123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513 |
- //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/CGSCCPassManager.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/InstIterator.h"
- using namespace llvm;
- // Explicit template instantiations and specialization defininitions for core
- // template typedefs.
- namespace llvm {
- // Explicit instantiations for the core proxy templates.
- template class AllAnalysesOn<LazyCallGraph::SCC>;
- template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
- template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
- LazyCallGraph &, CGSCCUpdateResult &>;
- template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
- template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
- LazyCallGraph::SCC, LazyCallGraph &>;
- template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
- /// Explicitly specialize the pass manager run method to handle call graph
- /// updates.
- template <>
- PreservedAnalyses
- PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
- CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
- CGSCCAnalysisManager &AM,
- LazyCallGraph &G, CGSCCUpdateResult &UR) {
- PreservedAnalyses PA = PreservedAnalyses::all();
- if (DebugLogging)
- dbgs() << "Starting CGSCC pass manager run.\n";
- // The SCC may be refined while we are running passes over it, so set up
- // a pointer that we can update.
- LazyCallGraph::SCC *C = &InitialC;
- for (auto &Pass : Passes) {
- if (DebugLogging)
- dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n";
- PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR);
- // Update the SCC if necessary.
- C = UR.UpdatedC ? UR.UpdatedC : C;
- // Check that we didn't miss any update scenario.
- assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!");
- assert(C->begin() != C->end() && "Cannot have an empty SCC!");
- // Update the analysis manager as each pass runs and potentially
- // invalidates analyses.
- AM.invalidate(*C, PassPA);
- // Finally, we intersect the final preserved analyses to compute the
- // aggregate preserved set for this pass manager.
- PA.intersect(std::move(PassPA));
- // FIXME: Historically, the pass managers all called the LLVM context's
- // yield function here. We don't have a generic way to acquire the
- // context and it isn't yet clear what the right pattern is for yielding
- // in the new pass manager so it is currently omitted.
- // ...getContext().yield();
- }
- // Invaliadtion was handled after each pass in the above loop for the current
- // SCC. Therefore, the remaining analysis results in the AnalysisManager are
- // preserved. We mark this with a set so that we don't need to inspect each
- // one individually.
- PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
- if (DebugLogging)
- dbgs() << "Finished CGSCC pass manager run.\n";
- return PA;
- }
- bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
- Module &M, const PreservedAnalyses &PA,
- ModuleAnalysisManager::Invalidator &Inv) {
- // If literally everything is preserved, we're done.
- if (PA.areAllPreserved())
- return false; // This is still a valid proxy.
- // If this proxy or the call graph is going to be invalidated, we also need
- // to clear all the keys coming from that analysis.
- //
- // We also directly invalidate the FAM's module proxy if necessary, and if
- // that proxy isn't preserved we can't preserve this proxy either. We rely on
- // it to handle module -> function analysis invalidation in the face of
- // structural changes and so if it's unavailable we conservatively clear the
- // entire SCC layer as well rather than trying to do invalidation ourselves.
- auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
- if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
- Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
- Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
- InnerAM->clear();
- // And the proxy itself should be marked as invalid so that we can observe
- // the new call graph. This isn't strictly necessary because we cheat
- // above, but is still useful.
- return true;
- }
- // Directly check if the relevant set is preserved so we can short circuit
- // invalidating SCCs below.
- bool AreSCCAnalysesPreserved =
- PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
- // Ok, we have a graph, so we can propagate the invalidation down into it.
- for (auto &RC : G->postorder_ref_sccs())
- for (auto &C : RC) {
- Optional<PreservedAnalyses> InnerPA;
- // Check to see whether the preserved set needs to be adjusted based on
- // module-level analysis invalidation triggering deferred invalidation
- // for this SCC.
- if (auto *OuterProxy =
- InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
- for (const auto &OuterInvalidationPair :
- OuterProxy->getOuterInvalidations()) {
- AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
- const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
- if (Inv.invalidate(OuterAnalysisID, M, PA)) {
- if (!InnerPA)
- InnerPA = PA;
- for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
- InnerPA->abandon(InnerAnalysisID);
- }
- }
- // Check if we needed a custom PA set. If so we'll need to run the inner
- // invalidation.
- if (InnerPA) {
- InnerAM->invalidate(C, *InnerPA);
- continue;
- }
- // Otherwise we only need to do invalidation if the original PA set didn't
- // preserve all SCC analyses.
- if (!AreSCCAnalysesPreserved)
- InnerAM->invalidate(C, PA);
- }
- // Return false to indicate that this result is still a valid proxy.
