1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059 |
- //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the LiveInterval analysis pass which is used
- // by the Linear Scan Register allocator. This pass linearizes the
- // basic blocks of the function in DFS order and uses the
- // LiveVariables pass to conservatively compute live intervals for
- // each virtual and physical register.
- //
- //===----------------------------------------------------------------------===//
- #define DEBUG_TYPE "liveintervals"
- #include "llvm/CodeGen/LiveIntervalAnalysis.h"
- #include "VirtRegMap.h"
- #include "llvm/Value.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/CodeGen/LiveVariables.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineLoopInfo.h"
- #include "llvm/CodeGen/MachineMemOperand.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/CodeGen/ProcessImplicitDefs.h"
- #include "llvm/Target/TargetRegisterInfo.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Target/TargetOptions.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/STLExtras.h"
- #include <algorithm>
- #include <limits>
- #include <cmath>
- using namespace llvm;
- // Hidden options for help debugging.
- static cl::opt<bool> DisableReMat("disable-rematerialization",
- cl::init(false), cl::Hidden);
- static cl::opt<bool> EnableFastSpilling("fast-spill",
- cl::init(false), cl::Hidden);
- STATISTIC(numIntervals , "Number of original intervals");
- STATISTIC(numFolds , "Number of loads/stores folded into instructions");
- STATISTIC(numSplits , "Number of intervals split");
- char LiveIntervals::ID = 0;
- static RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
- void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- AU.addRequired<AliasAnalysis>();
- AU.addPreserved<AliasAnalysis>();
- AU.addPreserved<LiveVariables>();
- AU.addRequired<LiveVariables>();
- AU.addPreservedID(MachineLoopInfoID);
- AU.addPreservedID(MachineDominatorsID);
-
- if (!StrongPHIElim) {
- AU.addPreservedID(PHIEliminationID);
- AU.addRequiredID(PHIEliminationID);
- }
-
- AU.addRequiredID(TwoAddressInstructionPassID);
- AU.addPreserved<ProcessImplicitDefs>();
- AU.addRequired<ProcessImplicitDefs>();
- AU.addPreserved<SlotIndexes>();
- AU.addRequiredTransitive<SlotIndexes>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- void LiveIntervals::releaseMemory() {
- // Free the live intervals themselves.
- for (DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.begin(),
- E = r2iMap_.end(); I != E; ++I)
- delete I->second;
-
- r2iMap_.clear();
- // Release VNInfo memroy regions after all VNInfo objects are dtor'd.
- VNInfoAllocator.Reset();
- while (!CloneMIs.empty()) {
- MachineInstr *MI = CloneMIs.back();
- CloneMIs.pop_back();
- mf_->DeleteMachineInstr(MI);
- }
- }
- /// runOnMachineFunction - Register allocate the whole function
- ///
- bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
- mf_ = &fn;
- mri_ = &mf_->getRegInfo();
- tm_ = &fn.getTarget();
- tri_ = tm_->getRegisterInfo();
- tii_ = tm_->getInstrInfo();
- aa_ = &getAnalysis<AliasAnalysis>();
- lv_ = &getAnalysis<LiveVariables>();
- indexes_ = &getAnalysis<SlotIndexes>();
- allocatableRegs_ = tri_->getAllocatableSet(fn);
- computeIntervals();
- numIntervals += getNumIntervals();
- DEBUG(dump());
- return true;
- }
- /// print - Implement the dump method.
- void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
- OS << "********** INTERVALS **********\n";
- for (const_iterator I = begin(), E = end(); I != E; ++I) {
- I->second->print(OS, tri_);
- OS << "\n";
- }
- printInstrs(OS);
- }
- void LiveIntervals::printInstrs(raw_ostream &OS) const {
- OS << "********** MACHINEINSTRS **********\n";
- for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
- mbbi != mbbe; ++mbbi) {
- OS << "BB#" << mbbi->getNumber()
- << ":\t\t# derived from " << mbbi->getName() << "\n";
- for (MachineBasicBlock::iterator mii = mbbi->begin(),
- mie = mbbi->end(); mii != mie; ++mii) {
- OS << getInstructionIndex(mii) << '\t' << *mii;
- }
- }
- }
- void LiveIntervals::dumpInstrs() const {
- printInstrs(errs());
- }
- /// conflictsWithPhysRegDef - Returns true if the specified register
- /// is defined during the duration of the specified interval.
- bool LiveIntervals::conflictsWithPhysRegDef(const LiveInterval &li,
- VirtRegMap &vrm, unsigned reg) {
- for (LiveInterval::Ranges::const_iterator
- I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
- for (SlotIndex index = I->start.getBaseIndex(),
- end = I->end.getPrevSlot().getBaseIndex().getNextIndex();
- index != end;
- index = index.getNextIndex()) {
- MachineInstr *MI = getInstructionFromIndex(index);
- if (!MI)
- continue; // skip deleted instructions
- unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
- if (tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg))
- if (SrcReg == li.reg || DstReg == li.reg)
- continue;
- for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
- MachineOperand& mop = MI->getOperand(i);
- if (!mop.isReg())
- continue;
- unsigned PhysReg = mop.getReg();
- if (PhysReg == 0 || PhysReg == li.reg)
- continue;
- if (TargetRegisterInfo::isVirtualRegister(PhysReg)) {
- if (!vrm.hasPhys(PhysReg))
- continue;
- PhysReg = vrm.getPhys(PhysReg);
- }
- if (PhysReg && tri_->regsOverlap(PhysReg, reg))
- return true;
- }
- }
- }
- return false;
- }
- /// conflictsWithPhysRegRef - Similar to conflictsWithPhysRegRef except
- /// it can check use as well.
- bool LiveIntervals::conflictsWithPhysRegRef(LiveInterval &li,
- unsigned Reg, bool CheckUse,
- SmallPtrSet<MachineInstr*,32> &JoinedCopies) {
- for (LiveInterval::Ranges::const_iterator
- I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
- for (SlotIndex index = I->start.getBaseIndex(),
- end = I->end.getPrevSlot().getBaseIndex().getNextIndex();
- index != end;
- index = index.getNextIndex()) {
- MachineInstr *MI = getInstructionFromIndex(index);
- if (!MI)
- continue; // skip deleted instructions
- if (JoinedCopies.count(MI))
- continue;
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand& MO = MI->getOperand(i);
- if (!MO.isReg())
- continue;
- if (MO.isUse() && !CheckUse)
- continue;
- unsigned PhysReg = MO.getReg();
- if (PhysReg == 0 || TargetRegisterInfo::isVirtualRegister(PhysReg))
- continue;
- if (tri_->isSubRegister(Reg, PhysReg))
- return true;
- }
- }
- }
- return false;
- }
- #ifndef NDEBUG
- static void printRegName(unsigned reg, const TargetRegisterInfo* tri_) {
- if (TargetRegisterInfo::isPhysicalRegister(reg))
- errs() << tri_->getName(reg);
- else
- errs() << "%reg" << reg;
- }
- #endif
- void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
- MachineBasicBlock::iterator mi,
- SlotIndex MIIdx,
- MachineOperand& MO,
- unsigned MOIdx,
- LiveInterval &interval) {
- DEBUG({
- errs() << "\t\tregister: ";
- printRegName(interval.reg, tri_);
- });
- // Virtual registers may be defined multiple times (due to phi
- // elimination and 2-addr elimination). Much of what we do only has to be
- // done once for the vreg. We use an empty interval to detect the first
- // time we see a vreg.
- LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
- if (interval.empty()) {
- // Get the Idx of the defining instructions.
- SlotIndex defIndex = MIIdx.getDefIndex();
- // Earlyclobbers move back one, so that they overlap the live range
- // of inputs.
- if (MO.isEarlyClobber())
- defIndex = MIIdx.getUseIndex();
- VNInfo *ValNo;
- MachineInstr *CopyMI = NULL;
- unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
- if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
- mi->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
- mi->getOpcode() == TargetInstrInfo::SUBREG_TO_REG ||
- tii_->isMoveInstr(*mi, SrcReg, DstReg, SrcSubReg, DstSubReg))
- CopyMI = mi;
- // Earlyclobbers move back one.
- ValNo = interval.getNextValue(defIndex, CopyMI, true, VNInfoAllocator);
- assert(ValNo->id == 0 && "First value in interval is not 0?");
- // Loop over all of the blocks that the vreg is defined in. There are
- // two cases we have to handle here. The most common case is a vreg
- // whose lifetime is contained within a basic block. In this case there
- // will be a single kill, in MBB, which comes after the definition.
- if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
- // FIXME: what about dead vars?
- SlotIndex killIdx;
- if (vi.Kills[0] != mi)
- killIdx = getInstructionIndex(vi.Kills[0]).getDefIndex();
- else
- killIdx = defIndex.getStoreIndex();
- // If the kill happens after the definition, we have an intra-block
- // live range.
- if (killIdx > defIndex) {
- assert(vi.AliveBlocks.empty() &&
- "Shouldn't be alive across any blocks!");
- LiveRange LR(defIndex, killIdx, ValNo);
- interval.addRange(LR);
- DEBUG(errs() << " +" << LR << "\n");
- ValNo->addKill(killIdx);
- return;
- }
- }
- // The other case we handle is when a virtual register lives to the end
- // of the defining block, potentially live across some blocks, then is
- // live into some number of blocks, but gets killed. Start by adding a
- // range that goes from this definition to the end of the defining block.
