12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216 |
- //===-- Local.cpp - Functions to perform local transformations ------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This family of functions perform various local transformations to the
- // program.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/EHPersonalities.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LazyValueInfo.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DIBuilder.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/GlobalAlias.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "local"
- STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
- //===----------------------------------------------------------------------===//
- // Local constant propagation.
- //
- /// ConstantFoldTerminator - If a terminator instruction is predicated on a
- /// constant value, convert it into an unconditional branch to the constant
- /// destination. This is a nontrivial operation because the successors of this
- /// basic block must have their PHI nodes updated.
- /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
- /// conditions and indirectbr addresses this might make dead if
- /// DeleteDeadConditions is true.
- bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
- const TargetLibraryInfo *TLI) {
- TerminatorInst *T = BB->getTerminator();
- IRBuilder<> Builder(T);
- // Branch - See if we are conditional jumping on constant
- if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
- if (BI->isUnconditional()) return false; // Can't optimize uncond branch
- BasicBlock *Dest1 = BI->getSuccessor(0);
- BasicBlock *Dest2 = BI->getSuccessor(1);
- if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
- // Are we branching on constant?
- // YES. Change to unconditional branch...
- BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
- BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
- //cerr << "Function: " << T->getParent()->getParent()
- // << "\nRemoving branch from " << T->getParent()
- // << "\n\nTo: " << OldDest << endl;
- // Let the basic block know that we are letting go of it. Based on this,
- // it will adjust it's PHI nodes.
- OldDest->removePredecessor(BB);
- // Replace the conditional branch with an unconditional one.
- Builder.CreateBr(Destination);
- BI->eraseFromParent();
- return true;
- }
- if (Dest2 == Dest1) { // Conditional branch to same location?
- // This branch matches something like this:
- // br bool %cond, label %Dest, label %Dest
- // and changes it into: br label %Dest
- // Let the basic block know that we are letting go of one copy of it.
- assert(BI->getParent() && "Terminator not inserted in block!");
- Dest1->removePredecessor(BI->getParent());
- // Replace the conditional branch with an unconditional one.
- Builder.CreateBr(Dest1);
- Value *Cond = BI->getCondition();
- BI->eraseFromParent();
- if (DeleteDeadConditions)
- RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
- return true;
- }
- return false;
- }
- if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
- // If we are switching on a constant, we can convert the switch to an
- // unconditional branch.
- ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
- BasicBlock *DefaultDest = SI->getDefaultDest();
- BasicBlock *TheOnlyDest = DefaultDest;
- // If the default is unreachable, ignore it when searching for TheOnlyDest.
- if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
- SI->getNumCases() > 0) {
- TheOnlyDest = SI->case_begin()->getCaseSuccessor();
- }
- // Figure out which case it goes to.
- for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
- // Found case matching a constant operand?
- if (i->getCaseValue() == CI) {
- TheOnlyDest = i->getCaseSuccessor();
- break;
- }
- // Check to see if this branch is going to the same place as the default
- // dest. If so, eliminate it as an explicit compare.
- if (i->getCaseSuccessor() == DefaultDest) {
- MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
- unsigned NCases = SI->getNumCases();
- // Fold the case metadata into the default if there will be any branches
- // left, unless the metadata doesn't match the switch.
- if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
- // Collect branch weights into a vector.
- SmallVector<uint32_t, 8> Weights;
- for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
- ++MD_i) {
- auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
- Weights.push_back(CI->getValue().getZExtValue());
- }
- // Merge weight of this case to the default weight.
- unsigned idx = i->getCaseIndex();
- Weights[0] += Weights[idx+1];
- // Remove weight for this case.
- std::swap(Weights[idx+1], Weights.back());
- Weights.pop_back();
- SI->setMetadata(LLVMContext::MD_prof,
- MDBuilder(BB->getContext()).
- createBranchWeights(Weights));
- }
- // Remove this entry.
- DefaultDest->removePredecessor(SI->getParent());
- i = SI->removeCase(i);
- e = SI->case_end();
- continue;
- }
- // Otherwise, check to see if the switch only branches to one destination.
- // We do this by reseting "TheOnlyDest" to null when we find two non-equal
- // destinations.
- if (i->getCaseSuccessor() != TheOnlyDest)
- TheOnlyDest = nullptr;
- // Increment this iterator as we haven't removed the case.
- ++i;
- }
- if (CI && !TheOnlyDest) {
- // Branching on a constant, but not any of the cases, go to the default
- // successor.
- TheOnlyDest = SI->getDefaultDest();
- }
- // If we found a single destination that we can fold the switch into, do so
- // now.
- if (TheOnlyDest) {
- // Insert the new branch.
- Builder.CreateBr(TheOnlyDest);
- BasicBlock *BB = SI->getParent();
- // Remove entries from PHI nodes which we no longer branch to...
- for (BasicBlock *Succ : SI->successors()) {
- // Found case matching a constant operand?
- if (Succ == TheOnlyDest)
- TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
- else
- Succ->removePredecessor(BB);
- }
- // Delete the old switch.
- Value *Cond = SI->getCondition();
- SI->eraseFromParent();
- if (DeleteDeadConditions)
- RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
- return true;
- }
- if (SI->getNumCases() == 1) {
- // Otherwise, we can fold this switch into a conditional branch
- // instruction if it has only one non-default destination.
- auto FirstCase = *SI->case_begin();
- Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
- FirstCase.getCaseValue(), "cond");
- // Insert the new branch.
- BranchInst *NewBr = Builder.CreateCondBr(Cond,
- FirstCase.getCaseSuccessor(),
- SI->getDefaultDest());
- MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
- if (MD && MD->getNumOperands() == 3) {
- ConstantInt *SICase =
- mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
- ConstantInt *SIDef =
- mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
- assert(SICase && SIDef);
- // The TrueWeight should be the weight for the single case of SI.
- NewBr->setMetadata(LLVMContext::MD_prof,
- MDBuilder(BB->getContext()).
- createBranchWeights(SICase->getValue().getZExtValue(),
- SIDef->getValue().getZExtValue()));
- }
- // Update make.implicit metadata to the newly-created conditional branch.
- MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
- if (MakeImplicitMD)
- NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
- // Delete the old switch.
- SI->eraseFromParent();
- return true;
- }
- return false;
- }
- if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
- // indirectbr blockaddress(@F, @BB) -> br label @BB
- if (BlockAddress *BA =
- dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
- BasicBlock *TheOnlyDest = BA->getBasicBlock();
- // Insert the new branch.
- Builder.CreateBr(TheOnlyDest);
- for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
- if (IBI->getDestination(i) == TheOnlyDest)
- TheOnlyDest = nullptr;
- else
- IBI->getDestination(i)->removePredecessor(IBI->getParent());
- }
- Value *Address = IBI->getAddress();
- IBI->eraseFromParent();
- if (DeleteDeadConditions)
- RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
- // If we didn't find our destination in the IBI successor list, then we
- // have undefined behavior. Replace the unconditional branch with an
- // 'unreachable' instruction.
- if (TheOnlyDest) {
- BB->getTerminator()->eraseFromParent();
- new UnreachableInst(BB->getContext(), BB);
- }
- return true;
- }
- }
- return false;
- }
- //===----------------------------------------------------------------------===//
- // Local dead code elimination.
- //
- /// isInstructionTriviallyDead - Return true if the result produced by the
- /// instruction is not used, and the instruction has no side effects.
- ///
- bool llvm::isInstructionTriviallyDead(Instruction *I,
- const TargetLibraryInfo *TLI) {
- if (!I->use_empty())
- return false;
- return wouldInstructionBeTriviallyDead(I, TLI);
- }
- bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
- const TargetLibraryInfo *TLI) {
- if (isa<TerminatorInst>(I))
- return false;
- // We don't want the landingpad-like instructions removed by anything this
- // general.
- if (I->isEHPad())
- return false;
- // We don't want debug info removed by anything this general, unless
- // debug info is empty.
- if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
- if (DDI->getAddress())
- return false;
- return true;
- }
- if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
- if (DVI->getValue())
- return false;
- return true;
- }
- if (!I->mayHaveSideEffects())
- return true;
- // Special case intrinsics that "may have side effects" but can be deleted
- // when dead.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- // Safe to delete llvm.stacksave if dead.
