123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906 |
- //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements some loop unrolling utilities. It does not define any
- // actual pass or policy, but provides a single function to perform loop
- // unrolling.
- //
- // The process of unrolling can produce extraneous basic blocks linked with
- // unconditional branches. This will be corrected in the future.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LoopIterator.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/LoopSimplify.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Utils/SimplifyIndVar.h"
- #include "llvm/Transforms/Utils/UnrollLoop.h"
- using namespace llvm;
- #define DEBUG_TYPE "loop-unroll"
- // TODO: Should these be here or in LoopUnroll?
- STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
- STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
- static cl::opt<bool>
- UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
- cl::desc("Allow runtime unrolled loops to be unrolled "
- "with epilog instead of prolog."));
- static cl::opt<bool>
- UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
- cl::desc("Verify domtree after unrolling"),
- #ifdef NDEBUG
- cl::init(false)
- #else
- cl::init(true)
- #endif
- );
- /// Convert the instruction operands from referencing the current values into
- /// those specified by VMap.
- static inline void remapInstruction(Instruction *I,
- ValueToValueMapTy &VMap) {
- for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
- Value *Op = I->getOperand(op);
- // Unwrap arguments of dbg.value intrinsics.
- bool Wrapped = false;
- if (auto *V = dyn_cast<MetadataAsValue>(Op))
- if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) {
- Op = Unwrapped->getValue();
- Wrapped = true;
- }
- auto wrap = [&](Value *V) {
- auto &C = I->getContext();
- return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V;
- };
- ValueToValueMapTy::iterator It = VMap.find(Op);
- if (It != VMap.end())
- I->setOperand(op, wrap(It->second));
- }
- if (PHINode *PN = dyn_cast<PHINode>(I)) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
- if (It != VMap.end())
- PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
- }
- }
- }
- /// Folds a basic block into its predecessor if it only has one predecessor, and
- /// that predecessor only has one successor.
- /// The LoopInfo Analysis that is passed will be kept consistent. If folding is
- /// successful references to the containing loop must be removed from
- /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
- /// references to the eliminated BB. The argument ForgottenLoops contains a set
- /// of loops that have already been forgotten to prevent redundant, expensive
- /// calls to ScalarEvolution::forgetLoop. Returns the new combined block.
- static BasicBlock *
- foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE,
- SmallPtrSetImpl<Loop *> &ForgottenLoops,
- DominatorTree *DT) {
- // Merge basic blocks into their predecessor if there is only one distinct
- // pred, and if there is only one distinct successor of the predecessor, and
- // if there are no PHI nodes.
- BasicBlock *OnlyPred = BB->getSinglePredecessor();
- if (!OnlyPred) return nullptr;
- if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
- return nullptr;
- DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
- // Resolve any PHI nodes at the start of the block. They are all
- // guaranteed to have exactly one entry if they exist, unless there are
- // multiple duplicate (but guaranteed to be equal) entries for the
- // incoming edges. This occurs when there are multiple edges from
- // OnlyPred to OnlySucc.
- FoldSingleEntryPHINodes(BB);
- // Delete the unconditional branch from the predecessor...
- OnlyPred->getInstList().pop_back();
- // Make all PHI nodes that referred to BB now refer to Pred as their
- // source...
- BB->replaceAllUsesWith(OnlyPred);
- // Move all definitions in the successor to the predecessor...
- OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
- // OldName will be valid until erased.
- StringRef OldName = BB->getName();
- // Erase the old block and update dominator info.
- if (DT)
- if (DomTreeNode *DTN = DT->getNode(BB)) {
- DomTreeNode *PredDTN = DT->getNode(OnlyPred);
- SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
- for (auto *DI : Children)
- DT->changeImmediateDominator(DI, PredDTN);
- DT->eraseNode(BB);
- }
- // ScalarEvolution holds references to loop exit blocks.
- if (SE) {
- if (Loop *L = LI->getLoopFor(BB)) {
- if (ForgottenLoops.insert(L).second)
- SE->forgetLoop(L);
- }
- }
- LI->removeBlock(BB);
- // Inherit predecessor's name if it exists...