- return false;
- }
- template <>
- CGSCCAnalysisManagerModuleProxy::Result
- CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
- // Force the Function analysis manager to also be available so that it can
- // be accessed in an SCC analysis and proxied onward to function passes.
- // FIXME: It is pretty awkward to just drop the result here and assert that
- // we can find it again later.
- (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
- return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
- }
- AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
- FunctionAnalysisManagerCGSCCProxy::Result
- FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
- CGSCCAnalysisManager &AM,
- LazyCallGraph &CG) {
- // Collect the FunctionAnalysisManager from the Module layer and use that to
- // build the proxy result.
- //
- // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to
- // invalidate the function analyses.
- auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
- Module &M = *C.begin()->getFunction().getParent();
- auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M);
- assert(FAMProxy && "The CGSCC pass manager requires that the FAM module "
- "proxy is run on the module prior to entering the CGSCC "
- "walk.");
- // Note that we special-case invalidation handling of this proxy in the CGSCC
- // analysis manager's Module proxy. This avoids the need to do anything
- // special here to recompute all of this if ever the FAM's module proxy goes
- // away.
- return Result(FAMProxy->getManager());
- }
- bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
- LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
- CGSCCAnalysisManager::Invalidator &Inv) {
- for (LazyCallGraph::Node &N : C)
- FAM->invalidate(N.getFunction(), PA);
- // This proxy doesn't need to handle invalidation itself. Instead, the
- // module-level CGSCC proxy handles it above by ensuring that if the
- // module-level FAM proxy becomes invalid the entire SCC layer, which
- // includes this proxy, is cleared.
- return false;
- }
- } // End llvm namespace
- namespace {
- /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
- /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
- /// added SCCs.
- ///
- /// The range of new SCCs must be in postorder already. The SCC they were split
- /// out of must be provided as \p C. The current node being mutated and
- /// triggering updates must be passed as \p N.
- ///
- /// This function returns the SCC containing \p N. This will be either \p C if
- /// no new SCCs have been split out, or it will be the new SCC containing \p N.
- template <typename SCCRangeT>
- LazyCallGraph::SCC *
- incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
- LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
- CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
- bool DebugLogging = false) {
- typedef LazyCallGraph::SCC SCC;
- if (NewSCCRange.begin() == NewSCCRange.end())
- return C;
- // Add the current SCC to the worklist as its shape has changed.
- UR.CWorklist.insert(C);
- if (DebugLogging)
- dbgs() << "Enqueuing the existing SCC in the worklist:" << *C << "\n";
- SCC *OldC = C;
- (void)OldC;
- // Update the current SCC. Note that if we have new SCCs, this must actually
- // change the SCC.
- assert(C != &*NewSCCRange.begin() &&
- "Cannot insert new SCCs without changing current SCC!");
- C = &*NewSCCRange.begin();
- assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
- for (SCC &NewC :
- reverse(make_range(std::next(NewSCCRange.begin()), NewSCCRange.end()))) {
- assert(C != &NewC && "No need to re-visit the current SCC!");
- assert(OldC != &NewC && "Already handled the original SCC!");
- UR.CWorklist.insert(&NewC);
- if (DebugLogging)
- dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n";
- }
- return C;
- }
- }
- LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
- LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
- CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, bool DebugLogging) {
- typedef LazyCallGraph::Node Node;
- typedef LazyCallGraph::Edge Edge;
- typedef LazyCallGraph::SCC SCC;
- typedef LazyCallGraph::RefSCC RefSCC;
- RefSCC &InitialRC = InitialC.getOuterRefSCC();
- SCC *C = &InitialC;
- RefSCC *RC = &InitialRC;
- Function &F = N.getFunction();
- // Walk the function body and build up the set of retained, promoted, and
- // demoted edges.
- SmallVector<Constant *, 16> Worklist;
- SmallPtrSet<Constant *, 16> Visited;
- SmallPtrSet<Function *, 16> RetainedEdges;
- SmallSetVector<Function *, 4> PromotedRefTargets;
- SmallSetVector<Function *, 4> DemotedCallTargets;
- // First walk the function and handle all called functions. We do this first
- // because if there is a single call edge, whether there are ref edges is
- // irrelevant.
- for (Instruction &I : instructions(F))
- if (auto CS = CallSite(&I))
- if (Function *Callee = CS.getCalledFunction())
- if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
- const Edge *E = N.lookup(*Callee);
- // FIXME: We should really handle adding new calls. While it will
- // make downstream usage more complex, there is no fundamental
- // limitation and it will allow passes within the CGSCC to be a bit
- // more flexible in what transforms they can do. Until then, we
- // verify that new calls haven't been introduced.