- if (II->getIntrinsicID() == Intrinsic::stacksave)
- return true;
- // Lifetime intrinsics are dead when their right-hand is undef.
- if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
- II->getIntrinsicID() == Intrinsic::lifetime_end)
- return isa<UndefValue>(II->getArgOperand(1));
- // Assumptions are dead if their condition is trivially true. Guards on
- // true are operationally no-ops. In the future we can consider more
- // sophisticated tradeoffs for guards considering potential for check
- // widening, but for now we keep things simple.
- if (II->getIntrinsicID() == Intrinsic::assume ||
- II->getIntrinsicID() == Intrinsic::experimental_guard) {
- if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
- return !Cond->isZero();
- return false;
- }
- }
- if (isAllocLikeFn(I, TLI))
- return true;
- if (CallInst *CI = isFreeCall(I, TLI))
- if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
- return C->isNullValue() || isa<UndefValue>(C);
- if (CallSite CS = CallSite(I))
- if (isMathLibCallNoop(CS, TLI))
- return true;
- return false;
- }
- /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
- /// trivially dead instruction, delete it. If that makes any of its operands
- /// trivially dead, delete them too, recursively. Return true if any
- /// instructions were deleted.
- bool
- llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
- const TargetLibraryInfo *TLI) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
- return false;
- SmallVector<Instruction*, 16> DeadInsts;
- DeadInsts.push_back(I);
- do {
- I = DeadInsts.pop_back_val();
- // Null out all of the instruction's operands to see if any operand becomes
- // dead as we go.
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- Value *OpV = I->getOperand(i);
- I->setOperand(i, nullptr);
- if (!OpV->use_empty()) continue;
- // If the operand is an instruction that became dead as we nulled out the
- // operand, and if it is 'trivially' dead, delete it in a future loop
- // iteration.
- if (Instruction *OpI = dyn_cast<Instruction>(OpV))
- if (isInstructionTriviallyDead(OpI, TLI))
- DeadInsts.push_back(OpI);
- }
- I->eraseFromParent();
- } while (!DeadInsts.empty());
- return true;
- }
- /// areAllUsesEqual - Check whether the uses of a value are all the same.
- /// This is similar to Instruction::hasOneUse() except this will also return
- /// true when there are no uses or multiple uses that all refer to the same
- /// value.
- static bool areAllUsesEqual(Instruction *I) {
- Value::user_iterator UI = I->user_begin();
- Value::user_iterator UE = I->user_end();
- if (UI == UE)
- return true;
- User *TheUse = *UI;
- for (++UI; UI != UE; ++UI) {
- if (*UI != TheUse)
- return false;
- }
- return true;
- }
- /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
- /// dead PHI node, due to being a def-use chain of single-use nodes that
- /// either forms a cycle or is terminated by a trivially dead instruction,
- /// delete it. If that makes any of its operands trivially dead, delete them
- /// too, recursively. Return true if a change was made.
- bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
- const TargetLibraryInfo *TLI) {
- SmallPtrSet<Instruction*, 4> Visited;
- for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
- I = cast<Instruction>(*I->user_begin())) {
- if (I->use_empty())
- return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
- // If we find an instruction more than once, we're on a cycle that
- // won't prove fruitful.
- if (!Visited.insert(I).second) {
- // Break the cycle and delete the instruction and its operands.
- I->replaceAllUsesWith(UndefValue::get(I->getType()));
- (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
- return true;
- }
- }
- return false;
- }
- static bool
- simplifyAndDCEInstruction(Instruction *I,
- SmallSetVector<Instruction *, 16> &WorkList,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- if (isInstructionTriviallyDead(I, TLI)) {
- // Null out all of the instruction's operands to see if any operand becomes
- // dead as we go.
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- Value *OpV = I->getOperand(i);
- I->setOperand(i, nullptr);
- if (!OpV->use_empty() || I == OpV)
- continue;
- // If the operand is an instruction that became dead as we nulled out the
- // operand, and if it is 'trivially' dead, delete it in a future loop
- // iteration.
- if (Instruction *OpI = dyn_cast<Instruction>(OpV))
- if (isInstructionTriviallyDead(OpI, TLI))
- WorkList.insert(OpI);
- }
- I->eraseFromParent();
- return true;
- }
- if (Value *SimpleV = SimplifyInstruction(I, DL)) {
- // Add the users to the worklist. CAREFUL: an instruction can use itself,
- // in the case of a phi node.
- for (User *U : I->users()) {
- if (U != I) {
- WorkList.insert(cast<Instruction>(U));
- }
- }
- // Replace the instruction with its simplified value.
- bool Changed = false;
- if (!I->use_empty()) {
- I->replaceAllUsesWith(SimpleV);
- Changed = true;
- }
- if (isInstructionTriviallyDead(I, TLI)) {
- I->eraseFromParent();
- Changed = true;
- }
- return Changed;
- }
- return false;
- }
- /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
- /// simplify any instructions in it and recursively delete dead instructions.
- ///
- /// This returns true if it changed the code, note that it can delete
- /// instructions in other blocks as well in this block.
- bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
- const TargetLibraryInfo *TLI) {
- bool MadeChange = false;
- const DataLayout &DL = BB->getModule()->getDataLayout();
- #ifndef NDEBUG
- // In debug builds, ensure that the terminator of the block is never replaced
- // or deleted by these simplifications. The idea of simplification is that it
- // cannot introduce new instructions, and there is no way to replace the
- // terminator of a block without introducing a new instruction.
- AssertingVH<Instruction> TerminatorVH(&BB->back());
- #endif
- SmallSetVector<Instruction *, 16> WorkList;
- // Iterate over the original function, only adding insts to the worklist
- // if they actually need to be revisited. This avoids having to pre-init
- // the worklist with the entire function's worth of instructions.
- for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
- BI != E;) {
- assert(!BI->isTerminator());
- Instruction *I = &*BI;
- ++BI;
- // We're visiting this instruction now, so make sure it's not in the
- // worklist from an earlier visit.
- if (!WorkList.count(I))
- MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
- }
- while (!WorkList.empty()) {
- Instruction *I = WorkList.pop_back_val();
- MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
- }
- return MadeChange;
- }
- //===----------------------------------------------------------------------===//
- // Control Flow Graph Restructuring.
- //
- /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
- /// method is called when we're about to delete Pred as a predecessor of BB. If
- /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
- ///
- /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
- /// nodes that collapse into identity values. For example, if we have:
- /// x = phi(1, 0, 0, 0)
- /// y = and x, z
- ///
- /// .. and delete the predecessor corresponding to the '1', this will attempt to
- /// recursively fold the and to 0.
- void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
- // This only adjusts blocks with PHI nodes.
- if (!isa<PHINode>(BB->begin()))
- return;
- // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
- // them down. This will leave us with single entry phi nodes and other phis
- // that can be removed.
- BB->removePredecessor(Pred, true);
- WeakTrackingVH PhiIt = &BB->front();
- while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
- PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
- Value *OldPhiIt = PhiIt;
- if (!recursivelySimplifyInstruction(PN))
- continue;
- // If recursive simplification ended up deleting the next PHI node we would
- // iterate to, then our iterator is invalid, restart scanning from the top
- // of the block.
- if (PhiIt != OldPhiIt) PhiIt = &BB->front();
- }
- }
- /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
- /// predecessor is known to have one successor (DestBB!). Eliminate the edge
- /// between them, moving the instructions in the predecessor into DestBB and
- /// deleting the predecessor block.
- ///
- void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
- // If BB has single-entry PHI nodes, fold them.
- while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
- Value *NewVal = PN->getIncomingValue(0);
- // Replace self referencing PHI with undef, it must be dead.
- if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
- PN->replaceAllUsesWith(NewVal);
- PN->eraseFromParent();
- }
- BasicBlock *PredBB = DestBB->getSinglePredecessor();
- assert(PredBB && "Block doesn't have a single predecessor!");
- // Zap anything that took the address of DestBB. Not doing this will give the
- // address an invalid value.
- if (DestBB->hasAddressTaken()) {
- BlockAddress *BA = BlockAddress::get(DestBB);
- Constant *Replacement =
- ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
- BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
- BA->getType()));
- BA->destroyConstant();
- }
- // Anything that branched to PredBB now branches to DestBB.
- PredBB->replaceAllUsesWith(DestBB);
- // Splice all the instructions from PredBB to DestBB.
