1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576 |
- //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements routines for translating from LLVM IR into SelectionDAG IR.
- //
- //===----------------------------------------------------------------------===//
- #define DEBUG_TYPE "isel"
- #include "SelectionDAGBuilder.h"
- #include "SDNodeDbgValue.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/BranchProbabilityInfo.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/CodeGen/Analysis.h"
- #include "llvm/CodeGen/FastISel.h"
- #include "llvm/CodeGen/FunctionLoweringInfo.h"
- #include "llvm/CodeGen/GCMetadata.h"
- #include "llvm/CodeGen/GCStrategy.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineJumpTableInfo.h"
- #include "llvm/CodeGen/MachineModuleInfo.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/CodeGen/StackMaps.h"
- #include "llvm/DebugInfo.h"
- #include "llvm/IR/CallingConv.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/InlineAsm.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetFrameLowering.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetIntrinsicInfo.h"
- #include "llvm/Target/TargetLibraryInfo.h"
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/Target/TargetOptions.h"
- #include "llvm/Target/TargetSelectionDAGInfo.h"
- #include <algorithm>
- using namespace llvm;
- /// LimitFloatPrecision - Generate low-precision inline sequences for
- /// some float libcalls (6, 8 or 12 bits).
- static unsigned LimitFloatPrecision;
- static cl::opt<unsigned, true>
- LimitFPPrecision("limit-float-precision",
- cl::desc("Generate low-precision inline sequences "
- "for some float libcalls"),
- cl::location(LimitFloatPrecision),
- cl::init(0));
- // Limit the width of DAG chains. This is important in general to prevent
- // prevent DAG-based analysis from blowing up. For example, alias analysis and
- // load clustering may not complete in reasonable time. It is difficult to
- // recognize and avoid this situation within each individual analysis, and
- // future analyses are likely to have the same behavior. Limiting DAG width is
- // the safe approach, and will be especially important with global DAGs.
- //
- // MaxParallelChains default is arbitrarily high to avoid affecting
- // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
- // sequence over this should have been converted to llvm.memcpy by the
- // frontend. It easy to induce this behavior with .ll code such as:
- // %buffer = alloca [4096 x i8]
- // %data = load [4096 x i8]* %argPtr
- // store [4096 x i8] %data, [4096 x i8]* %buffer
- static const unsigned MaxParallelChains = 64;
- static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
- const SDValue *Parts, unsigned NumParts,
- MVT PartVT, EVT ValueVT, const Value *V);
- /// getCopyFromParts - Create a value that contains the specified legal parts
- /// combined into the value they represent. If the parts combine to a type
- /// larger then ValueVT then AssertOp can be used to specify whether the extra
- /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
- /// (ISD::AssertSext).
- static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
- const SDValue *Parts,
- unsigned NumParts, MVT PartVT, EVT ValueVT,
- const Value *V,
- ISD::NodeType AssertOp = ISD::DELETED_NODE) {
- if (ValueVT.isVector())
- return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
- PartVT, ValueVT, V);
- assert(NumParts > 0 && "No parts to assemble!");
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue Val = Parts[0];
- if (NumParts > 1) {
- // Assemble the value from multiple parts.
- if (ValueVT.isInteger()) {
- unsigned PartBits = PartVT.getSizeInBits();
- unsigned ValueBits = ValueVT.getSizeInBits();
- // Assemble the power of 2 part.
- unsigned RoundParts = NumParts & (NumParts - 1) ?
- 1 << Log2_32(NumParts) : NumParts;
- unsigned RoundBits = PartBits * RoundParts;
- EVT RoundVT = RoundBits == ValueBits ?
- ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
- SDValue Lo, Hi;
- EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
- if (RoundParts > 2) {
- Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
- PartVT, HalfVT, V);
- Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
- RoundParts / 2, PartVT, HalfVT, V);
- } else {
- Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
- Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
- }
- if (TLI.isBigEndian())
- std::swap(Lo, Hi);
- Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
- if (RoundParts < NumParts) {
- // Assemble the trailing non-power-of-2 part.
