12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171 |
- //===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/Sequence.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/CodeMetrics.h"
- #include "llvm/Analysis/LoopAnalysisManager.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/GenericDomTree.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Utils/ValueMapper.h"
- #include <algorithm>
- #include <cassert>
- #include <iterator>
- #include <numeric>
- #include <utility>
- #define DEBUG_TYPE "simple-loop-unswitch"
- using namespace llvm;
- STATISTIC(NumBranches, "Number of branches unswitched");
- STATISTIC(NumSwitches, "Number of switches unswitched");
- STATISTIC(NumTrivial, "Number of unswitches that are trivial");
- static cl::opt<bool> EnableNonTrivialUnswitch(
- "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
- cl::desc("Forcibly enables non-trivial loop unswitching rather than "
- "following the configuration passed into the pass."));
- static cl::opt<int>
- UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
- cl::desc("The cost threshold for unswitching a loop."));
- static void replaceLoopUsesWithConstant(Loop &L, Value &LIC,
- Constant &Replacement) {
- assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
- // Replace uses of LIC in the loop with the given constant.
- for (auto UI = LIC.use_begin(), UE = LIC.use_end(); UI != UE;) {
- // Grab the use and walk past it so we can clobber it in the use list.
- Use *U = &*UI++;
- Instruction *UserI = dyn_cast<Instruction>(U->getUser());
- if (!UserI || !L.contains(UserI))
- continue;
- // Replace this use within the loop body.
- *U = &Replacement;
- }
- }
- /// Update the IDom for a basic block whose predecessor set has changed.
- ///
- /// This routine is designed to work when the domtree update is relatively
- /// localized by leveraging a known common dominator, often a loop header.
- ///
- /// FIXME: Should consider hand-rolling a slightly more efficient non-DFS
- /// approach here as we can do that easily by persisting the candidate IDom's
- /// dominating set between each predecessor.
- ///
- /// FIXME: Longer term, many uses of this can be replaced by an incremental
- /// domtree update strategy that starts from a known dominating block and
- /// rebuilds that subtree.
- static bool updateIDomWithKnownCommonDominator(BasicBlock *BB,
- BasicBlock *KnownDominatingBB,
- DominatorTree &DT) {
- assert(pred_begin(BB) != pred_end(BB) &&
- "This routine does not handle unreachable blocks!");
- BasicBlock *OrigIDom = DT[BB]->getIDom()->getBlock();
- BasicBlock *IDom = *pred_begin(BB);
- assert(DT.dominates(KnownDominatingBB, IDom) &&
- "Bad known dominating block!");
- // Walk all of the other predecessors finding the nearest common dominator
- // until all predecessors are covered or we reach the loop header. The loop
- // header necessarily dominates all loop exit blocks in loop simplified form
- // so we can early-exit the moment we hit that block.
- for (auto PI = std::next(pred_begin(BB)), PE = pred_end(BB);
- PI != PE && IDom != KnownDominatingBB; ++PI) {
- assert(DT.dominates(KnownDominatingBB, *PI) &&
- "Bad known dominating block!");
- IDom = DT.findNearestCommonDominator(IDom, *PI);
- }
- if (IDom == OrigIDom)
- return false;
- DT.changeImmediateDominator(BB, IDom);
- return true;
- }
- // Note that we don't currently use the IDFCalculator here for two reasons:
- // 1) It computes dominator tree levels for the entire function on each run
- // of 'compute'. While this isn't terrible, given that we expect to update
- // relatively small subtrees of the domtree, it isn't necessarily the right
- // tradeoff.
- // 2) The interface doesn't fit this usage well. It doesn't operate in
- // append-only, and builds several sets that we don't need.
- //
- // FIXME: Neither of these issues are a big deal and could be addressed with
- // some amount of refactoring of IDFCalculator. That would allow us to share
- // the core logic here (which is solving the same core problem).
- static void appendDomFrontier(DomTreeNode *Node,
- SmallSetVector<BasicBlock *, 4> &Worklist,
- SmallVectorImpl<DomTreeNode *> &DomNodes,
- SmallPtrSetImpl<BasicBlock *> &DomSet) {
- assert(DomNodes.empty() && "Must start with no dominator nodes.");
- assert(DomSet.empty() && "Must start with an empty dominator set.");
- // First flatten this subtree into sequence of nodes by doing a pre-order
- // walk.
- DomNodes.push_back(Node);
- // We intentionally re-evaluate the size as each node can add new children.
- // Because this is a tree walk, this cannot add any duplicates.
- for (int i = 0; i < (int)DomNodes.size(); ++i)
- DomNodes.insert(DomNodes.end(), DomNodes[i]->begin(), DomNodes[i]->end());
- // Now create a set of the basic blocks so we can quickly test for
- // dominated successors. We could in theory use the DFS numbers of the
- // dominator tree for this, but we want this to remain predictably fast
- // even while we mutate the dominator tree in ways that would invalidate
- // the DFS numbering.
- for (DomTreeNode *InnerN : DomNodes)
- DomSet.insert(InnerN->getBlock());
- // Now re-walk the nodes, appending every successor of every node that isn't
- // in the set. Note that we don't append the node itself, even though if it
- // is a successor it does not strictly dominate itself and thus it would be
- // part of the dominance frontier. The reason we don't append it is that
- // the node passed in came *from* the worklist and so it has already been
- // processed.
- for (DomTreeNode *InnerN : DomNodes)
- for (BasicBlock *SuccBB : successors(InnerN->getBlock()))
- if (!DomSet.count(SuccBB))
- Worklist.insert(SuccBB);
- DomNodes.clear();
- DomSet.clear();
- }
- /// Update the dominator tree after unswitching a particular former exit block.
- ///
- /// This handles the full update of the dominator tree after hoisting a block
- /// that previously was an exit block (or split off of an exit block) up to be
- /// reached from the new immediate dominator of the preheader.
- ///
- /// The common case is simple -- we just move the unswitched block to have an
- /// immediate dominator of the old preheader. But in complex cases, there may
- /// be other blocks reachable from the unswitched block that are immediately
- /// dominated by some node between the unswitched one and the old preheader.
- /// All of these also need to be hoisted in the dominator tree. We also want to
- /// minimize queries to the dominator tree because each step of this
- /// invalidates any DFS numbers that would make queries fast.
- static void updateDTAfterUnswitch(BasicBlock *UnswitchedBB, BasicBlock *OldPH,
- DominatorTree &DT) {
- DomTreeNode *OldPHNode = DT[OldPH];
- DomTreeNode *UnswitchedNode = DT[UnswitchedBB];
- // If the dominator tree has already been updated for this unswitched node,
- // we're done. This makes it easier to use this routine if there are multiple
- // paths to the same unswitched destination.
- if (UnswitchedNode->getIDom() == OldPHNode)
- return;
- // First collect the domtree nodes that we are hoisting over. These are the
- // set of nodes which may have children that need to be hoisted as well.
- SmallPtrSet<DomTreeNode *, 4> DomChain;
- for (auto *IDom = UnswitchedNode->getIDom(); IDom != OldPHNode;
- IDom = IDom->getIDom())
- DomChain.insert(IDom);
- // The unswitched block ends up immediately dominated by the old preheader --
- // regardless of whether it is the loop exit block or split off of the loop
- // exit block.
- DT.changeImmediateDominator(UnswitchedNode, OldPHNode);
- // For everything that moves up the dominator tree, we need to examine the
- // dominator frontier to see if it additionally should move up the dominator
- // tree. This lambda appends the dominator frontier for a node on the
- // worklist.
- SmallSetVector<BasicBlock *, 4> Worklist;
- // Scratch data structures reused by domfrontier finding.
- SmallVector<DomTreeNode *, 4> DomNodes;
- SmallPtrSet<BasicBlock *, 4> DomSet;
- // Append the initial dom frontier nodes.
- appendDomFrontier(UnswitchedNode, Worklist, DomNodes, DomSet);
- // Walk the worklist. We grow the list in the loop and so must recompute size.
- for (int i = 0; i < (int)Worklist.size(); ++i) {
- auto *BB = Worklist[i];
- DomTreeNode *Node = DT[BB];
- assert(!DomChain.count(Node) &&
- "Cannot be dominated by a block you can reach!");
- // If this block had an immediate dominator somewhere in the chain
- // we hoisted over, then its position in the domtree needs to move as it is
- // reachable from a node hoisted over this chain.
- if (!DomChain.count(Node->getIDom()))
- continue;
- DT.changeImmediateDominator(Node, OldPHNode);
- // Now add this node's dominator frontier to the worklist as well.
- appendDomFrontier(Node, Worklist, DomNodes, DomSet);
- }
- }
- /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
- /// incoming values along this edge.
- static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
- BasicBlock &ExitBB) {
- for (Instruction &I : ExitBB) {
- auto *PN = dyn_cast<PHINode>(&I);
- if (!PN)
- // No more PHIs to check.
- return true;
- // If the incoming value for this edge isn't loop invariant the unswitch
- // won't be trivial.
- if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
- return false;
- }
- llvm_unreachable("Basic blocks should never be empty!");
- }
- /// Rewrite the PHI nodes in an unswitched loop exit basic block.
- ///
- /// Requires that the loop exit and unswitched basic block are the same, and
- /// that the exiting block was a unique predecessor of that block. Rewrites the
- /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
- /// PHI nodes from the old preheader that now contains the unswitched
- /// terminator.
- static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
- BasicBlock &OldExitingBB,
- BasicBlock &OldPH) {
- for (PHINode &PN : UnswitchedBB.phis()) {
- // When the loop exit is directly unswitched we just need to update the
- // incoming basic block. We loop to handle weird cases with repeated
- // incoming blocks, but expect to typically only have one operand here.
- for (auto i : seq<int>(0, PN.getNumOperands())) {
- assert(PN.getIncomingBlock(i) == &OldExitingBB &&
- "Found incoming block different from unique predecessor!");
- PN.setIncomingBlock(i, &OldPH);
- }
- }
- }
- /// Rewrite the PHI nodes in the loop exit basic block and the split off
- /// unswitched block.