- PredBB->getTerminator()->eraseFromParent();
- DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
- // If the PredBB is the entry block of the function, move DestBB up to
- // become the entry block after we erase PredBB.
- if (PredBB == &DestBB->getParent()->getEntryBlock())
- DestBB->moveAfter(PredBB);
- if (DT) {
- BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
- DT->changeImmediateDominator(DestBB, PredBBIDom);
- DT->eraseNode(PredBB);
- }
- // Nuke BB.
- PredBB->eraseFromParent();
- }
- /// CanMergeValues - Return true if we can choose one of these values to use
- /// in place of the other. Note that we will always choose the non-undef
- /// value to keep.
- static bool CanMergeValues(Value *First, Value *Second) {
- return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
- }
- /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
- /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
- ///
- /// Assumption: Succ is the single successor for BB.
- ///
- static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
- assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
- DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
- << Succ->getName() << "\n");
- // Shortcut, if there is only a single predecessor it must be BB and merging
- // is always safe
- if (Succ->getSinglePredecessor()) return true;
- // Make a list of the predecessors of BB
- SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
- // Look at all the phi nodes in Succ, to see if they present a conflict when
- // merging these blocks
- for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- // If the incoming value from BB is again a PHINode in
- // BB which has the same incoming value for *PI as PN does, we can
- // merge the phi nodes and then the blocks can still be merged
- PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
- if (BBPN && BBPN->getParent() == BB) {
- for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
- BasicBlock *IBB = PN->getIncomingBlock(PI);
- if (BBPreds.count(IBB) &&
- !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
- PN->getIncomingValue(PI))) {
- DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
- << Succ->getName() << " is conflicting with "
- << BBPN->getName() << " with regard to common predecessor "
- << IBB->getName() << "\n");
- return false;
- }
- }
- } else {
- Value* Val = PN->getIncomingValueForBlock(BB);
- for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
- // See if the incoming value for the common predecessor is equal to the
- // one for BB, in which case this phi node will not prevent the merging
- // of the block.
- BasicBlock *IBB = PN->getIncomingBlock(PI);
- if (BBPreds.count(IBB) &&
- !CanMergeValues(Val, PN->getIncomingValue(PI))) {
- DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
- << Succ->getName() << " is conflicting with regard to common "
- << "predecessor " << IBB->getName() << "\n");
- return false;
- }
- }
- }
- }
- return true;
- }
- typedef SmallVector<BasicBlock *, 16> PredBlockVector;
- typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
- /// \brief Determines the value to use as the phi node input for a block.
- ///
- /// Select between \p OldVal any value that we know flows from \p BB
- /// to a particular phi on the basis of which one (if either) is not
- /// undef. Update IncomingValues based on the selected value.
- ///
- /// \param OldVal The value we are considering selecting.
- /// \param BB The block that the value flows in from.
- /// \param IncomingValues A map from block-to-value for other phi inputs
- /// that we have examined.
- ///
- /// \returns the selected value.
- static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
- IncomingValueMap &IncomingValues) {
- if (!isa<UndefValue>(OldVal)) {
- assert((!IncomingValues.count(BB) ||
- IncomingValues.find(BB)->second == OldVal) &&
- "Expected OldVal to match incoming value from BB!");
- IncomingValues.insert(std::make_pair(BB, OldVal));
- return OldVal;
- }
- IncomingValueMap::const_iterator It = IncomingValues.find(BB);
- if (It != IncomingValues.end()) return It->second;
- return OldVal;
- }
- /// \brief Create a map from block to value for the operands of a
- /// given phi.
- ///
- /// Create a map from block to value for each non-undef value flowing
- /// into \p PN.
- ///
- /// \param PN The phi we are collecting the map for.
- /// \param IncomingValues [out] The map from block to value for this phi.
- static void gatherIncomingValuesToPhi(PHINode *PN,
- IncomingValueMap &IncomingValues) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *BB = PN->getIncomingBlock(i);
- Value *V = PN->getIncomingValue(i);
- if (!isa<UndefValue>(V))
- IncomingValues.insert(std::make_pair(BB, V));
- }
- }
- /// \brief Replace the incoming undef values to a phi with the values
- /// from a block-to-value map.
- ///
- /// \param PN The phi we are replacing the undefs in.
- /// \param IncomingValues A map from block to value.
- static void replaceUndefValuesInPhi(PHINode *PN,
- const IncomingValueMap &IncomingValues) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *V = PN->getIncomingValue(i);
- if (!isa<UndefValue>(V)) continue;
- BasicBlock *BB = PN->getIncomingBlock(i);
- IncomingValueMap::const_iterator It = IncomingValues.find(BB);
- if (It == IncomingValues.end()) continue;
- PN->setIncomingValue(i, It->second);
- }
- }
- /// \brief Replace a value flowing from a block to a phi with
- /// potentially multiple instances of that value flowing from the
- /// block's predecessors to the phi.
- ///
- /// \param BB The block with the value flowing into the phi.
- /// \param BBPreds The predecessors of BB.
- /// \param PN The phi that we are updating.
- static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
- const PredBlockVector &BBPreds,
- PHINode *PN) {
- Value *OldVal = PN->removeIncomingValue(BB, false);
- assert(OldVal && "No entry in PHI for Pred BB!");
- IncomingValueMap IncomingValues;
- // We are merging two blocks - BB, and the block containing PN - and
- // as a result we need to redirect edges from the predecessors of BB
- // to go to the block containing PN, and update PN
- // accordingly. Since we allow merging blocks in the case where the
- // predecessor and successor blocks both share some predecessors,
- // and where some of those common predecessors might have undef
- // values flowing into PN, we want to rewrite those values to be
- // consistent with the non-undef values.
- gatherIncomingValuesToPhi(PN, IncomingValues);
- // If this incoming value is one of the PHI nodes in BB, the new entries
- // in the PHI node are the entries from the old PHI.
- if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
- PHINode *OldValPN = cast<PHINode>(OldVal);
- for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
- // Note that, since we are merging phi nodes and BB and Succ might
- // have common predecessors, we could end up with a phi node with
- // identical incoming branches. This will be cleaned up later (and
- // will trigger asserts if we try to clean it up now, without also
- // simplifying the corresponding conditional branch).
- BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
- Value *PredVal = OldValPN->getIncomingValue(i);
- Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
- IncomingValues);
- // And add a new incoming value for this predecessor for the
- // newly retargeted branch.
- PN->addIncoming(Selected, PredBB);
- }
- } else {
- for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
- // Update existing incoming values in PN for this
- // predecessor of BB.
- BasicBlock *PredBB = BBPreds[i];
- Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
- IncomingValues);
- // And add a new incoming value for this predecessor for the
- // newly retargeted branch.
- PN->addIncoming(Selected, PredBB);
- }
- }
- replaceUndefValuesInPhi(PN, IncomingValues);
- }
- /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
- /// unconditional branch, and contains no instructions other than PHI nodes,
- /// potential side-effect free intrinsics and the branch. If possible,
- /// eliminate BB by rewriting all the predecessors to branch to the successor
- /// block and return true. If we can't transform, return false.
- bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
- assert(BB != &BB->getParent()->getEntryBlock() &&
- "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
- // We can't eliminate infinite loops.
- BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
- if (BB == Succ) return false;
- // Check to see if merging these blocks would cause conflicts for any of the
- // phi nodes in BB or Succ. If not, we can safely merge.
- if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
- // Check for cases where Succ has multiple predecessors and a PHI node in BB
- // has uses which will not disappear when the PHI nodes are merged. It is
- // possible to handle such cases, but difficult: it requires checking whether
- // BB dominates Succ, which is non-trivial to calculate in the case where
- // Succ has multiple predecessors. Also, it requires checking whether
- // constructing the necessary self-referential PHI node doesn't introduce any
- // conflicts; this isn't too difficult, but the previous code for doing this
- // was incorrect.
- //
- // Note that if this check finds a live use, BB dominates Succ, so BB is
- // something like a loop pre-header (or rarely, a part of an irreducible CFG);
- // folding the branch isn't profitable in that case anyway.
