineCandidates != 0) {
- DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
- return false;
- }
- unsigned NumberOfOptimizedInstructions =
- approximateNumberOfOptimizedInstructions(L, *SE, TripCount, TTI);
- DEBUG(dbgs() << " Complete unrolling could save: "
- << NumberOfOptimizedInstructions << "\n");
- unsigned Threshold, PartialThreshold;
- selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold,
- NumberOfOptimizedInstructions);
- // Given Count, TripCount and thresholds determine the type of
- // unrolling which is to be performed.
- enum { Full = 0, Partial = 1, Runtime = 2 };
- int Unrolling;
- if (TripCount && Count == TripCount) {
- if (Threshold != NoThreshold && UnrolledSize > Threshold) {
- DEBUG(dbgs() << " Too large to fully unroll with count: " << Count
- << " because size: " << UnrolledSize << ">" << Threshold
- << "\n");
- Unrolling = Partial;
- } else {
- Unrolling = Full;
- }
- } else if (TripCount && Count < TripCount) {
- Unrolling = Partial;
- } else {
- Unrolling = Runtime;
- }
- // Reduce count based on the type of unrolling and the threshold values.
- unsigned OriginalCount = Count;
- bool AllowRuntime = UserRuntime ? CurrentRuntime : UP.Runtime;
- if (Unrolling == Partial) {
- bool AllowPartial = UserAllowPartial ? CurrentAllowPartial : UP.Partial;
- if (!AllowPartial && !CountSetExplicitly) {
- DEBUG(dbgs() << " will not try to unroll partially because "
- << "-unroll-allow-partial not given\n");
- return false;
- }
- if (PartialThreshold != NoThreshold && UnrolledSize > PartialThreshold) {
- // Reduce unroll count to be modulo of TripCount for partial unrolling.
- Count = (std::max(PartialThreshold, 3u)-2) / (LoopSize-2);
- while (Count != 0 && TripCount % Count != 0)
- Count--;
- }
- } else if (Unrolling == Runtime) {
- if (!AllowRuntime && !CountSetExplicitly) {
- DEBUG(dbgs() << " will not try to unroll loop with runtime trip count "
- << "-unroll-runtime not given\n");
- return false;
- }
- // Reduce unroll count to be the largest power-of-two factor of
- // the original count which satisfies the threshold limit.
- while (Count != 0 && UnrolledSize > PartialThreshold) {
- Count >>= 1;
- UnrolledSize = (LoopSize-2) * Count + 2;
- }
- if (Count > UP.MaxCount)
- Count = UP.MaxCount;
- DEBUG(dbgs() << " partially unrolling with count: " << Count << "\n");
- }
- if (HasPragma) {
- if (PragmaCount != 0)
- // If loop has an unroll count pragma mark loop as unrolled to prevent
- // unrolling beyond that requested by the pragma.
- SetLoopAlreadyUnrolled(L);
- // Emit optimization remarks if we are unable to unroll the loop
- // as directed by a pragma.
- DebugLoc LoopLoc = L->getStartLoc();
- Function *F = Header->getParent();
- LLVMContext &Ctx = F->getContext();
- if (PragmaFullUnroll && PragmaCount == 0) {
- if (TripCount && Count != TripCount) {
- emitOptimizationRemarkMissed(
- Ctx, DEBUG_TYPE, *F, LoopLoc,
- "Unable to fully unroll loop as directed by unroll(full) pragma "
- "because unrolled size is too large.");
- } else if (!TripCount) {
- emitOptimizationRemarkMissed(
- Ctx, DEBUG_TYPE, *F, LoopLoc,
- "Unable to fully unroll loop as directed by unroll(full) pragma "
- "because loop has a runtime trip count.");
- }
- } else if (PragmaCount > 0 && Count != OriginalCount) {
- emitOptimizationRemarkMissed(
- Ctx, DEBUG_TYPE, *F, LoopLoc,
- "Unable to unroll loop the number of times directed by "
- "unroll_count pragma because unrolled size is too large.");
- }
- }
- if (Unrolling != Full && Count < 2) {
- // Partial unrolling by 1 is a nop. For full unrolling, a factor
- // of 1 makes sense because loop control can be eliminated.
- return false;
- }
- // Unroll the loop.
- if (!UnrollLoop(L, Count, TripCount, AllowRuntime, TripMultiple, LI, this,
- &LPM, &AC))
- return false;
- return true;
- }
|