- LiveRange NewLR(defIndex, getMBBEndIdx(mbb).getNextIndex().getLoadIndex(),
- ValNo);
- DEBUG(errs() << " +" << NewLR);
- interval.addRange(NewLR);
- // Iterate over all of the blocks that the variable is completely
- // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
- // live interval.
- for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
- E = vi.AliveBlocks.end(); I != E; ++I) {
- LiveRange LR(
- getMBBStartIdx(mf_->getBlockNumbered(*I)),
- getMBBEndIdx(mf_->getBlockNumbered(*I)).getNextIndex().getLoadIndex(),
- ValNo);
- interval.addRange(LR);
- DEBUG(errs() << " +" << LR);
- }
- // Finally, this virtual register is live from the start of any killing
- // block to the 'use' slot of the killing instruction.
- for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
- MachineInstr *Kill = vi.Kills[i];
- SlotIndex killIdx =
- getInstructionIndex(Kill).getDefIndex();
- LiveRange LR(getMBBStartIdx(Kill->getParent()), killIdx, ValNo);
- interval.addRange(LR);
- ValNo->addKill(killIdx);
- DEBUG(errs() << " +" << LR);
- }
- } else {
- // If this is the second time we see a virtual register definition, it
- // must be due to phi elimination or two addr elimination. If this is
- // the result of two address elimination, then the vreg is one of the
- // def-and-use register operand.
- if (mi->isRegTiedToUseOperand(MOIdx)) {
- // If this is a two-address definition, then we have already processed
- // the live range. The only problem is that we didn't realize there
- // are actually two values in the live interval. Because of this we
- // need to take the LiveRegion that defines this register and split it
- // into two values.
- assert(interval.containsOneValue());
- SlotIndex DefIndex = interval.getValNumInfo(0)->def.getDefIndex();
- SlotIndex RedefIndex = MIIdx.getDefIndex();
- if (MO.isEarlyClobber())
- RedefIndex = MIIdx.getUseIndex();
- const LiveRange *OldLR =
- interval.getLiveRangeContaining(RedefIndex.getUseIndex());
- VNInfo *OldValNo = OldLR->valno;
- // Delete the initial value, which should be short and continuous,
- // because the 2-addr copy must be in the same MBB as the redef.
- interval.removeRange(DefIndex, RedefIndex);
- // Two-address vregs should always only be redefined once. This means
- // that at this point, there should be exactly one value number in it.
- assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
- // The new value number (#1) is defined by the instruction we claimed
- // defined value #0.
- VNInfo *ValNo = interval.getNextValue(OldValNo->def, OldValNo->getCopy(),
- false, // update at *
- VNInfoAllocator);
- ValNo->setFlags(OldValNo->getFlags()); // * <- updating here
- // Value#0 is now defined by the 2-addr instruction.
- OldValNo->def = RedefIndex;
- OldValNo->setCopy(0);
-
- // Add the new live interval which replaces the range for the input copy.
- LiveRange LR(DefIndex, RedefIndex, ValNo);
- DEBUG(errs() << " replace range with " << LR);
- interval.addRange(LR);
- ValNo->addKill(RedefIndex);
- // If this redefinition is dead, we need to add a dummy unit live
- // range covering the def slot.
- if (MO.isDead())
- interval.addRange(LiveRange(RedefIndex, RedefIndex.getStoreIndex(),
- OldValNo));
- DEBUG({
- errs() << " RESULT: ";
- interval.print(errs(), tri_);
- });
- } else {
- // Otherwise, this must be because of phi elimination. If this is the
- // first redefinition of the vreg that we have seen, go back and change
- // the live range in the PHI block to be a different value number.
- if (interval.containsOneValue()) {
- // Remove the old range that we now know has an incorrect number.
- VNInfo *VNI = interval.getValNumInfo(0);
- MachineInstr *Killer = vi.Kills[0];
- SlotIndex Start = getMBBStartIdx(Killer->getParent());
- SlotIndex End = getInstructionIndex(Killer).getDefIndex();
- DEBUG({
- errs() << " Removing [" << Start << "," << End << "] from: ";
- interval.print(errs(), tri_);
- errs() << "\n";
- });
- interval.removeRange(Start, End);
- assert(interval.ranges.size() == 1 &&
- "Newly discovered PHI interval has >1 ranges.");
- MachineBasicBlock *killMBB = getMBBFromIndex(VNI->def);
- VNI->addKill(indexes_->getTerminatorGap(killMBB));
- VNI->setHasPHIKill(true);
- DEBUG({
- errs() << " RESULT: ";
- interval.print(errs(), tri_);
- });
- // Replace the interval with one of a NEW value number. Note that this
- // value number isn't actually defined by an instruction, weird huh? :)
- LiveRange LR(Start, End,
- interval.getNextValue(SlotIndex(getMBBStartIdx(Killer->getParent()), true),
- 0, false, VNInfoAllocator));
- LR.valno->setIsPHIDef(true);
- DEBUG(errs() << " replace range with " << LR);
- interval.addRange(LR);
- LR.valno->addKill(End);
- DEBUG({
- errs() << " RESULT: ";
- interval.print(errs(), tri_);
- });
- }
- // In the case of PHI elimination, each variable definition is only
- // live until the end of the block. We've already taken care of the
- // rest of the live range.
- SlotIndex defIndex = MIIdx.getDefIndex();
- if (MO.isEarlyClobber())
- defIndex = MIIdx.getUseIndex();
- VNInfo *ValNo;
- MachineInstr *CopyMI = NULL;
- unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
- if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
- mi->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
- mi->getOpcode() == TargetInstrInfo::SUBREG_TO_REG ||
- tii_->isMoveInstr(*mi, SrcReg, DstReg, SrcSubReg, DstSubReg))
- CopyMI = mi;
- ValNo = interval.getNextValue(defIndex, CopyMI, true, VNInfoAllocator);
-
- SlotIndex killIndex = getMBBEndIdx(mbb).getNextIndex().getLoadIndex();
- LiveRange LR(defIndex, killIndex, ValNo);
- interval.addRange(LR);
- ValNo->addKill(indexes_->getTerminatorGap(mbb));
- ValNo->setHasPHIKill(true);
- DEBUG(errs() << " +" << LR);
- }
- }
- DEBUG(errs() << '\n');
- }
- void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator mi,
- SlotIndex MIIdx,
- MachineOperand& MO,
- LiveInterval &interval,
- MachineInstr *CopyMI) {
- // A physical register cannot be live across basic block, so its
- // lifetime must end somewhere in its defining basic block.
- DEBUG({
- errs() << "\t\tregister: ";
- printRegName(interval.reg, tri_);
- });
- SlotIndex baseIndex = MIIdx;
- SlotIndex start = baseIndex.getDefIndex();
- // Earlyclobbers move back one.
- if (MO.isEarlyClobber())
- start = MIIdx.getUseIndex();
- SlotIndex end = start;
- // If it is not used after definition, it is considered dead at
- // the instruction defining it. Hence its interval is:
- // [defSlot(def), defSlot(def)+1)
- // For earlyclobbers, the defSlot was pushed back one; the extra
- // advance below compensates.
- if (MO.isDead()) {
- DEBUG(errs() << " dead");
- end = start.getStoreIndex();
- goto exit;
- }
- // If it is not dead on definition, it must be killed by a
- // subsequent instruction. Hence its interval is:
- // [defSlot(def), useSlot(kill)+1)
- baseIndex = baseIndex.getNextIndex();
- while (++mi != MBB->end()) {
- if (getInstructionFromIndex(baseIndex) == 0)
- baseIndex = indexes_->getNextNonNullIndex(baseIndex);
- if (mi->killsRegister(interval.reg, tri_)) {
- DEBUG(errs() << " killed");
- end = baseIndex.getDefIndex();
- goto exit;
- } else {
- int DefIdx = mi->findRegisterDefOperandIdx(interval.reg, false, tri_);
- if (DefIdx != -1) {
- if (mi->isRegTiedToUseOperand(DefIdx)) {
- // Two-address instruction.
- end = baseIndex.getDefIndex();
- } else {
- // Another instruction redefines the register before it is ever read.
- // Then the register is essentially dead at the instruction that defines
- // it. Hence its interval is:
- // [defSlot(def), defSlot(def)+1)
- DEBUG(errs() << " dead");
- end = start.getStoreIndex();
- }
- goto exit;
- }
- }
-
- baseIndex = baseIndex.getNextIndex();
- }
-
- // The only case we should have a dead physreg here without a killing or
- // instruction where we know it's dead is if it is live-in to the function
- // and never used. Another possible case is the implicit use of the
- // physical register has been deleted by two-address pass.
- end = start.getStoreIndex();
- exit:
- assert(start < end && "did not find end of interval?");
- // Already exists? Extend old live interval.
- LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
- bool Extend = OldLR != interval.end();
- VNInfo *ValNo = Extend
- ? OldLR->valno : interval.getNextValue(start, CopyMI, true, VNInfoAllocator);
- if (MO.isEarlyClobber() && Extend)
- ValNo->setHasRedefByEC(true);
- LiveRange LR(start, end, ValNo);
- interval.addRange(LR);
- LR.valno->addKill(end);
- DEBUG(errs() << " +" << LR << '\n');
- }
- void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator MI,
- SlotIndex MIIdx,
- MachineOperand& MO,
- unsigned MOIdx) {
- if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
- handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
- getOrCreateInterval(MO.getReg()));
- else if (allocatableRegs_[MO.getReg()]) {
- MachineInstr *CopyMI = NULL;
- unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
- if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
- MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
- MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG ||
- tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg))
- CopyMI = MI;
- handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
- getOrCreateInterval(MO.getReg()), CopyMI);
- // Def of a register also defines its sub-registers.