- if (!OldName.empty() && !OnlyPred->hasName())
- OnlyPred->setName(OldName);
- BB->eraseFromParent();
- return OnlyPred;
- }
- /// Check if unrolling created a situation where we need to insert phi nodes to
- /// preserve LCSSA form.
- /// \param Blocks is a vector of basic blocks representing unrolled loop.
- /// \param L is the outer loop.
- /// It's possible that some of the blocks are in L, and some are not. In this
- /// case, if there is a use is outside L, and definition is inside L, we need to
- /// insert a phi-node, otherwise LCSSA will be broken.
- /// The function is just a helper function for llvm::UnrollLoop that returns
- /// true if this situation occurs, indicating that LCSSA needs to be fixed.
- static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
- LoopInfo *LI) {
- for (BasicBlock *BB : Blocks) {
- if (LI->getLoopFor(BB) == L)
- continue;
- for (Instruction &I : *BB) {
- for (Use &U : I.operands()) {
- if (auto Def = dyn_cast<Instruction>(U)) {
- Loop *DefLoop = LI->getLoopFor(Def->getParent());
- if (!DefLoop)
- continue;
- if (DefLoop->contains(L))
- return true;
- }
- }
- }
- }
- return false;
- }
- /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
- /// and adds a mapping from the original loop to the new loop to NewLoops.
- /// Returns nullptr if no new loop was created and a pointer to the
- /// original loop OriginalBB was part of otherwise.
- const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
- BasicBlock *ClonedBB, LoopInfo *LI,
- NewLoopsMap &NewLoops) {
- // Figure out which loop New is in.
- const Loop *OldLoop = LI->getLoopFor(OriginalBB);
- assert(OldLoop && "Should (at least) be in the loop being unrolled!");
- Loop *&NewLoop = NewLoops[OldLoop];
- if (!NewLoop) {
- // Found a new sub-loop.
- assert(OriginalBB == OldLoop->getHeader() &&
- "Header should be first in RPO");
- NewLoop = LI->AllocateLoop();
- Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
- if (NewLoopParent)
- NewLoopParent->addChildLoop(NewLoop);
- else
- LI->addTopLevelLoop(NewLoop);
- NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
- return OldLoop;
- } else {
- NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
- return nullptr;
- }
- }
- /// The function chooses which type of unroll (epilog or prolog) is more
- /// profitabale.
- /// Epilog unroll is more profitable when there is PHI that starts from
- /// constant. In this case epilog will leave PHI start from constant,
- /// but prolog will convert it to non-constant.
- ///
- /// loop:
- /// PN = PHI [I, Latch], [CI, PreHeader]
- /// I = foo(PN)
- /// ...
- ///
- /// Epilog unroll case.
- /// loop:
- /// PN = PHI [I2, Latch], [CI, PreHeader]
- /// I1 = foo(PN)
- /// I2 = foo(I1)
- /// ...
- /// Prolog unroll case.
- /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
- /// loop:
- /// PN = PHI [I2, Latch], [NewPN, PreHeader]
- /// I1 = foo(PN)
- /// I2 = foo(I1)
- /// ...
- ///
- static bool isEpilogProfitable(Loop *L) {
- BasicBlock *PreHeader = L->getLoopPreheader();
- BasicBlock *Header = L->getHeader();
- assert(PreHeader && Header);
- for (const PHINode &PN : Header->phis()) {
- if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
- return true;
- }
- return false;
- }
- /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling
- /// can only fail when the loop's latch block is not terminated by a conditional
- /// branch instruction. However, if the trip count (and multiple) are not known,
- /// loop unrolling will mostly produce more code that is no faster.
- ///
- /// TripCount is the upper bound of the iteration on which control exits
- /// LatchBlock. Control may exit the loop prior to TripCount iterations either
- /// via an early branch in other loop block or via LatchBlock terminator. This
- /// is relaxed from the general definition of trip count which is the number of
- /// times the loop header executes. Note that UnrollLoop assumes that the loop
- /// counter test is in LatchBlock in order to remove unnecesssary instances of
- /// the test. If control can exit the loop from the LatchBlock's terminator
- /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
- ///
- /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
- /// needs to be preserved. It is needed when we use trip count upper bound to
- /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
- /// conditional branch needs to be preserved.