- ///
- /// Because the exit block remains an exit from the loop, this rewrites the
- /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
- /// nodes into the unswitched basic block to select between the value in the
- /// old preheader and the loop exit.
- static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
- BasicBlock &UnswitchedBB,
- BasicBlock &OldExitingBB,
- BasicBlock &OldPH) {
- assert(&ExitBB != &UnswitchedBB &&
- "Must have different loop exit and unswitched blocks!");
- Instruction *InsertPt = &*UnswitchedBB.begin();
- for (PHINode &PN : ExitBB.phis()) {
- auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
- PN.getName() + ".split", InsertPt);
- // Walk backwards over the old PHI node's inputs to minimize the cost of
- // removing each one. We have to do this weird loop manually so that we
- // create the same number of new incoming edges in the new PHI as we expect
- // each case-based edge to be included in the unswitched switch in some
- // cases.
- // FIXME: This is really, really gross. It would be much cleaner if LLVM
- // allowed us to create a single entry for a predecessor block without
- // having separate entries for each "edge" even though these edges are
- // required to produce identical results.
- for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
- if (PN.getIncomingBlock(i) != &OldExitingBB)
- continue;
- Value *Incoming = PN.removeIncomingValue(i);
- NewPN->addIncoming(Incoming, &OldPH);
- }
- // Now replace the old PHI with the new one and wire the old one in as an
- // input to the new one.
- PN.replaceAllUsesWith(NewPN);
- NewPN->addIncoming(&PN, &ExitBB);
- }
- }
- /// Unswitch a trivial branch if the condition is loop invariant.
- ///
- /// This routine should only be called when loop code leading to the branch has
- /// been validated as trivial (no side effects). This routine checks if the
- /// condition is invariant and one of the successors is a loop exit. This
- /// allows us to unswitch without duplicating the loop, making it trivial.
- ///
- /// If this routine fails to unswitch the branch it returns false.
- ///
- /// If the branch can be unswitched, this routine splits the preheader and
- /// hoists the branch above that split. Preserves loop simplified form
- /// (splitting the exit block as necessary). It simplifies the branch within
- /// the loop to an unconditional branch but doesn't remove it entirely. Further
- /// cleanup can be done with some simplify-cfg like pass.
- static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
- LoopInfo &LI) {
- assert(BI.isConditional() && "Can only unswitch a conditional branch!");
- DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n");
- Value *LoopCond = BI.getCondition();
- // Need a trivial loop condition to unswitch.
- if (!L.isLoopInvariant(LoopCond))
- return false;
- // FIXME: We should compute this once at the start and update it!
- SmallVector<BasicBlock *, 16> ExitBlocks;
- L.getExitBlocks(ExitBlocks);
- SmallPtrSet<BasicBlock *, 16> ExitBlockSet(ExitBlocks.begin(),
- ExitBlocks.end());
- // Check to see if a successor of the branch is guaranteed to
- // exit through a unique exit block without having any
- // side-effects. If so, determine the value of Cond that causes
- // it to do this.
- ConstantInt *CondVal = ConstantInt::getTrue(BI.getContext());
- ConstantInt *Replacement = ConstantInt::getFalse(BI.getContext());
- int LoopExitSuccIdx = 0;
- auto *LoopExitBB = BI.getSuccessor(0);
- if (!ExitBlockSet.count(LoopExitBB)) {
- std::swap(CondVal, Replacement);
- LoopExitSuccIdx = 1;
- LoopExitBB = BI.getSuccessor(1);
- if (!ExitBlockSet.count(LoopExitBB))
- return false;
- }
- auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
- assert(L.contains(ContinueBB) &&
- "Cannot have both successors exit and still be in the loop!");
- auto *ParentBB = BI.getParent();
- if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
- return false;
- DEBUG(dbgs() << " unswitching trivial branch when: " << CondVal
- << " == " << LoopCond << "\n");
- // Split the preheader, so that we know that there is a safe place to insert
- // the conditional branch. We will change the preheader to have a conditional
- // branch on LoopCond.
- BasicBlock *OldPH = L.getLoopPreheader();
- BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
- // Now that we have a place to insert the conditional branch, create a place
- // to branch to: this is the exit block out of the loop that we are
- // unswitching. We need to split this if there are other loop predecessors.
- // Because the loop is in simplified form, *any* other predecessor is enough.
- BasicBlock *UnswitchedBB;
- if (BasicBlock *PredBB = LoopExitBB->getUniquePredecessor()) {
- (void)PredBB;
- assert(PredBB == BI.getParent() &&
- "A branch's parent isn't a predecessor!");
- UnswitchedBB = LoopExitBB;
- } else {
- UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI);
- }
- // Now splice the branch to gate reaching the new preheader and re-point its
- // successors.
- OldPH->getInstList().splice(std::prev(OldPH->end()),
- BI.getParent()->getInstList(), BI);
- OldPH->getTerminator()->eraseFromParent();
- BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
- BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
- // Create a new unconditional branch that will continue the loop as a new
- // terminator.
- BranchInst::Create(ContinueBB, ParentBB);
- // Rewrite the relevant PHI nodes.
- if (UnswitchedBB == LoopExitBB)
- rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
- else
- rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
- *ParentBB, *OldPH);
- // Now we need to update the dominator tree.
- updateDTAfterUnswitch(UnswitchedBB, OldPH, DT);
- // But if we split something off of the loop exit block then we also removed
- // one of the predecessors for the loop exit block and may need to update its
- // idom.
- if (UnswitchedBB != LoopExitBB)
- updateIDomWithKnownCommonDominator(LoopExitBB, L.getHeader(), DT);
- // Since this is an i1 condition we can also trivially replace uses of it
- // within the loop with a constant.
- replaceLoopUsesWithConstant(L, *LoopCond, *Replacement);
- ++NumTrivial;
- ++NumBranches;
- return true;
- }
- /// Unswitch a trivial switch if the condition is loop invariant.
- ///
- /// This routine should only be called when loop code leading to the switch has
- /// been validated as trivial (no side effects). This routine checks if the
- /// condition is invariant and that at least one of the successors is a loop
- /// exit. This allows us to unswitch without duplicating the loop, making it
- /// trivial.
- ///
- /// If this routine fails to unswitch the switch it returns false.
- ///
- /// If the switch can be unswitched, this routine splits the preheader and
- /// copies the switch above that split. If the default case is one of the
- /// exiting cases, it copies the non-exiting cases and points them at the new
- /// preheader. If the default case is not exiting, it copies the exiting cases
- /// and points the default at the preheader. It preserves loop simplified form
- /// (splitting the exit blocks as necessary). It simplifies the switch within
- /// the loop by removing now-dead cases. If the default case is one of those
- /// unswitched, it replaces its destination with a new basic block containing
- /// only unreachable. Such basic blocks, while technically loop exits, are not
- /// considered for unswitching so this is a stable transform and the same
- /// switch will not be revisited. If after unswitching there is only a single
- /// in-loop successor, the switch is further simplified to an unconditional
- /// branch. Still more cleanup can be done with some simplify-cfg like pass.
- static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
- LoopInfo &LI) {
- DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n");
- Value *LoopCond = SI.getCondition();
- // If this isn't switching on an invariant condition, we can't unswitch it.
- if (!L.isLoopInvariant(LoopCond))
- return false;
- auto *ParentBB = SI.getParent();
- // FIXME: We should compute this once at the start and update it!
- SmallVector<BasicBlock *, 16> ExitBlocks;
- L.getExitBlocks(ExitBlocks);
- SmallPtrSet<BasicBlock *, 16> ExitBlockSet(ExitBlocks.begin(),
- ExitBlocks.end());
- SmallVector<int, 4> ExitCaseIndices;
- for (auto Case : SI.cases()) {
- auto *SuccBB = Case.getCaseSuccessor();
- if (ExitBlockSet.count(SuccBB) &&
- areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
- ExitCaseIndices.push_back(Case.getCaseIndex());
- }
- BasicBlock *DefaultExitBB = nullptr;
- if (ExitBlockSet.count(SI.getDefaultDest()) &&
- areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
- !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator()))
- DefaultExitBB = SI.getDefaultDest();
- else if (ExitCaseIndices.empty())
- return false;
- DEBUG(dbgs() << " unswitching trivial cases...\n");
- SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases;
- ExitCases.reserve(ExitCaseIndices.size());
- // We walk the case indices backwards so that we remove the last case first
- // and don't disrupt the earlier indices.
- for (unsigned Index : reverse(ExitCaseIndices)) {
- auto CaseI = SI.case_begin() + Index;
- // Save the value of this case.
- ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()});
- // Delete the unswitched cases.
- SI.removeCase(CaseI);
- }
- // Check if after this all of the remaining cases point at the same
- // successor.
- BasicBlock *CommonSuccBB = nullptr;
- if (SI.getNumCases() > 0 &&
- std::all_of(std::next(SI.case_begin()), SI.case_end(),
- [&SI](const SwitchInst::CaseHandle &Case) {
- return Case.getCaseSuccessor() ==
- SI.case_begin()->getCaseSuccessor();
- }))
- CommonSuccBB = SI.case_begin()->getCaseSuccessor();
- if (DefaultExitBB) {
- // We can't remove the default edge so replace it with an edge to either
- // the single common remaining successor (if we have one) or an unreachable
- // block.
- if (CommonSuccBB) {
- SI.setDefaultDest(CommonSuccBB);
- } else {
- BasicBlock *UnreachableBB = BasicBlock::Create(
- ParentBB->getContext(),
- Twine(ParentBB->getName()) + ".unreachable_default",
- ParentBB->getParent());
- new UnreachableInst(ParentBB->getContext(), UnreachableBB);
- SI.setDefaultDest(UnreachableBB);
- DT.addNewBlock(UnreachableBB, ParentBB);
- }
- } else {
- // If we're not unswitching the default, we need it to match any cases to
- // have a common successor or if we have no cases it is the common
- // successor.
