123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345 |
- //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass eliminates machine instruction PHI nodes by inserting copy
- // instructions. This destroys SSA information, but is the desired input for
- // some register allocators.
- //
- //===----------------------------------------------------------------------===//
- #define DEBUG_TYPE "phielim"
- #include "llvm/CodeGen/LiveVariables.h"
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Support/Compiler.h"
- #include <set>
- #include <algorithm>
- using namespace llvm;
- STATISTIC(NumAtomic, "Number of atomic phis lowered");
- //STATISTIC(NumSimple, "Number of simple phis lowered");
- namespace {
- struct VISIBILITY_HIDDEN PNE : public MachineFunctionPass {
- static char ID; // Pass identification, replacement for typeid
- PNE() : MachineFunctionPass((intptr_t)&ID) {}
- bool runOnMachineFunction(MachineFunction &Fn) {
- analyzePHINodes(Fn);
- bool Changed = false;
- // Eliminate PHI instructions by inserting copies into predecessor blocks.
- for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
- Changed |= EliminatePHINodes(Fn, *I);
- VRegPHIUseCount.clear();
- return Changed;
- }
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addPreserved<LiveVariables>();
- AU.addPreservedID(MachineLoopInfoID);
- AU.addPreservedID(MachineDominatorsID);
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- private:
- /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
- /// in predecessor basic blocks.
- ///
- bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
- void LowerAtomicPHINode(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator AfterPHIsIt);
- /// analyzePHINodes - Gather information about the PHI nodes in
- /// here. In particular, we want to map the number of uses of a virtual
- /// register which is used in a PHI node. We map that to the BB the
- /// vreg is coming from. This is used later to determine when the vreg
- /// is killed in the BB.
- ///
- void analyzePHINodes(const MachineFunction& Fn);
- typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
- typedef std::map<BBVRegPair, unsigned> VRegPHIUse;
- VRegPHIUse VRegPHIUseCount;
- };
- char PNE::ID = 0;
- RegisterPass<PNE> X("phi-node-elimination",
- "Eliminate PHI nodes for register allocation");
- }
- const PassInfo *llvm::PHIEliminationID = X.getPassInfo();
- /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
- /// predecessor basic blocks.
- ///
- bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
- if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
- return false; // Quick exit for basic blocks without PHIs.
- // Get an iterator to the first instruction after the last PHI node (this may
- // also be the end of the basic block).
- MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
- while (AfterPHIsIt != MBB.end() &&
- AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
- ++AfterPHIsIt; // Skip over all of the PHI nodes...
- while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
- LowerAtomicPHINode(MBB, AfterPHIsIt);
- return true;
- }
- /// InstructionUsesRegister - Return true if the specified machine instr has a
- /// use of the specified register.
- static bool InstructionUsesRegister(MachineInstr *MI, unsigned SrcReg) {
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
- if (MI->getOperand(i).isRegister() &&
- MI->getOperand(i).getReg() == SrcReg &&
- MI->getOperand(i).isUse())
- return true;
- return false;
- }
- /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
- /// under the assuption that it needs to be lowered in a way that supports
- /// atomic execution of PHIs. This lowering method is always correct all of the
- /// time.
- void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator AfterPHIsIt) {
- // Unlink the PHI node from the basic block, but don't delete the PHI yet.
- MachineInstr *MPhi = MBB.remove(MBB.begin());
- unsigned DestReg = MPhi->getOperand(0).getReg();
- // Create a new register for the incoming PHI arguments.
- MachineFunction &MF = *MBB.getParent();
- const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
- unsigned IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
- // Insert a register to register copy in the top of the current block (but
- // after any remaining phi nodes) which copies the new incoming register
- // into the phi node destination.
- //
- const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
- TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
- // Update live variable information if there is any...
- LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
- if (LV) {
- MachineInstr *PHICopy = prior(AfterPHIsIt);
- // Increment use count of the newly created virtual register.
- LV->getVarInfo(IncomingReg).NumUses++;
- // Add information to LiveVariables to know that the incoming value is
- // killed. Note that because the value is defined in several places (once
- // each for each incoming block), the "def" block and instruction fields
- // for the VarInfo is not filled in.
- //
- LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
- // Since we are going to be deleting the PHI node, if it is the last use
- // of any registers, or if the value itself is dead, we need to move this
- // information over to the new copy we just inserted.
- //
- LV->removeVirtualRegistersKilled(MPhi);
- // If the result is dead, update LV.
- if (LV->RegisterDefIsDead(MPhi, DestReg)) {
- LV->addVirtualRegisterDead(DestReg, PHICopy);
- LV->removeVirtualRegistersDead(MPhi);
- }
-
- // Realize that the destination register is defined by the PHI copy now, not
- // the PHI itself.
- LV->getVarInfo(DestReg).DefInst = PHICopy;
- LV->getVarInfo(IncomingReg).UsedBlocks[MBB.getNumber()] = true;
- }
- // Adjust the VRegPHIUseCount map to account for the removal of this PHI
- // node.
- for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
- --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
- MPhi->getOperand(i).getReg())];
- // Now loop over all of the incoming arguments, changing them to copy into
- // the IncomingReg register in the corresponding predecessor basic block.
