123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 |
- //===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the LatencyPriorityQueue class, which is a
- // SchedulingPriorityQueue that schedules using latency information to
- // reduce the length of the critical path through the basic block.
- //
- //===----------------------------------------------------------------------===//
- #define DEBUG_TYPE "scheduler"
- #include "llvm/CodeGen/LatencyPriorityQueue.h"
- #include "llvm/Support/Debug.h"
- using namespace llvm;
- bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
- unsigned LHSNum = LHS->NodeNum;
- unsigned RHSNum = RHS->NodeNum;
- // The most important heuristic is scheduling the critical path.
- unsigned LHSLatency = PQ->getLatency(LHSNum);
- unsigned RHSLatency = PQ->getLatency(RHSNum);
- if (LHSLatency < RHSLatency) return true;
- if (LHSLatency > RHSLatency) return false;
-
- // After that, if two nodes have identical latencies, look to see if one will
- // unblock more other nodes than the other.
- unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
- unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
- if (LHSBlocked < RHSBlocked) return true;
- if (LHSBlocked > RHSBlocked) return false;
-
- // Finally, just to provide a stable ordering, use the node number as a
- // deciding factor.
- return LHSNum < RHSNum;
- }
- /// CalcNodePriority - Calculate the maximal path from the node to the exit.
- ///
- int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
- int &Latency = Latencies[SU.NodeNum];
- if (Latency != -1)
- return Latency;
- std::vector<const SUnit*> WorkList;
- WorkList.push_back(&SU);
- while (!WorkList.empty()) {
- const SUnit *Cur = WorkList.back();
- unsigned CurLatency = Cur->Latency;
- bool AllDone = true;
- unsigned MaxSuccLatency = 0;
- for (SUnit::const_succ_iterator I = Cur->Succs.begin(),E = Cur->Succs.end();
- I != E; ++I) {
- int SuccLatency = Latencies[I->getSUnit()->NodeNum];
- if (SuccLatency == -1) {
- AllDone = false;
- WorkList.push_back(I->getSUnit());
- } else {
- // This assumes that there's no delay for reusing registers.
- unsigned NewLatency = SuccLatency + CurLatency;
- MaxSuccLatency = std::max(MaxSuccLatency, NewLatency);
- }
- }
- if (AllDone) {
- Latencies[Cur->NodeNum] = MaxSuccLatency;
- WorkList.pop_back();
- }
- }
- return Latency;
- }
- /// CalculatePriorities - Calculate priorities of all scheduling units.
- void LatencyPriorityQueue::CalculatePriorities() {
- Latencies.assign(SUnits->size(), -1);
- NumNodesSolelyBlocking.assign(SUnits->size(), 0);
- // For each node, calculate the maximal path from the node to the exit.
- std::vector<std::pair<const SUnit*, unsigned> > WorkList;
- for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
- const SUnit *SU = &(*SUnits)[i];
- if (SU->Succs.empty())
- WorkList.push_back(std::make_pair(SU, 0U));
- }
- while (!WorkList.empty()) {
- const SUnit *SU = WorkList.back().first;
- unsigned SuccLat = WorkList.back().second;
- WorkList.pop_back();
- int &Latency = Latencies[SU->NodeNum];
- if (Latency == -1 || (SU->Latency + SuccLat) > (unsigned)Latency) {
- Latency = SU->Latency + SuccLat;
- for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
- I != E; ++I)
- WorkList.push_back(std::make_pair(I->getSUnit(), Latency));
- }
- }
- }
- /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
- /// of SU, return it, otherwise return null.
- SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
- SUnit *OnlyAvailablePred = 0;
- for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
- I != E; ++I) {
- SUnit &Pred = *I->getSUnit();
- if (!Pred.isScheduled) {
- // We found an available, but not scheduled, predecessor. If it's the
- // only one we have found, keep track of it... otherwise give up.
- if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
- return 0;
- OnlyAvailablePred = &Pred;
- }
- }
-
- return OnlyAvailablePred;
- }
- void LatencyPriorityQueue::push_impl(SUnit *SU) {
- // Look at all of the successors of this node. Count the number of nodes that
- // this node is the sole unscheduled node for.
- unsigned NumNodesBlocking = 0;
- for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
- I != E; ++I)
- if (getSingleUnscheduledPred(I->getSUnit()) == SU)
- ++NumNodesBlocking;
- NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
-
- Queue.push(SU);
- }
- // ScheduledNode - As nodes are scheduled, we look to see if there are any
- // successor nodes that have a single unscheduled predecessor. If so, that
- // single predecessor has a higher priority, since scheduling it will make
- // the node available.
- void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
- for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
- I != E; ++I)
- AdjustPriorityOfUnscheduledPreds(I->getSUnit());
- }
- /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
- /// scheduled. If SU is not itself available, then there is at least one
- /// predecessor node that has not been scheduled yet. If SU has exactly ONE
- /// unscheduled predecessor, we want to increase its priority: it getting
- /// scheduled will make this node available, so it is better than some other
- /// node of the same priority that will not make a node available.
- void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
- if (SU->isAvailable) return; // All preds scheduled.
-
- SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
- if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
-
- // Okay, we found a single predecessor that is available, but not scheduled.
- // Since it is available, it must be in the priority queue. First remove it.
- remove(OnlyAvailablePred);
- // Reinsert the node into the priority queue, which recomputes its
- // NumNodesSolelyBlocking value.
- push(OnlyAvailablePred);
- }
|