- if (SI.getNumCases() == 0)
- CommonSuccBB = SI.getDefaultDest();
- else if (SI.getDefaultDest() != CommonSuccBB)
- CommonSuccBB = nullptr;
- }
- // Split the preheader, so that we know that there is a safe place to insert
- // the switch.
- BasicBlock *OldPH = L.getLoopPreheader();
- BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
- OldPH->getTerminator()->eraseFromParent();
- // Now add the unswitched switch.
- auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
- // Rewrite the IR for the unswitched basic blocks. This requires two steps.
- // First, we split any exit blocks with remaining in-loop predecessors. Then
- // we update the PHIs in one of two ways depending on if there was a split.
- // We walk in reverse so that we split in the same order as the cases
- // appeared. This is purely for convenience of reading the resulting IR, but
- // it doesn't cost anything really.
- SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
- SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
- // Handle the default exit if necessary.
- // FIXME: It'd be great if we could merge this with the loop below but LLVM's
- // ranges aren't quite powerful enough yet.
- if (DefaultExitBB) {
- if (pred_empty(DefaultExitBB)) {
- UnswitchedExitBBs.insert(DefaultExitBB);
- rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
- } else {
- auto *SplitBB =
- SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI);
- rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
- *ParentBB, *OldPH);
- updateIDomWithKnownCommonDominator(DefaultExitBB, L.getHeader(), DT);
- DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
- }
- }
- // Note that we must use a reference in the for loop so that we update the
- // container.
- for (auto &CasePair : reverse(ExitCases)) {
- // Grab a reference to the exit block in the pair so that we can update it.
- BasicBlock *ExitBB = CasePair.second;
- // If this case is the last edge into the exit block, we can simply reuse it
- // as it will no longer be a loop exit. No mapping necessary.
- if (pred_empty(ExitBB)) {
- // Only rewrite once.
- if (UnswitchedExitBBs.insert(ExitBB).second)
- rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
- continue;
- }
- // Otherwise we need to split the exit block so that we retain an exit
- // block from the loop and a target for the unswitched condition.
- BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
- if (!SplitExitBB) {
- // If this is the first time we see this, do the split and remember it.
- SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
- rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
- *ParentBB, *OldPH);
- updateIDomWithKnownCommonDominator(ExitBB, L.getHeader(), DT);
- }
- // Update the case pair to point to the split block.
- CasePair.second = SplitExitBB;
- }
- // Now add the unswitched cases. We do this in reverse order as we built them
- // in reverse order.
- for (auto CasePair : reverse(ExitCases)) {
- ConstantInt *CaseVal = CasePair.first;
- BasicBlock *UnswitchedBB = CasePair.second;
- NewSI->addCase(CaseVal, UnswitchedBB);
- updateDTAfterUnswitch(UnswitchedBB, OldPH, DT);
- }
- // If the default was unswitched, re-point it and add explicit cases for
- // entering the loop.
- if (DefaultExitBB) {
- NewSI->setDefaultDest(DefaultExitBB);
- updateDTAfterUnswitch(DefaultExitBB, OldPH, DT);
- // We removed all the exit cases, so we just copy the cases to the
- // unswitched switch.
- for (auto Case : SI.cases())
- NewSI->addCase(Case.getCaseValue(), NewPH);
- }
- // If we ended up with a common successor for every path through the switch
- // after unswitching, rewrite it to an unconditional branch to make it easy
- // to recognize. Otherwise we potentially have to recognize the default case
- // pointing at unreachable and other complexity.
- if (CommonSuccBB) {
- BasicBlock *BB = SI.getParent();
- SI.eraseFromParent();
- BranchInst::Create(CommonSuccBB, BB);
- }
- DT.verifyDomTree();
- ++NumTrivial;
- ++NumSwitches;
- return true;
- }
- /// This routine scans the loop to find a branch or switch which occurs before
- /// any side effects occur. These can potentially be unswitched without
- /// duplicating the loop. If a branch or switch is successfully unswitched the
- /// scanning continues to see if subsequent branches or switches have become
- /// trivial. Once all trivial candidates have been unswitched, this routine
- /// returns.
- ///
- /// The return value indicates whether anything was unswitched (and therefore
- /// changed).
- static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
- LoopInfo &LI) {
- bool Changed = false;
- // If loop header has only one reachable successor we should keep looking for
- // trivial condition candidates in the successor as well. An alternative is
- // to constant fold conditions and merge successors into loop header (then we
- // only need to check header's terminator). The reason for not doing this in
- // LoopUnswitch pass is that it could potentially break LoopPassManager's
- // invariants. Folding dead branches could either eliminate the current loop
- // or make other loops unreachable. LCSSA form might also not be preserved
- // after deleting branches. The following code keeps traversing loop header's
- // successors until it finds the trivial condition candidate (condition that
- // is not a constant). Since unswitching generates branches with constant
- // conditions, this scenario could be very common in practice.
- BasicBlock *CurrentBB = L.getHeader();
- SmallPtrSet<BasicBlock *, 8> Visited;
- Visited.insert(CurrentBB);
- do {
- // Check if there are any side-effecting instructions (e.g. stores, calls,
- // volatile loads) in the part of the loop that the code *would* execute
- // without unswitching.
- if (llvm::any_of(*CurrentBB,
- [](Instruction &I) { return I.mayHaveSideEffects(); }))
- return Changed;
- TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
- if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
- // Don't bother trying to unswitch past a switch with a constant
- // condition. This should be removed prior to running this pass by
- // simplify-cfg.
- if (isa<Constant>(SI->getCondition()))
- return Changed;
- if (!unswitchTrivialSwitch(L, *SI, DT, LI))
- // Coludn't unswitch this one so we're done.
- return Changed;
- // Mark that we managed to unswitch something.
- Changed = true;
- // If unswitching turned the terminator into an unconditional branch then
- // we can continue. The unswitching logic specifically works to fold any
- // cases it can into an unconditional branch to make it easier to
- // recognize here.
- auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
- if (!BI || BI->isConditional())
- return Changed;
- CurrentBB = BI->getSuccessor(0);
- continue;
- }
- auto *BI = dyn_cast<BranchInst>(CurrentTerm);
- if (!BI)
- // We do not understand other terminator instructions.
- return Changed;
- // Don't bother trying to unswitch past an unconditional branch or a branch
- // with a constant value. These should be removed by simplify-cfg prior to
- // running this pass.
- if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
- return Changed;
- // Found a trivial condition candidate: non-foldable conditional branch. If
- // we fail to unswitch this, we can't do anything else that is trivial.
- if (!unswitchTrivialBranch(L, *BI, DT, LI))
- return Changed;
- // Mark that we managed to unswitch something.
- Changed = true;
- // We unswitched the branch. This should always leave us with an
- // unconditional branch that we can follow now.
- BI = cast<BranchInst>(CurrentBB->getTerminator());
- assert(!BI->isConditional() &&
- "Cannot form a conditional branch by unswitching1");
- CurrentBB = BI->getSuccessor(0);
- // When continuing, if we exit the loop or reach a previous visited block,
- // then we can not reach any trivial condition candidates (unfoldable
- // branch instructions or switch instructions) and no unswitch can happen.
- } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
- return Changed;
- }
- /// Build the cloned blocks for an unswitched copy of the given loop.
- ///
- /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
- /// after the split block (`SplitBB`) that will be used to select between the
- /// cloned and original loop.
- ///
- /// This routine handles cloning all of the necessary loop blocks and exit
- /// blocks including rewriting their instructions and the relevant PHI nodes.
- /// It skips loop and exit blocks that are not necessary based on the provided
- /// set. It also correctly creates the unconditional branch in the cloned
- /// unswitched parent block to only point at the unswitched successor.
- ///
- /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
- /// block splitting is correctly reflected in `LoopInfo`, essentially all of
- /// the cloned blocks (and their loops) are left without full `LoopInfo`
- /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
- /// blocks to them but doesn't create the cloned `DominatorTree` structure and
- /// instead the caller must recompute an accurate DT. It *does* correctly
- /// update the `AssumptionCache` provided in `AC`.
- static BasicBlock *buildClonedLoopBlocks(
- Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
- ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
- BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
- const SmallPtrSetImpl<BasicBlock *> &SkippedLoopAndExitBlocks,
- ValueToValueMapTy &VMap, AssumptionCache &AC, DominatorTree &DT,
- LoopInfo &LI) {
- SmallVector<BasicBlock *, 4> NewBlocks;
- NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
- // We will need to clone a bunch of blocks, wrap up the clone operation in
- // a helper.
- auto CloneBlock = [&](BasicBlock *OldBB) {
- // Clone the basic block and insert it before the new preheader.
- BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
- NewBB->moveBefore(LoopPH);
- // Record this block and the mapping.
- NewBlocks.push_back(NewBB);
- VMap[OldBB] = NewBB;
- // Add the block to the domtree. We'll move it to the correct position
- // below.
- DT.addNewBlock(NewBB, SplitBB);
- return NewBB;
- };
- // First, clone the preheader.
- auto *ClonedPH = CloneBlock(LoopPH);
- // Then clone all the loop blocks, skipping the ones that aren't necessary.
- for (auto *LoopBB : L.blocks())
- if (!SkippedLoopAndExitBlocks.count(LoopBB))
- CloneBlock(LoopBB);
- // Split all the loop exit edges so that when we clone the exit blocks, if
- // any of the exit blocks are *also* a preheader for some other loop, we
- // don't create multiple predecessors entering the loop header.
- for (auto *ExitBB : ExitBlocks) {
- if (SkippedLoopAndExitBlocks.count(ExitBB))
- continue;
- // When we are going to clone an exit, we don't need to clone all the
- // instructions in the exit block and we want to ensure we have an easy
- // place to merge the CFG, so split the exit first. This is always safe to
- // do because there cannot be any non-loop predecessors of a loop exit in
- // loop simplified form.
- auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
- // Rearrange the names to make it easier to write test cases by having the
- // exit block carry the suffix rather than the merge block carrying the
- // suffix.
- MergeBB->takeName(ExitBB);
- ExitBB->setName(Twine(MergeBB->getName()) + ".split");
- // Now clone the original exit block.
- auto *ClonedExitBB = CloneBlock(ExitBB);
- assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
- "Exit block should have been split to have one successor!");
- assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
- "Cloned exit block has the wrong successor!");
- // Move the merge block's idom to be the split point as one exit is
- // dominated by one header, and the other by another, so we know the split
- // point dominates both. While the dominator tree isn't fully accurate, we
- // want sub-trees within the original loop to be correctly reflect
- // dominance within that original loop (at least) and that requires moving
- // the merge block out of that subtree.
- // FIXME: This is very brittle as we essentially have a partial contract on
- // the dominator tree. We really need to instead update it and keep it
- // valid or stop relying on it.
- DT.changeImmediateDominator(MergeBB, SplitBB);
- // Remap any cloned instructions and create a merge phi node for them.
- for (auto ZippedInsts : llvm::zip_first(
- llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
- llvm::make_range(ClonedExitBB->begin(),
- std::prev(ClonedExitBB->end())))) {
- Instruction &I = std::get<0>(ZippedInsts);
- Instruction &ClonedI = std::get<1>(ZippedInsts);
- // The only instructions in the exit block should be PHI nodes and
- // potentially a landing pad.
- assert(
- (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
- "Bad instruction in exit block!");
- // We should have a value map between the instruction and its clone.
- assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
- auto *MergePN =
- PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
- &*MergeBB->getFirstInsertionPt());
- I.replaceAllUsesWith(MergePN);
- MergePN->addIncoming(&I, ExitBB);
- MergePN->addIncoming(&ClonedI, ClonedExitBB);
- }
- }
- // Rewrite the instructions in the cloned blocks to refer to the instructions
- // in the cloned blocks. We have to do this as a second pass so that we have
- // everything available. Also, we have inserted new instructions which may
- // include assume intrinsics, so we update the assumption cache while
- // processing this.
- for (auto *ClonedBB : NewBlocks)
- for (Instruction &I : *ClonedBB) {
- RemapInstruction(&I, VMap,
- RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
- if (auto *II = dyn_cast<IntrinsicInst>(&I))
- if (II->getIntrinsicID() == Intrinsic::assume)
- AC.registerAssumption(II);
- }
- // Remove the cloned parent as a predecessor of the cloned continue successor
- // if we did in fact clone it.
- auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
- if (auto *ClonedContinueSuccBB =
- cast_or_null<BasicBlock>(VMap.lookup(ContinueSuccBB)))
- ClonedContinueSuccBB->removePredecessor(ClonedParentBB,
- /*DontDeleteUselessPHIs*/ true);
- // Replace the cloned branch with an unconditional branch to the cloneed
- // unswitched successor.
- auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
- ClonedParentBB->getTerminator()->eraseFromParent();
- BranchInst::Create(ClonedSuccBB, ClonedParentBB);
- // Update any PHI nodes in the cloned successors of the skipped blocks to not
- // have spurious incoming values.
- for (auto *LoopBB : L.blocks())
- if (SkippedLoopAndExitBlocks.count(LoopBB))
- for (auto *SuccBB : successors(LoopBB))
- if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
- for (PHINode &PN : ClonedSuccBB->phis())
- PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
- return ClonedPH;
- }
- /// Recursively clone the specified loop and all of its children.
- ///
- /// The target parent loop for the clone should be provided, or can be null if
- /// the clone is a top-level loop. While cloning, all the blocks are mapped
- /// with the provided value map. The entire original loop must be present in
- /// the value map. The cloned loop is returned.
- static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
- const ValueToValueMapTy &VMap, LoopInfo &LI) {
- auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
- assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
- ClonedL.reserveBlocks(OrigL.getNumBlocks());
- for (auto *BB : OrigL.blocks()) {
- auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
- ClonedL.addBlockEntry(ClonedBB);
- if (LI.getLoopFor(BB) == &OrigL) {
- assert(!LI.getLoopFor(ClonedBB) &&
- "Should not have an existing loop for this block!");
- LI.changeLoopFor(ClonedBB, &ClonedL);
- }
- }
- };
- // We specially handle the first loop because it may get cloned into
- // a different parent and because we most commonly are cloning leaf loops.
- Loop *ClonedRootL = LI.AllocateLoop();
- if (RootParentL)
- RootParentL->addChildLoop(ClonedRootL);
- else
- LI.addTopLevelLoop(ClonedRootL);
- AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
- if (OrigRootL.empty())
- return ClonedRootL;
- // If we have a nest, we can quickly clone the entire loop nest using an
- // iterative approach because it is a tree. We keep the cloned parent in the
- // data structure to avoid repeatedly querying through a map to find it.
- SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
- // Build up the loops to clone in reverse order as we'll clone them from the
- // back.
- for (Loop *ChildL : llvm::reverse(OrigRootL))
- LoopsToClone.push_back({ClonedRootL, ChildL});
- do {
- Loop *ClonedParentL, *L;
- std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
- Loop *ClonedL = LI.AllocateLoop();
- ClonedParentL->addChildLoop(ClonedL);
- AddClonedBlocksToLoop(*L, *ClonedL);
- for (Loop *ChildL : llvm::reverse(*L))
- LoopsToClone.push_back({ClonedL, ChildL});
- } while (!LoopsToClone.empty());
- return ClonedRootL;
- }
- /// Build the cloned loops of an original loop from unswitching.
- ///
- /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
- /// operation. We need to re-verify that there even is a loop (as the backedge
- /// may not have been cloned), and even if there are remaining backedges the
- /// backedge set may be different. However, we know that each child loop is
- /// undisturbed, we only need to find where to place each child loop within
- /// either any parent loop or within a cloned version of the original loop.
- ///
- /// Because child loops may end up cloned outside of any cloned version of the
- /// original loop, multiple cloned sibling loops may be created. All of them
- /// are returned so that the newly introduced loop nest roots can be
- /// identified.
- static Loop *buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
- const ValueToValueMapTy &VMap, LoopInfo &LI,
- SmallVectorImpl<Loop *> &NonChildClonedLoops) {
- Loop *ClonedL = nullptr;
- auto *OrigPH = OrigL.getLoopPreheader();
- auto *OrigHeader = OrigL.getHeader();
- auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
- auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
- // We need to know the loops of the cloned exit blocks to even compute the
- // accurate parent loop. If we only clone exits to some parent of the
- // original parent, we want to clone into that outer loop. We also keep track
- // of the loops that our cloned exit blocks participate in.
- Loop *ParentL = nullptr;
- SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
- SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
- ClonedExitsInLoops.reserve(ExitBlocks.size());
- for (auto *ExitBB : ExitBlocks)
- if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
- if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
- ExitLoopMap[ClonedExitBB] = ExitL;
- ClonedExitsInLoops.push_back(ClonedExitBB);
- if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
- ParentL = ExitL;
- }
- assert((!ParentL || ParentL == OrigL.getParentLoop() ||
- ParentL->contains(OrigL.getParentLoop())) &&
- "The computed parent loop should always contain (or be) the parent of "
- "the original loop.");
- // We build the set of blocks dominated by the cloned header from the set of
- // cloned blocks out of the original loop. While not all of these will
- // necessarily be in the cloned loop, it is enough to establish that they
- // aren't in unreachable cycles, etc.
- SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
- for (auto *BB : OrigL.blocks())
- if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
- ClonedLoopBlocks.insert(ClonedBB);
- // Rebuild the set of blocks that will end up in the cloned loop. We may have
- // skipped cloning some region of this loop which can in turn skip some of
- // the backedges so we have to rebuild the blocks in the loop based on the
- // backedges that remain after cloning.
- SmallVector<BasicBlock *, 16> Worklist;
- SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
- for (auto *Pred : predecessors(ClonedHeader)) {
- // The only possible non-loop header predecessor is the preheader because
- // we know we cloned the loop in simplified form.
- if (Pred == ClonedPH)
- continue;
- // Because the loop was in simplified form, the only non-loop predecessor
- // should be the preheader.
- assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
- "header other than the preheader "
- "that is not part of the loop!");
- // Insert this block into the loop set and on the first visit (and if it
- // isn't the header we're currently walking) put it into the worklist to
- // recurse through.
- if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
- Worklist.push_back(Pred);
- }
- // If we had any backedges then there *is* a cloned loop. Put the header into
- // the loop set and then walk the worklist backwards to find all the blocks
- // that remain within the loop after cloning.
- if (!BlocksInClonedLoop.empty()) {
- BlocksInClonedLoop.insert(ClonedHeader);
- while (!Worklist.empty()) {
- BasicBlock *BB = Worklist.pop_back_val();
- assert(BlocksInClonedLoop.count(BB) &&
- "Didn't put block into the loop set!");
- // Insert any predecessors that are in the possible set into the cloned
- // set, and if the insert is successful, add them to the worklist. Note
- // that we filter on the blocks that are definitely reachable via the
- // backedge to the loop header so we may prune out dead code within the
- // cloned loop.
- for (auto *Pred : predecessors(BB))
- if (ClonedLoopBlocks.count(Pred) &&
- BlocksInClonedLoop.insert(Pred).second)
- Worklist.push_back(Pred);
- }
- ClonedL = LI.AllocateLoop();
- if (ParentL) {
- ParentL->addBasicBlockToLoop(ClonedPH, LI);
- ParentL->addChildLoop(ClonedL);
- } else {
- LI.addTopLevelLoop(ClonedL);
- }
- ClonedL->reserveBlocks(BlocksInClonedLoop.size());
- // We don't want to just add the cloned loop blocks based on how we
- // discovered them. The original order of blocks was carefully built in
- // a way that doesn't rely on predecessor ordering. Rather than re-invent
- // that logic, we just re-walk the original blocks (and those of the child
- // loops) and filter them as we add them into the cloned loop.