- //
- std::set<MachineBasicBlock*> MBBsInsertedInto;
- for (int i = MPhi->getNumOperands() - 1; i >= 2; i-=2) {
- unsigned SrcReg = MPhi->getOperand(i-1).getReg();
- assert(MRegisterInfo::isVirtualRegister(SrcReg) &&
- "Machine PHI Operands must all be virtual registers!");
- // Get the MachineBasicBlock equivalent of the BasicBlock that is the
- // source path the PHI.
- MachineBasicBlock &opBlock = *MPhi->getOperand(i).getMBB();
- // Check to make sure we haven't already emitted the copy for this block.
- // This can happen because PHI nodes may have multiple entries for the
- // same basic block.
- if (!MBBsInsertedInto.insert(&opBlock).second)
- continue; // If the copy has already been emitted, we're done.
-
- // Get an iterator pointing to the first terminator in the block (or end()).
- // This is the point where we can insert a copy if we'd like to.
- MachineBasicBlock::iterator I = opBlock.getFirstTerminator();
-
- // Insert the copy.
- TII->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC, RC);
- // Now update live variable information if we have it. Otherwise we're done
- if (!LV) continue;
-
- // We want to be able to insert a kill of the register if this PHI
- // (aka, the copy we just inserted) is the last use of the source
- // value. Live variable analysis conservatively handles this by
- // saying that the value is live until the end of the block the PHI
- // entry lives in. If the value really is dead at the PHI copy, there
- // will be no successor blocks which have the value live-in.
- //
- // Check to see if the copy is the last use, and if so, update the
- // live variables information so that it knows the copy source
- // instruction kills the incoming value.
- //
- LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
- InRegVI.UsedBlocks[opBlock.getNumber()] = true;
- // Loop over all of the successors of the basic block, checking to see
- // if the value is either live in the block, or if it is killed in the
- // block. Also check to see if this register is in use by another PHI
- // node which has not yet been eliminated. If so, it will be killed
- // at an appropriate point later.
- //
- // Is it used by any PHI instructions in this block?
- bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
- std::vector<MachineBasicBlock*> OpSuccBlocks;
-
- // Otherwise, scan successors, including the BB the PHI node lives in.
- for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
- E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
- MachineBasicBlock *SuccMBB = *SI;
- // Is it alive in this successor?
- unsigned SuccIdx = SuccMBB->getNumber();
- if (SuccIdx < InRegVI.AliveBlocks.size() &&
- InRegVI.AliveBlocks[SuccIdx]) {
- ValueIsLive = true;
- break;
- }
- OpSuccBlocks.push_back(SuccMBB);
- }
- // Check to see if this value is live because there is a use in a successor
- // that kills it.
- if (!ValueIsLive) {
- switch (OpSuccBlocks.size()) {
- case 1: {
- MachineBasicBlock *MBB = OpSuccBlocks[0];
- for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
- if (InRegVI.Kills[i]->getParent() == MBB) {
- ValueIsLive = true;
- break;
- }
- break;
- }
- case 2: {
- MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
- for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
- if (InRegVI.Kills[i]->getParent() == MBB1 ||
- InRegVI.Kills[i]->getParent() == MBB2) {
- ValueIsLive = true;
- break;
- }
- break;
- }
- default:
- std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
- for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
- if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
- InRegVI.Kills[i]->getParent())) {
- ValueIsLive = true;
- break;
- }
- }
- }
- // Okay, if we now know that the value is not live out of the block,
- // we can add a kill marker in this block saying that it kills the incoming
- // value!
- if (!ValueIsLive) {
- // In our final twist, we have to decide which instruction kills the
- // register. In most cases this is the copy, however, the first
- // terminator instruction at the end of the block may also use the value.
- // In this case, we should mark *it* as being the killing block, not the
- // copy.
- bool FirstTerminatorUsesValue = false;
- if (I != opBlock.end()) {
- FirstTerminatorUsesValue = InstructionUsesRegister(I, SrcReg);
-
- // Check that no other terminators use values.
- #ifndef NDEBUG
- for (MachineBasicBlock::iterator TI = next(I); TI != opBlock.end();
- ++TI) {
- assert(!InstructionUsesRegister(TI, SrcReg) &&
- "Terminator instructions cannot use virtual registers unless"
- "they are the first terminator in a block!");
- }
- #endif
- }
-
- MachineBasicBlock::iterator KillInst;
- if (!FirstTerminatorUsesValue)
- KillInst = prior(I);
- else
- KillInst = I;
-
- // Finally, mark it killed.
- LV->addVirtualRegisterKilled(SrcReg, KillInst);
- // This vreg no longer lives all of the way through opBlock.
- unsigned opBlockNum = opBlock.getNumber();
- if (opBlockNum < InRegVI.AliveBlocks.size())
- InRegVI.AliveBlocks[opBlockNum] = false;
- }
- }
-
- // Really delete the PHI instruction now!
- delete MPhi;
- ++NumAtomic;
- }
- /// analyzePHINodes - Gather information about the PHI nodes in here. In
- /// particular, we want to map the number of uses of a virtual register which is
- /// used in a PHI node. We map that to the BB the vreg is coming from. This is
- /// used later to determine when the vreg is killed in the BB.
- ///
- void PNE::analyzePHINodes(const MachineFunction& Fn) {
- for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
- I != E; ++I)
- for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
- BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
- for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
- ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
- BBI->getOperand(i).getReg())];
- }
|