- for (const unsigned* AS = tri_->getSubRegisters(MO.getReg()); *AS; ++AS)
- // If MI also modifies the sub-register explicitly, avoid processing it
- // more than once. Do not pass in TRI here so it checks for exact match.
- if (!MI->modifiesRegister(*AS))
- handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
- getOrCreateInterval(*AS), 0);
- }
- }
- void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
- SlotIndex MIIdx,
- LiveInterval &interval, bool isAlias) {
- DEBUG({
- errs() << "\t\tlivein register: ";
- printRegName(interval.reg, tri_);
- });
- // Look for kills, if it reaches a def before it's killed, then it shouldn't
- // be considered a livein.
- MachineBasicBlock::iterator mi = MBB->begin();
- SlotIndex baseIndex = MIIdx;
- SlotIndex start = baseIndex;
- if (getInstructionFromIndex(baseIndex) == 0)
- baseIndex = indexes_->getNextNonNullIndex(baseIndex);
- SlotIndex end = baseIndex;
- bool SeenDefUse = false;
-
- while (mi != MBB->end()) {
- if (mi->killsRegister(interval.reg, tri_)) {
- DEBUG(errs() << " killed");
- end = baseIndex.getDefIndex();
- SeenDefUse = true;
- break;
- } else if (mi->modifiesRegister(interval.reg, tri_)) {
- // Another instruction redefines the register before it is ever read.
- // Then the register is essentially dead at the instruction that defines
- // it. Hence its interval is:
- // [defSlot(def), defSlot(def)+1)
- DEBUG(errs() << " dead");
- end = start.getStoreIndex();
- SeenDefUse = true;
- break;
- }
- ++mi;
- if (mi != MBB->end()) {
- baseIndex = indexes_->getNextNonNullIndex(baseIndex);
- }
- }
- // Live-in register might not be used at all.
- if (!SeenDefUse) {
- if (isAlias) {
- DEBUG(errs() << " dead");
- end = MIIdx.getStoreIndex();
- } else {
- DEBUG(errs() << " live through");
- end = baseIndex;
- }
- }
- VNInfo *vni =
- interval.getNextValue(SlotIndex(getMBBStartIdx(MBB), true),
- 0, false, VNInfoAllocator);
- vni->setIsPHIDef(true);
- LiveRange LR(start, end, vni);
- interval.addRange(LR);
- LR.valno->addKill(end);
- DEBUG(errs() << " +" << LR << '\n');
- }
- /// computeIntervals - computes the live intervals for virtual
- /// registers. for some ordering of the machine instructions [1,N] a
- /// live interval is an interval [i, j) where 1 <= i <= j < N for
- /// which a variable is live
- void LiveIntervals::computeIntervals() {
- DEBUG(errs() << "********** COMPUTING LIVE INTERVALS **********\n"
- << "********** Function: "
- << ((Value*)mf_->getFunction())->getName() << '\n');
- SmallVector<unsigned, 8> UndefUses;
- for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
- MBBI != E; ++MBBI) {
- MachineBasicBlock *MBB = MBBI;
- // Track the index of the current machine instr.
- SlotIndex MIIndex = getMBBStartIdx(MBB);
- DEBUG(errs() << MBB->getName() << ":\n");
- MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
- // Create intervals for live-ins to this BB first.
- for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
- LE = MBB->livein_end(); LI != LE; ++LI) {
- handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
- // Multiple live-ins can alias the same register.
- for (const unsigned* AS = tri_->getSubRegisters(*LI); *AS; ++AS)
- if (!hasInterval(*AS))
- handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
- true);
- }
-
- // Skip over empty initial indices.
- if (getInstructionFromIndex(MIIndex) == 0)
- MIIndex = indexes_->getNextNonNullIndex(MIIndex);
-
- for (; MI != miEnd; ++MI) {
- DEBUG(errs() << MIIndex << "\t" << *MI);
- // Handle defs.
- for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
- MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg() || !MO.getReg())
- continue;
- // handle register defs - build intervals
- if (MO.isDef())
- handleRegisterDef(MBB, MI, MIIndex, MO, i);
- else if (MO.isUndef())
- UndefUses.push_back(MO.getReg());
- }
-
- // Move to the next instr slot.
- MIIndex = indexes_->getNextNonNullIndex(MIIndex);
- }
- }
- // Create empty intervals for registers defined by implicit_def's (except
- // for those implicit_def that define values which are liveout of their
- // blocks.
- for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
- unsigned UndefReg = UndefUses[i];
- (void)getOrCreateInterval(UndefReg);
- }
- }
- LiveInterval* LiveIntervals::createInterval(unsigned reg) {
- float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
- return new LiveInterval(reg, Weight);
- }
- /// dupInterval - Duplicate a live interval. The caller is responsible for
- /// managing the allocated memory.
- LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) {
- LiveInterval *NewLI = createInterval(li->reg);
- NewLI->Copy(*li, mri_, getVNInfoAllocator());
- return NewLI;
- }
- /// getVNInfoSourceReg - Helper function that parses the specified VNInfo
- /// copy field and returns the source register that defines it.
- unsigned LiveIntervals::getVNInfoSourceReg(const VNInfo *VNI) const {
- if (!VNI->getCopy())
- return 0;
- if (VNI->getCopy()->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
- // If it's extracting out of a physical register, return the sub-register.
- unsigned Reg = VNI->getCopy()->getOperand(1).getReg();
- if (TargetRegisterInfo::isPhysicalRegister(Reg))
- Reg = tri_->getSubReg(Reg, VNI->getCopy()->getOperand(2).getImm());
- return Reg;
- } else if (VNI->getCopy()->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
- VNI->getCopy()->getOpcode() == TargetInstrInfo::SUBREG_TO_REG)
- return VNI->getCopy()->getOperand(2).getReg();
- unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
- if (tii_->isMoveInstr(*VNI->getCopy(), SrcReg, DstReg, SrcSubReg, DstSubReg))
- return SrcReg;
- llvm_unreachable("Unrecognized copy instruction!");
- return 0;
- }
- //===----------------------------------------------------------------------===//
- // Register allocator hooks.
- //
- /// getReMatImplicitUse - If the remat definition MI has one (for now, we only
- /// allow one) virtual register operand, then its uses are implicitly using
- /// the register. Returns the virtual register.
- unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li,
- MachineInstr *MI) const {
- unsigned RegOp = 0;
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg() || !MO.isUse())
- continue;
- unsigned Reg = MO.getReg();
- if (Reg == 0 || Reg == li.reg)
- continue;
-
- if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
- !allocatableRegs_[Reg])
- continue;
- // FIXME: For now, only remat MI with at most one register operand.
- assert(!RegOp &&
- "Can't rematerialize instruction with multiple register operand!");
- RegOp = MO.getReg();
- #ifndef NDEBUG
- break;
- #endif
- }
- return RegOp;
- }
- /// isValNoAvailableAt - Return true if the val# of the specified interval
- /// which reaches the given instruction also reaches the specified use index.
- bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
- SlotIndex UseIdx) const {
- SlotIndex Index = getInstructionIndex(MI);
- VNInfo *ValNo = li.FindLiveRangeContaining(Index)->valno;
- LiveInterval::const_iterator UI = li.FindLiveRangeContaining(UseIdx);
- return UI != li.end() && UI->valno == ValNo;
- }
- /// isReMaterializable - Returns true if the definition MI of the specified
- /// val# of the specified interval is re-materializable.
- bool LiveIntervals::isReMaterializable(const LiveInterval &li,
- const VNInfo *ValNo, MachineInstr *MI,
- SmallVectorImpl<LiveInterval*> &SpillIs,
- bool &isLoad) {
- if (DisableReMat)
- return false;
- if (!tii_->isTriviallyReMaterializable(MI, aa_))
- return false;
- // Target-specific code can mark an instruction as being rematerializable
- // if it has one virtual reg use, though it had better be something like
- // a PIC base register which is likely to be live everywhere.
- unsigned ImpUse = getReMatImplicitUse(li, MI);
- if (ImpUse) {
- const LiveInterval &ImpLi = getInterval(ImpUse);
- for (MachineRegisterInfo::use_iterator ri = mri_->use_begin(li.reg),
- re = mri_->use_end(); ri != re; ++ri) {
- MachineInstr *UseMI = &*ri;
- SlotIndex UseIdx = getInstructionIndex(UseMI);
- if (li.FindLiveRangeContaining(UseIdx)->valno != ValNo)
- continue;
- if (!isValNoAvailableAt(ImpLi, MI, UseIdx))
- return false;
- }
- // If a register operand of the re-materialized instruction is going to
- // be spilled next, then it's not legal to re-materialize this instruction.
- for (unsigned i = 0, e = SpillIs.size(); i != e; ++i)
- if (ImpUse == SpillIs[i]->reg)
- return false;
- }
- return true;
- }
- /// isReMaterializable - Returns true if the definition MI of the specified
- /// val# of the specified interval is re-materializable.
- bool LiveIntervals::isReMaterializable(const LiveInterval &li,
- const VNInfo *ValNo, MachineInstr *MI) {
- SmallVector<LiveInterval*, 4> Dummy1;
- bool Dummy2;
- return isReMaterializable(li, ValNo, MI, Dummy1, Dummy2);
- }
- /// isReMaterializable - Returns true if every definition of MI of every
- /// val# of the specified interval is re-materializable.
