123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346 |
- //===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/SCCIterator.h"
- #include "llvm/ADT/GraphTraits.h"
- #include "gtest/gtest.h"
- #include <limits.h>
- using namespace llvm;
- namespace llvm {
- /// Graph<N> - A graph with N nodes. Note that N can be at most 8.
- template <unsigned N>
- class Graph {
- private:
- // Disable copying.
- Graph(const Graph&);
- Graph& operator=(const Graph&);
- static void ValidateIndex(unsigned Idx) {
- assert(Idx < N && "Invalid node index!");
- }
- public:
- /// NodeSubset - A subset of the graph's nodes.
- class NodeSubset {
- typedef unsigned char BitVector; // Where the limitation N <= 8 comes from.
- BitVector Elements;
- NodeSubset(BitVector e) : Elements(e) {}
- public:
- /// NodeSubset - Default constructor, creates an empty subset.
- NodeSubset() : Elements(0) {
- assert(N <= sizeof(BitVector)*CHAR_BIT && "Graph too big!");
- }
- /// NodeSubset - Copy constructor.
- NodeSubset(const NodeSubset &other) : Elements(other.Elements) {}
- /// Comparison operators.
- bool operator==(const NodeSubset &other) const {
- return other.Elements == this->Elements;
- }
- bool operator!=(const NodeSubset &other) const {
- return !(*this == other);
- }
- /// AddNode - Add the node with the given index to the subset.
- void AddNode(unsigned Idx) {
- ValidateIndex(Idx);
- Elements |= 1U << Idx;
- }
- /// DeleteNode - Remove the node with the given index from the subset.
- void DeleteNode(unsigned Idx) {
- ValidateIndex(Idx);
- Elements &= ~(1U << Idx);
- }
- /// count - Return true if the node with the given index is in the subset.
- bool count(unsigned Idx) {
- ValidateIndex(Idx);
- return (Elements & (1U << Idx)) != 0;
- }
- /// isEmpty - Return true if this is the empty set.
- bool isEmpty() const {
- return Elements == 0;
- }
- /// isSubsetOf - Return true if this set is a subset of the given one.
- bool isSubsetOf(const NodeSubset &other) const {
- return (this->Elements | other.Elements) == other.Elements;
- }
- /// Complement - Return the complement of this subset.
- NodeSubset Complement() const {
- return ~(unsigned)this->Elements & ((1U << N) - 1);
- }
- /// Join - Return the union of this subset and the given one.
- NodeSubset Join(const NodeSubset &other) const {
- return this->Elements | other.Elements;
- }
- /// Meet - Return the intersection of this subset and the given one.
- NodeSubset Meet(const NodeSubset &other) const {
- return this->Elements & other.Elements;
- }
- };
- /// NodeType - Node index and set of children of the node.
- typedef std::pair<unsigned, NodeSubset> NodeType;
- private:
- /// Nodes - The list of nodes for this graph.
- NodeType Nodes[N];
- public:
- /// Graph - Default constructor. Creates an empty graph.
- Graph() {
- // Let each node know which node it is. This allows us to find the start of
- // the Nodes array given a pointer to any element of it.
- for (unsigned i = 0; i != N; ++i)
- Nodes[i].first = i;
- }
- /// AddEdge - Add an edge from the node with index FromIdx to the node with
- /// index ToIdx.
- void AddEdge(unsigned FromIdx, unsigned ToIdx) {
- ValidateIndex(FromIdx);
- Nodes[FromIdx].second.AddNode(ToIdx);
- }
- /// DeleteEdge - Remove the edge (if any) from the node with index FromIdx to
- /// the node with index ToIdx.
- void DeleteEdge(unsigned FromIdx, unsigned ToIdx) {
- ValidateIndex(FromIdx);
- Nodes[FromIdx].second.DeleteNode(ToIdx);
- }
- /// AccessNode - Get a pointer to the node with the given index.
- NodeType *AccessNode(unsigned Idx) const {
- ValidateIndex(Idx);
- // The constant cast is needed when working with GraphTraits, which insists
- // on taking a constant Graph.
- return const_cast<NodeType *>(&Nodes[Idx]);
- }
- /// NodesReachableFrom - Return the set of all nodes reachable from the given
- /// node.
- NodeSubset NodesReachableFrom(unsigned Idx) const {
- // This algorithm doesn't scale, but that doesn't matter given the small
- // size of our graphs.
- NodeSubset Reachable;
- // The initial node is reachable.
- Reachable.AddNode(Idx);
- do {
- NodeSubset Previous(Reachable);
- // Add in all nodes which are children of a reachable node.
- for (unsigned i = 0; i != N; ++i)
- if (Previous.count(i))
- Reachable = Reachable.Join(Nodes[i].second);
- // If nothing changed then we have found all reachable nodes.
- if (Reachable == Previous)
- return Reachable;
- // Rinse and repeat.
- } while (1);
- }
- /// ChildIterator - Visit all children of a node.
- class ChildIterator {
- friend class Graph;
- /// FirstNode - Pointer to first node in the graph's Nodes array.
- NodeType *FirstNode;
- /// Children - Set of nodes which are children of this one and that haven't
- /// yet been visited.
- NodeSubset Children;
- ChildIterator(); // Disable default constructor.
- protected:
- ChildIterator(NodeType *F, NodeSubset C) : FirstNode(F), Children(C) {}
- public:
- /// ChildIterator - Copy constructor.
- ChildIterator(const ChildIterator& other) : FirstNode(other.FirstNode),
- Children(other.Children) {}
- /// Comparison operators.
- bool operator==(const ChildIterator &other) const {
- return other.FirstNode == this->FirstNode &&
- other.Children == this->Children;
- }
- bool operator!=(const ChildIterator &other) const {
- return !(*this == other);
- }
- /// Prefix increment operator.