- assert(E && "No function transformations should introduce *new* "
- "call edges! Any new calls should be modeled as "
- "promoted existing ref edges!");
- RetainedEdges.insert(Callee);
- if (!E->isCall())
- PromotedRefTargets.insert(Callee);
- }
- // Now walk all references.
- for (Instruction &I : instructions(F))
- for (Value *Op : I.operand_values())
- if (Constant *C = dyn_cast<Constant>(Op))
- if (Visited.insert(C).second)
- Worklist.push_back(C);
- LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &Referee) {
- const Edge *E = N.lookup(Referee);
- // FIXME: Similarly to new calls, we also currently preclude
- // introducing new references. See above for details.
- assert(E && "No function transformations should introduce *new* ref "
- "edges! Any new ref edges would require IPO which "
- "function passes aren't allowed to do!");
- RetainedEdges.insert(&Referee);
- if (E->isCall())
- DemotedCallTargets.insert(&Referee);
- });
- // First remove all of the edges that are no longer present in this function.
- // We have to build a list of dead targets first and then remove them as the
- // data structures will all be invalidated by removing them.
- SmallVector<PointerIntPair<Node *, 1, Edge::Kind>, 4> DeadTargets;
- for (Edge &E : N)
- if (!RetainedEdges.count(&E.getFunction()))
- DeadTargets.push_back({E.getNode(), E.getKind()});
- for (auto DeadTarget : DeadTargets) {
- Node &TargetN = *DeadTarget.getPointer();
- bool IsCall = DeadTarget.getInt() == Edge::Call;
- SCC &TargetC = *G.lookupSCC(TargetN);
- RefSCC &TargetRC = TargetC.getOuterRefSCC();
- if (&TargetRC != RC) {
- RC->removeOutgoingEdge(N, TargetN);
- if (DebugLogging)
- dbgs() << "Deleting outgoing edge from '" << N << "' to '" << TargetN
- << "'\n";
- continue;
- }
- if (DebugLogging)
- dbgs() << "Deleting internal " << (IsCall ? "call" : "ref")
- << " edge from '" << N << "' to '" << TargetN << "'\n";
- if (IsCall) {
- if (C != &TargetC) {
- // For separate SCCs this is trivial.
- RC->switchTrivialInternalEdgeToRef(N, TargetN);
- } else {
- // Otherwise we may end up re-structuring the call graph. First,
- // invalidate any SCC analyses. We have to do this before we split
- // functions into new SCCs and lose track of where their analyses are
- // cached.
- // FIXME: We should accept a more precise preserved set here. For
- // example, it might be possible to preserve some function analyses
- // even as the SCC structure is changed.
- AM.invalidate(*C, PreservedAnalyses::none());
- // Now update the call graph.
- C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G,
- N, C, AM, UR, DebugLogging);
- }
- }
- auto NewRefSCCs = RC->removeInternalRefEdge(N, TargetN);
- if (!NewRefSCCs.empty()) {
- // Note that we don't bother to invalidate analyses as ref-edge
- // connectivity is not really observable in any way and is intended
- // exclusively to be used for ordering of transforms rather than for
- // analysis conclusions.
- // The RC worklist is in reverse postorder, so we first enqueue the
- // current RefSCC as it will remain the parent of all split RefSCCs, then
- // we enqueue the new ones in RPO except for the one which contains the
- // source node as that is the "bottom" we will continue processing in the
- // bottom-up walk.
- UR.RCWorklist.insert(RC);
- if (DebugLogging)
- dbgs() << "Enqueuing the existing RefSCC in the update worklist: "
- << *RC << "\n";
- // Update the RC to the "bottom".
- assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
- RC = &C->getOuterRefSCC();
- assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
- assert(NewRefSCCs.front() == RC &&
- "New current RefSCC not first in the returned list!");
- for (RefSCC *NewRC : reverse(
- make_range(std::next(NewRefSCCs.begin()), NewRefSCCs.end()))) {
- assert(NewRC != RC && "Should not encounter the current RefSCC further "
- "in the postorder list of new RefSCCs.");
- UR.RCWorklist.insert(NewRC);
- if (DebugLogging)
- dbgs() << "Enqueuing a new RefSCC in the update worklist: " << *NewRC
- << "\n";
- }
- }
- }
- // Next demote all the call edges that are now ref edges. This helps make
- // the SCCs small which should minimize the work below as we don't want to
- // form cycles that this would break.