- unsigned OddParts = NumParts - RoundParts;
- EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
- Hi = getCopyFromParts(DAG, DL,
- Parts + RoundParts, OddParts, PartVT, OddVT, V);
- // Combine the round and odd parts.
- Lo = Val;
- if (TLI.isBigEndian())
- std::swap(Lo, Hi);
- EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
- Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
- DAG.getConstant(Lo.getValueType().getSizeInBits(),
- TLI.getPointerTy()));
- Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
- Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
- }
- } else if (PartVT.isFloatingPoint()) {
- // FP split into multiple FP parts (for ppcf128)
- assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
- "Unexpected split");
- SDValue Lo, Hi;
- Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
- Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
- if (TLI.isBigEndian())
- std::swap(Lo, Hi);
- Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
- } else {
- // FP split into integer parts (soft fp)
- assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
- !PartVT.isVector() && "Unexpected split");
- EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
- Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
- }
- }
- // There is now one part, held in Val. Correct it to match ValueVT.
- EVT PartEVT = Val.getValueType();
- if (PartEVT == ValueVT)
- return Val;
- if (PartEVT.isInteger() && ValueVT.isInteger()) {
- if (ValueVT.bitsLT(PartEVT)) {
- // For a truncate, see if we have any information to
- // indicate whether the truncated bits will always be
- // zero or sign-extension.
- if (AssertOp != ISD::DELETED_NODE)
- Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
- DAG.getValueType(ValueVT));
- return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
- }
- return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
- }
- if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
- // FP_ROUND's are always exact here.
- if (ValueVT.bitsLT(Val.getValueType()))
- return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
- DAG.getTargetConstant(1, TLI.getPointerTy()));
- return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
- }
- if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
- return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
- llvm_unreachable("Unknown mismatch!");
- }
- /// getCopyFromPartsVector - Create a value that contains the specified legal
- /// parts combined into the value they represent. If the parts combine to a
- /// type larger then ValueVT then AssertOp can be used to specify whether the
- /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
- /// ValueVT (ISD::AssertSext).
- static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
- const SDValue *Parts, unsigned NumParts,
- MVT PartVT, EVT ValueVT, const Value *V) {
- assert(ValueVT.isVector() && "Not a vector value");
- assert(NumParts > 0 && "No parts to assemble!");
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue Val = Parts[0];
- // Handle a multi-element vector.
- if (NumParts > 1) {
- EVT IntermediateVT;
- MVT RegisterVT;
- unsigned NumIntermediates;
- unsigned NumRegs =
- TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
- NumIntermediates, RegisterVT);
- assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
- NumParts = NumRegs; // Silence a compiler warning.
- assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
- assert(RegisterVT == Parts[0].getSimpleValueType() &&
- "Part type doesn't match part!");
- // Assemble the parts into intermediate operands.
- SmallVector<SDValue, 8> Ops(NumIntermediates);
- if (NumIntermediates == NumParts) {
- // If the register was not expanded, truncate or copy the value,
- // as appropriate.
- for (unsigned i = 0; i != NumParts; ++i)
- Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
- PartVT, IntermediateVT, V);
- } else if (NumParts > 0) {
- // If the intermediate type was expanded, build the intermediate
- // operands from the parts.
- assert(NumParts % NumIntermediates == 0 &&
- "Must expand into a divisible number of parts!");
- unsigned Factor = NumParts / NumIntermediates;
- for (unsigned i = 0; i != NumIntermediates; ++i)
- Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
- PartVT, IntermediateVT, V);
- }
- // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
- // intermediate operands.
- Val = DAG.getNode(IntermediateVT.isVector() ?
- ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
- ValueVT, &Ops[0], NumIntermediates);
- }
- // There is now one part, held in Val. Correct it to match ValueVT.
- EVT PartEVT = Val.getValueType();
- if (PartEVT == ValueVT)
- return Val;
- if (PartEVT.isVector()) {
- // If the element type of the source/dest vectors are the same, but the
- // parts vector has more elements than the value vector, then we have a
- // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
- // elements we want.