- ///
- /// Similarly, TripMultiple divides the number of times that the LatchBlock may
- /// execute without exiting the loop.
- ///
- /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
- /// have a runtime (i.e. not compile time constant) trip count. Unrolling these
- /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
- /// iterations before branching into the unrolled loop. UnrollLoop will not
- /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
- /// AllowExpensiveTripCount is false.
- ///
- /// If we want to perform PGO-based loop peeling, PeelCount is set to the
- /// number of iterations we want to peel off.
- ///
- /// The LoopInfo Analysis that is passed will be kept consistent.
- ///
- /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
- /// DominatorTree if they are non-null.
- LoopUnrollResult llvm::UnrollLoop(
- Loop *L, unsigned Count, unsigned TripCount, bool Force, bool AllowRuntime,
- bool AllowExpensiveTripCount, bool PreserveCondBr, bool PreserveOnlyFirst,
- unsigned TripMultiple, unsigned PeelCount, bool UnrollRemainder,
- LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
- OptimizationRemarkEmitter *ORE, bool PreserveLCSSA) {
- BasicBlock *Preheader = L->getLoopPreheader();
- if (!Preheader) {
- DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
- return LoopUnrollResult::Unmodified;
- }
- BasicBlock *LatchBlock = L->getLoopLatch();
- if (!LatchBlock) {
- DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
- return LoopUnrollResult::Unmodified;
- }
- // Loops with indirectbr cannot be cloned.
- if (!L->isSafeToClone()) {
- DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
- return LoopUnrollResult::Unmodified;
- }
- // The current loop unroll pass can only unroll loops with a single latch
- // that's a conditional branch exiting the loop.
- // FIXME: The implementation can be extended to work with more complicated
- // cases, e.g. loops with multiple latches.
- BasicBlock *Header = L->getHeader();
- BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
- if (!BI || BI->isUnconditional()) {
- // The loop-rotate pass can be helpful to avoid this in many cases.
- DEBUG(dbgs() <<
- " Can't unroll; loop not terminated by a conditional branch.\n");
- return LoopUnrollResult::Unmodified;
- }
- auto CheckSuccessors = [&](unsigned S1, unsigned S2) {
- return BI->getSuccessor(S1) == Header && !L->contains(BI->getSuccessor(S2));
- };
- if (!CheckSuccessors(0, 1) && !CheckSuccessors(1, 0)) {
- DEBUG(dbgs() << "Can't unroll; only loops with one conditional latch"
- " exiting the loop can be unrolled\n");
- return LoopUnrollResult::Unmodified;
- }
- if (Header->hasAddressTaken()) {
- // The loop-rotate pass can be helpful to avoid this in many cases.
- DEBUG(dbgs() <<
- " Won't unroll loop: address of header block is taken.\n");
- return LoopUnrollResult::Unmodified;
- }
- if (TripCount != 0)
- DEBUG(dbgs() << " Trip Count = " << TripCount << "\n");
- if (TripMultiple != 1)
- DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n");
- // Effectively "DCE" unrolled iterations that are beyond the tripcount
- // and will never be executed.
- if (TripCount != 0 && Count > TripCount)
- Count = TripCount;
- // Don't enter the unroll code if there is nothing to do.
- if (TripCount == 0 && Count < 2 && PeelCount == 0) {
- DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
- return LoopUnrollResult::Unmodified;
- }
- assert(Count > 0);
- assert(TripMultiple > 0);
- assert(TripCount == 0 || TripCount % TripMultiple == 0);
- // Are we eliminating the loop control altogether?
- bool CompletelyUnroll = Count == TripCount;
- SmallVector<BasicBlock *, 4> ExitBlocks;
- L->getExitBlocks(ExitBlocks);
- std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
- // Go through all exits of L and see if there are any phi-nodes there. We just
- // conservatively assume that they're inserted to preserve LCSSA form, which
- // means that complete unrolling might break this form. We need to either fix
- // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
- // now we just recompute LCSSA for the outer loop, but it should be possible
- // to fix it in-place.
- bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
- any_of(ExitBlocks, [](const BasicBlock *BB) {
- return isa<PHINode>(BB->begin());
- });
- // We assume a run-time trip count if the compiler cannot
- // figure out the loop trip count and the unroll-runtime
- // flag is specified.
- bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
- assert((!RuntimeTripCount || !PeelCount) &&
- "Did not expect runtime trip-count unrolling "
- "and peeling for the same loop");
- if (PeelCount) {
- bool Peeled = peelLoop(L, PeelCount, LI, SE, DT, AC, PreserveLCSSA);
- // Successful peeling may result in a change in the loop preheader/trip
- // counts. If we later unroll the loop, we want these to be updated.
- if (Peeled) {
- BasicBlock *ExitingBlock = L->getExitingBlock();
- assert(ExitingBlock && "Loop without exiting block?");
- Preheader = L->getLoopPreheader();
- TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
- TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
- }
- }
- // Loops containing convergent instructions must have a count that divides
- // their TripMultiple.
- DEBUG(
- {
- bool HasConvergent = false;
- for (auto &BB : L->blocks())
- for (auto &I : *BB)
- if (auto CS = CallSite(&I))
- HasConvergent |= CS.isConvergent();
- assert((!HasConvergent || TripMultiple % Count == 0) &&
- "Unroll count must divide trip multiple if loop contains a "
- "convergent operation.");
- });
- bool EpilogProfitability =
- UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
- : isEpilogProfitable(L);
- if (RuntimeTripCount && TripMultiple % Count != 0 &&
- !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
- EpilogProfitability, UnrollRemainder, LI, SE,
- DT, AC, PreserveLCSSA)) {
- if (Force)
- RuntimeTripCount = false;
- else {
- DEBUG(
- dbgs() << "Wont unroll; remainder loop could not be generated"
- "when assuming runtime trip count\n");
- return LoopUnrollResult::Unmodified;
- }
- }
- // Notify ScalarEvolution that the loop will be substantially changed,
- // if not outright eliminated.
- if (SE)
- SE->forgetLoop(L);
- // If we know the trip count, we know the multiple...
- unsigned BreakoutTrip = 0;
- if (TripCount != 0) {
- BreakoutTrip = TripCount % Count;
- TripMultiple = 0;
- } else {
- // Figure out what multiple to use.
- BreakoutTrip = TripMultiple =
- (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
- }
- using namespace ore;
- // Report the unrolling decision.
- if (CompletelyUnroll) {
- DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
- << " with trip count " << TripCount << "!\n");
- if (ORE)
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
- L->getHeader())
- << "completely unrolled loop with "
- << NV("UnrollCount", TripCount) << " iterations";
- });
- } else if (PeelCount) {
- DEBUG(dbgs() << "PEELING loop %" << Header->getName()
- << " with iteration count " << PeelCount << "!\n");
- if (ORE)
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
- L->getHeader())
- << " peeled loop by " << NV("PeelCount", PeelCount)
- << " iterations";
- });
- } else {
- auto DiagBuilder = [&]() {
- OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
- L->getHeader());
- return Diag << "unrolled loop by a factor of "
- << NV("UnrollCount", Count);
- };
- DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
- << " by " << Count);
- if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
- DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
- if (ORE)
- ORE->emit([&]() {
- return DiagBuilder() << " with a breakout at trip "
- << NV("BreakoutTrip", BreakoutTrip);
- });
- } else if (TripMultiple != 1) {
- DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
- if (ORE)
- ORE->emit([&]() {
- return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple)
- << " trips per branch";
- });
- } else if (RuntimeTripCount) {
- DEBUG(dbgs() << " with run-time trip count");
- if (ORE)
- ORE->emit(
- [&]() { return DiagBuilder() << " with run-time trip count"; });
- }
- DEBUG(dbgs() << "!\n");
- }
- bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
- BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
- // For the first iteration of the loop, we should use the precloned values for
- // PHI nodes. Insert associations now.
- ValueToValueMapTy LastValueMap;
- std::vector<PHINode*> OrigPHINode;
- for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
- OrigPHINode.push_back(cast<PHINode>(I));
- }
- std::vector<BasicBlock*> Headers;
- std::vector<BasicBlock*> Latches;
- Headers.push_back(Header);
- Latches.push_back(LatchBlock);
- // The current on-the-fly SSA update requires blocks to be processed in
- // reverse postorder so that LastValueMap contains the correct value at each
- // exit.