- for (Function *RefTarget : DemotedCallTargets) {
- Node &TargetN = *G.lookup(*RefTarget);
- SCC &TargetC = *G.lookupSCC(TargetN);
- RefSCC &TargetRC = TargetC.getOuterRefSCC();
- // The easy case is when the target RefSCC is not this RefSCC. This is
- // only supported when the target RefSCC is a child of this RefSCC.
- if (&TargetRC != RC) {
- assert(RC->isAncestorOf(TargetRC) &&
- "Cannot potentially form RefSCC cycles here!");
- RC->switchOutgoingEdgeToRef(N, TargetN);
- if (DebugLogging)
- dbgs() << "Switch outgoing call edge to a ref edge from '" << N
- << "' to '" << TargetN << "'\n";
- continue;
- }
- // We are switching an internal call edge to a ref edge. This may split up
- // some SCCs.
- if (C != &TargetC) {
- // For separate SCCs this is trivial.
- RC->switchTrivialInternalEdgeToRef(N, TargetN);
- continue;
- }
- // Otherwise we may end up re-structuring the call graph. First, invalidate
- // any SCC analyses. We have to do this before we split functions into new
- // SCCs and lose track of where their analyses are cached.
- // FIXME: We should accept a more precise preserved set here. For example,
- // it might be possible to preserve some function analyses even as the SCC
- // structure is changed.
- AM.invalidate(*C, PreservedAnalyses::none());
- // Now update the call graph.
- C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G,
- N, C, AM, UR, DebugLogging);
- }
- // Now promote ref edges into call edges.
- for (Function *CallTarget : PromotedRefTargets) {
- Node &TargetN = *G.lookup(*CallTarget);
- SCC &TargetC = *G.lookupSCC(TargetN);
- RefSCC &TargetRC = TargetC.getOuterRefSCC();
- // The easy case is when the target RefSCC is not this RefSCC. This is
- // only supported when the target RefSCC is a child of this RefSCC.
- if (&TargetRC != RC) {
- assert(RC->isAncestorOf(TargetRC) &&
- "Cannot potentially form RefSCC cycles here!");
- RC->switchOutgoingEdgeToCall(N, TargetN);
- if (DebugLogging)
- dbgs() << "Switch outgoing ref edge to a call edge from '" << N
- << "' to '" << TargetN << "'\n";
- continue;
- }
- if (DebugLogging)
- dbgs() << "Switch an internal ref edge to a call edge from '" << N
- << "' to '" << TargetN << "'\n";
- // Otherwise we are switching an internal ref edge to a call edge. This
- // may merge away some SCCs, and we add those to the UpdateResult. We also
- // need to make sure to update the worklist in the event SCCs have moved
- // before the current one in the post-order sequence.
- auto InitialSCCIndex = RC->find(*C) - RC->begin();
- auto InvalidatedSCCs = RC->switchInternalEdgeToCall(N, TargetN);
- if (!InvalidatedSCCs.empty()) {
- C = &TargetC;
- assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
- // Any analyses cached for this SCC are no longer precise as the shape
- // has changed by introducing this cycle.
- AM.invalidate(*C, PreservedAnalyses::none());
- for (SCC *InvalidatedC : InvalidatedSCCs) {
- assert(InvalidatedC != C && "Cannot invalidate the current SCC!");
- UR.InvalidatedSCCs.insert(InvalidatedC);
- // Also clear any cached analyses for the SCCs that are dead. This
- // isn't really necessary for correctness but can release memory.
- AM.clear(*InvalidatedC);
- }
- }
- auto NewSCCIndex = RC->find(*C) - RC->begin();
- if (InitialSCCIndex < NewSCCIndex) {
- // Put our current SCC back onto the worklist as we'll visit other SCCs
- // that are now definitively ordered prior to the current one in the
- // post-order sequence, and may end up observing more precise context to
- // optimize the current SCC.
- UR.CWorklist.insert(C);
- if (DebugLogging)
- dbgs() << "Enqueuing the existing SCC in the worklist: " << *C << "\n";
- // Enqueue in reverse order as we pop off the back of the worklist.
- for (SCC &MovedC : reverse(make_range(RC->begin() + InitialSCCIndex,
- RC->begin() + NewSCCIndex))) {
- UR.CWorklist.insert(&MovedC);
- if (DebugLogging)
- dbgs() << "Enqueuing a newly earlier in post-order SCC: " << MovedC
- << "\n";
- }
- }
- }
- assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
- assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
- assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
- // Record the current RefSCC and SCC for higher layers of the CGSCC pass
- // manager now that all the updates have been applied.
- if (RC != &InitialRC)
- UR.UpdatedRC = RC;
- if (C != &InitialC)
- UR.UpdatedC = C;
- return *C;
- }
|