- for (auto *BB : OrigL.blocks()) {
- auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
- if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
- continue;
- // Directly add the blocks that are only in this loop.
- if (LI.getLoopFor(BB) == &OrigL) {
- ClonedL->addBasicBlockToLoop(ClonedBB, LI);
- continue;
- }
- // We want to manually add it to this loop and parents.
- // Registering it with LoopInfo will happen when we clone the top
- // loop for this block.
- for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
- PL->addBlockEntry(ClonedBB);
- }
- // Now add each child loop whose header remains within the cloned loop. All
- // of the blocks within the loop must satisfy the same constraints as the
- // header so once we pass the header checks we can just clone the entire
- // child loop nest.
- for (Loop *ChildL : OrigL) {
- auto *ClonedChildHeader =
- cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
- if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
- continue;
- #ifndef NDEBUG
- // We should never have a cloned child loop header but fail to have
- // all of the blocks for that child loop.
- for (auto *ChildLoopBB : ChildL->blocks())
- assert(BlocksInClonedLoop.count(
- cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
- "Child cloned loop has a header within the cloned outer "
- "loop but not all of its blocks!");
- #endif
- cloneLoopNest(*ChildL, ClonedL, VMap, LI);
- }
- }
- // Now that we've handled all the components of the original loop that were
- // cloned into a new loop, we still need to handle anything from the original
- // loop that wasn't in a cloned loop.
- // Figure out what blocks are left to place within any loop nest containing
- // the unswitched loop. If we never formed a loop, the cloned PH is one of
- // them.
- SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
- if (BlocksInClonedLoop.empty())
- UnloopedBlockSet.insert(ClonedPH);
- for (auto *ClonedBB : ClonedLoopBlocks)
- if (!BlocksInClonedLoop.count(ClonedBB))
- UnloopedBlockSet.insert(ClonedBB);
- // Copy the cloned exits and sort them in ascending loop depth, we'll work
- // backwards across these to process them inside out. The order shouldn't
- // matter as we're just trying to build up the map from inside-out; we use
- // the map in a more stably ordered way below.
- auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
- std::sort(OrderedClonedExitsInLoops.begin(), OrderedClonedExitsInLoops.end(),
- [&](BasicBlock *LHS, BasicBlock *RHS) {
- return ExitLoopMap.lookup(LHS)->getLoopDepth() <
- ExitLoopMap.lookup(RHS)->getLoopDepth();
- });
- // Populate the existing ExitLoopMap with everything reachable from each
- // exit, starting from the inner most exit.
- while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
- assert(Worklist.empty() && "Didn't clear worklist!");
- BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
- Loop *ExitL = ExitLoopMap.lookup(ExitBB);
- // Walk the CFG back until we hit the cloned PH adding everything reachable
- // and in the unlooped set to this exit block's loop.
- Worklist.push_back(ExitBB);
- do {
- BasicBlock *BB = Worklist.pop_back_val();
- // We can stop recursing at the cloned preheader (if we get there).
- if (BB == ClonedPH)
- continue;
- for (BasicBlock *PredBB : predecessors(BB)) {
- // If this pred has already been moved to our set or is part of some
- // (inner) loop, no update needed.
- if (!UnloopedBlockSet.erase(PredBB)) {
- assert(
- (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
- "Predecessor not mapped to a loop!");
- continue;
- }
- // We just insert into the loop set here. We'll add these blocks to the
- // exit loop after we build up the set in an order that doesn't rely on
- // predecessor order (which in turn relies on use list order).
- bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
- (void)Inserted;
- assert(Inserted && "Should only visit an unlooped block once!");
- // And recurse through to its predecessors.
- Worklist.push_back(PredBB);
- }
- } while (!Worklist.empty());
- }
- // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
- // blocks to their outer loops, walk the cloned blocks and the cloned exits
- // in their original order adding them to the correct loop.
- // We need a stable insertion order. We use the order of the original loop
- // order and map into the correct parent loop.
- for (auto *BB : llvm::concat<BasicBlock *const>(
- makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
- if (Loop *OuterL = ExitLoopMap.lookup(BB))
- OuterL->addBasicBlockToLoop(BB, LI);
- #ifndef NDEBUG
- for (auto &BBAndL : ExitLoopMap) {
- auto *BB = BBAndL.first;
- auto *OuterL = BBAndL.second;
- assert(LI.getLoopFor(BB) == OuterL &&
- "Failed to put all blocks into outer loops!");
- }
- #endif
- // Now that all the blocks are placed into the correct containing loop in the
- // absence of child loops, find all the potentially cloned child loops and
- // clone them into whatever outer loop we placed their header into.
- for (Loop *ChildL : OrigL) {
- auto *ClonedChildHeader =
- cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
- if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
- continue;
- #ifndef NDEBUG
- for (auto *ChildLoopBB : ChildL->blocks())
- assert(VMap.count(ChildLoopBB) &&
- "Cloned a child loop header but not all of that loops blocks!");
- #endif
- NonChildClonedLoops.push_back(cloneLoopNest(
- *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
- }
- // Return the main cloned loop if any.
- return ClonedL;
- }
- static void deleteDeadBlocksFromLoop(Loop &L, BasicBlock *DeadSubtreeRoot,
- SmallVectorImpl<BasicBlock *> &ExitBlocks,
- DominatorTree &DT, LoopInfo &LI) {
- // Walk the dominator tree to build up the set of blocks we will delete here.
- // The order is designed to allow us to always delete bottom-up and avoid any
- // dangling uses.
- SmallSetVector<BasicBlock *, 16> DeadBlocks;
- DeadBlocks.insert(DeadSubtreeRoot);
- for (int i = 0; i < (int)DeadBlocks.size(); ++i)
- for (DomTreeNode *ChildN : *DT[DeadBlocks[i]]) {
- // FIXME: This assert should pass and that means we don't change nearly
- // as much below! Consider rewriting all of this to avoid deleting
- // blocks. They are always cloned before being deleted, and so instead
- // could just be moved.
- // FIXME: This in turn means that we might actually be more able to
- // update the domtree.
- assert((L.contains(ChildN->getBlock()) ||
- llvm::find(ExitBlocks, ChildN->getBlock()) != ExitBlocks.end()) &&
- "Should never reach beyond the loop and exits when deleting!");
- DeadBlocks.insert(ChildN->getBlock());
- }
- // Filter out the dead blocks from the exit blocks list so that it can be
- // used in the caller.
- llvm::erase_if(ExitBlocks,
- [&](BasicBlock *BB) { return DeadBlocks.count(BB); });
- // Remove these blocks from their successors.
- for (auto *BB : DeadBlocks)
- for (BasicBlock *SuccBB : successors(BB))
- SuccBB->removePredecessor(BB, /*DontDeleteUselessPHIs*/ true);
- // Walk from this loop up through its parents removing all of the dead blocks.
- for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
- for (auto *BB : DeadBlocks)
- ParentL->getBlocksSet().erase(BB);
- llvm::erase_if(ParentL->getBlocksVector(),
- [&](BasicBlock *BB) { return DeadBlocks.count(BB); });
- }
- // Now delete the dead child loops. This raw delete will clear them
- // recursively.
- llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
- if (!DeadBlocks.count(ChildL->getHeader()))
- return false;
- assert(llvm::all_of(ChildL->blocks(),
- [&](BasicBlock *ChildBB) {
- return DeadBlocks.count(ChildBB);
- }) &&
- "If the child loop header is dead all blocks in the child loop must "
- "be dead as well!");
- LI.destroy(ChildL);
- return true;
- });
- // Remove the mappings for the dead blocks.
- for (auto *BB : DeadBlocks)
- LI.changeLoopFor(BB, nullptr);
- // Drop all the references from these blocks to others to handle cyclic
- // references as we start deleting the blocks themselves.
- for (auto *BB : DeadBlocks)
- BB->dropAllReferences();
- for (auto *BB : llvm::reverse(DeadBlocks)) {
- DT.eraseNode(BB);
- BB->eraseFromParent();
- }
- }
- /// Recompute the set of blocks in a loop after unswitching.
- ///
- /// This walks from the original headers predecessors to rebuild the loop. We
- /// take advantage of the fact that new blocks can't have been added, and so we
- /// filter by the original loop's blocks. This also handles potentially
- /// unreachable code that we don't want to explore but might be found examining
- /// the predecessors of the header.
- ///
- /// If the original loop is no longer a loop, this will return an empty set. If
- /// it remains a loop, all the blocks within it will be added to the set
- /// (including those blocks in inner loops).
- static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
- LoopInfo &LI) {
- SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
- auto *PH = L.getLoopPreheader();
- auto *Header = L.getHeader();
- // A worklist to use while walking backwards from the header.
- SmallVector<BasicBlock *, 16> Worklist;
- // First walk the predecessors of the header to find the backedges. This will
- // form the basis of our walk.
- for (auto *Pred : predecessors(Header)) {
- // Skip the preheader.
- if (Pred == PH)
- continue;
- // Because the loop was in simplified form, the only non-loop predecessor
- // is the preheader.
- assert(L.contains(Pred) && "Found a predecessor of the loop header other "
- "than the preheader that is not part of the "
- "loop!");
- // Insert this block into the loop set and on the first visit and, if it
- // isn't the header we're currently walking, put it into the worklist to
- // recurse through.
- if (LoopBlockSet.insert(Pred).second && Pred != Header)
- Worklist.push_back(Pred);
- }
- // If no backedges were found, we're done.
- if (LoopBlockSet.empty())
- return LoopBlockSet;
- // Add the loop header to the set.
- LoopBlockSet.insert(Header);
- // We found backedges, recurse through them to identify the loop blocks.
- while (!Worklist.empty()) {
- BasicBlock *BB = Worklist.pop_back_val();
- assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
- // Because we know the inner loop structure remains valid we can use the
- // loop structure to jump immediately across the entire nested loop.