- if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
- assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
- "Cannot narrow, it would be a lossy transformation");
- return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
- DAG.getConstant(0, TLI.getVectorIdxTy()));
- }
- // Vector/Vector bitcast.
- if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
- return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
- assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
- "Cannot handle this kind of promotion");
- // Promoted vector extract
- bool Smaller = ValueVT.bitsLE(PartEVT);
- return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
- DL, ValueVT, Val);
- }
- // Trivial bitcast if the types are the same size and the destination
- // vector type is legal.
- if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
- TLI.isTypeLegal(ValueVT))
- return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
- // Handle cases such as i8 -> <1 x i1>
- if (ValueVT.getVectorNumElements() != 1) {
- LLVMContext &Ctx = *DAG.getContext();
- Twine ErrMsg("non-trivial scalar-to-vector conversion");
- if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
- if (const CallInst *CI = dyn_cast<CallInst>(I))
- if (isa<InlineAsm>(CI->getCalledValue()))
- ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
- Ctx.emitError(I, ErrMsg);
- } else {
- Ctx.emitError(ErrMsg);
- }
- return DAG.getUNDEF(ValueVT);
- }
- if (ValueVT.getVectorNumElements() == 1 &&
- ValueVT.getVectorElementType() != PartEVT) {
- bool Smaller = ValueVT.bitsLE(PartEVT);
- Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
- DL, ValueVT.getScalarType(), Val);
- }
- return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
- }
- static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
- SDValue Val, SDValue *Parts, unsigned NumParts,
- MVT PartVT, const Value *V);
- /// getCopyToParts - Create a series of nodes that contain the specified value
- /// split into legal parts. If the parts contain more bits than Val, then, for
- /// integers, ExtendKind can be used to specify how to generate the extra bits.
- static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
- SDValue Val, SDValue *Parts, unsigned NumParts,
- MVT PartVT, const Value *V,
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
- EVT ValueVT = Val.getValueType();
- // Handle the vector case separately.
- if (ValueVT.isVector())
- return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- unsigned PartBits = PartVT.getSizeInBits();
- unsigned OrigNumParts = NumParts;
- assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
- if (NumParts == 0)
- return;
- assert(!ValueVT.isVector() && "Vector case handled elsewhere");
- EVT PartEVT = PartVT;
- if (PartEVT == ValueVT) {
- assert(NumParts == 1 && "No-op copy with multiple parts!");
- Parts[0] = Val;
- return;
- }
- if (NumParts * PartBits > ValueVT.getSizeInBits()) {
- // If the parts cover more bits than the value has, promote the value.
- if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
- assert(NumParts == 1 && "Do not know what to promote to!");
- Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
- } else {
- assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
- ValueVT.isInteger() &&
- "Unknown mismatch!");
- ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
- if (PartVT == MVT::x86mmx)
- Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
- }
- } else if (PartBits == ValueVT.getSizeInBits()) {
- // Different types of the same size.
- assert(NumParts == 1 && PartEVT != ValueVT);
- Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
- } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
- // If the parts cover less bits than value has, truncate the value.
- assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
- ValueVT.isInteger() &&
- "Unknown mismatch!");
- ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
- if (PartVT == MVT::x86mmx)
- Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
- }
- // The value may have changed - recompute ValueVT.
- ValueVT = Val.getValueType();
- assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
- "Failed to tile the value with PartVT!");
- if (NumParts == 1) {
- if (PartEVT != ValueVT) {
- LLVMContext &Ctx = *DAG.getContext();
- Twine ErrMsg("scalar-to-vector conversion failed");
- if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
- if (const CallInst *CI = dyn_cast<CallInst>(I))
- if (isa<InlineAsm>(CI->getCalledValue()))
- ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
- Ctx.emitError(I, ErrMsg);
- } else {
- Ctx.emitError(ErrMsg);
- }
- }
- Parts[0] = Val;
- return;
- }
- // Expand the value into multiple parts.