- bool LiveIntervals::isReMaterializable(const LiveInterval &li,
- SmallVectorImpl<LiveInterval*> &SpillIs,
- bool &isLoad) {
- isLoad = false;
- for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
- i != e; ++i) {
- const VNInfo *VNI = *i;
- if (VNI->isUnused())
- continue; // Dead val#.
- // Is the def for the val# rematerializable?
- if (!VNI->isDefAccurate())
- return false;
- MachineInstr *ReMatDefMI = getInstructionFromIndex(VNI->def);
- bool DefIsLoad = false;
- if (!ReMatDefMI ||
- !isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad))
- return false;
- isLoad |= DefIsLoad;
- }
- return true;
- }
- /// FilterFoldedOps - Filter out two-address use operands. Return
- /// true if it finds any issue with the operands that ought to prevent
- /// folding.
- static bool FilterFoldedOps(MachineInstr *MI,
- SmallVector<unsigned, 2> &Ops,
- unsigned &MRInfo,
- SmallVector<unsigned, 2> &FoldOps) {
- MRInfo = 0;
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- unsigned OpIdx = Ops[i];
- MachineOperand &MO = MI->getOperand(OpIdx);
- // FIXME: fold subreg use.
- if (MO.getSubReg())
- return true;
- if (MO.isDef())
- MRInfo |= (unsigned)VirtRegMap::isMod;
- else {
- // Filter out two-address use operand(s).
- if (MI->isRegTiedToDefOperand(OpIdx)) {
- MRInfo = VirtRegMap::isModRef;
- continue;
- }
- MRInfo |= (unsigned)VirtRegMap::isRef;
- }
- FoldOps.push_back(OpIdx);
- }
- return false;
- }
-
- /// tryFoldMemoryOperand - Attempts to fold either a spill / restore from
- /// slot / to reg or any rematerialized load into ith operand of specified
- /// MI. If it is successul, MI is updated with the newly created MI and
- /// returns true.
- bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI,
- VirtRegMap &vrm, MachineInstr *DefMI,
- SlotIndex InstrIdx,
- SmallVector<unsigned, 2> &Ops,
- bool isSS, int Slot, unsigned Reg) {
- // If it is an implicit def instruction, just delete it.
- if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
- RemoveMachineInstrFromMaps(MI);
- vrm.RemoveMachineInstrFromMaps(MI);
- MI->eraseFromParent();
- ++numFolds;
- return true;
- }
- // Filter the list of operand indexes that are to be folded. Abort if
- // any operand will prevent folding.
- unsigned MRInfo = 0;
- SmallVector<unsigned, 2> FoldOps;
- if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps))
- return false;
- // The only time it's safe to fold into a two address instruction is when
- // it's folding reload and spill from / into a spill stack slot.
- if (DefMI && (MRInfo & VirtRegMap::isMod))
- return false;
- MachineInstr *fmi = isSS ? tii_->foldMemoryOperand(*mf_, MI, FoldOps, Slot)
- : tii_->foldMemoryOperand(*mf_, MI, FoldOps, DefMI);
- if (fmi) {
- // Remember this instruction uses the spill slot.
- if (isSS) vrm.addSpillSlotUse(Slot, fmi);
- // Attempt to fold the memory reference into the instruction. If
- // we can do this, we don't need to insert spill code.
- MachineBasicBlock &MBB = *MI->getParent();
- if (isSS && !mf_->getFrameInfo()->isImmutableObjectIndex(Slot))
- vrm.virtFolded(Reg, MI, fmi, (VirtRegMap::ModRef)MRInfo);
- vrm.transferSpillPts(MI, fmi);
- vrm.transferRestorePts(MI, fmi);
- vrm.transferEmergencySpills(MI, fmi);
- ReplaceMachineInstrInMaps(MI, fmi);
- MI = MBB.insert(MBB.erase(MI), fmi);
- ++numFolds;
- return true;
- }
- return false;
- }
- /// canFoldMemoryOperand - Returns true if the specified load / store
- /// folding is possible.
- bool LiveIntervals::canFoldMemoryOperand(MachineInstr *MI,
- SmallVector<unsigned, 2> &Ops,
- bool ReMat) const {
- // Filter the list of operand indexes that are to be folded. Abort if
- // any operand will prevent folding.
- unsigned MRInfo = 0;
- SmallVector<unsigned, 2> FoldOps;
- if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps))
- return false;
- // It's only legal to remat for a use, not a def.
- if (ReMat && (MRInfo & VirtRegMap::isMod))
- return false;
- return tii_->canFoldMemoryOperand(MI, FoldOps);
- }
- bool LiveIntervals::intervalIsInOneMBB(const LiveInterval &li) const {
- LiveInterval::Ranges::const_iterator itr = li.ranges.begin();
- MachineBasicBlock *mbb = indexes_->getMBBCoveringRange(itr->start, itr->end);
- if (mbb == 0)
- return false;
- for (++itr; itr != li.ranges.end(); ++itr) {
- MachineBasicBlock *mbb2 =
- indexes_->getMBBCoveringRange(itr->start, itr->end);
- if (mbb2 != mbb)
- return false;
- }
- return true;
- }
- /// rewriteImplicitOps - Rewrite implicit use operands of MI (i.e. uses of
- /// interval on to-be re-materialized operands of MI) with new register.
- void LiveIntervals::rewriteImplicitOps(const LiveInterval &li,
- MachineInstr *MI, unsigned NewVReg,
- VirtRegMap &vrm) {
- // There is an implicit use. That means one of the other operand is
- // being remat'ed and the remat'ed instruction has li.reg as an
- // use operand. Make sure we rewrite that as well.
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg())
- continue;
- unsigned Reg = MO.getReg();
- if (Reg == 0 || TargetRegisterInfo::isPhysicalRegister(Reg))
- continue;
- if (!vrm.isReMaterialized(Reg))
- continue;
- MachineInstr *ReMatMI = vrm.getReMaterializedMI(Reg);
- MachineOperand *UseMO = ReMatMI->findRegisterUseOperand(li.reg);
- if (UseMO)
- UseMO->setReg(NewVReg);
- }
- }
- /// rewriteInstructionForSpills, rewriteInstructionsForSpills - Helper functions
- /// for addIntervalsForSpills to rewrite uses / defs for the given live range.
- bool LiveIntervals::
- rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
- bool TrySplit, SlotIndex index, SlotIndex end,
- MachineInstr *MI,
- MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
- unsigned Slot, int LdSlot,
- bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
- VirtRegMap &vrm,
- const TargetRegisterClass* rc,
- SmallVector<int, 4> &ReMatIds,
- const MachineLoopInfo *loopInfo,
- unsigned &NewVReg, unsigned ImpUse, bool &HasDef, bool &HasUse,
- DenseMap<unsigned,unsigned> &MBBVRegsMap,
- std::vector<LiveInterval*> &NewLIs) {
- bool CanFold = false;
- RestartInstruction:
- for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
- MachineOperand& mop = MI->getOperand(i);
- if (!mop.isReg())
- continue;
- unsigned Reg = mop.getReg();
- unsigned RegI = Reg;
- if (Reg == 0 || TargetRegisterInfo::isPhysicalRegister(Reg))
- continue;
- if (Reg != li.reg)
- continue;
- bool TryFold = !DefIsReMat;
- bool FoldSS = true; // Default behavior unless it's a remat.
- int FoldSlot = Slot;
- if (DefIsReMat) {
- // If this is the rematerializable definition MI itself and
- // all of its uses are rematerialized, simply delete it.
- if (MI == ReMatOrigDefMI && CanDelete) {
- DEBUG(errs() << "\t\t\t\tErasing re-materlizable def: "
- << MI << '\n');
- RemoveMachineInstrFromMaps(MI);
- vrm.RemoveMachineInstrFromMaps(MI);
- MI->eraseFromParent();
- break;
- }
- // If def for this use can't be rematerialized, then try folding.
- // If def is rematerializable and it's a load, also try folding.
- TryFold = !ReMatDefMI || (ReMatDefMI && (MI == ReMatOrigDefMI || isLoad));
- if (isLoad) {
- // Try fold loads (from stack slot, constant pool, etc.) into uses.
- FoldSS = isLoadSS;
- FoldSlot = LdSlot;
- }
- }
- // Scan all of the operands of this instruction rewriting operands
- // to use NewVReg instead of li.reg as appropriate. We do this for
- // two reasons:
- //
- // 1. If the instr reads the same spilled vreg multiple times, we
- // want to reuse the NewVReg.
- // 2. If the instr is a two-addr instruction, we are required to
- // keep the src/dst regs pinned.
- //
- // Keep track of whether we replace a use and/or def so that we can
- // create the spill interval with the appropriate range.
- HasUse = mop.isUse();
- HasDef = mop.isDef();
- SmallVector<unsigned, 2> Ops;
- Ops.push_back(i);
- for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
- const MachineOperand &MOj = MI->getOperand(j);
- if (!MOj.isReg())
- continue;
- unsigned RegJ = MOj.getReg();
- if (RegJ == 0 || TargetRegisterInfo::isPhysicalRegister(RegJ))
- continue;
- if (RegJ == RegI) {
- Ops.push_back(j);
- if (!MOj.isUndef()) {
- HasUse |= MOj.isUse();
- HasDef |= MOj.isDef();
- }
- }
- }
- // Create a new virtual register for the spill interval.
- // Create the new register now so we can map the fold instruction
- // to the new register so when it is unfolded we get the correct
- // answer.
- bool CreatedNewVReg = false;
- if (NewVReg == 0) {
- NewVReg = mri_->createVirtualRegister(rc);
- vrm.grow();
- CreatedNewVReg = true;
- // The new virtual register should get the same allocation hints as the
- // old one.