- // Further, because it is in loop simplified form, we can directly jump
- // to its preheader afterward.
- if (Loop *InnerL = LI.getLoopFor(BB))
- if (InnerL != &L) {
- assert(L.contains(InnerL) &&
- "Should not reach a loop *outside* this loop!");
- // The preheader is the only possible predecessor of the loop so
- // insert it into the set and check whether it was already handled.
- auto *InnerPH = InnerL->getLoopPreheader();
- assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
- "but not contain the inner loop "
- "preheader!");
- if (!LoopBlockSet.insert(InnerPH).second)
- // The only way to reach the preheader is through the loop body
- // itself so if it has been visited the loop is already handled.
- continue;
- // Insert all of the blocks (other than those already present) into
- // the loop set. The only block we expect to already be in the set is
- // the one we used to find this loop as we immediately handle the
- // others the first time we encounter the loop.
- for (auto *InnerBB : InnerL->blocks()) {
- if (InnerBB == BB) {
- assert(LoopBlockSet.count(InnerBB) &&
- "Block should already be in the set!");
- continue;
- }
- bool Inserted = LoopBlockSet.insert(InnerBB).second;
- (void)Inserted;
- assert(Inserted && "Should only insert an inner loop once!");
- }
- // Add the preheader to the worklist so we will continue past the
- // loop body.
- Worklist.push_back(InnerPH);
- continue;
- }
- // Insert any predecessors that were in the original loop into the new
- // set, and if the insert is successful, add them to the worklist.
- for (auto *Pred : predecessors(BB))
- if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
- Worklist.push_back(Pred);
- }
- // We've found all the blocks participating in the loop, return our completed
- // set.
- return LoopBlockSet;
- }
- /// Rebuild a loop after unswitching removes some subset of blocks and edges.
- ///
- /// The removal may have removed some child loops entirely but cannot have
- /// disturbed any remaining child loops. However, they may need to be hoisted
- /// to the parent loop (or to be top-level loops). The original loop may be
- /// completely removed.
- ///
- /// The sibling loops resulting from this update are returned. If the original
- /// loop remains a valid loop, it will be the first entry in this list with all
- /// of the newly sibling loops following it.
- ///
- /// Returns true if the loop remains a loop after unswitching, and false if it
- /// is no longer a loop after unswitching (and should not continue to be
- /// referenced).
- static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
- LoopInfo &LI,
- SmallVectorImpl<Loop *> &HoistedLoops) {
- auto *PH = L.getLoopPreheader();
- // Compute the actual parent loop from the exit blocks. Because we may have
- // pruned some exits the loop may be different from the original parent.
- Loop *ParentL = nullptr;
- SmallVector<Loop *, 4> ExitLoops;
- SmallVector<BasicBlock *, 4> ExitsInLoops;
- ExitsInLoops.reserve(ExitBlocks.size());
- for (auto *ExitBB : ExitBlocks)
- if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
- ExitLoops.push_back(ExitL);
- ExitsInLoops.push_back(ExitBB);
- if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
- ParentL = ExitL;
- }
- // Recompute the blocks participating in this loop. This may be empty if it
- // is no longer a loop.
- auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
- // If we still have a loop, we need to re-set the loop's parent as the exit
- // block set changing may have moved it within the loop nest. Note that this
- // can only happen when this loop has a parent as it can only hoist the loop
- // *up* the nest.
- if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
- // Remove this loop's (original) blocks from all of the intervening loops.
- for (Loop *IL = L.getParentLoop(); IL != ParentL;
- IL = IL->getParentLoop()) {
- IL->getBlocksSet().erase(PH);
- for (auto *BB : L.blocks())
- IL->getBlocksSet().erase(BB);
- llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
- return BB == PH || L.contains(BB);
- });
- }
- LI.changeLoopFor(PH, ParentL);
- L.getParentLoop()->removeChildLoop(&L);
- if (ParentL)
- ParentL->addChildLoop(&L);
- else
- LI.addTopLevelLoop(&L);
- }
- // Now we update all the blocks which are no longer within the loop.
- auto &Blocks = L.getBlocksVector();
- auto BlocksSplitI =
- LoopBlockSet.empty()
- ? Blocks.begin()
- : std::stable_partition(
- Blocks.begin(), Blocks.end(),
- [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
- // Before we erase the list of unlooped blocks, build a set of them.
- SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
- if (LoopBlockSet.empty())
- UnloopedBlocks.insert(PH);
- // Now erase these blocks from the loop.
- for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
- L.getBlocksSet().erase(BB);
- Blocks.erase(BlocksSplitI, Blocks.end());
- // Sort the exits in ascending loop depth, we'll work backwards across these
- // to process them inside out.
- std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(),
- [&](BasicBlock *LHS, BasicBlock *RHS) {
- return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
- });
- // We'll build up a set for each exit loop.
- SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
- Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
- auto RemoveUnloopedBlocksFromLoop =
- [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
- for (auto *BB : UnloopedBlocks)
- L.getBlocksSet().erase(BB);
- llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
- return UnloopedBlocks.count(BB);
- });
- };
- SmallVector<BasicBlock *, 16> Worklist;
- while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
- assert(Worklist.empty() && "Didn't clear worklist!");
- assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
- // Grab the next exit block, in decreasing loop depth order.
- BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
- Loop &ExitL = *LI.getLoopFor(ExitBB);
- assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
- // Erase all of the unlooped blocks from the loops between the previous
- // exit loop and this exit loop. This works because the ExitInLoops list is
- // sorted in increasing order of loop depth and thus we visit loops in
- // decreasing order of loop depth.
- for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
- RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
- // Walk the CFG back until we hit the cloned PH adding everything reachable
- // and in the unlooped set to this exit block's loop.
- Worklist.push_back(ExitBB);
- do {
- BasicBlock *BB = Worklist.pop_back_val();
- // We can stop recursing at the cloned preheader (if we get there).
- if (BB == PH)
- continue;
- for (BasicBlock *PredBB : predecessors(BB)) {
- // If this pred has already been moved to our set or is part of some
- // (inner) loop, no update needed.
- if (!UnloopedBlocks.erase(PredBB)) {
- assert((NewExitLoopBlocks.count(PredBB) ||
- ExitL.contains(LI.getLoopFor(PredBB))) &&
- "Predecessor not in a nested loop (or already visited)!");
- continue;
- }
- // We just insert into the loop set here. We'll add these blocks to the
- // exit loop after we build up the set in a deterministic order rather
- // than the predecessor-influenced visit order.
- bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
- (void)Inserted;
- assert(Inserted && "Should only visit an unlooped block once!");
- // And recurse through to its predecessors.
- Worklist.push_back(PredBB);
- }
- } while (!Worklist.empty());
- // If blocks in this exit loop were directly part of the original loop (as
- // opposed to a child loop) update the map to point to this exit loop. This
- // just updates a map and so the fact that the order is unstable is fine.
- for (auto *BB : NewExitLoopBlocks)
- if (Loop *BBL = LI.getLoopFor(BB))
- if (BBL == &L || !L.contains(BBL))
- LI.changeLoopFor(BB, &ExitL);
- // We will remove the remaining unlooped blocks from this loop in the next
- // iteration or below.
- NewExitLoopBlocks.clear();
- }
- // Any remaining unlooped blocks are no longer part of any loop unless they
- // are part of some child loop.
- for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
- RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
- for (auto *BB : UnloopedBlocks)
- if (Loop *BBL = LI.getLoopFor(BB))
- if (BBL == &L || !L.contains(BBL))
- LI.changeLoopFor(BB, nullptr);
- // Sink all the child loops whose headers are no longer in the loop set to
- // the parent (or to be top level loops). We reach into the loop and directly
- // update its subloop vector to make this batch update efficient.
- auto &SubLoops = L.getSubLoopsVector();
- auto SubLoopsSplitI =
- LoopBlockSet.empty()
- ? SubLoops.begin()
- : std::stable_partition(
- SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
- return LoopBlockSet.count(SubL->getHeader());
- });
- for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
- HoistedLoops.push_back(HoistedL);
- HoistedL->setParentLoop(nullptr);
- // To compute the new parent of this hoisted loop we look at where we
- // placed the preheader above. We can't lookup the header itself because we
- // retained the mapping from the header to the hoisted loop. But the
- // preheader and header should have the exact same new parent computed
- // based on the set of exit blocks from the original loop as the preheader
- // is a predecessor of the header and so reached in the reverse walk. And
- // because the loops were all in simplified form the preheader of the
- // hoisted loop can't be part of some *other* loop.
- if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
- NewParentL->addChildLoop(HoistedL);
- else
- LI.addTopLevelLoop(HoistedL);
- }
- SubLoops.erase(SubLoopsSplitI, SubLoops.end());
- // Actually delete the loop if nothing remained within it.
- if (Blocks.empty()) {
- assert(SubLoops.empty() &&
- "Failed to remove all subloops from the original loop!");
- if (Loop *ParentL = L.getParentLoop())
- ParentL->removeChildLoop(llvm::find(*ParentL, &L));
- else
- LI.removeLoop(llvm::find(LI, &L));
- LI.destroy(&L);
- return false;
- }
- return true;
- }
- /// Helper to visit a dominator subtree, invoking a callable on each node.
- ///
- /// Returning false at any point will stop walking past that node of the tree.
- template <typename CallableT>
- void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
- SmallVector<DomTreeNode *, 4> DomWorklist;
- DomWorklist.push_back(DT[BB]);
- #ifndef NDEBUG
- SmallPtrSet<DomTreeNode *, 4> Visited;
- Visited.insert(DT[BB]);
- #endif
- do {
- DomTreeNode *N = DomWorklist.pop_back_val();
- // Visit this node.
- if (!Callable(N->getBlock()))
- continue;
- // Accumulate the child nodes.