- if (NumParts & (NumParts - 1)) {
- // The number of parts is not a power of 2. Split off and copy the tail.
- assert(PartVT.isInteger() && ValueVT.isInteger() &&
- "Do not know what to expand to!");
- unsigned RoundParts = 1 << Log2_32(NumParts);
- unsigned RoundBits = RoundParts * PartBits;
- unsigned OddParts = NumParts - RoundParts;
- SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
- DAG.getIntPtrConstant(RoundBits));
- getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
- if (TLI.isBigEndian())
- // The odd parts were reversed by getCopyToParts - unreverse them.
- std::reverse(Parts + RoundParts, Parts + NumParts);
- NumParts = RoundParts;
- ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
- }
- // The number of parts is a power of 2. Repeatedly bisect the value using
- // EXTRACT_ELEMENT.
- Parts[0] = DAG.getNode(ISD::BITCAST, DL,
- EVT::getIntegerVT(*DAG.getContext(),
- ValueVT.getSizeInBits()),
- Val);
- for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
- for (unsigned i = 0; i < NumParts; i += StepSize) {
- unsigned ThisBits = StepSize * PartBits / 2;
- EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
- SDValue &Part0 = Parts[i];
- SDValue &Part1 = Parts[i+StepSize/2];
- Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
- ThisVT, Part0, DAG.getIntPtrConstant(1));
- Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
- ThisVT, Part0, DAG.getIntPtrConstant(0));
- if (ThisBits == PartBits && ThisVT != PartVT) {
- Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
- Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
- }
- }
- }
- if (TLI.isBigEndian())
- std::reverse(Parts, Parts + OrigNumParts);
- }
- /// getCopyToPartsVector - Create a series of nodes that contain the specified
- /// value split into legal parts.
- static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
- SDValue Val, SDValue *Parts, unsigned NumParts,
- MVT PartVT, const Value *V) {
- EVT ValueVT = Val.getValueType();
- assert(ValueVT.isVector() && "Not a vector");
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (NumParts == 1) {
- EVT PartEVT = PartVT;
- if (PartEVT == ValueVT) {
- // Nothing to do.
- } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
- // Bitconvert vector->vector case.
- Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
- } else if (PartVT.isVector() &&
- PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
- PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
- EVT ElementVT = PartVT.getVectorElementType();
- // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
- // undef elements.
- SmallVector<SDValue, 16> Ops;
- for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
- Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
- ElementVT, Val, DAG.getConstant(i,
- TLI.getVectorIdxTy())));
- for (unsigned i = ValueVT.getVectorNumElements(),
- e = PartVT.getVectorNumElements(); i != e; ++i)
- Ops.push_back(DAG.getUNDEF(ElementVT));
- Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
- // FIXME: Use CONCAT for 2x -> 4x.
- //SDValue UndefElts = DAG.getUNDEF(VectorTy);
- //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
- } else if (PartVT.isVector() &&
- PartEVT.getVectorElementType().bitsGE(
- ValueVT.getVectorElementType()) &&
- PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
- // Promoted vector extract
- bool Smaller = PartEVT.bitsLE(ValueVT);
- Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
- DL, PartVT, Val);
- } else{
- // Vector -> scalar conversion.
- assert(ValueVT.getVectorNumElements() == 1 &&
- "Only trivial vector-to-scalar conversions should get here!");
- Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
- PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
- bool Smaller = ValueVT.bitsLE(PartVT);
- Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
- DL, PartVT, Val);
- }
- Parts[0] = Val;
- return;
- }
- // Handle a multi-element vector.
- EVT IntermediateVT;
- MVT RegisterVT;
- unsigned NumIntermediates;
- unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
- IntermediateVT,
- NumIntermediates, RegisterVT);
- unsigned NumElements = ValueVT.getVectorNumElements();
- assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
- NumParts = NumRegs; // Silence a compiler warning.
- assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
- // Split the vector into intermediate operands.