- if (!Succ->getSinglePredecessor()) {
- BasicBlock::iterator BBI = BB->begin();
- while (isa<PHINode>(*BBI)) {
- for (Use &U : BBI->uses()) {
- if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
- if (PN->getIncomingBlock(U) != BB)
- return false;
- } else {
- return false;
- }
- }
- ++BBI;
- }
- }
- DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
- if (isa<PHINode>(Succ->begin())) {
- // If there is more than one pred of succ, and there are PHI nodes in
- // the successor, then we need to add incoming edges for the PHI nodes
- //
- const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
- // Loop over all of the PHI nodes in the successor of BB.
- for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
- }
- }
- if (Succ->getSinglePredecessor()) {
- // BB is the only predecessor of Succ, so Succ will end up with exactly
- // the same predecessors BB had.
- // Copy over any phi, debug or lifetime instruction.
- BB->getTerminator()->eraseFromParent();
- Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
- BB->getInstList());
- } else {
- while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
- // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
- assert(PN->use_empty() && "There shouldn't be any uses here!");
- PN->eraseFromParent();
- }
- }
- // If the unconditional branch we replaced contains llvm.loop metadata, we
- // add the metadata to the branch instructions in the predecessors.
- unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
- Instruction *TI = BB->getTerminator();
- if (TI)
- if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
- BasicBlock *Pred = *PI;
- Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
- }
- // Everything that jumped to BB now goes to Succ.
- BB->replaceAllUsesWith(Succ);
- if (!Succ->hasName()) Succ->takeName(BB);
- BB->eraseFromParent(); // Delete the old basic block.
- return true;
- }
- /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
- /// nodes in this block. This doesn't try to be clever about PHI nodes
- /// which differ only in the order of the incoming values, but instcombine
- /// orders them so it usually won't matter.
- ///
- bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
- // This implementation doesn't currently consider undef operands
- // specially. Theoretically, two phis which are identical except for
- // one having an undef where the other doesn't could be collapsed.
- struct PHIDenseMapInfo {
- static PHINode *getEmptyKey() {
- return DenseMapInfo<PHINode *>::getEmptyKey();
- }
- static PHINode *getTombstoneKey() {
- return DenseMapInfo<PHINode *>::getTombstoneKey();
- }
- static unsigned getHashValue(PHINode *PN) {
- // Compute a hash value on the operands. Instcombine will likely have
- // sorted them, which helps expose duplicates, but we have to check all
- // the operands to be safe in case instcombine hasn't run.
- return static_cast<unsigned>(hash_combine(
- hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
- hash_combine_range(PN->block_begin(), PN->block_end())));
- }
- static bool isEqual(PHINode *LHS, PHINode *RHS) {
- if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
- RHS == getEmptyKey() || RHS == getTombstoneKey())
- return LHS == RHS;
- return LHS->isIdenticalTo(RHS);
- }
- };
- // Set of unique PHINodes.
- DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
- // Examine each PHI.
- bool Changed = false;
- for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
- auto Inserted = PHISet.insert(PN);
- if (!Inserted.second) {
- // A duplicate. Replace this PHI with its duplicate.
- PN->replaceAllUsesWith(*Inserted.first);
- PN->eraseFromParent();
- Changed = true;
- // The RAUW can change PHIs that we already visited. Start over from the
- // beginning.
- PHISet.clear();
- I = BB->begin();
- }
- }
- return Changed;
- }
- /// enforceKnownAlignment - If the specified pointer points to an object that
- /// we control, modify the object's alignment to PrefAlign. This isn't
- /// often possible though. If alignment is important, a more reliable approach
- /// is to simply align all global variables and allocation instructions to
- /// their preferred alignment from the beginning.
- ///
- static unsigned enforceKnownAlignment(Value *V, unsigned Align,
- unsigned PrefAlign,
- const DataLayout &DL) {
- assert(PrefAlign > Align);
- V = V->stripPointerCasts();
- if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- // TODO: ideally, computeKnownBits ought to have used
- // AllocaInst::getAlignment() in its computation already, making
- // the below max redundant. But, as it turns out,
- // stripPointerCasts recurses through infinite layers of bitcasts,
- // while computeKnownBits is not allowed to traverse more than 6
- // levels.
- Align = std::max(AI->getAlignment(), Align);
- if (PrefAlign <= Align)
- return Align;
- // If the preferred alignment is greater than the natural stack alignment
- // then don't round up. This avoids dynamic stack realignment.
- if (DL.exceedsNaturalStackAlignment(PrefAlign))
- return Align;
- AI->setAlignment(PrefAlign);
- return PrefAlign;
- }
- if (auto *GO = dyn_cast<GlobalObject>(V)) {
- // TODO: as above, this shouldn't be necessary.
- Align = std::max(GO->getAlignment(), Align);
- if (PrefAlign <= Align)
- return Align;
- // If there is a large requested alignment and we can, bump up the alignment
- // of the global. If the memory we set aside for the global may not be the
- // memory used by the final program then it is impossible for us to reliably
- // enforce the preferred alignment.
- if (!GO->canIncreaseAlignment())
- return Align;
- GO->setAlignment(PrefAlign);
- return PrefAlign;
- }
- return Align;
- }
- unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
- const DataLayout &DL,
- const Instruction *CxtI,
- AssumptionCache *AC,
- const DominatorTree *DT) {
- assert(V->getType()->isPointerTy() &&
- "getOrEnforceKnownAlignment expects a pointer!");
- KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
- unsigned TrailZ = Known.countMinTrailingZeros();
- // Avoid trouble with ridiculously large TrailZ values, such as
- // those computed from a null pointer.
- TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
- unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
- // LLVM doesn't support alignments larger than this currently.
- Align = std::min(Align, +Value::MaximumAlignment);
- if (PrefAlign > Align)
- Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
- // We don't need to make any adjustment.
- return Align;
- }
- ///===---------------------------------------------------------------------===//
- /// Dbg Intrinsic utilities
- ///
- /// See if there is a dbg.value intrinsic for DIVar before I.
- static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
- Instruction *I) {
- // Since we can't guarantee that the original dbg.declare instrinsic
- // is removed by LowerDbgDeclare(), we need to make sure that we are
- // not inserting the same dbg.value intrinsic over and over.
- llvm::BasicBlock::InstListType::iterator PrevI(I);
- if (PrevI != I->getParent()->getInstList().begin()) {
- --PrevI;
- if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
- if (DVI->getValue() == I->getOperand(0) &&
- DVI->getVariable() == DIVar &&
- DVI->getExpression() == DIExpr)
- return true;
- }
- return false;
- }
- /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
- static bool PhiHasDebugValue(DILocalVariable *DIVar,
- DIExpression *DIExpr,
- PHINode *APN) {
- // Since we can't guarantee that the original dbg.declare instrinsic
- // is removed by LowerDbgDeclare(), we need to make sure that we are
- // not inserting the same dbg.value intrinsic over and over.
- SmallVector<DbgValueInst *, 1> DbgValues;
- findDbgValues(DbgValues, APN);
- for (auto *DVI : DbgValues) {
- assert(DVI->getValue() == APN);
- if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
- return true;
- }
- return false;
- }
- /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
- /// that has an associated llvm.dbg.decl intrinsic.
- void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
- StoreInst *SI, DIBuilder &Builder) {
- auto *DIVar = DDI->getVariable();
- assert(DIVar && "Missing variable");
- auto *DIExpr = DDI->getExpression();
- Value *DV = SI->getOperand(0);
- // If an argument is zero extended then use argument directly. The ZExt
- // may be zapped by an optimization pass in future.
- Argument *ExtendedArg = nullptr;
- if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
- ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
- if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
- ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
- if (ExtendedArg) {
- // If this DDI was already describing only a fragment of a variable, ensure
- // that fragment is appropriately narrowed here.
- // But if a fragment wasn't used, describe the value as the original
- // argument (rather than the zext or sext) so that it remains described even
- // if the sext/zext is optimized away. This widens the variable description,
- // leaving it up to the consumer to know how the smaller value may be
- // represented in a larger register.
- if (auto Fragment = DIExpr->getFragmentInfo()) {
- unsigned FragmentOffset = Fragment->OffsetInBits;
- SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(),
- DIExpr->elements_end() - 3);
- Ops.push_back(dwarf::DW_OP_LLVM_fragment);
- Ops.push_back(FragmentOffset);
- const DataLayout &DL = DDI->getModule()->getDataLayout();
- Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
- DIExpr = Builder.createExpression(Ops);
- }
- DV = ExtendedArg;
- }
- if (!LdStHasDebugValue(DIVar, DIExpr, SI))
- Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DDI->getDebugLoc(),
- SI);
- }
- /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
- /// that has an associated llvm.dbg.decl intrinsic.