- LoopBlocksDFS DFS(L);
- DFS.perform(LI);
- // Stash the DFS iterators before adding blocks to the loop.
- LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
- LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
- std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
- // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
- // might break loop-simplified form for these loops (as they, e.g., would
- // share the same exit blocks). We'll keep track of loops for which we can
- // break this so that later we can re-simplify them.
- SmallSetVector<Loop *, 4> LoopsToSimplify;
- for (Loop *SubLoop : *L)
- LoopsToSimplify.insert(SubLoop);
- if (Header->getParent()->isDebugInfoForProfiling())
- for (BasicBlock *BB : L->getBlocks())
- for (Instruction &I : *BB)
- if (!isa<DbgInfoIntrinsic>(&I))
- if (const DILocation *DIL = I.getDebugLoc())
- I.setDebugLoc(DIL->cloneWithDuplicationFactor(Count));
- for (unsigned It = 1; It != Count; ++It) {
- std::vector<BasicBlock*> NewBlocks;
- SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
- NewLoops[L] = L;
- for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
- ValueToValueMapTy VMap;
- BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
- Header->getParent()->getBasicBlockList().push_back(New);
- assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
- "Header should not be in a sub-loop");
- // Tell LI about New.
- const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
- if (OldLoop) {
- LoopsToSimplify.insert(NewLoops[OldLoop]);
- // Forget the old loop, since its inputs may have changed.
- if (SE)
- SE->forgetLoop(OldLoop);
- }
- if (*BB == Header)
- // Loop over all of the PHI nodes in the block, changing them to use
- // the incoming values from the previous block.
- for (PHINode *OrigPHI : OrigPHINode) {
- PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
- Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
- if (Instruction *InValI = dyn_cast<Instruction>(InVal))
- if (It > 1 && L->contains(InValI))
- InVal = LastValueMap[InValI];
- VMap[OrigPHI] = InVal;
- New->getInstList().erase(NewPHI);
- }
- // Update our running map of newest clones
- LastValueMap[*BB] = New;
- for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
- VI != VE; ++VI)
- LastValueMap[VI->first] = VI->second;
- // Add phi entries for newly created values to all exit blocks.
- for (BasicBlock *Succ : successors(*BB)) {
- if (L->contains(Succ))
- continue;
- for (PHINode &PHI : Succ->phis()) {
- Value *Incoming = PHI.getIncomingValueForBlock(*BB);
- ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
- if (It != LastValueMap.end())
- Incoming = It->second;
- PHI.addIncoming(Incoming, New);
- }
- }
- // Keep track of new headers and latches as we create them, so that
- // we can insert the proper branches later.
- if (*BB == Header)
- Headers.push_back(New);
- if (*BB == LatchBlock)
- Latches.push_back(New);
- NewBlocks.push_back(New);
- UnrolledLoopBlocks.push_back(New);
- // Update DomTree: since we just copy the loop body, and each copy has a
- // dedicated entry block (copy of the header block), this header's copy
- // dominates all copied blocks. That means, dominance relations in the
- // copied body are the same as in the original body.
- if (DT) {
- if (*BB == Header)
- DT->addNewBlock(New, Latches[It - 1]);
- else {
- auto BBDomNode = DT->getNode(*BB);
- auto BBIDom = BBDomNode->getIDom();
- BasicBlock *OriginalBBIDom = BBIDom->getBlock();
- DT->addNewBlock(
- New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
- }
- }
- }
- // Remap all instructions in the most recent iteration
- for (BasicBlock *NewBlock : NewBlocks) {
- for (Instruction &I : *NewBlock) {
- ::remapInstruction(&I, LastValueMap);
- if (auto *II = dyn_cast<IntrinsicInst>(&I))
- if (II->getIntrinsicID() == Intrinsic::assume)
- AC->registerAssumption(II);
- }
- }
- }
- // Loop over the PHI nodes in the original block, setting incoming values.