- std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(Reg);
- if (Hint.first || Hint.second)
- mri_->setRegAllocationHint(NewVReg, Hint.first, Hint.second);
- }
- if (!TryFold)
- CanFold = false;
- else {
- // Do not fold load / store here if we are splitting. We'll find an
- // optimal point to insert a load / store later.
- if (!TrySplit) {
- if (tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index,
- Ops, FoldSS, FoldSlot, NewVReg)) {
- // Folding the load/store can completely change the instruction in
- // unpredictable ways, rescan it from the beginning.
- if (FoldSS) {
- // We need to give the new vreg the same stack slot as the
- // spilled interval.
- vrm.assignVirt2StackSlot(NewVReg, FoldSlot);
- }
- HasUse = false;
- HasDef = false;
- CanFold = false;
- if (isNotInMIMap(MI))
- break;
- goto RestartInstruction;
- }
- } else {
- // We'll try to fold it later if it's profitable.
- CanFold = canFoldMemoryOperand(MI, Ops, DefIsReMat);
- }
- }
- mop.setReg(NewVReg);
- if (mop.isImplicit())
- rewriteImplicitOps(li, MI, NewVReg, vrm);
- // Reuse NewVReg for other reads.
- for (unsigned j = 0, e = Ops.size(); j != e; ++j) {
- MachineOperand &mopj = MI->getOperand(Ops[j]);
- mopj.setReg(NewVReg);
- if (mopj.isImplicit())
- rewriteImplicitOps(li, MI, NewVReg, vrm);
- }
-
- if (CreatedNewVReg) {
- if (DefIsReMat) {
- vrm.setVirtIsReMaterialized(NewVReg, ReMatDefMI);
- if (ReMatIds[VNI->id] == VirtRegMap::MAX_STACK_SLOT) {
- // Each valnum may have its own remat id.
- ReMatIds[VNI->id] = vrm.assignVirtReMatId(NewVReg);
- } else {
- vrm.assignVirtReMatId(NewVReg, ReMatIds[VNI->id]);
- }
- if (!CanDelete || (HasUse && HasDef)) {
- // If this is a two-addr instruction then its use operands are
- // rematerializable but its def is not. It should be assigned a
- // stack slot.
- vrm.assignVirt2StackSlot(NewVReg, Slot);
- }
- } else {
- vrm.assignVirt2StackSlot(NewVReg, Slot);
- }
- } else if (HasUse && HasDef &&
- vrm.getStackSlot(NewVReg) == VirtRegMap::NO_STACK_SLOT) {
- // If this interval hasn't been assigned a stack slot (because earlier
- // def is a deleted remat def), do it now.
- assert(Slot != VirtRegMap::NO_STACK_SLOT);
- vrm.assignVirt2StackSlot(NewVReg, Slot);
- }
- // Re-matting an instruction with virtual register use. Add the
- // register as an implicit use on the use MI.
- if (DefIsReMat && ImpUse)
- MI->addOperand(MachineOperand::CreateReg(ImpUse, false, true));
- // Create a new register interval for this spill / remat.
- LiveInterval &nI = getOrCreateInterval(NewVReg);
- if (CreatedNewVReg) {
- NewLIs.push_back(&nI);
- MBBVRegsMap.insert(std::make_pair(MI->getParent()->getNumber(), NewVReg));
- if (TrySplit)
- vrm.setIsSplitFromReg(NewVReg, li.reg);
- }
- if (HasUse) {
- if (CreatedNewVReg) {
- LiveRange LR(index.getLoadIndex(), index.getDefIndex(),
- nI.getNextValue(SlotIndex(), 0, false, VNInfoAllocator));
- DEBUG(errs() << " +" << LR);
- nI.addRange(LR);
- } else {
- // Extend the split live interval to this def / use.
- SlotIndex End = index.getDefIndex();
- LiveRange LR(nI.ranges[nI.ranges.size()-1].end, End,
- nI.getValNumInfo(nI.getNumValNums()-1));
- DEBUG(errs() << " +" << LR);
- nI.addRange(LR);
- }
- }
- if (HasDef) {
- LiveRange LR(index.getDefIndex(), index.getStoreIndex(),
- nI.getNextValue(SlotIndex(), 0, false, VNInfoAllocator));
- DEBUG(errs() << " +" << LR);
- nI.addRange(LR);
- }
- DEBUG({
- errs() << "\t\t\t\tAdded new interval: ";
- nI.print(errs(), tri_);
- errs() << '\n';
- });
- }
- return CanFold;
- }
- bool LiveIntervals::anyKillInMBBAfterIdx(const LiveInterval &li,
- const VNInfo *VNI,
- MachineBasicBlock *MBB,
- SlotIndex Idx) const {
- SlotIndex End = getMBBEndIdx(MBB);
- for (unsigned j = 0, ee = VNI->kills.size(); j != ee; ++j) {
- if (VNI->kills[j].isPHI())
- continue;
- SlotIndex KillIdx = VNI->kills[j];
- if (KillIdx > Idx && KillIdx < End)
- return true;
- }
- return false;
- }
- /// RewriteInfo - Keep track of machine instrs that will be rewritten
- /// during spilling.
- namespace {
- struct RewriteInfo {
- SlotIndex Index;
- MachineInstr *MI;
- bool HasUse;
- bool HasDef;
- RewriteInfo(SlotIndex i, MachineInstr *mi, bool u, bool d)
- : Index(i), MI(mi), HasUse(u), HasDef(d) {}
- };
- struct RewriteInfoCompare {
- bool operator()(const RewriteInfo &LHS, const RewriteInfo &RHS) const {
- return LHS.Index < RHS.Index;
- }
- };
- }
- void LiveIntervals::
- rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
- LiveInterval::Ranges::const_iterator &I,
- MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
- unsigned Slot, int LdSlot,
- bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
- VirtRegMap &vrm,
- const TargetRegisterClass* rc,
- SmallVector<int, 4> &ReMatIds,
- const MachineLoopInfo *loopInfo,
- BitVector &SpillMBBs,
- DenseMap<unsigned, std::vector<SRInfo> > &SpillIdxes,
- BitVector &RestoreMBBs,
- DenseMap<unsigned, std::vector<SRInfo> > &RestoreIdxes,
- DenseMap<unsigned,unsigned> &MBBVRegsMap,
- std::vector<LiveInterval*> &NewLIs) {
- bool AllCanFold = true;
- unsigned NewVReg = 0;
- SlotIndex start = I->start.getBaseIndex();
- SlotIndex end = I->end.getPrevSlot().getBaseIndex().getNextIndex();
- // First collect all the def / use in this live range that will be rewritten.
- // Make sure they are sorted according to instruction index.
- std::vector<RewriteInfo> RewriteMIs;
- for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg),
- re = mri_->reg_end(); ri != re; ) {
- MachineInstr *MI = &*ri;
- MachineOperand &O = ri.getOperand();
- ++ri;
- assert(!O.isImplicit() && "Spilling register that's used as implicit use?");
- SlotIndex index = getInstructionIndex(MI);
- if (index < start || index >= end)
- continue;
- if (O.isUndef())
- // Must be defined by an implicit def. It should not be spilled. Note,
- // this is for correctness reason. e.g.
- // 8 %reg1024<def> = IMPLICIT_DEF
- // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
- // The live range [12, 14) are not part of the r1024 live interval since
- // it's defined by an implicit def. It will not conflicts with live
- // interval of r1025. Now suppose both registers are spilled, you can
- // easily see a situation where both registers are reloaded before
- // the INSERT_SUBREG and both target registers that would overlap.
- continue;
- RewriteMIs.push_back(RewriteInfo(index, MI, O.isUse(), O.isDef()));
- }
- std::sort(RewriteMIs.begin(), RewriteMIs.end(), RewriteInfoCompare());
- unsigned ImpUse = DefIsReMat ? getReMatImplicitUse(li, ReMatDefMI) : 0;
- // Now rewrite the defs and uses.
- for (unsigned i = 0, e = RewriteMIs.size(); i != e; ) {
- RewriteInfo &rwi = RewriteMIs[i];
- ++i;
- SlotIndex index = rwi.Index;
- bool MIHasUse = rwi.HasUse;
- bool MIHasDef = rwi.HasDef;
- MachineInstr *MI = rwi.MI;
- // If MI def and/or use the same register multiple times, then there
- // are multiple entries.
- unsigned NumUses = MIHasUse;
- while (i != e && RewriteMIs[i].MI == MI) {
- assert(RewriteMIs[i].Index == index);
- bool isUse = RewriteMIs[i].HasUse;
- if (isUse) ++NumUses;
- MIHasUse |= isUse;
- MIHasDef |= RewriteMIs[i].HasDef;
- ++i;
- }
- MachineBasicBlock *MBB = MI->getParent();
- if (ImpUse && MI != ReMatDefMI) {
- // Re-matting an instruction with virtual register use. Update the
- // register interval's spill weight to HUGE_VALF to prevent it from
- // being spilled.
- LiveInterval &ImpLi = getInterval(ImpUse);
- ImpLi.weight = HUGE_VALF;
- }
- unsigned MBBId = MBB->getNumber();
- unsigned ThisVReg = 0;
- if (TrySplit) {
- DenseMap<unsigned,unsigned>::iterator NVI = MBBVRegsMap.find(MBBId);
- if (NVI != MBBVRegsMap.end()) {
- ThisVReg = NVI->second;
- // One common case:
- // x = use
- // ...
