123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654 |
- //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements a top-down list scheduler, using standard algorithms.
- // The basic approach uses a priority queue of available nodes to schedule.
- // One at a time, nodes are taken from the priority queue (thus in priority
- // order), checked for legality to schedule, and emitted if legal.
- //
- // Nodes may not be legal to schedule either due to structural hazards (e.g.
- // pipeline or resource constraints) or because an input to the instruction has
- // not completed execution.
- //
- //===----------------------------------------------------------------------===//
- #define DEBUG_TYPE "post-RA-sched"
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/CodeGen/ScheduleDAGInstrs.h"
- #include "llvm/CodeGen/LatencyPriorityQueue.h"
- #include "llvm/CodeGen/SchedulerRegistry.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetRegisterInfo.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include <map>
- #include <climits>
- using namespace llvm;
- STATISTIC(NumStalls, "Number of pipeline stalls");
- static cl::opt<bool>
- EnableAntiDepBreaking("break-anti-dependencies",
- cl::desc("Break scheduling anti-dependencies"),
- cl::init(false));
- namespace {
- class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
- public:
- static char ID;
- PostRAScheduler() : MachineFunctionPass(&ID) {}
- const char *getPassName() const {
- return "Post RA top-down list latency scheduler";
- }
- bool runOnMachineFunction(MachineFunction &Fn);
- };
- char PostRAScheduler::ID = 0;
- class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
- /// AvailableQueue - The priority queue to use for the available SUnits.
- ///
- LatencyPriorityQueue AvailableQueue;
-
- /// PendingQueue - This contains all of the instructions whose operands have
- /// been issued, but their results are not ready yet (due to the latency of
- /// the operation). Once the operands becomes available, the instruction is
- /// added to the AvailableQueue.
- std::vector<SUnit*> PendingQueue;
- /// Topo - A topological ordering for SUnits.
- ScheduleDAGTopologicalSort Topo;
- public:
- SchedulePostRATDList(MachineBasicBlock *mbb, const TargetMachine &tm)
- : ScheduleDAGInstrs(mbb, tm), Topo(SUnits) {}
- void Schedule();
- private:
- void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
- void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
- void ListScheduleTopDown();
- bool BreakAntiDependencies();
- };
- }
- bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
- DOUT << "PostRAScheduler\n";
- // Loop over all of the basic blocks
- for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
- MBB != MBBe; ++MBB) {
- SchedulePostRATDList Scheduler(MBB, Fn.getTarget());
- Scheduler.Run();
- Scheduler.EmitSchedule();
- }
- return true;
- }
-
- /// Schedule - Schedule the DAG using list scheduling.
- void SchedulePostRATDList::Schedule() {
- DOUT << "********** List Scheduling **********\n";
-
- // Build scheduling units.
- BuildSchedUnits();
- if (EnableAntiDepBreaking) {
- if (BreakAntiDependencies()) {
- // We made changes. Update the dependency graph.
- // Theoretically we could update the graph in place:
- // When a live range is changed to use a different register, remove
- // the def's anti-dependence *and* output-dependence edges due to
- // that register, and add new anti-dependence and output-dependence
- // edges based on the next live range of the register.
- SUnits.clear();
- BuildSchedUnits();
- }
- }
- AvailableQueue.initNodes(SUnits);
- ListScheduleTopDown();
-
- AvailableQueue.releaseState();
- }
- /// getInstrOperandRegClass - Return register class of the operand of an
- /// instruction of the specified TargetInstrDesc.
- static const TargetRegisterClass*
- getInstrOperandRegClass(const TargetRegisterInfo *TRI,
- const TargetInstrInfo *TII, const TargetInstrDesc &II,
- unsigned Op) {
- if (Op >= II.getNumOperands())
- return NULL;
- if (II.OpInfo[Op].isLookupPtrRegClass())
- return TII->getPointerRegClass();
- return TRI->getRegClass(II.OpInfo[Op].RegClass);
- }
- /// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
- /// of the ScheduleDAG and break them by renaming registers.
- ///
- bool SchedulePostRATDList::BreakAntiDependencies() {
- // The code below assumes that there is at least one instruction,
- // so just duck out immediately if the block is empty.
- if (BB->empty()) return false;
- Topo.InitDAGTopologicalSorting();
- // Compute a critical path for the DAG.