- for (PHINode *PN : OrigPHINode) {
- if (CompletelyUnroll) {
- PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
- Header->getInstList().erase(PN);
- }
- else if (Count > 1) {
- Value *InVal = PN->removeIncomingValue(LatchBlock, false);
- // If this value was defined in the loop, take the value defined by the
- // last iteration of the loop.
- if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
- if (L->contains(InValI))
- InVal = LastValueMap[InVal];
- }
- assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
- PN->addIncoming(InVal, Latches.back());
- }
- }
- // Now that all the basic blocks for the unrolled iterations are in place,
- // set up the branches to connect them.
- for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
- // The original branch was replicated in each unrolled iteration.
- BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
- // The branch destination.
- unsigned j = (i + 1) % e;
- BasicBlock *Dest = Headers[j];
- bool NeedConditional = true;
- if (RuntimeTripCount && j != 0) {
- NeedConditional = false;
- }
- // For a complete unroll, make the last iteration end with a branch
- // to the exit block.
- if (CompletelyUnroll) {
- if (j == 0)
- Dest = LoopExit;
- // If using trip count upper bound to completely unroll, we need to keep
- // the conditional branch except the last one because the loop may exit
- // after any iteration.
- assert(NeedConditional &&
- "NeedCondition cannot be modified by both complete "
- "unrolling and runtime unrolling");
- NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0));
- } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
- // If we know the trip count or a multiple of it, we can safely use an
- // unconditional branch for some iterations.
- NeedConditional = false;
- }
- if (NeedConditional) {
- // Update the conditional branch's successor for the following
- // iteration.
- Term->setSuccessor(!ContinueOnTrue, Dest);
- } else {
- // Remove phi operands at this loop exit
- if (Dest != LoopExit) {
- BasicBlock *BB = Latches[i];
- for (BasicBlock *Succ: successors(BB)) {
- if (Succ == Headers[i])
- continue;
- for (PHINode &Phi : Succ->phis())
- Phi.removeIncomingValue(BB, false);
- }
- }
- // Replace the conditional branch with an unconditional one.
- BranchInst::Create(Dest, Term);
- Term->eraseFromParent();
- }
- }
- // Update dominators of blocks we might reach through exits.
- // Immediate dominator of such block might change, because we add more
- // routes which can lead to the exit: we can now reach it from the copied
- // iterations too.
- if (DT && Count > 1) {
- for (auto *BB : OriginalLoopBlocks) {
- auto *BBDomNode = DT->getNode(BB);
- SmallVector<BasicBlock *, 16> ChildrenToUpdate;
- for (auto *ChildDomNode : BBDomNode->getChildren()) {
- auto *ChildBB = ChildDomNode->getBlock();
- if (!L->contains(ChildBB))
- ChildrenToUpdate.push_back(ChildBB);
- }
- BasicBlock *NewIDom;
- if (BB == LatchBlock) {
- // The latch is special because we emit unconditional branches in
- // some cases where the original loop contained a conditional branch.
- // Since the latch is always at the bottom of the loop, if the latch
- // dominated an exit before unrolling, the new dominator of that exit
- // must also be a latch. Specifically, the dominator is the first
- // latch which ends in a conditional branch, or the last latch if
- // there is no such latch.
- NewIDom = Latches.back();
- for (BasicBlock *IterLatch : Latches) {
- TerminatorInst *Term = IterLatch->getTerminator();
- if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
- NewIDom = IterLatch;
- break;
- }
- }
- } else {
- // The new idom of the block will be the nearest common dominator
- // of all copies of the previous idom. This is equivalent to the
- // nearest common dominator of the previous idom and the first latch,
- // which dominates all copies of the previous idom.
- NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
- }
- for (auto *ChildBB : ChildrenToUpdate)
- DT->changeImmediateDominator(ChildBB, NewIDom);
- }
- }
- if (DT && UnrollVerifyDomtree)
- DT->verifyDomTree();
- // Merge adjacent basic blocks, if possible.
- SmallPtrSet<Loop *, 4> ForgottenLoops;
- for (BasicBlock *Latch : Latches) {
- BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
- if (Term->isUnconditional()) {
- BasicBlock *Dest = Term->getSuccessor(0);
- if (BasicBlock *Fold =
- foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) {
- // Dest has been folded into Fold. Update our worklists accordingly.