- // ...
- // def = ...
- // = use
- // It's better to start a new interval to avoid artifically
- // extend the new interval.
- if (MIHasDef && !MIHasUse) {
- MBBVRegsMap.erase(MBB->getNumber());
- ThisVReg = 0;
- }
- }
- }
- bool IsNew = ThisVReg == 0;
- if (IsNew) {
- // This ends the previous live interval. If all of its def / use
- // can be folded, give it a low spill weight.
- if (NewVReg && TrySplit && AllCanFold) {
- LiveInterval &nI = getOrCreateInterval(NewVReg);
- nI.weight /= 10.0F;
- }
- AllCanFold = true;
- }
- NewVReg = ThisVReg;
- bool HasDef = false;
- bool HasUse = false;
- bool CanFold = rewriteInstructionForSpills(li, I->valno, TrySplit,
- index, end, MI, ReMatOrigDefMI, ReMatDefMI,
- Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
- CanDelete, vrm, rc, ReMatIds, loopInfo, NewVReg,
- ImpUse, HasDef, HasUse, MBBVRegsMap, NewLIs);
- if (!HasDef && !HasUse)
- continue;
- AllCanFold &= CanFold;
- // Update weight of spill interval.
- LiveInterval &nI = getOrCreateInterval(NewVReg);
- if (!TrySplit) {
- // The spill weight is now infinity as it cannot be spilled again.
- nI.weight = HUGE_VALF;
- continue;
- }
- // Keep track of the last def and first use in each MBB.
- if (HasDef) {
- if (MI != ReMatOrigDefMI || !CanDelete) {
- bool HasKill = false;
- if (!HasUse)
- HasKill = anyKillInMBBAfterIdx(li, I->valno, MBB, index.getDefIndex());
- else {
- // If this is a two-address code, then this index starts a new VNInfo.
- const VNInfo *VNI = li.findDefinedVNInfoForRegInt(index.getDefIndex());
- if (VNI)
- HasKill = anyKillInMBBAfterIdx(li, VNI, MBB, index.getDefIndex());
- }
- DenseMap<unsigned, std::vector<SRInfo> >::iterator SII =
- SpillIdxes.find(MBBId);
- if (!HasKill) {
- if (SII == SpillIdxes.end()) {
- std::vector<SRInfo> S;
- S.push_back(SRInfo(index, NewVReg, true));
- SpillIdxes.insert(std::make_pair(MBBId, S));
- } else if (SII->second.back().vreg != NewVReg) {
- SII->second.push_back(SRInfo(index, NewVReg, true));
- } else if (index > SII->second.back().index) {
- // If there is an earlier def and this is a two-address
- // instruction, then it's not possible to fold the store (which
- // would also fold the load).
- SRInfo &Info = SII->second.back();
- Info.index = index;
- Info.canFold = !HasUse;
- }
- SpillMBBs.set(MBBId);
- } else if (SII != SpillIdxes.end() &&
- SII->second.back().vreg == NewVReg &&
- index > SII->second.back().index) {
- // There is an earlier def that's not killed (must be two-address).
- // The spill is no longer needed.
- SII->second.pop_back();
- if (SII->second.empty()) {
- SpillIdxes.erase(MBBId);
- SpillMBBs.reset(MBBId);
- }
- }
- }
- }
- if (HasUse) {
- DenseMap<unsigned, std::vector<SRInfo> >::iterator SII =
- SpillIdxes.find(MBBId);
- if (SII != SpillIdxes.end() &&
- SII->second.back().vreg == NewVReg &&
- index > SII->second.back().index)
- // Use(s) following the last def, it's not safe to fold the spill.
- SII->second.back().canFold = false;
- DenseMap<unsigned, std::vector<SRInfo> >::iterator RII =
- RestoreIdxes.find(MBBId);
- if (RII != RestoreIdxes.end() && RII->second.back().vreg == NewVReg)
- // If we are splitting live intervals, only fold if it's the first
- // use and there isn't another use later in the MBB.
- RII->second.back().canFold = false;
- else if (IsNew) {
- // Only need a reload if there isn't an earlier def / use.
- if (RII == RestoreIdxes.end()) {
- std::vector<SRInfo> Infos;
- Infos.push_back(SRInfo(index, NewVReg, true));
- RestoreIdxes.insert(std::make_pair(MBBId, Infos));
- } else {
- RII->second.push_back(SRInfo(index, NewVReg, true));
- }
- RestoreMBBs.set(MBBId);
- }
- }
- // Update spill weight.
- unsigned loopDepth = loopInfo->getLoopDepth(MBB);
- nI.weight += getSpillWeight(HasDef, HasUse, loopDepth);
- }
- if (NewVReg && TrySplit && AllCanFold) {
- // If all of its def / use can be folded, give it a low spill weight.
- LiveInterval &nI = getOrCreateInterval(NewVReg);
- nI.weight /= 10.0F;
- }
- }
- bool LiveIntervals::alsoFoldARestore(int Id, SlotIndex index,
- unsigned vr, BitVector &RestoreMBBs,
- DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
- if (!RestoreMBBs[Id])
- return false;
- std::vector<SRInfo> &Restores = RestoreIdxes[Id];
- for (unsigned i = 0, e = Restores.size(); i != e; ++i)
- if (Restores[i].index == index &&
- Restores[i].vreg == vr &&
- Restores[i].canFold)
- return true;
- return false;
- }
- void LiveIntervals::eraseRestoreInfo(int Id, SlotIndex index,
- unsigned vr, BitVector &RestoreMBBs,
- DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
- if (!RestoreMBBs[Id])
- return;
- std::vector<SRInfo> &Restores = RestoreIdxes[Id];
- for (unsigned i = 0, e = Restores.size(); i != e; ++i)
- if (Restores[i].index == index && Restores[i].vreg)
- Restores[i].index = SlotIndex();
- }
- /// handleSpilledImpDefs - Remove IMPLICIT_DEF instructions which are being
- /// spilled and create empty intervals for their uses.
- void
- LiveIntervals::handleSpilledImpDefs(const LiveInterval &li, VirtRegMap &vrm,
- const TargetRegisterClass* rc,
- std::vector<LiveInterval*> &NewLIs) {
- for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg),
- re = mri_->reg_end(); ri != re; ) {
- MachineOperand &O = ri.getOperand();
- MachineInstr *MI = &*ri;
- ++ri;
- if (O.isDef()) {
- assert(MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF &&
- "Register def was not rewritten?");
- RemoveMachineInstrFromMaps(MI);
- vrm.RemoveMachineInstrFromMaps(MI);
- MI->eraseFromParent();
- } else {
- // This must be an use of an implicit_def so it's not part of the live
- // interval. Create a new empty live interval for it.
- // FIXME: Can we simply erase some of the instructions? e.g. Stores?
- unsigned NewVReg = mri_->createVirtualRegister(rc);
- vrm.grow();
- vrm.setIsImplicitlyDefined(NewVReg);
- NewLIs.push_back(&getOrCreateInterval(NewVReg));
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI->getOperand(i);
- if (MO.isReg() && MO.getReg() == li.reg) {
- MO.setReg(NewVReg);
- MO.setIsUndef();
- }
- }
- }
- }
- }
- std::vector<LiveInterval*> LiveIntervals::
- addIntervalsForSpillsFast(const LiveInterval &li,
- const MachineLoopInfo *loopInfo,
- VirtRegMap &vrm) {
- unsigned slot = vrm.assignVirt2StackSlot(li.reg);
- std::vector<LiveInterval*> added;
- assert(li.weight != HUGE_VALF &&
- "attempt to spill already spilled interval!");
- DEBUG({
- errs() << "\t\t\t\tadding intervals for spills for interval: ";
- li.dump();
- errs() << '\n';
- });
- const TargetRegisterClass* rc = mri_->getRegClass(li.reg);
- MachineRegisterInfo::reg_iterator RI = mri_->reg_begin(li.reg);
- while (RI != mri_->reg_end()) {
- MachineInstr* MI = &*RI;
-
- SmallVector<unsigned, 2> Indices;
- bool HasUse = false;
- bool HasDef = false;
-
- for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
- MachineOperand& mop = MI->getOperand(i);
- if (!mop.isReg() || mop.getReg() != li.reg) continue;
-
- HasUse |= MI->getOperand(i).isUse();
- HasDef |= MI->getOperand(i).isDef();
-
- Indices.push_back(i);
- }
-
- if (!tryFoldMemoryOperand(MI, vrm, NULL, getInstructionIndex(MI),
- Indices, true, slot, li.reg)) {
- unsigned NewVReg = mri_->createVirtualRegister(rc);
- vrm.grow();
- vrm.assignVirt2StackSlot(NewVReg, slot);
-
- // create a new register for this spill
- LiveInterval &nI = getOrCreateInterval(NewVReg);
- // the spill weight is now infinity as it
- // cannot be spilled again
- nI.weight = HUGE_VALF;
-
- // Rewrite register operands to use the new vreg.
- for (SmallVectorImpl<unsigned>::iterator I = Indices.begin(),
- E = Indices.end(); I != E; ++I) {
- MI->getOperand(*I).setReg(NewVReg);
-
- if (MI->getOperand(*I).isUse())
- MI->getOperand(*I).setIsKill(true);
- }
-
- // Fill in the new live interval.