- SUnit *Max = 0;
- std::vector<SDep *> CriticalPath(SUnits.size());
- for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
- E = Topo.end(); I != E; ++I) {
- SUnit *SU = &SUnits[*I];
- for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
- P != PE; ++P) {
- SUnit *PredSU = P->getSUnit();
- // This assumes that there's no delay for reusing registers.
- unsigned PredLatency = P->getLatency();
- unsigned PredTotalLatency = PredSU->CycleBound + PredLatency;
- if (SU->CycleBound < PredTotalLatency ||
- (SU->CycleBound == PredTotalLatency &&
- P->getKind() == SDep::Anti)) {
- SU->CycleBound = PredTotalLatency;
- CriticalPath[*I] = &*P;
- }
- }
- // Keep track of the node at the end of the critical path.
- if (!Max || SU->CycleBound + SU->Latency > Max->CycleBound + Max->Latency)
- Max = SU;
- }
- DOUT << "Critical path has total latency "
- << (Max ? Max->CycleBound + Max->Latency : 0) << "\n";
- // Walk the critical path from the bottom up. Collect all anti-dependence
- // edges on the critical path. Skip anti-dependencies between SUnits that
- // are connected with other edges, since such units won't be able to be
- // scheduled past each other anyway.
- //
- // The heuristic is that edges on the critical path are more important to
- // break than other edges. And since there are a limited number of
- // registers, we don't want to waste them breaking edges that aren't
- // important.
- //
- // TODO: Instructions with multiple defs could have multiple
- // anti-dependencies. The current code here only knows how to break one
- // edge per instruction. Note that we'd have to be able to break all of
- // the anti-dependencies in an instruction in order to be effective.
- BitVector AllocatableSet = TRI->getAllocatableSet(*MF);
- DenseMap<MachineInstr *, unsigned> CriticalAntiDeps;
- for (SUnit *SU = Max; CriticalPath[SU->NodeNum];
- SU = CriticalPath[SU->NodeNum]->getSUnit()) {
- SDep *Edge = CriticalPath[SU->NodeNum];
- SUnit *NextSU = Edge->getSUnit();
- // Only consider anti-dependence edges.
- if (Edge->getKind() != SDep::Anti)
- continue;
- unsigned AntiDepReg = Edge->getReg();
- assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
- // Don't break anti-dependencies on non-allocatable registers.
- if (!AllocatableSet.test(AntiDepReg))
- continue;
- // If the SUnit has other dependencies on the SUnit that it
- // anti-depends on, don't bother breaking the anti-dependency.
- // Also, if there are dependencies on other SUnits with the
- // same register as the anti-dependency, don't attempt to
- // break it.
- for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
- P != PE; ++P)
- if (P->getSUnit() == NextSU ?
- (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
- (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
- AntiDepReg = 0;
- break;
- }
- if (AntiDepReg != 0)
- CriticalAntiDeps[SU->getInstr()] = AntiDepReg;
- }
- // For live regs that are only used in one register class in a live range,
- // the register class. If the register is not live, the corresponding value
- // is null. If the register is live but used in multiple register classes,
- // the corresponding value is -1 casted to a pointer.
- const TargetRegisterClass *
- Classes[TargetRegisterInfo::FirstVirtualRegister] = {};
- // Map registers to all their references within a live range.
- std::multimap<unsigned, MachineOperand *> RegRefs;
- // The index of the most recent kill (proceding bottom-up), or -1 if
- // the register is not live.
- unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
- std::fill(KillIndices, array_endof(KillIndices), -1);
- // The index of the most recent def (proceding bottom up), or -1 if
- // the register is live.
- unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
- std::fill(DefIndices, array_endof(DefIndices), BB->size());
- // Determine the live-out physregs for this block.
- if (!BB->empty() && BB->back().getDesc().isReturn())
- // In a return block, examine the function live-out regs.
- for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
- E = MRI.liveout_end(); I != E; ++I) {
- unsigned Reg = *I;
- Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
- KillIndices[Reg] = BB->size();
- DefIndices[Reg] = -1;
- // Repeat, for all aliases.
- for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
- unsigned AliasReg = *Alias;
- Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
- KillIndices[AliasReg] = BB->size();
- DefIndices[AliasReg] = -1;
- }
- }
- else
- // In a non-return block, examine the live-in regs of all successors.