- SmallVector<SDValue, 8> Ops(NumIntermediates);
- for (unsigned i = 0; i != NumIntermediates; ++i) {
- if (IntermediateVT.isVector())
- Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
- IntermediateVT, Val,
- DAG.getConstant(i * (NumElements / NumIntermediates),
- TLI.getVectorIdxTy()));
- else
- Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
- IntermediateVT, Val,
- DAG.getConstant(i, TLI.getVectorIdxTy()));
- }
- // Split the intermediate operands into legal parts.
- if (NumParts == NumIntermediates) {
- // If the register was not expanded, promote or copy the value,
- // as appropriate.
- for (unsigned i = 0; i != NumParts; ++i)
- getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
- } else if (NumParts > 0) {
- // If the intermediate type was expanded, split each the value into
- // legal parts.
- assert(NumParts % NumIntermediates == 0 &&
- "Must expand into a divisible number of parts!");
- unsigned Factor = NumParts / NumIntermediates;
- for (unsigned i = 0; i != NumIntermediates; ++i)
- getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
- }
- }
- namespace {
- /// RegsForValue - This struct represents the registers (physical or virtual)
- /// that a particular set of values is assigned, and the type information
- /// about the value. The most common situation is to represent one value at a
- /// time, but struct or array values are handled element-wise as multiple
- /// values. The splitting of aggregates is performed recursively, so that we
- /// never have aggregate-typed registers. The values at this point do not
- /// necessarily have legal types, so each value may require one or more
- /// registers of some legal type.
- ///
- struct RegsForValue {
- /// ValueVTs - The value types of the values, which may not be legal, and
- /// may need be promoted or synthesized from one or more registers.
- ///
- SmallVector<EVT, 4> ValueVTs;
- /// RegVTs - The value types of the registers. This is the same size as
- /// ValueVTs and it records, for each value, what the type of the assigned
- /// register or registers are. (Individual values are never synthesized
- /// from more than one type of register.)
- ///
- /// With virtual registers, the contents of RegVTs is redundant with TLI's
- /// getRegisterType member function, however when with physical registers
- /// it is necessary to have a separate record of the types.
- ///
- SmallVector<MVT, 4> RegVTs;
- /// Regs - This list holds the registers assigned to the values.
- /// Each legal or promoted value requires one register, and each
- /// expanded value requires multiple registers.
- ///
- SmallVector<unsigned, 4> Regs;
- RegsForValue() {}
- RegsForValue(const SmallVector<unsigned, 4> ®s,
- MVT regvt, EVT valuevt)
- : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
- RegsForValue(LLVMContext &Context, const TargetLowering &tli,
- unsigned Reg, Type *Ty) {
- ComputeValueVTs(tli, Ty, ValueVTs);
- for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
- EVT ValueVT = ValueVTs[Value];
- unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
- MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
- for (unsigned i = 0; i != NumRegs; ++i)
- Regs.push_back(Reg + i);
- RegVTs.push_back(RegisterVT);
- Reg += NumRegs;
- }
- }
- /// areValueTypesLegal - Return true if types of all the values are legal.
- bool areValueTypesLegal(const TargetLowering &TLI) {
- for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
- MVT RegisterVT = RegVTs[Value];
- if (!TLI.isTypeLegal(RegisterVT))
- return false;
- }
- return true;
- }
- /// append - Add the specified values to this one.
- void append(const RegsForValue &RHS) {
- ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
- RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
- Regs.append(RHS.Regs.begin(), RHS.Regs.end());
- }
- /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
- /// this value and returns the result as a ValueVTs value. This uses
- /// Chain/Flag as the input and updates them for the output Chain/Flag.
- /// If the Flag pointer is NULL, no flag is used.
- SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
- SDLoc dl,
- SDValue &Chain, SDValue *Flag,
- const Value *V = 0) const;
- /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
- /// specified value into the registers specified by this object. This uses
- /// Chain/Flag as the input and updates them for the output Chain/Flag.
- /// If the Flag pointer is NULL, no flag is used.
- void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
- SDValue &Chain, SDValue *Flag, const Value *V) const;
- /// AddInlineAsmOperands - Add this value to the specified inlineasm node
- /// operand list. This adds the code marker, matching input operand index
- /// (if applicable), and includes the number of values added into it.