- void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
- LoadInst *LI, DIBuilder &Builder) {
- auto *DIVar = DDI->getVariable();
- auto *DIExpr = DDI->getExpression();
- assert(DIVar && "Missing variable");
- if (LdStHasDebugValue(DIVar, DIExpr, LI))
- return;
- // We are now tracking the loaded value instead of the address. In the
- // future if multi-location support is added to the IR, it might be
- // preferable to keep tracking both the loaded value and the original
- // address in case the alloca can not be elided.
- Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
- LI, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr);
- DbgValue->insertAfter(LI);
- }
- /// Inserts a llvm.dbg.value intrinsic after a phi
- /// that has an associated llvm.dbg.decl intrinsic.
- void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
- PHINode *APN, DIBuilder &Builder) {
- auto *DIVar = DDI->getVariable();
- auto *DIExpr = DDI->getExpression();
- assert(DIVar && "Missing variable");
- if (PhiHasDebugValue(DIVar, DIExpr, APN))
- return;
- BasicBlock *BB = APN->getParent();
- auto InsertionPt = BB->getFirstInsertionPt();
- // The block may be a catchswitch block, which does not have a valid
- // insertion point.
- // FIXME: Insert dbg.value markers in the successors when appropriate.
- if (InsertionPt != BB->end())
- Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DDI->getDebugLoc(),
- &*InsertionPt);
- }
- /// Determine whether this alloca is either a VLA or an array.
- static bool isArray(AllocaInst *AI) {
- return AI->isArrayAllocation() ||
- AI->getType()->getElementType()->isArrayTy();
- }
- /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
- /// of llvm.dbg.value intrinsics.
- bool llvm::LowerDbgDeclare(Function &F) {
- DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
- SmallVector<DbgDeclareInst *, 4> Dbgs;
- for (auto &FI : F)
- for (Instruction &BI : FI)
- if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
- Dbgs.push_back(DDI);
- if (Dbgs.empty())
- return false;
- for (auto &I : Dbgs) {
- DbgDeclareInst *DDI = I;
- AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
- // If this is an alloca for a scalar variable, insert a dbg.value
- // at each load and store to the alloca and erase the dbg.declare.
- // The dbg.values allow tracking a variable even if it is not
- // stored on the stack, while the dbg.declare can only describe
- // the stack slot (and at a lexical-scope granularity). Later
- // passes will attempt to elide the stack slot.
- if (AI && !isArray(AI)) {
- for (auto &AIUse : AI->uses()) {
- User *U = AIUse.getUser();
- if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- if (AIUse.getOperandNo() == 1)
- ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
- } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
- ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
- } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
- // This is a call by-value or some other instruction that
- // takes a pointer to the variable. Insert a *value*
- // intrinsic that describes the alloca.
- DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(),
- DDI->getExpression(), DDI->getDebugLoc(),
- CI);
- }
- }
- DDI->eraseFromParent();
- }
- }
- return true;
- }
- /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
- /// alloca 'V', if any.
- DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
- if (auto *L = LocalAsMetadata::getIfExists(V))
- if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
- for (User *U : MDV->users())
- if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
- return DDI;
- return nullptr;
- }
- void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
- if (auto *L = LocalAsMetadata::getIfExists(V))
- if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
- for (User *U : MDV->users())
- if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
- DbgValues.push_back(DVI);
- }
- bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
- Instruction *InsertBefore, DIBuilder &Builder,
- bool Deref, int Offset) {
- DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address);
- if (!DDI)
- return false;
- DebugLoc Loc = DDI->getDebugLoc();
- auto *DIVar = DDI->getVariable();
- auto *DIExpr = DDI->getExpression();
- assert(DIVar && "Missing variable");
- DIExpr = DIExpression::prepend(DIExpr, Deref, Offset);
- // Insert llvm.dbg.declare immediately after the original alloca, and remove
- // old llvm.dbg.declare.
- Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
- DDI->eraseFromParent();
- return true;
- }
- bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
- DIBuilder &Builder, bool Deref, int Offset) {
- return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
- Deref, Offset);
- }
- static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
- DIBuilder &Builder, int Offset) {
- DebugLoc Loc = DVI->getDebugLoc();
- auto *DIVar = DVI->getVariable();
- auto *DIExpr = DVI->getExpression();
- assert(DIVar && "Missing variable");
- // This is an alloca-based llvm.dbg.value. The first thing it should do with
- // the alloca pointer is dereference it. Otherwise we don't know how to handle
- // it and give up.
- if (!DIExpr || DIExpr->getNumElements() < 1 ||
- DIExpr->getElement(0) != dwarf::DW_OP_deref)
- return;
- // Insert the offset immediately after the first deref.
- // We could just change the offset argument of dbg.value, but it's unsigned...
- if (Offset) {
- SmallVector<uint64_t, 4> Ops;
- Ops.push_back(dwarf::DW_OP_deref);
- DIExpression::appendOffset(Ops, Offset);
- Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
- DIExpr = Builder.createExpression(Ops);
- }
- Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
- DVI->eraseFromParent();
- }
- void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
- DIBuilder &Builder, int Offset) {
- if (auto *L = LocalAsMetadata::getIfExists(AI))
- if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
- for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
- Use &U = *UI++;
- if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
- replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
- }
- }
- void llvm::salvageDebugInfo(Instruction &I) {
- SmallVector<DbgValueInst *, 1> DbgValues;
- auto &M = *I.getModule();
- auto MDWrap = [&](Value *V) {
- return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V));
- };
- if (isa<BitCastInst>(&I)) {
- findDbgValues(DbgValues, &I);
- for (auto *DVI : DbgValues) {
- // Bitcasts are entirely irrelevant for debug info. Rewrite the dbg.value
- // to use the cast's source.
- DVI->setOperand(0, MDWrap(I.getOperand(0)));
- DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
- }
- } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
- findDbgValues(DbgValues, &I);
- for (auto *DVI : DbgValues) {
- unsigned BitWidth =
- M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace());
- APInt Offset(BitWidth, 0);
- // Rewrite a constant GEP into a DIExpression. Since we are performing
- // arithmetic to compute the variable's *value* in the DIExpression, we
- // need to mark the expression with a DW_OP_stack_value.
- if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
- auto *DIExpr = DVI->getExpression();
- DIBuilder DIB(M, /*AllowUnresolved*/ false);
- // GEP offsets are i32 and thus always fit into an int64_t.
- DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref,
- Offset.getSExtValue(),
- DIExpression::WithStackValue);
- DVI->setOperand(0, MDWrap(I.getOperand(0)));
- DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
- DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
- }
- }
- } else if (isa<LoadInst>(&I)) {
- findDbgValues(DbgValues, &I);
- for (auto *DVI : DbgValues) {
- // Rewrite the load into DW_OP_deref.
- auto *DIExpr = DVI->getExpression();
- DIBuilder DIB(M, /*AllowUnresolved*/ false);
- DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
- DVI->setOperand(0, MDWrap(I.getOperand(0)));
- DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
- DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
- }
- }
- }
- unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
- unsigned NumDeadInst = 0;
- // Delete the instructions backwards, as it has a reduced likelihood of
- // having to update as many def-use and use-def chains.
- Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
- while (EndInst != &BB->front()) {
- // Delete the next to last instruction.
- Instruction *Inst = &*--EndInst->getIterator();
- if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
- Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
- if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
- EndInst = Inst;
- continue;
- }
- if (!isa<DbgInfoIntrinsic>(Inst))
- ++NumDeadInst;
- Inst->eraseFromParent();
- }
- return NumDeadInst;
- }
- unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
- bool PreserveLCSSA) {
- BasicBlock *BB = I->getParent();
- // Loop over all of the successors, removing BB's entry from any PHI
- // nodes.
- for (BasicBlock *Successor : successors(BB))
- Successor->removePredecessor(BB, PreserveLCSSA);
- // Insert a call to llvm.trap right before this. This turns the undefined
- // behavior into a hard fail instead of falling through into random code.