- for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
- SE = BB->succ_end(); SI != SE; ++SI)
- for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
- E = (*SI)->livein_end(); I != E; ++I) {
- unsigned Reg = *I;
- Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
- KillIndices[Reg] = BB->size();
- DefIndices[Reg] = -1;
- // Repeat, for all aliases.
- for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
- unsigned AliasReg = *Alias;
- Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
- KillIndices[AliasReg] = BB->size();
- DefIndices[AliasReg] = -1;
- }
- }
- // Consider callee-saved registers as live-out, since we're running after
- // prologue/epilogue insertion so there's no way to add additional
- // saved registers.
- //
- // TODO: If the callee saves and restores these, then we can potentially
- // use them between the save and the restore. To do that, we could scan
- // the exit blocks to see which of these registers are defined.
- // Alternatively, calle-saved registers that aren't saved and restored
- // could be marked live-in in every block.
- for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
- unsigned Reg = *I;
- Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
- KillIndices[Reg] = BB->size();
- DefIndices[Reg] = -1;
- // Repeat, for all aliases.
- for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
- unsigned AliasReg = *Alias;
- Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
- KillIndices[AliasReg] = BB->size();
- DefIndices[AliasReg] = -1;
- }
- }
- // Consider this pattern:
- // A = ...
- // ... = A
- // A = ...
- // ... = A
- // A = ...
- // ... = A
- // A = ...
- // ... = A
- // There are three anti-dependencies here, and without special care,
- // we'd break all of them using the same register:
- // A = ...
- // ... = A
- // B = ...
- // ... = B
- // B = ...
- // ... = B
- // B = ...
- // ... = B
- // because at each anti-dependence, B is the first register that
- // isn't A which is free. This re-introduces anti-dependencies
- // at all but one of the original anti-dependencies that we were
- // trying to break. To avoid this, keep track of the most recent
- // register that each register was replaced with, avoid avoid
- // using it to repair an anti-dependence on the same register.
- // This lets us produce this:
- // A = ...
- // ... = A
- // B = ...
- // ... = B
- // C = ...
- // ... = C
- // B = ...
- // ... = B
- // This still has an anti-dependence on B, but at least it isn't on the
- // original critical path.
- //
- // TODO: If we tracked more than one register here, we could potentially
- // fix that remaining critical edge too. This is a little more involved,
- // because unlike the most recent register, less recent registers should
- // still be considered, though only if no other registers are available.
- unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
- // Attempt to break anti-dependence edges on the critical path. Walk the
- // instructions from the bottom up, tracking information about liveness
- // as we go to help determine which registers are available.
- bool Changed = false;
- unsigned Count = BB->size() - 1;
- for (MachineBasicBlock::reverse_iterator I = BB->rbegin(), E = BB->rend();
- I != E; ++I, --Count) {
- MachineInstr *MI = &*I;
- // After regalloc, IMPLICIT_DEF instructions aren't safe to treat as
- // dependence-breaking. In the case of an INSERT_SUBREG, the IMPLICIT_DEF
- // is left behind appearing to clobber the super-register, while the
- // subregister needs to remain live. So we just ignore them.
- if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
- continue;
- // Check if this instruction has an anti-dependence that we're
- // interested in.
- DenseMap<MachineInstr *, unsigned>::iterator C = CriticalAntiDeps.find(MI);
- unsigned AntiDepReg = C != CriticalAntiDeps.end() ?
- C->second : 0;
- // Scan the register operands for this instruction and update
- // Classes and RegRefs.
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg()) continue;
- unsigned Reg = MO.getReg();
- if (Reg == 0) continue;
- const TargetRegisterClass *NewRC =
- getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);
- // If this instruction has a use of AntiDepReg, breaking it
- // is invalid.
- if (MO.isUse() && AntiDepReg == Reg)
- AntiDepReg = 0;
- // For now, only allow the register to be changed if its register
- // class is consistent across all uses.
- if (!Classes[Reg] && NewRC)
- Classes[Reg] = NewRC;
- else if (!NewRC || Classes[Reg] != NewRC)
- Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
- // Now check for aliases.
- for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
- // If an alias of the reg is used during the live range, give up.
- // Note that this allows us to skip checking if AntiDepReg
- // overlaps with any of the aliases, among other things.