- std::replace(Latches.begin(), Latches.end(), Dest, Fold);
- UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
- UnrolledLoopBlocks.end(), Dest),
- UnrolledLoopBlocks.end());
- }
- }
- }
- // Simplify any new induction variables in the partially unrolled loop.
- if (SE && !CompletelyUnroll && Count > 1) {
- SmallVector<WeakTrackingVH, 16> DeadInsts;
- simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
- // Aggressively clean up dead instructions that simplifyLoopIVs already
- // identified. Any remaining should be cleaned up below.
- while (!DeadInsts.empty())
- if (Instruction *Inst =
- dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
- RecursivelyDeleteTriviallyDeadInstructions(Inst);
- }
- // At this point, the code is well formed. We now do a quick sweep over the
- // inserted code, doing constant propagation and dead code elimination as we
- // go.
- const DataLayout &DL = Header->getModule()->getDataLayout();
- const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
- for (BasicBlock *BB : NewLoopBlocks) {
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
- Instruction *Inst = &*I++;
- if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
- if (LI->replacementPreservesLCSSAForm(Inst, V))
- Inst->replaceAllUsesWith(V);
- if (isInstructionTriviallyDead(Inst))
- BB->getInstList().erase(Inst);
- }
- }
- // TODO: after peeling or unrolling, previously loop variant conditions are
- // likely to fold to constants, eagerly propagating those here will require
- // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be
- // appropriate.
- NumCompletelyUnrolled += CompletelyUnroll;
- ++NumUnrolled;
- Loop *OuterL = L->getParentLoop();
- // Update LoopInfo if the loop is completely removed.
- if (CompletelyUnroll)
- LI->erase(L);
- // After complete unrolling most of the blocks should be contained in OuterL.
- // However, some of them might happen to be out of OuterL (e.g. if they
- // precede a loop exit). In this case we might need to insert PHI nodes in
- // order to preserve LCSSA form.
- // We don't need to check this if we already know that we need to fix LCSSA
- // form.
- // TODO: For now we just recompute LCSSA for the outer loop in this case, but
- // it should be possible to fix it in-place.
- if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
- NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
- // If we have a pass and a DominatorTree we should re-simplify impacted loops
- // to ensure subsequent analyses can rely on this form. We want to simplify
- // at least one layer outside of the loop that was unrolled so that any
- // changes to the parent loop exposed by the unrolling are considered.
- if (DT) {
- if (OuterL) {
- // OuterL includes all loops for which we can break loop-simplify, so
- // it's sufficient to simplify only it (it'll recursively simplify inner
- // loops too).
- if (NeedToFixLCSSA) {
- // LCSSA must be performed on the outermost affected loop. The unrolled
- // loop's last loop latch is guaranteed to be in the outermost loop
- // after LoopInfo's been updated by LoopInfo::erase.
- Loop *LatchLoop = LI->getLoopFor(Latches.back());
- Loop *FixLCSSALoop = OuterL;
- if (!FixLCSSALoop->contains(LatchLoop))
- while (FixLCSSALoop->getParentLoop() != LatchLoop)
- FixLCSSALoop = FixLCSSALoop->getParentLoop();
- formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
- } else if (PreserveLCSSA) {
- assert(OuterL->isLCSSAForm(*DT) &&
- "Loops should be in LCSSA form after loop-unroll.");
- }
- // TODO: That potentially might be compile-time expensive. We should try
- // to fix the loop-simplified form incrementally.
- simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
- } else {
- // Simplify loops for which we might've broken loop-simplify form.
- for (Loop *SubLoop : LoopsToSimplify)
- simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA);
- }
- }
- return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
- : LoopUnrollResult::PartiallyUnrolled;
- }
- /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
- /// node with the given name (for example, "llvm.loop.unroll.count"). If no
- /// such metadata node exists, then nullptr is returned.
- MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
- // First operand should refer to the loop id itself.
- assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
- assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
- for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
- MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
- if (!MD)
- continue;
- MDString *S = dyn_cast<MDString>(MD->getOperand(0));
- if (!S)
- continue;
- if (Name.equals(S->getString()))
- return MD;
- }
- return nullptr;
- }
|