- if (UseLLVMTrap) {
- Function *TrapFn =
- Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
- CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
- CallTrap->setDebugLoc(I->getDebugLoc());
- }
- new UnreachableInst(I->getContext(), I);
- // All instructions after this are dead.
- unsigned NumInstrsRemoved = 0;
- BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
- while (BBI != BBE) {
- if (!BBI->use_empty())
- BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
- BB->getInstList().erase(BBI++);
- ++NumInstrsRemoved;
- }
- return NumInstrsRemoved;
- }
- /// changeToCall - Convert the specified invoke into a normal call.
- static void changeToCall(InvokeInst *II) {
- SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
- SmallVector<OperandBundleDef, 1> OpBundles;
- II->getOperandBundlesAsDefs(OpBundles);
- CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
- "", II);
- NewCall->takeName(II);
- NewCall->setCallingConv(II->getCallingConv());
- NewCall->setAttributes(II->getAttributes());
- NewCall->setDebugLoc(II->getDebugLoc());
- II->replaceAllUsesWith(NewCall);
- // Follow the call by a branch to the normal destination.
- BranchInst::Create(II->getNormalDest(), II);
- // Update PHI nodes in the unwind destination
- II->getUnwindDest()->removePredecessor(II->getParent());
- II->eraseFromParent();
- }
- BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
- BasicBlock *UnwindEdge) {
- BasicBlock *BB = CI->getParent();
- // Convert this function call into an invoke instruction. First, split the
- // basic block.
- BasicBlock *Split =
- BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
- // Delete the unconditional branch inserted by splitBasicBlock
- BB->getInstList().pop_back();
- // Create the new invoke instruction.
- SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
- SmallVector<OperandBundleDef, 1> OpBundles;
- CI->getOperandBundlesAsDefs(OpBundles);
- // Note: we're round tripping operand bundles through memory here, and that
- // can potentially be avoided with a cleverer API design that we do not have
- // as of this time.
- InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
- InvokeArgs, OpBundles, CI->getName(), BB);
- II->setDebugLoc(CI->getDebugLoc());
- II->setCallingConv(CI->getCallingConv());
- II->setAttributes(CI->getAttributes());
- // Make sure that anything using the call now uses the invoke! This also
- // updates the CallGraph if present, because it uses a WeakTrackingVH.
- CI->replaceAllUsesWith(II);
- // Delete the original call
- Split->getInstList().pop_front();
- return Split;
- }
- static bool markAliveBlocks(Function &F,
- SmallPtrSetImpl<BasicBlock*> &Reachable) {
- SmallVector<BasicBlock*, 128> Worklist;
- BasicBlock *BB = &F.front();
- Worklist.push_back(BB);
- Reachable.insert(BB);
- bool Changed = false;
- do {
- BB = Worklist.pop_back_val();
- // Do a quick scan of the basic block, turning any obviously unreachable
- // instructions into LLVM unreachable insts. The instruction combining pass
- // canonicalizes unreachable insts into stores to null or undef.
- for (Instruction &I : *BB) {
- // Assumptions that are known to be false are equivalent to unreachable.
- // Also, if the condition is undefined, then we make the choice most
- // beneficial to the optimizer, and choose that to also be unreachable.
- if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
- if (II->getIntrinsicID() == Intrinsic::assume) {
- if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
- // Don't insert a call to llvm.trap right before the unreachable.
- changeToUnreachable(II, false);
- Changed = true;
- break;
- }
- }
- if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
- // A call to the guard intrinsic bails out of the current compilation
- // unit if the predicate passed to it is false. If the predicate is a
- // constant false, then we know the guard will bail out of the current
- // compile unconditionally, so all code following it is dead.
- //
- // Note: unlike in llvm.assume, it is not "obviously profitable" for
- // guards to treat `undef` as `false` since a guard on `undef` can
- // still be useful for widening.
- if (match(II->getArgOperand(0), m_Zero()))
- if (!isa<UnreachableInst>(II->getNextNode())) {
- changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false);
- Changed = true;
- break;
- }
- }
- }
- if (auto *CI = dyn_cast<CallInst>(&I)) {
- Value *Callee = CI->getCalledValue();
- if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
- changeToUnreachable(CI, /*UseLLVMTrap=*/false);
- Changed = true;
- break;
- }
- if (CI->doesNotReturn()) {
- // If we found a call to a no-return function, insert an unreachable
- // instruction after it. Make sure there isn't *already* one there
- // though.
- if (!isa<UnreachableInst>(CI->getNextNode())) {
- // Don't insert a call to llvm.trap right before the unreachable.
- changeToUnreachable(CI->getNextNode(), false);
- Changed = true;
- }
- break;
- }
- }
- // Store to undef and store to null are undefined and used to signal that
- // they should be changed to unreachable by passes that can't modify the
- // CFG.
- if (auto *SI = dyn_cast<StoreInst>(&I)) {
- // Don't touch volatile stores.
- if (SI->isVolatile()) continue;
- Value *Ptr = SI->getOperand(1);
- if (isa<UndefValue>(Ptr) ||
- (isa<ConstantPointerNull>(Ptr) &&
- SI->getPointerAddressSpace() == 0)) {
- changeToUnreachable(SI, true);
- Changed = true;
- break;
- }
- }
- }
- TerminatorInst *Terminator = BB->getTerminator();
- if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
- // Turn invokes that call 'nounwind' functions into ordinary calls.
- Value *Callee = II->getCalledValue();
- if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
- changeToUnreachable(II, true);
- Changed = true;
- } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
- if (II->use_empty() && II->onlyReadsMemory()) {
- // jump to the normal destination branch.
- BranchInst::Create(II->getNormalDest(), II);
- II->getUnwindDest()->removePredecessor(II->getParent());
- II->eraseFromParent();
- } else
- changeToCall(II);
- Changed = true;
- }
- } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
- // Remove catchpads which cannot be reached.
- struct CatchPadDenseMapInfo {
- static CatchPadInst *getEmptyKey() {
- return DenseMapInfo<CatchPadInst *>::getEmptyKey();
- }
- static CatchPadInst *getTombstoneKey() {
- return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
- }
- static unsigned getHashValue(CatchPadInst *CatchPad) {
- return static_cast<unsigned>(hash_combine_range(
- CatchPad->value_op_begin(), CatchPad->value_op_end()));
- }
- static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
- if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
- RHS == getEmptyKey() || RHS == getTombstoneKey())
- return LHS == RHS;
- return LHS->isIdenticalTo(RHS);
- }
- };
- // Set of unique CatchPads.
- SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
- CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
- HandlerSet;
- detail::DenseSetEmpty Empty;
- for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
- E = CatchSwitch->handler_end();
- I != E; ++I) {
- BasicBlock *HandlerBB = *I;
- auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
- if (!HandlerSet.insert({CatchPad, Empty}).second) {
- CatchSwitch->removeHandler(I);
- --I;
- --E;
- Changed = true;
- }
- }
- }
- Changed |= ConstantFoldTerminator(BB, true);
- for (BasicBlock *Successor : successors(BB))
- if (Reachable.insert(Successor).second)
- Worklist.push_back(Successor);
- } while (!Worklist.empty());
- return Changed;
- }
- void llvm::removeUnwindEdge(BasicBlock *BB) {
- TerminatorInst *TI = BB->getTerminator();
- if (auto *II = dyn_cast<InvokeInst>(TI)) {
- changeToCall(II);
- return;
- }
- TerminatorInst *NewTI;
- BasicBlock *UnwindDest;
- if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
- NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
- UnwindDest = CRI->getUnwindDest();
- } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
- auto *NewCatchSwitch = CatchSwitchInst::Create(
- CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
- CatchSwitch->getName(), CatchSwitch);
- for (BasicBlock *PadBB : CatchSwitch->handlers())
- NewCatchSwitch->addHandler(PadBB);
- NewTI = NewCatchSwitch;
- UnwindDest = CatchSwitch->getUnwindDest();
- } else {
- llvm_unreachable("Could not find unwind successor");
- }
- NewTI->takeName(TI);
- NewTI->setDebugLoc(TI->getDebugLoc());
- UnwindDest->removePredecessor(BB);
- TI->replaceAllUsesWith(NewTI);
- TI->eraseFromParent();
- }
- /// removeUnreachableBlocks - Remove blocks that are not reachable, even
- /// if they are in a dead cycle. Return true if a change was made, false
- /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
- /// after modifying the CFG.
- bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) {
- SmallPtrSet<BasicBlock*, 16> Reachable;
- bool Changed = markAliveBlocks(F, Reachable);
- // If there are unreachable blocks in the CFG...
- if (Reachable.size() == F.size())
- return Changed;
- assert(Reachable.size() < F.size());
- NumRemoved += F.size()-Reachable.size();
- // Loop over all of the basic blocks that are not reachable, dropping all of
- // their internal references...
- for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
- if (Reachable.count(&*BB))
- continue;
- for (BasicBlock *Successor : successors(&*BB))
- if (Reachable.count(Successor))
- Successor->removePredecessor(&*BB);
- if (LVI)
- LVI->eraseBlock(&*BB);
- BB->dropAllReferences();
- }
- for (Function::iterator I = ++F.begin(); I != F.end();)
- if (!Reachable.count(&*I))
- I = F.getBasicBlockList().erase(I);
- else
- ++I;
- return true;
- }
- void llvm::combineMetadata(Instruction *K, const Instruction *J,
- ArrayRef<unsigned> KnownIDs) {
- SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
- K->dropUnknownNonDebugMetadata(KnownIDs);
- K->getAllMetadataOtherThanDebugLoc(Metadata);
- for (const auto &MD : Metadata) {
- unsigned Kind = MD.first;
- MDNode *JMD = J->getMetadata(Kind);
- MDNode *KMD = MD.second;
- switch (Kind) {
- default:
- K->setMetadata(Kind, nullptr); // Remove unknown metadata
- break;
- case LLVMContext::MD_dbg:
- llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
- case LLVMContext::MD_tbaa:
- K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
- break;
- case LLVMContext::MD_alias_scope:
- K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
- break;
- case LLVMContext::MD_noalias:
- case LLVMContext::MD_mem_parallel_loop_access:
- K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
- break;
- case LLVMContext::MD_range:
- K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
- break;
- case LLVMContext::MD_fpmath:
- K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
- break;
- case LLVMContext::MD_invariant_load:
- // Only set the !invariant.load if it is present in both instructions.
- K->setMetadata(Kind, JMD);
- break;
- case LLVMContext::MD_nonnull:
- // Only set the !nonnull if it is present in both instructions.
- K->setMetadata(Kind, JMD);
- break;
- case LLVMContext::MD_invariant_group:
- // Preserve !invariant.group in K.
- break;
- case LLVMContext::MD_align:
- K->setMetadata(Kind,
- MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
- break;
- case LLVMContext::MD_dereferenceable:
- case LLVMContext::MD_dereferenceable_or_null:
- K->setMetadata(Kind,
- MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
- break;
- }
- }
- // Set !invariant.group from J if J has it. If both instructions have it
- // then we will just pick it from J - even when they are different.
- // Also make sure that K is load or store - f.e. combining bitcast with load
- // could produce bitcast with invariant.group metadata, which is invalid.
- // FIXME: we should try to preserve both invariant.group md if they are
- // different, but right now instruction can only have one invariant.group.
- if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
- if (isa<LoadInst>(K) || isa<StoreInst>(K))
- K->setMetadata(LLVMContext::MD_invariant_group, JMD);
- }
- void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) {
- unsigned KnownIDs[] = {
- LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
- LLVMContext::MD_noalias, LLVMContext::MD_range,
- LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull,
- LLVMContext::MD_invariant_group, LLVMContext::MD_align,
- LLVMContext::MD_dereferenceable,
- LLVMContext::MD_dereferenceable_or_null};
- combineMetadata(K, J, KnownIDs);
- }
- template <typename RootType, typename DominatesFn>
- static unsigned replaceDominatedUsesWith(Value *From, Value *To,
- const RootType &Root,
- const DominatesFn &Dominates) {
- assert(From->getType() == To->getType());
- unsigned Count = 0;
- for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
- UI != UE;) {
- Use &U = *UI++;
- if (!Dominates(Root, U))
- continue;
- U.set(To);
- DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
- << *To << " in " << *U << "\n");
- ++Count;
- }
- return Count;
- }
- unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
- assert(From->getType() == To->getType());
- auto *BB = From->getParent();
- unsigned Count = 0;
- for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
- UI != UE;) {
- Use &U = *UI++;
- auto *I = cast<Instruction>(U.getUser());
- if (I->getParent() == BB)
- continue;
- U.set(To);
- ++Count;
- }
- return Count;
- }
- unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
- DominatorTree &DT,
- const BasicBlockEdge &Root) {
- auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
- return DT.dominates(Root, U);
- };
- return ::replaceDominatedUsesWith(From, To, Root, Dominates);
- }
- unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
- DominatorTree &DT,
- const BasicBlock *BB) {
- auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
- auto *I = cast<Instruction>(U.getUser())->getParent();
- return DT.properlyDominates(BB, I);
- };
- return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
- }
- bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
- const TargetLibraryInfo &TLI) {
- // Check if the function is specifically marked as a gc leaf function.
- if (CS.hasFnAttr("gc-leaf-function"))
- return true;
- if (const Function *F = CS.getCalledFunction()) {
- if (F->hasFnAttribute("gc-leaf-function"))
- return true;
- if (auto IID = F->getIntrinsicID())
- // Most LLVM intrinsics do not take safepoints.
- return IID != Intrinsic::experimental_gc_statepoint &&
- IID != Intrinsic::experimental_deoptimize;
- }
- // Lib calls can be materialized by some passes, and won't be
- // marked as 'gc-leaf-function.' All available Libcalls are
- // GC-leaf.
- LibFunc LF;
- if (TLI.getLibFunc(CS, LF)) {
- return TLI.has(LF);
- }
- return false;
- }
- void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
- LoadInst &NewLI) {
- auto *NewTy = NewLI.getType();
- // This only directly applies if the new type is also a pointer.
- if (NewTy->isPointerTy()) {
- NewLI.setMetadata(LLVMContext::MD_nonnull, N);
- return;
- }
- // The only other translation we can do is to integral loads with !range
- // metadata.
- if (!NewTy->isIntegerTy())
- return;
- MDBuilder MDB(NewLI.getContext());
- const Value *Ptr = OldLI.getPointerOperand();
- auto *ITy = cast<IntegerType>(NewTy);
- auto *NullInt = ConstantExpr::getPtrToInt(
- ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
- auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
- NewLI.setMetadata(LLVMContext::MD_range,
- MDB.createRange(NonNullInt, NullInt));
- }
- void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
- MDNode *N, LoadInst &NewLI) {
- auto *NewTy = NewLI.getType();
- // Give up unless it is converted to a pointer where there is a single very
- // valuable mapping we can do reliably.
- // FIXME: It would be nice to propagate this in more ways, but the type
- // conversions make it hard.
- if (!NewTy->isPointerTy())
- return;
- unsigned BitWidth = DL.getTypeSizeInBits(NewTy);
- if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
- MDNode *NN = MDNode::get(OldLI.getContext(), None);
- NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
- }
- }
- namespace {
- /// A potential constituent of a bitreverse or bswap expression. See
- /// collectBitParts for a fuller explanation.
- struct BitPart {
- BitPart(Value *P, unsigned BW) : Provider(P) {
- Provenance.resize(BW);
- }
- /// The Value that this is a bitreverse/bswap of.
- Value *Provider;
- /// The "provenance" of each bit. Provenance[A] = B means that bit A
- /// in Provider becomes bit B in the result of this expression.
- SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
- enum { Unset = -1 };
- };
- } // end anonymous namespace
- /// Analyze the specified subexpression and see if it is capable of providing
- /// pieces of a bswap or bitreverse. The subexpression provides a potential
- /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
- /// the output of the expression came from a corresponding bit in some other
- /// value. This function is recursive, and the end result is a mapping of
- /// bitnumber to bitnumber. It is the caller's responsibility to validate that
- /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
- ///
- /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
- /// that the expression deposits the low byte of %X into the high byte of the
- /// result and that all other bits are zero. This expression is accepted and a
- /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
- /// [0-7].
- ///
- /// To avoid revisiting values, the BitPart results are memoized into the
- /// provided map. To avoid unnecessary copying of BitParts, BitParts are
- /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
- /// store BitParts objects, not pointers. As we need the concept of a nullptr
- /// BitParts (Value has been analyzed and the analysis failed), we an Optional
- /// type instead to provide the same functionality.