- unsigned AliasReg = *Alias;
- if (Classes[AliasReg]) {
- Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
- Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
- }
- }
- // If we're still willing to consider this register, note the reference.
- if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
- RegRefs.insert(std::make_pair(Reg, &MO));
- }
- // Determine AntiDepReg's register class, if it is live and is
- // consistently used within a single class.
- const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
- assert((AntiDepReg == 0 || RC != NULL) &&
- "Register should be live if it's causing an anti-dependence!");
- if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
- AntiDepReg = 0;
- // Look for a suitable register to use to break the anti-depenence.
- //
- // TODO: Instead of picking the first free register, consider which might
- // be the best.
- if (AntiDepReg != 0) {
- for (TargetRegisterClass::iterator R = RC->allocation_order_begin(*MF),
- RE = RC->allocation_order_end(*MF); R != RE; ++R) {
- unsigned NewReg = *R;
- // Don't replace a register with itself.
- if (NewReg == AntiDepReg) continue;
- // Don't replace a register with one that was recently used to repair
- // an anti-dependence with this AntiDepReg, because that would
- // re-introduce that anti-dependence.
- if (NewReg == LastNewReg[AntiDepReg]) continue;
- // If NewReg is dead and NewReg's most recent def is not before
- // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
- assert(((KillIndices[AntiDepReg] == -1u) != (DefIndices[AntiDepReg] == -1u)) &&
- "Kill and Def maps aren't consistent for AntiDepReg!");
- assert(((KillIndices[NewReg] == -1u) != (DefIndices[NewReg] == -1u)) &&
- "Kill and Def maps aren't consistent for NewReg!");
- if (KillIndices[NewReg] == -1u &&
- KillIndices[AntiDepReg] <= DefIndices[NewReg]) {
- DOUT << "Breaking anti-dependence edge on "
- << TRI->getName(AntiDepReg)
- << " with " << RegRefs.count(AntiDepReg) << " references"
- << " using " << TRI->getName(NewReg) << "!\n";
- // Update the references to the old register to refer to the new
- // register.
- std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
- std::multimap<unsigned, MachineOperand *>::iterator>
- Range = RegRefs.equal_range(AntiDepReg);
- for (std::multimap<unsigned, MachineOperand *>::iterator
- Q = Range.first, QE = Range.second; Q != QE; ++Q)
- Q->second->setReg(NewReg);
- // We just went back in time and modified history; the
- // liveness information for the anti-depenence reg is now
- // inconsistent. Set the state as if it were dead.
- Classes[NewReg] = Classes[AntiDepReg];
- DefIndices[NewReg] = DefIndices[AntiDepReg];
- KillIndices[NewReg] = KillIndices[AntiDepReg];
- Classes[AntiDepReg] = 0;
- DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
- KillIndices[AntiDepReg] = -1;
- RegRefs.erase(AntiDepReg);
- Changed = true;
- LastNewReg[AntiDepReg] = NewReg;
- break;
- }
- }
- }
- // Update liveness.
- // Proceding upwards, registers that are defed but not used in this
- // instruction are now dead.
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg()) continue;
- unsigned Reg = MO.getReg();
- if (Reg == 0) continue;
- if (!MO.isDef()) continue;
- // Ignore two-addr defs.
- if (MI->isRegReDefinedByTwoAddr(i)) continue;
- DefIndices[Reg] = Count;
- KillIndices[Reg] = -1;
- Classes[Reg] = 0;
- RegRefs.erase(Reg);
- // Repeat, for all subregs.
- for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
- *Subreg; ++Subreg) {
- unsigned SubregReg = *Subreg;
- DefIndices[SubregReg] = Count;
- KillIndices[SubregReg] = -1;
- Classes[SubregReg] = 0;
- RegRefs.erase(SubregReg);
- }
- }
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg()) continue;
- unsigned Reg = MO.getReg();
- if (Reg == 0) continue;
- if (!MO.isUse()) continue;
- const TargetRegisterClass *NewRC =
- getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);
- // For now, only allow the register to be changed if its register
- // class is consistent across all uses.
- if (!Classes[Reg] && NewRC)
- Classes[Reg] = NewRC;
- else if (!NewRC || Classes[Reg] != NewRC)
- Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
- RegRefs.insert(std::make_pair(Reg, &MO));
- // It wasn't previously live but now it is, this is a kill.