- for (DomTreeNode *ChildN : *N) {
- assert(Visited.insert(ChildN).second &&
- "Cannot visit a node twice when walking a tree!");
- DomWorklist.push_back(ChildN);
- }
- } while (!DomWorklist.empty());
- }
- /// Take an invariant branch that has been determined to be safe and worthwhile
- /// to unswitch despite being non-trivial to do so and perform the unswitch.
- ///
- /// This directly updates the CFG to hoist the predicate out of the loop, and
- /// clone the necessary parts of the loop to maintain behavior.
- ///
- /// It also updates both dominator tree and loopinfo based on the unswitching.
- ///
- /// Once unswitching has been performed it runs the provided callback to report
- /// the new loops and no-longer valid loops to the caller.
- static bool unswitchInvariantBranch(
- Loop &L, BranchInst &BI, DominatorTree &DT, LoopInfo &LI,
- AssumptionCache &AC,
- function_ref<void(bool, ArrayRef<Loop *>)> NonTrivialUnswitchCB) {
- assert(BI.isConditional() && "Can only unswitch a conditional branch!");
- assert(L.isLoopInvariant(BI.getCondition()) &&
- "Can only unswitch an invariant branch condition!");
- // Constant and BBs tracking the cloned and continuing successor.
- const int ClonedSucc = 0;
- auto *ParentBB = BI.getParent();
- auto *UnswitchedSuccBB = BI.getSuccessor(ClonedSucc);
- auto *ContinueSuccBB = BI.getSuccessor(1 - ClonedSucc);
- assert(UnswitchedSuccBB != ContinueSuccBB &&
- "Should not unswitch a branch that always goes to the same place!");
- // The branch should be in this exact loop. Any inner loop's invariant branch
- // should be handled by unswitching that inner loop. The caller of this
- // routine should filter out any candidates that remain (but were skipped for
- // whatever reason).
- assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
- SmallVector<BasicBlock *, 4> ExitBlocks;
- L.getUniqueExitBlocks(ExitBlocks);
- // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
- // don't know how to split those exit blocks.
- // FIXME: We should teach SplitBlock to handle this and remove this
- // restriction.
- for (auto *ExitBB : ExitBlocks)
- if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI()))
- return false;
- SmallPtrSet<BasicBlock *, 4> ExitBlockSet(ExitBlocks.begin(),
- ExitBlocks.end());
- // Compute the parent loop now before we start hacking on things.
- Loop *ParentL = L.getParentLoop();
- // Compute the outer-most loop containing one of our exit blocks. This is the
- // furthest up our loopnest which can be mutated, which we will use below to
- // update things.
- Loop *OuterExitL = &L;
- for (auto *ExitBB : ExitBlocks) {
- Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
- if (!NewOuterExitL) {
- // We exited the entire nest with this block, so we're done.
- OuterExitL = nullptr;
- break;
- }
- if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
- OuterExitL = NewOuterExitL;
- }
- // If the edge we *aren't* cloning in the unswitch (the continuing edge)
- // dominates its target, we can skip cloning the dominated region of the loop
- // and its exits. We compute this as a set of nodes to be skipped.
- SmallPtrSet<BasicBlock *, 4> SkippedLoopAndExitBlocks;
- if (ContinueSuccBB->getUniquePredecessor() ||
- llvm::all_of(predecessors(ContinueSuccBB), [&](BasicBlock *PredBB) {
- return PredBB == ParentBB || DT.dominates(ContinueSuccBB, PredBB);
- })) {
- visitDomSubTree(DT, ContinueSuccBB, [&](BasicBlock *BB) {
- SkippedLoopAndExitBlocks.insert(BB);
- return true;
- });
- }
- // Similarly, if the edge we *are* cloning in the unswitch (the unswitched
- // edge) dominates its target, we will end up with dead nodes in the original
- // loop and its exits that will need to be deleted. Here, we just retain that
- // the property holds and will compute the deleted set later.
- bool DeleteUnswitchedSucc =
- UnswitchedSuccBB->getUniquePredecessor() ||
- llvm::all_of(predecessors(UnswitchedSuccBB), [&](BasicBlock *PredBB) {
- return PredBB == ParentBB || DT.dominates(UnswitchedSuccBB, PredBB);
- });
- // Split the preheader, so that we know that there is a safe place to insert
- // the conditional branch. We will change the preheader to have a conditional
- // branch on LoopCond. The original preheader will become the split point
- // between the unswitched versions, and we will have a new preheader for the
- // original loop.
- BasicBlock *SplitBB = L.getLoopPreheader();
- BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI);
- // Keep a mapping for the cloned values.
- ValueToValueMapTy VMap;
- // Build the cloned blocks from the loop.
- auto *ClonedPH = buildClonedLoopBlocks(
- L, LoopPH, SplitBB, ExitBlocks, ParentBB, UnswitchedSuccBB,
- ContinueSuccBB, SkippedLoopAndExitBlocks, VMap, AC, DT, LI);
- // Build the cloned loop structure itself. This may be substantially
- // different from the original structure due to the simplified CFG. This also
- // handles inserting all the cloned blocks into the correct loops.
- SmallVector<Loop *, 4> NonChildClonedLoops;
- Loop *ClonedL =
- buildClonedLoops(L, ExitBlocks, VMap, LI, NonChildClonedLoops);
- // Remove the parent as a predecessor of the unswitched successor.
- UnswitchedSuccBB->removePredecessor(ParentBB, /*DontDeleteUselessPHIs*/ true);
- // Now splice the branch from the original loop and use it to select between
- // the two loops.
- SplitBB->getTerminator()->eraseFromParent();
- SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), BI);
- BI.setSuccessor(ClonedSucc, ClonedPH);
- BI.setSuccessor(1 - ClonedSucc, LoopPH);
- // Create a new unconditional branch to the continuing block (as opposed to
- // the one cloned).
- BranchInst::Create(ContinueSuccBB, ParentBB);
- // Delete anything that was made dead in the original loop due to
- // unswitching.
- if (DeleteUnswitchedSucc)
- deleteDeadBlocksFromLoop(L, UnswitchedSuccBB, ExitBlocks, DT, LI);
- SmallVector<Loop *, 4> HoistedLoops;
- bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
- // This will have completely invalidated the dominator tree. We can't easily
- // bound how much is invalid because in some cases we will refine the
- // predecessor set of exit blocks of the loop which can move large unrelated
- // regions of code into a new subtree.
- //
- // FIXME: Eventually, we should use an incremental update utility that
- // leverages the existing information in the dominator tree (and potentially
- // the nature of the change) to more efficiently update things.
- DT.recalculate(*SplitBB->getParent());
- // We can change which blocks are exit blocks of all the cloned sibling
- // loops, the current loop, and any parent loops which shared exit blocks
- // with the current loop. As a consequence, we need to re-form LCSSA for
- // them. But we shouldn't need to re-form LCSSA for any child loops.
- // FIXME: This could be made more efficient by tracking which exit blocks are
- // new, and focusing on them, but that isn't likely to be necessary.
- //
- // In order to reasonably rebuild LCSSA we need to walk inside-out across the
- // loop nest and update every loop that could have had its exits changed. We
- // also need to cover any intervening loops. We add all of these loops to
- // a list and sort them by loop depth to achieve this without updating
- // unnecessary loops.
- auto UpdateLCSSA = [&](Loop &UpdateL) {
- #ifndef NDEBUG
- for (Loop *ChildL : UpdateL)
- assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
- "Perturbed a child loop's LCSSA form!");
- #endif
- formLCSSA(UpdateL, DT, &LI, nullptr);
- };
- // For non-child cloned loops and hoisted loops, we just need to update LCSSA
- // and we can do it in any order as they don't nest relative to each other.
- for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
- UpdateLCSSA(*UpdatedL);
- // If the original loop had exit blocks, walk up through the outer most loop
- // of those exit blocks to update LCSSA and form updated dedicated exits.
- if (OuterExitL != &L) {
- SmallVector<Loop *, 4> OuterLoops;
- // We start with the cloned loop and the current loop if they are loops and
- // move toward OuterExitL. Also, if either the cloned loop or the current
- // loop have become top level loops we need to walk all the way out.
- if (ClonedL) {
- OuterLoops.push_back(ClonedL);
- if (!ClonedL->getParentLoop())
- OuterExitL = nullptr;
- }
- if (IsStillLoop) {
- OuterLoops.push_back(&L);
- if (!L.getParentLoop())
- OuterExitL = nullptr;
- }
- // Grab all of the enclosing loops now.
- for (Loop *OuterL = ParentL; OuterL != OuterExitL;
- OuterL = OuterL->getParentLoop())
- OuterLoops.push_back(OuterL);
- // Finally, update our list of outer loops. This is nicely ordered to work
- // inside-out.
- for (Loop *OuterL : OuterLoops) {
- // First build LCSSA for this loop so that we can preserve it when
- // forming dedicated exits. We don't want to perturb some other loop's
- // LCSSA while doing that CFG edit.
- UpdateLCSSA(*OuterL);
- // For loops reached by this loop's original exit blocks we may
- // introduced new, non-dedicated exits. At least try to re-form dedicated
- // exits for these loops. This may fail if they couldn't have dedicated
- // exits to start with.
- formDedicatedExitBlocks(OuterL, &DT, &LI, /*PreserveLCSSA*/ true);
- }
- }
- #ifndef NDEBUG
- // Verify the entire loop structure to catch any incorrect updates before we
- // progress in the pass pipeline.
- LI.verify(DT);
- #endif
- // Now that we've unswitched something, make callbacks to report the changes.
- // For that we need to merge together the updated loops and the cloned loops
- // and check whether the original loop survived.
- SmallVector<Loop *, 4> SibLoops;
- for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
- if (UpdatedL->getParentLoop() == ParentL)
- SibLoops.push_back(UpdatedL);
- NonTrivialUnswitchCB(IsStillLoop, SibLoops);
- ++NumBranches;
- return true;
- }
- /// Recursively compute the cost of a dominator subtree based on the per-block
- /// cost map provided.