- SlotIndex index = getInstructionIndex(MI);
- if (HasUse) {
- LiveRange LR(index.getLoadIndex(), index.getUseIndex(),
- nI.getNextValue(SlotIndex(), 0, false,
- getVNInfoAllocator()));
- DEBUG(errs() << " +" << LR);
- nI.addRange(LR);
- vrm.addRestorePoint(NewVReg, MI);
- }
- if (HasDef) {
- LiveRange LR(index.getDefIndex(), index.getStoreIndex(),
- nI.getNextValue(SlotIndex(), 0, false,
- getVNInfoAllocator()));
- DEBUG(errs() << " +" << LR);
- nI.addRange(LR);
- vrm.addSpillPoint(NewVReg, true, MI);
- }
-
- added.push_back(&nI);
-
- DEBUG({
- errs() << "\t\t\t\tadded new interval: ";
- nI.dump();
- errs() << '\n';
- });
- }
-
-
- RI = mri_->reg_begin(li.reg);
- }
- return added;
- }
- std::vector<LiveInterval*> LiveIntervals::
- addIntervalsForSpills(const LiveInterval &li,
- SmallVectorImpl<LiveInterval*> &SpillIs,
- const MachineLoopInfo *loopInfo, VirtRegMap &vrm) {
-
- if (EnableFastSpilling)
- return addIntervalsForSpillsFast(li, loopInfo, vrm);
-
- assert(li.weight != HUGE_VALF &&
- "attempt to spill already spilled interval!");
- DEBUG({
- errs() << "\t\t\t\tadding intervals for spills for interval: ";
- li.print(errs(), tri_);
- errs() << '\n';
- });
- // Each bit specify whether a spill is required in the MBB.
- BitVector SpillMBBs(mf_->getNumBlockIDs());
- DenseMap<unsigned, std::vector<SRInfo> > SpillIdxes;
- BitVector RestoreMBBs(mf_->getNumBlockIDs());
- DenseMap<unsigned, std::vector<SRInfo> > RestoreIdxes;
- DenseMap<unsigned,unsigned> MBBVRegsMap;
- std::vector<LiveInterval*> NewLIs;
- const TargetRegisterClass* rc = mri_->getRegClass(li.reg);
- unsigned NumValNums = li.getNumValNums();
- SmallVector<MachineInstr*, 4> ReMatDefs;
- ReMatDefs.resize(NumValNums, NULL);
- SmallVector<MachineInstr*, 4> ReMatOrigDefs;
- ReMatOrigDefs.resize(NumValNums, NULL);
- SmallVector<int, 4> ReMatIds;
- ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
- BitVector ReMatDelete(NumValNums);
- unsigned Slot = VirtRegMap::MAX_STACK_SLOT;
- // Spilling a split live interval. It cannot be split any further. Also,
- // it's also guaranteed to be a single val# / range interval.
- if (vrm.getPreSplitReg(li.reg)) {
- vrm.setIsSplitFromReg(li.reg, 0);
- // Unset the split kill marker on the last use.
- SlotIndex KillIdx = vrm.getKillPoint(li.reg);
- if (KillIdx != SlotIndex()) {
- MachineInstr *KillMI = getInstructionFromIndex(KillIdx);
- assert(KillMI && "Last use disappeared?");
- int KillOp = KillMI->findRegisterUseOperandIdx(li.reg, true);
- assert(KillOp != -1 && "Last use disappeared?");
- KillMI->getOperand(KillOp).setIsKill(false);
- }
- vrm.removeKillPoint(li.reg);
- bool DefIsReMat = vrm.isReMaterialized(li.reg);
- Slot = vrm.getStackSlot(li.reg);
- assert(Slot != VirtRegMap::MAX_STACK_SLOT);
- MachineInstr *ReMatDefMI = DefIsReMat ?
- vrm.getReMaterializedMI(li.reg) : NULL;
- int LdSlot = 0;
- bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
- bool isLoad = isLoadSS ||
- (DefIsReMat && (ReMatDefMI->getDesc().canFoldAsLoad()));
- bool IsFirstRange = true;
- for (LiveInterval::Ranges::const_iterator
- I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
- // If this is a split live interval with multiple ranges, it means there
- // are two-address instructions that re-defined the value. Only the
- // first def can be rematerialized!
- if (IsFirstRange) {
- // Note ReMatOrigDefMI has already been deleted.
- rewriteInstructionsForSpills(li, false, I, NULL, ReMatDefMI,
- Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
- false, vrm, rc, ReMatIds, loopInfo,
- SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
- MBBVRegsMap, NewLIs);
- } else {
- rewriteInstructionsForSpills(li, false, I, NULL, 0,
- Slot, 0, false, false, false,
- false, vrm, rc, ReMatIds, loopInfo,
- SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
- MBBVRegsMap, NewLIs);
- }
- IsFirstRange = false;
- }
- handleSpilledImpDefs(li, vrm, rc, NewLIs);
- return NewLIs;
- }
- bool TrySplit = !intervalIsInOneMBB(li);
- if (TrySplit)
- ++numSplits;
- bool NeedStackSlot = false;
- for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
- i != e; ++i) {
- const VNInfo *VNI = *i;
- unsigned VN = VNI->id;
- if (VNI->isUnused())
- continue; // Dead val#.
- // Is the def for the val# rematerializable?
- MachineInstr *ReMatDefMI = VNI->isDefAccurate()
- ? getInstructionFromIndex(VNI->def) : 0;
- bool dummy;
- if (ReMatDefMI && isReMaterializable(li, VNI, ReMatDefMI, SpillIs, dummy)) {
- // Remember how to remat the def of this val#.
- ReMatOrigDefs[VN] = ReMatDefMI;
- // Original def may be modified so we have to make a copy here.
- MachineInstr *Clone = mf_->CloneMachineInstr(ReMatDefMI);
- CloneMIs.push_back(Clone);
- ReMatDefs[VN] = Clone;
- bool CanDelete = true;
- if (VNI->hasPHIKill()) {
- // A kill is a phi node, not all of its uses can be rematerialized.
- // It must not be deleted.
- CanDelete = false;
- // Need a stack slot if there is any live range where uses cannot be
- // rematerialized.
- NeedStackSlot = true;
- }
- if (CanDelete)
- ReMatDelete.set(VN);
- } else {
- // Need a stack slot if there is any live range where uses cannot be
- // rematerialized.
- NeedStackSlot = true;
- }
- }
- // One stack slot per live interval.
- if (NeedStackSlot && vrm.getPreSplitReg(li.reg) == 0) {
- if (vrm.getStackSlot(li.reg) == VirtRegMap::NO_STACK_SLOT)
- Slot = vrm.assignVirt2StackSlot(li.reg);
-
- // This case only occurs when the prealloc splitter has already assigned
- // a stack slot to this vreg.
- else
- Slot = vrm.getStackSlot(li.reg);
- }
- // Create new intervals and rewrite defs and uses.
- for (LiveInterval::Ranges::const_iterator
- I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
- MachineInstr *ReMatDefMI = ReMatDefs[I->valno->id];
- MachineInstr *ReMatOrigDefMI = ReMatOrigDefs[I->valno->id];
- bool DefIsReMat = ReMatDefMI != NULL;
- bool CanDelete = ReMatDelete[I->valno->id];
- int LdSlot = 0;
- bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
- bool isLoad = isLoadSS ||
- (DefIsReMat && ReMatDefMI->getDesc().canFoldAsLoad());
- rewriteInstructionsForSpills(li, TrySplit, I, ReMatOrigDefMI, ReMatDefMI,
- Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
- CanDelete, vrm, rc, ReMatIds, loopInfo,
- SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
- MBBVRegsMap, NewLIs);
- }
- // Insert spills / restores if we are splitting.
- if (!TrySplit) {
- handleSpilledImpDefs(li, vrm, rc, NewLIs);
- return NewLIs;
- }
- SmallPtrSet<LiveInterval*, 4> AddedKill;
- SmallVector<unsigned, 2> Ops;
- if (NeedStackSlot) {
- int Id = SpillMBBs.find_first();
- while (Id != -1) {
- std::vector<SRInfo> &spills = SpillIdxes[Id];
- for (unsigned i = 0, e = spills.size(); i != e; ++i) {
- SlotIndex index = spills[i].index;
- unsigned VReg = spills[i].vreg;
- LiveInterval &nI = getOrCreateInterval(VReg);
- bool isReMat = vrm.isReMaterialized(VReg);
- MachineInstr *MI = getInstructionFromIndex(index);
- bool CanFold = false;
- bool FoundUse = false;
- Ops.clear();
- if (spills[i].canFold) {
- CanFold = true;
- for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
- MachineOperand &MO = MI->getOperand(j);
- if (!MO.isReg() || MO.getReg() != VReg)
- continue;
- Ops.push_back(j);
- if (MO.isDef())
- continue;
- if (isReMat ||
- (!FoundUse && !alsoFoldARestore(Id, index, VReg,
- RestoreMBBs, RestoreIdxes))) {
- // MI has two-address uses of the same register. If the use
- // isn't the first and only use in the BB, then we can't fold
- // it. FIXME: Move this to rewriteInstructionsForSpills.
- CanFold = false;
- break;
- }
- FoundUse = true;
- }
- }
- // Fold the store into the def if possible.
- bool Folded = false;
- if (CanFold && !Ops.empty()) {
- if (tryFoldMemoryOperand(MI, vrm, NULL, index, Ops, true, Slot,VReg)){
- Folded = true;
- if (FoundUse) {
- // Also folded uses, do not issue a load.
- eraseRestoreInfo(Id, index, VReg, RestoreMBBs, RestoreIdxes);
- nI.removeRange(index.getLoadIndex(), index.getDefIndex());
- }
- nI.removeRange(index.getDefIndex(), index.getStoreIndex());
- }
- }
- // Otherwise tell the spiller to issue a spill.