- ChildIterator& operator++() {
- // Find the next unvisited child node.
- for (unsigned i = 0; i != N; ++i)
- if (Children.count(i)) {
- // Remove that child - it has been visited. This is the increment!
- Children.DeleteNode(i);
- return *this;
- }
- assert(false && "Incrementing end iterator!");
- return *this; // Avoid compiler warnings.
- }
- /// Postfix increment operator.
- ChildIterator operator++(int) {
- ChildIterator Result(*this);
- ++(*this);
- return Result;
- }
- /// Dereference operator.
- NodeType *operator*() {
- // Find the next unvisited child node.
- for (unsigned i = 0; i != N; ++i)
- if (Children.count(i))
- // Return a pointer to it.
- return FirstNode + i;
- assert(false && "Dereferencing end iterator!");
- return 0; // Avoid compiler warning.
- }
- };
- /// child_begin - Return an iterator pointing to the first child of the given
- /// node.
- static ChildIterator child_begin(NodeType *Parent) {
- return ChildIterator(Parent - Parent->first, Parent->second);
- }
- /// child_end - Return the end iterator for children of the given node.
- static ChildIterator child_end(NodeType *Parent) {
- return ChildIterator(Parent - Parent->first, NodeSubset());
- }
- };
- template <unsigned N>
- struct GraphTraits<Graph<N> > {
- typedef typename Graph<N>::NodeType NodeType;
- typedef typename Graph<N>::ChildIterator ChildIteratorType;
- static inline NodeType *getEntryNode(const Graph<N> &G) { return G.AccessNode(0); }
- static inline ChildIteratorType child_begin(NodeType *Node) {
- return Graph<N>::child_begin(Node);
- }
- static inline ChildIteratorType child_end(NodeType *Node) {
- return Graph<N>::child_end(Node);
- }
- };
- TEST(SCCIteratorTest, AllSmallGraphs) {
- // Test SCC computation against every graph with NUM_NODES nodes or less.
- // Since SCC considers every node to have an implicit self-edge, we only
- // create graphs for which every node has a self-edge.
- #define NUM_NODES 4
- #define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1))
- typedef Graph<NUM_NODES> GT;
- /// Enumerate all graphs using NUM_GRAPHS bits.
- assert(NUM_GRAPHS < sizeof(unsigned) * CHAR_BIT && "Too many graphs!");
- for (unsigned GraphDescriptor = 0; GraphDescriptor < (1U << NUM_GRAPHS);
- ++GraphDescriptor) {
- GT G;
- // Add edges as specified by the descriptor.
- unsigned DescriptorCopy = GraphDescriptor;
- for (unsigned i = 0; i != NUM_NODES; ++i)
- for (unsigned j = 0; j != NUM_NODES; ++j) {
- // Always add a self-edge.
- if (i == j) {
- G.AddEdge(i, j);
- continue;
- }
- if (DescriptorCopy & 1)
- G.AddEdge(i, j);
- DescriptorCopy >>= 1;
- }
- // Test the SCC logic on this graph.
- /// NodesInSomeSCC - Those nodes which are in some SCC.
- GT::NodeSubset NodesInSomeSCC;
- for (scc_iterator<GT> I = scc_begin(G), E = scc_end(G); I != E; ++I) {
- std::vector<GT::NodeType*> &SCC = *I;
- // Get the nodes in this SCC as a NodeSubset rather than a vector.
- GT::NodeSubset NodesInThisSCC;
- for (unsigned i = 0, e = SCC.size(); i != e; ++i)
- NodesInThisSCC.AddNode(SCC[i]->first);
- // There should be at least one node in every SCC.
- EXPECT_FALSE(NodesInThisSCC.isEmpty());
- // Check that every node in the SCC is reachable from every other node in
- // the SCC.
- for (unsigned i = 0; i != NUM_NODES; ++i)
- if (NodesInThisSCC.count(i))
- EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i)));
- // OK, now that we now that every node in the SCC is reachable from every
- // other, this means that the set of nodes reachable from any node in the
- // SCC is the same as the set of nodes reachable from every node in the
- // SCC. Check that for every node N not in the SCC but reachable from the
- // SCC, no element of the SCC is reachable from N.
- for (unsigned i = 0; i != NUM_NODES; ++i)
- if (NodesInThisSCC.count(i)) {
- GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
- GT::NodeSubset ReachableButNotInSCC =
- NodesReachableFromSCC.Meet(NodesInThisSCC.Complement());
- for (unsigned j = 0; j != NUM_NODES; ++j)
- if (ReachableButNotInSCC.count(j))
- EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty());
- // The result must be the same for all other nodes in this SCC, so
- // there is no point in checking them.
- break;
- }
- // This is indeed a SCC: a maximal set of nodes for which each node is
- // reachable from every other.
- // Check that we didn't already see this SCC.
- EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty());
- NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC);
- // Check a property that is specific to the LLVM SCC iterator and
- // guaranteed by it: if a node in SCC S1 has an edge to a node in
- // SCC S2, then S1 is visited *after* S2. This means that the set
- // of nodes reachable from this SCC must be contained either in the
- // union of this SCC and all previously visited SCC's.
- for (unsigned i = 0; i != NUM_NODES; ++i)
- if (NodesInThisSCC.count(i)) {
- GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
- EXPECT_TRUE(NodesReachableFromSCC.isSubsetOf(NodesInSomeSCC));
- // The result must be the same for all other nodes in this SCC, so
- // there is no point in checking them.
- break;
- }
- }
- // Finally, check that the nodes in some SCC are exactly those that are
- // reachable from the initial node.
- EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0));
- }
- }
- }
|