- if (KillIndices[Reg] == -1u) {
- KillIndices[Reg] = Count;
- DefIndices[Reg] = -1u;
- }
- // Repeat, for all aliases.
- for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
- unsigned AliasReg = *Alias;
- if (KillIndices[AliasReg] == -1u) {
- KillIndices[AliasReg] = Count;
- DefIndices[AliasReg] = -1u;
- }
- }
- }
- }
- assert(Count == -1u && "Count mismatch!");
- return Changed;
- }
- //===----------------------------------------------------------------------===//
- // Top-Down Scheduling
- //===----------------------------------------------------------------------===//
- /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
- /// the PendingQueue if the count reaches zero. Also update its cycle bound.
- void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
- SUnit *SuccSU = SuccEdge->getSUnit();
- --SuccSU->NumPredsLeft;
-
- #ifndef NDEBUG
- if (SuccSU->NumPredsLeft < 0) {
- cerr << "*** Scheduling failed! ***\n";
- SuccSU->dump(this);
- cerr << " has been released too many times!\n";
- assert(0);
- }
- #endif
-
- // Compute how many cycles it will be before this actually becomes
- // available. This is the max of the start time of all predecessors plus
- // their latencies.
- unsigned PredDoneCycle = SU->Cycle + SuccEdge->getLatency();
- SuccSU->CycleBound = std::max(SuccSU->CycleBound, PredDoneCycle);
-
- if (SuccSU->NumPredsLeft == 0) {
- PendingQueue.push_back(SuccSU);
- }
- }
- /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
- /// count of its successors. If a successor pending count is zero, add it to
- /// the Available queue.
- void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
- DOUT << "*** Scheduling [" << CurCycle << "]: ";
- DEBUG(SU->dump(this));
-
- Sequence.push_back(SU);
- SU->Cycle = CurCycle;
- // Top down: release successors.
- for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
- I != E; ++I)
- ReleaseSucc(SU, &*I);
- SU->isScheduled = true;
- AvailableQueue.ScheduledNode(SU);
- }
- /// ListScheduleTopDown - The main loop of list scheduling for top-down
- /// schedulers.
- void SchedulePostRATDList::ListScheduleTopDown() {
- unsigned CurCycle = 0;
- // All leaves to Available queue.
- for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
- // It is available if it has no predecessors.
- if (SUnits[i].Preds.empty()) {
- AvailableQueue.push(&SUnits[i]);
- SUnits[i].isAvailable = true;
- }
- }
-
- // While Available queue is not empty, grab the node with the highest
- // priority. If it is not ready put it back. Schedule the node.
- Sequence.reserve(SUnits.size());
- while (!AvailableQueue.empty() || !PendingQueue.empty()) {
- // Check to see if any of the pending instructions are ready to issue. If
- // so, add them to the available queue.
- for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
- if (PendingQueue[i]->CycleBound == CurCycle) {
- AvailableQueue.push(PendingQueue[i]);
- PendingQueue[i]->isAvailable = true;
- PendingQueue[i] = PendingQueue.back();
- PendingQueue.pop_back();
- --i; --e;
- } else {
- assert(PendingQueue[i]->CycleBound > CurCycle && "Non-positive latency?");
- }
- }
-
- // If there are no instructions available, don't try to issue anything.
- if (AvailableQueue.empty()) {
- ++CurCycle;
- continue;
- }
- SUnit *FoundSUnit = AvailableQueue.pop();
-
- // If we found a node to schedule, do it now.
- if (FoundSUnit) {
- ScheduleNodeTopDown(FoundSUnit, CurCycle);
- // If this is a pseudo-op node, we don't want to increment the current
- // cycle.
- if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
- ++CurCycle;
- } else {
- // Otherwise, we have a pipeline stall, but no other problem, just advance
- // the current cycle and try again.
- DOUT << "*** Advancing cycle, no work to do\n";
- ++NumStalls;
- ++CurCycle;
- }
- }
- #ifndef NDEBUG
- VerifySchedule(/*isBottomUp=*/false);
- #endif
- }
- //===----------------------------------------------------------------------===//
- // Public Constructor Functions
- //===----------------------------------------------------------------------===//
- FunctionPass *llvm::createPostRAScheduler() {
- return new PostRAScheduler();
- }
|