- if (!Folded) {
- LiveRange *LR = &nI.ranges[nI.ranges.size()-1];
- bool isKill = LR->end == index.getStoreIndex();
- if (!MI->registerDefIsDead(nI.reg))
- // No need to spill a dead def.
- vrm.addSpillPoint(VReg, isKill, MI);
- if (isKill)
- AddedKill.insert(&nI);
- }
- }
- Id = SpillMBBs.find_next(Id);
- }
- }
- int Id = RestoreMBBs.find_first();
- while (Id != -1) {
- std::vector<SRInfo> &restores = RestoreIdxes[Id];
- for (unsigned i = 0, e = restores.size(); i != e; ++i) {
- SlotIndex index = restores[i].index;
- if (index == SlotIndex())
- continue;
- unsigned VReg = restores[i].vreg;
- LiveInterval &nI = getOrCreateInterval(VReg);
- bool isReMat = vrm.isReMaterialized(VReg);
- MachineInstr *MI = getInstructionFromIndex(index);
- bool CanFold = false;
- Ops.clear();
- if (restores[i].canFold) {
- CanFold = true;
- for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
- MachineOperand &MO = MI->getOperand(j);
- if (!MO.isReg() || MO.getReg() != VReg)
- continue;
- if (MO.isDef()) {
- // If this restore were to be folded, it would have been folded
- // already.
- CanFold = false;
- break;
- }
- Ops.push_back(j);
- }
- }
- // Fold the load into the use if possible.
- bool Folded = false;
- if (CanFold && !Ops.empty()) {
- if (!isReMat)
- Folded = tryFoldMemoryOperand(MI, vrm, NULL,index,Ops,true,Slot,VReg);
- else {
- MachineInstr *ReMatDefMI = vrm.getReMaterializedMI(VReg);
- int LdSlot = 0;
- bool isLoadSS = tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
- // If the rematerializable def is a load, also try to fold it.
- if (isLoadSS || ReMatDefMI->getDesc().canFoldAsLoad())
- Folded = tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index,
- Ops, isLoadSS, LdSlot, VReg);
- if (!Folded) {
- unsigned ImpUse = getReMatImplicitUse(li, ReMatDefMI);
- if (ImpUse) {
- // Re-matting an instruction with virtual register use. Add the
- // register as an implicit use on the use MI and update the register
- // interval's spill weight to HUGE_VALF to prevent it from being
- // spilled.
- LiveInterval &ImpLi = getInterval(ImpUse);
- ImpLi.weight = HUGE_VALF;
- MI->addOperand(MachineOperand::CreateReg(ImpUse, false, true));
- }
- }
- }
- }
- // If folding is not possible / failed, then tell the spiller to issue a
- // load / rematerialization for us.
- if (Folded)
- nI.removeRange(index.getLoadIndex(), index.getDefIndex());
- else
- vrm.addRestorePoint(VReg, MI);
- }
- Id = RestoreMBBs.find_next(Id);
- }
- // Finalize intervals: add kills, finalize spill weights, and filter out
- // dead intervals.
- std::vector<LiveInterval*> RetNewLIs;
- for (unsigned i = 0, e = NewLIs.size(); i != e; ++i) {
- LiveInterval *LI = NewLIs[i];
- if (!LI->empty()) {
- LI->weight /= SlotIndex::NUM * getApproximateInstructionCount(*LI);
- if (!AddedKill.count(LI)) {
- LiveRange *LR = &LI->ranges[LI->ranges.size()-1];
- SlotIndex LastUseIdx = LR->end.getBaseIndex();
- MachineInstr *LastUse = getInstructionFromIndex(LastUseIdx);
- int UseIdx = LastUse->findRegisterUseOperandIdx(LI->reg, false);
- assert(UseIdx != -1);
- if (!LastUse->isRegTiedToDefOperand(UseIdx)) {
- LastUse->getOperand(UseIdx).setIsKill();
- vrm.addKillPoint(LI->reg, LastUseIdx);
- }
- }
- RetNewLIs.push_back(LI);
- }
- }
- handleSpilledImpDefs(li, vrm, rc, RetNewLIs);
- return RetNewLIs;
- }
- /// hasAllocatableSuperReg - Return true if the specified physical register has
- /// any super register that's allocatable.
- bool LiveIntervals::hasAllocatableSuperReg(unsigned Reg) const {
- for (const unsigned* AS = tri_->getSuperRegisters(Reg); *AS; ++AS)
- if (allocatableRegs_[*AS] && hasInterval(*AS))
- return true;
- return false;
- }
- /// getRepresentativeReg - Find the largest super register of the specified
- /// physical register.
- unsigned LiveIntervals::getRepresentativeReg(unsigned Reg) const {
- // Find the largest super-register that is allocatable.
- unsigned BestReg = Reg;
- for (const unsigned* AS = tri_->getSuperRegisters(Reg); *AS; ++AS) {
- unsigned SuperReg = *AS;
- if (!hasAllocatableSuperReg(SuperReg) && hasInterval(SuperReg)) {
- BestReg = SuperReg;
- break;
- }
- }
- return BestReg;
- }
- /// getNumConflictsWithPhysReg - Return the number of uses and defs of the
- /// specified interval that conflicts with the specified physical register.
- unsigned LiveIntervals::getNumConflictsWithPhysReg(const LiveInterval &li,
- unsigned PhysReg) const {
- unsigned NumConflicts = 0;
- const LiveInterval &pli = getInterval(getRepresentativeReg(PhysReg));
- for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li.reg),
- E = mri_->reg_end(); I != E; ++I) {
- MachineOperand &O = I.getOperand();
- MachineInstr *MI = O.getParent();
- SlotIndex Index = getInstructionIndex(MI);
- if (pli.liveAt(Index))
- ++NumConflicts;
- }
- return NumConflicts;
- }
- /// spillPhysRegAroundRegDefsUses - Spill the specified physical register
- /// around all defs and uses of the specified interval. Return true if it
- /// was able to cut its interval.
- bool LiveIntervals::spillPhysRegAroundRegDefsUses(const LiveInterval &li,
- unsigned PhysReg, VirtRegMap &vrm) {
- unsigned SpillReg = getRepresentativeReg(PhysReg);
- for (const unsigned *AS = tri_->getAliasSet(PhysReg); *AS; ++AS)
- // If there are registers which alias PhysReg, but which are not a
- // sub-register of the chosen representative super register. Assert
- // since we can't handle it yet.
- assert(*AS == SpillReg || !allocatableRegs_[*AS] || !hasInterval(*AS) ||
- tri_->isSuperRegister(*AS, SpillReg));
- bool Cut = false;
- SmallVector<unsigned, 4> PRegs;
- if (hasInterval(SpillReg))
- PRegs.push_back(SpillReg);
- else {
- SmallSet<unsigned, 4> Added;
- for (const unsigned* AS = tri_->getSubRegisters(SpillReg); *AS; ++AS)
- if (Added.insert(*AS) && hasInterval(*AS)) {
- PRegs.push_back(*AS);
- for (const unsigned* ASS = tri_->getSubRegisters(*AS); *ASS; ++ASS)
- Added.insert(*ASS);
- }
- }
- SmallPtrSet<MachineInstr*, 8> SeenMIs;
- for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li.reg),
- E = mri_->reg_end(); I != E; ++I) {
- MachineOperand &O = I.getOperand();
- MachineInstr *MI = O.getParent();
- if (SeenMIs.count(MI))
- continue;
- SeenMIs.insert(MI);
- SlotIndex Index = getInstructionIndex(MI);
- for (unsigned i = 0, e = PRegs.size(); i != e; ++i) {
- unsigned PReg = PRegs[i];
- LiveInterval &pli = getInterval(PReg);
- if (!pli.liveAt(Index))
- continue;
- vrm.addEmergencySpill(PReg, MI);
- SlotIndex StartIdx = Index.getLoadIndex();
- SlotIndex EndIdx = Index.getNextIndex().getBaseIndex();
- if (pli.isInOneLiveRange(StartIdx, EndIdx)) {
- pli.removeRange(StartIdx, EndIdx);
- Cut = true;
- } else {
- std::string msg;
- raw_string_ostream Msg(msg);
- Msg << "Ran out of registers during register allocation!";
- if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {
- Msg << "\nPlease check your inline asm statement for invalid "
- << "constraints:\n";
- MI->print(Msg, tm_);
- }
- llvm_report_error(Msg.str());
- }
- for (const unsigned* AS = tri_->getSubRegisters(PReg); *AS; ++AS) {
- if (!hasInterval(*AS))
- continue;
- LiveInterval &spli = getInterval(*AS);
- if (spli.liveAt(Index))
- spli.removeRange(Index.getLoadIndex(),
- Index.getNextIndex().getBaseIndex());
- }
- }
- }
- return Cut;
- }
- LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
- MachineInstr* startInst) {
- LiveInterval& Interval = getOrCreateInterval(reg);
- VNInfo* VN = Interval.getNextValue(
- SlotIndex(getInstructionIndex(startInst).getDefIndex()),
- startInst, true, getVNInfoAllocator());
- VN->setHasPHIKill(true);
- VN->kills.push_back(indexes_->getTerminatorGap(startInst->getParent()));
- LiveRange LR(
- SlotIndex(getInstructionIndex(startInst).getDefIndex()),
- getMBBEndIdx(startInst->getParent()).getNextIndex().getBaseIndex(), VN);
- Interval.addRange(LR);
-
- return LR;
- }
|