- ///
- /// The recursive computation is memozied into the provided DT-indexed cost map
- /// to allow querying it for most nodes in the domtree without it becoming
- /// quadratic.
- static int
- computeDomSubtreeCost(DomTreeNode &N,
- const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
- SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
- // Don't accumulate cost (or recurse through) blocks not in our block cost
- // map and thus not part of the duplication cost being considered.
- auto BBCostIt = BBCostMap.find(N.getBlock());
- if (BBCostIt == BBCostMap.end())
- return 0;
- // Lookup this node to see if we already computed its cost.
- auto DTCostIt = DTCostMap.find(&N);
- if (DTCostIt != DTCostMap.end())
- return DTCostIt->second;
- // If not, we have to compute it. We can't use insert above and update
- // because computing the cost may insert more things into the map.
- int Cost = std::accumulate(
- N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
- return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
- });
- bool Inserted = DTCostMap.insert({&N, Cost}).second;
- (void)Inserted;
- assert(Inserted && "Should not insert a node while visiting children!");
- return Cost;
- }
- /// Unswitch control flow predicated on loop invariant conditions.
- ///
- /// This first hoists all branches or switches which are trivial (IE, do not
- /// require duplicating any part of the loop) out of the loop body. It then
- /// looks at other loop invariant control flows and tries to unswitch those as
- /// well by cloning the loop if the result is small enough.
- static bool
- unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
- TargetTransformInfo &TTI, bool NonTrivial,
- function_ref<void(bool, ArrayRef<Loop *>)> NonTrivialUnswitchCB) {
- assert(L.isRecursivelyLCSSAForm(DT, LI) &&
- "Loops must be in LCSSA form before unswitching.");
- bool Changed = false;
- // Must be in loop simplified form: we need a preheader and dedicated exits.
- if (!L.isLoopSimplifyForm())
- return false;
- // Try trivial unswitch first before loop over other basic blocks in the loop.
- Changed |= unswitchAllTrivialConditions(L, DT, LI);
- // If we're not doing non-trivial unswitching, we're done. We both accept
- // a parameter but also check a local flag that can be used for testing
- // a debugging.
- if (!NonTrivial && !EnableNonTrivialUnswitch)
- return Changed;
- // Collect all remaining invariant branch conditions within this loop (as
- // opposed to an inner loop which would be handled when visiting that inner
- // loop).
- SmallVector<TerminatorInst *, 4> UnswitchCandidates;
- for (auto *BB : L.blocks())
- if (LI.getLoopFor(BB) == &L)
- if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator()))
- if (BI->isConditional() && L.isLoopInvariant(BI->getCondition()) &&
- BI->getSuccessor(0) != BI->getSuccessor(1))
- UnswitchCandidates.push_back(BI);
- // If we didn't find any candidates, we're done.
- if (UnswitchCandidates.empty())
- return Changed;
- DEBUG(dbgs() << "Considering " << UnswitchCandidates.size()
- << " non-trivial loop invariant conditions for unswitching.\n");
- // Given that unswitching these terminators will require duplicating parts of
- // the loop, so we need to be able to model that cost. Compute the ephemeral
- // values and set up a data structure to hold per-BB costs. We cache each
- // block's cost so that we don't recompute this when considering different
- // subsets of the loop for duplication during unswitching.
- SmallPtrSet<const Value *, 4> EphValues;
- CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
- SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
- // Compute the cost of each block, as well as the total loop cost. Also, bail
- // out if we see instructions which are incompatible with loop unswitching
- // (convergent, noduplicate, or cross-basic-block tokens).
- // FIXME: We might be able to safely handle some of these in non-duplicated
- // regions.
- int LoopCost = 0;
- for (auto *BB : L.blocks()) {
- int Cost = 0;
- for (auto &I : *BB) {
- if (EphValues.count(&I))
- continue;
- if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
- return Changed;
- if (auto CS = CallSite(&I))
- if (CS.isConvergent() || CS.cannotDuplicate())
- return Changed;
- Cost += TTI.getUserCost(&I);
- }
- assert(Cost >= 0 && "Must not have negative costs!");
- LoopCost += Cost;
- assert(LoopCost >= 0 && "Must not have negative loop costs!");
- BBCostMap[BB] = Cost;
- }
- DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n");
- // Now we find the best candidate by searching for the one with the following
- // properties in order:
- //
- // 1) An unswitching cost below the threshold
- // 2) The smallest number of duplicated unswitch candidates (to avoid
- // creating redundant subsequent unswitching)
- // 3) The smallest cost after unswitching.
- //
- // We prioritize reducing fanout of unswitch candidates provided the cost
- // remains below the threshold because this has a multiplicative effect.
- //
- // This requires memoizing each dominator subtree to avoid redundant work.
- //
- // FIXME: Need to actually do the number of candidates part above.
- SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
- // Given a terminator which might be unswitched, computes the non-duplicated
- // cost for that terminator.
- auto ComputeUnswitchedCost = [&](TerminatorInst *TI) {
- BasicBlock &BB = *TI->getParent();
- SmallPtrSet<BasicBlock *, 4> Visited;
- int Cost = LoopCost;
- for (BasicBlock *SuccBB : successors(&BB)) {
- // Don't count successors more than once.
- if (!Visited.insert(SuccBB).second)
- continue;
- // This successor's domtree will not need to be duplicated after
- // unswitching if the edge to the successor dominates it (and thus the
- // entire tree). This essentially means there is no other path into this
- // subtree and so it will end up live in only one clone of the loop.
- if (SuccBB->getUniquePredecessor() ||
- llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
- return PredBB == &BB || DT.dominates(SuccBB, PredBB);
- })) {
- Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
- assert(Cost >= 0 &&
- "Non-duplicated cost should never exceed total loop cost!");
- }
- }
- // Now scale the cost by the number of unique successors minus one. We
- // subtract one because there is already at least one copy of the entire
- // loop. This is computing the new cost of unswitching a condition.
- assert(Visited.size() > 1 &&
- "Cannot unswitch a condition without multiple distinct successors!");
- return Cost * (Visited.size() - 1);
- };
- TerminatorInst *BestUnswitchTI = nullptr;
- int BestUnswitchCost;
- for (TerminatorInst *CandidateTI : UnswitchCandidates) {
- int CandidateCost = ComputeUnswitchedCost(CandidateTI);
- DEBUG(dbgs() << " Computed cost of " << CandidateCost
- << " for unswitch candidate: " << *CandidateTI << "\n");
- if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
- BestUnswitchTI = CandidateTI;
- BestUnswitchCost = CandidateCost;
- }
- }
- if (BestUnswitchCost < UnswitchThreshold) {
- DEBUG(dbgs() << " Trying to unswitch non-trivial (cost = "
- << BestUnswitchCost << ") branch: " << *BestUnswitchTI
- << "\n");
- Changed |= unswitchInvariantBranch(L, cast<BranchInst>(*BestUnswitchTI), DT,
- LI, AC, NonTrivialUnswitchCB);
- } else {
- DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << BestUnswitchCost
- << "\n");
- }
- return Changed;
- }
- PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &U) {
- Function &F = *L.getHeader()->getParent();
- (void)F;
- DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L << "\n");
- // Save the current loop name in a variable so that we can report it even
- // after it has been deleted.
- std::string LoopName = L.getName();
- auto NonTrivialUnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
- ArrayRef<Loop *> NewLoops) {
- // If we did a non-trivial unswitch, we have added new (cloned) loops.
- U.addSiblingLoops(NewLoops);
- // If the current loop remains valid, we should revisit it to catch any
- // other unswitch opportunities. Otherwise, we need to mark it as deleted.
- if (CurrentLoopValid)
- U.revisitCurrentLoop();
- else
- U.markLoopAsDeleted(L, LoopName);
- };
- if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial,
- NonTrivialUnswitchCB))
- return PreservedAnalyses::all();
- #ifndef NDEBUG
- // Historically this pass has had issues with the dominator tree so verify it
- // in asserts builds.
- AR.DT.verifyDomTree();
- #endif
- return getLoopPassPreservedAnalyses();
- }
- namespace {
- class SimpleLoopUnswitchLegacyPass : public LoopPass {
- bool NonTrivial;
- public:
- static char ID; // Pass ID, replacement for typeid
- explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
- : LoopPass(ID), NonTrivial(NonTrivial) {
- initializeSimpleLoopUnswitchLegacyPassPass(
- *PassRegistry::getPassRegistry());
- }
- bool runOnLoop(Loop *L, LPPassManager &LPM) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- getLoopAnalysisUsage(AU);
- }
- };
- } // end anonymous namespace
- bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
- if (skipLoop(L))
- return false;
- Function &F = *L->getHeader()->getParent();
- DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L << "\n");
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- auto NonTrivialUnswitchCB = [&L, &LPM](bool CurrentLoopValid,
- ArrayRef<Loop *> NewLoops) {
- // If we did a non-trivial unswitch, we have added new (cloned) loops.
- for (auto *NewL : NewLoops)
- LPM.addLoop(*NewL);
- // If the current loop remains valid, re-add it to the queue. This is
- // a little wasteful as we'll finish processing the current loop as well,
- // but it is the best we can do in the old PM.
- if (CurrentLoopValid)
- LPM.addLoop(*L);
- else
- LPM.markLoopAsDeleted(*L);
- };
- bool Changed =
- unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, NonTrivialUnswitchCB);
- // If anything was unswitched, also clear any cached information about this
- // loop.
- LPM.deleteSimpleAnalysisLoop(L);
- #ifndef NDEBUG
- // Historically this pass has had issues with the dominator tree so verify it
- // in asserts builds.
- DT.verifyDomTree();
- #endif
- return Changed;
- }
- char SimpleLoopUnswitchLegacyPass::ID = 0;
- INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
- "Simple unswitch loops", false, false)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopPass)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
- "Simple unswitch loops", false, false)
- Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
- return new SimpleLoopUnswitchLegacyPass(NonTrivial);
- }
|