- ///
- /// Because we pass around references into \c BPS, we must use a container that
- /// does not invalidate internal references (std::map instead of DenseMap).
- ///
- static const Optional<BitPart> &
- collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
- std::map<Value *, Optional<BitPart>> &BPS) {
- auto I = BPS.find(V);
- if (I != BPS.end())
- return I->second;
- auto &Result = BPS[V] = None;
- auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- // If this is an or instruction, it may be an inner node of the bswap.
- if (I->getOpcode() == Instruction::Or) {
- auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
- MatchBitReversals, BPS);
- auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
- MatchBitReversals, BPS);
- if (!A || !B)
- return Result;
- // Try and merge the two together.
- if (!A->Provider || A->Provider != B->Provider)
- return Result;
- Result = BitPart(A->Provider, BitWidth);
- for (unsigned i = 0; i < A->Provenance.size(); ++i) {
- if (A->Provenance[i] != BitPart::Unset &&
- B->Provenance[i] != BitPart::Unset &&
- A->Provenance[i] != B->Provenance[i])
- return Result = None;
- if (A->Provenance[i] == BitPart::Unset)
- Result->Provenance[i] = B->Provenance[i];
- else
- Result->Provenance[i] = A->Provenance[i];
- }
- return Result;
- }
- // If this is a logical shift by a constant, recurse then shift the result.
- if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
- unsigned BitShift =
- cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
- // Ensure the shift amount is defined.
- if (BitShift > BitWidth)
- return Result;
- auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
- MatchBitReversals, BPS);
- if (!Res)
- return Result;
- Result = Res;
- // Perform the "shift" on BitProvenance.
- auto &P = Result->Provenance;
- if (I->getOpcode() == Instruction::Shl) {
- P.erase(std::prev(P.end(), BitShift), P.end());
- P.insert(P.begin(), BitShift, BitPart::Unset);
- } else {
- P.erase(P.begin(), std::next(P.begin(), BitShift));
- P.insert(P.end(), BitShift, BitPart::Unset);
- }
- return Result;
- }
- // If this is a logical 'and' with a mask that clears bits, recurse then
- // unset the appropriate bits.
- if (I->getOpcode() == Instruction::And &&
- isa<ConstantInt>(I->getOperand(1))) {
- APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
- const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
- // Check that the mask allows a multiple of 8 bits for a bswap, for an
- // early exit.
- unsigned NumMaskedBits = AndMask.countPopulation();
- if (!MatchBitReversals && NumMaskedBits % 8 != 0)
- return Result;
- auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
- MatchBitReversals, BPS);
- if (!Res)
- return Result;
- Result = Res;
- for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
- // If the AndMask is zero for this bit, clear the bit.
- if ((AndMask & Bit) == 0)
- Result->Provenance[i] = BitPart::Unset;
- return Result;
- }
- // If this is a zext instruction zero extend the result.
- if (I->getOpcode() == Instruction::ZExt) {
- auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
- MatchBitReversals, BPS);
- if (!Res)
- return Result;
- Result = BitPart(Res->Provider, BitWidth);
- auto NarrowBitWidth =
- cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
- for (unsigned i = 0; i < NarrowBitWidth; ++i)
- Result->Provenance[i] = Res->Provenance[i];
- for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
- Result->Provenance[i] = BitPart::Unset;
- return Result;
- }
- }
- // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
- // the input value to the bswap/bitreverse.
- Result = BitPart(V, BitWidth);
- for (unsigned i = 0; i < BitWidth; ++i)
- Result->Provenance[i] = i;
- return Result;
- }
- static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
- unsigned BitWidth) {
- if (From % 8 != To % 8)
- return false;
- // Convert from bit indices to byte indices and check for a byte reversal.
- From >>= 3;
- To >>= 3;
- BitWidth >>= 3;
- return From == BitWidth - To - 1;
- }
- static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
- unsigned BitWidth) {
- return From == BitWidth - To - 1;
- }
- /// Given an OR instruction, check to see if this is a bitreverse
- /// idiom. If so, insert the new intrinsic and return true.
- bool llvm::recognizeBSwapOrBitReverseIdiom(
- Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
- SmallVectorImpl<Instruction *> &InsertedInsts) {
- if (Operator::getOpcode(I) != Instruction::Or)
- return false;
- if (!MatchBSwaps && !MatchBitReversals)
- return false;
- IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
- if (!ITy || ITy->getBitWidth() > 128)
- return false; // Can't do vectors or integers > 128 bits.
- unsigned BW = ITy->getBitWidth();
- unsigned DemandedBW = BW;
- IntegerType *DemandedTy = ITy;
- if (I->hasOneUse()) {
- if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
- DemandedTy = cast<IntegerType>(Trunc->getType());
- DemandedBW = DemandedTy->getBitWidth();
- }
- }
- // Try to find all the pieces corresponding to the bswap.
- std::map<Value *, Optional<BitPart>> BPS;
- auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
- if (!Res)
- return false;
- auto &BitProvenance = Res->Provenance;
- // Now, is the bit permutation correct for a bswap or a bitreverse? We can
- // only byteswap values with an even number of bytes.
- bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
- for (unsigned i = 0; i < DemandedBW; ++i) {
- OKForBSwap &=
- bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
- OKForBitReverse &=
- bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
- }
- Intrinsic::ID Intrin;
- if (OKForBSwap && MatchBSwaps)
- Intrin = Intrinsic::bswap;
- else if (OKForBitReverse && MatchBitReversals)
- Intrin = Intrinsic::bitreverse;
- else
- return false;
- if (ITy != DemandedTy) {
- Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
- Value *Provider = Res->Provider;
- IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
- // We may need to truncate the provider.
- if (DemandedTy != ProviderTy) {
- auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
- "trunc", I);
- InsertedInsts.push_back(Trunc);
- Provider = Trunc;
- }
- auto *CI = CallInst::Create(F, Provider, "rev", I);
- InsertedInsts.push_back(CI);
- auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
- InsertedInsts.push_back(ExtInst);
- return true;
- }
- Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
- InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
- return true;
- }
- // CodeGen has special handling for some string functions that may replace
- // them with target-specific intrinsics. Since that'd skip our interceptors
- // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
- // we mark affected calls as NoBuiltin, which will disable optimization
- // in CodeGen.
- void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
- CallInst *CI, const TargetLibraryInfo *TLI) {
- Function *F = CI->getCalledFunction();
- LibFunc Func;
- if (F && !F->hasLocalLinkage() && F->hasName() &&
- TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
- !F->doesNotAccessMemory())
- CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
- }
- bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
- // We can't have a PHI with a metadata type.
- if (I->getOperand(OpIdx)->getType()->isMetadataTy())
- return false;
- // Early exit.
- if (!isa<Constant>(I->getOperand(OpIdx)))
- return true;
- switch (I->getOpcode()) {
- default:
- return true;
- case Instruction::Call:
- case Instruction::Invoke:
- // Can't handle inline asm. Skip it.
- if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
- return false;
- // Many arithmetic intrinsics have no issue taking a
- // variable, however it's hard to distingish these from
- // specials such as @llvm.frameaddress that require a constant.
- if (isa<IntrinsicInst>(I))
- return false;
- // Constant bundle operands may need to retain their constant-ness for
- // correctness.
- if (ImmutableCallSite(I).isBundleOperand(OpIdx))
- return false;
- return true;
- case Instruction::ShuffleVector:
- // Shufflevector masks are constant.
- return OpIdx != 2;
- case Instruction::Switch:
- case Instruction::ExtractValue:
- // All operands apart from the first are constant.
- return OpIdx == 0;
- case Instruction::InsertValue:
- // All operands apart from the first and the second are constant.
- return OpIdx < 2;
- case Instruction::Alloca:
- // Static allocas (constant size in the entry block) are handled by
- // prologue/epilogue insertion so they're free anyway. We definitely don't
- // want to make them non-constant.
- return !dyn_cast<AllocaInst>(I)->isStaticAlloca();
- case Instruction::GetElementPtr:
- if (OpIdx == 0)
- return true;
- gep_type_iterator It = gep_type_begin(I);
- for (auto E = std::next(It, OpIdx); It != E; ++It)
- if (It.isStruct())
- return false;
- return true;
- }
- }
|