- void AddInlineAsmOperands(unsigned Kind,
- bool HasMatching, unsigned MatchingIdx,
- SelectionDAG &DAG,
- std::vector<SDValue> &Ops) const;
- };
- }
- /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
- /// this value and returns the result as a ValueVT value. This uses
- /// Chain/Flag as the input and updates them for the output Chain/Flag.
- /// If the Flag pointer is NULL, no flag is used.
- SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
- FunctionLoweringInfo &FuncInfo,
- SDLoc dl,
- SDValue &Chain, SDValue *Flag,
- const Value *V) const {
- // A Value with type {} or [0 x %t] needs no registers.
- if (ValueVTs.empty())
- return SDValue();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // Assemble the legal parts into the final values.
- SmallVector<SDValue, 4> Values(ValueVTs.size());
- SmallVector<SDValue, 8> Parts;
- for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
- // Copy the legal parts from the registers.
- EVT ValueVT = ValueVTs[Value];
- unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
- MVT RegisterVT = RegVTs[Value];
- Parts.resize(NumRegs);
- for (unsigned i = 0; i != NumRegs; ++i) {
- SDValue P;
- if (Flag == 0) {
- P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
- } else {
- P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
- *Flag = P.getValue(2);
- }
- Chain = P.getValue(1);
- Parts[i] = P;
- // If the source register was virtual and if we know something about it,
- // add an assert node.
- if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
- !RegisterVT.isInteger() || RegisterVT.isVector())
- continue;
- const FunctionLoweringInfo::LiveOutInfo *LOI =
- FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
- if (!LOI)
- continue;
- unsigned RegSize = RegisterVT.getSizeInBits();
- unsigned NumSignBits = LOI->NumSignBits;
- unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
- if (NumZeroBits == RegSize) {
- // The current value is a zero.
- // Explicitly express that as it would be easier for
- // optimizations to kick in.
- Parts[i] = DAG.getConstant(0, RegisterVT);
- continue;
- }
- // FIXME: We capture more information than the dag can represent. For
- // now, just use the tightest assertzext/assertsext possible.
- bool isSExt = true;
- EVT FromVT(MVT::Other);
- if (NumSignBits == RegSize)
- isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
- else if (NumZeroBits >= RegSize-1)
- isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
- else if (NumSignBits > RegSize-8)
- isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
- else if (NumZeroBits >= RegSize-8)
- isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
- else if (NumSignBits > RegSize-16)
- isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
- else if (NumZeroBits >= RegSize-16)
- isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
- else if (NumSignBits > RegSize-32)
- isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
- else if (NumZeroBits >= RegSize-32)
- isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
- else
- continue;
- // Add an assertion node.
- assert(FromVT != MVT::Other);
- Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
- RegisterVT, P, DAG.getValueType(FromVT));
- }
- Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
- NumRegs, RegisterVT, ValueVT, V);
- Part += NumRegs;
- Parts.clear();
- }
- return DAG.getNode(ISD::MERGE_VALUES, dl,
- DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
- &Values[0], ValueVTs.size());
- }
- /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
- /// specified value into the registers specified by this object. This uses
- /// Chain/Flag as the input and updates them for the output Chain/Flag.
- /// If the Flag pointer is NULL, no flag is used.
- void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
- SDValue &Chain, SDValue *Flag,
- const Value *V) const {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // Get the list of the values's legal parts.
- unsigned NumRegs = Regs.size();
- SmallVector<SDValue, 8> Parts(NumRegs);
- for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
- EVT ValueVT = ValueVTs[Value];
- unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
- MVT RegisterVT = RegVTs[Value];
- ISD::NodeType ExtendKind =
- TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
- getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
- &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
- Part += NumParts;
- }
- // Copy the parts into the registers.
- SmallVector<SDValue, 8> Chains(NumRegs);
- for (unsigned i = 0; i != NumRegs; ++i) {
- SDValue Part;
- if (Flag == 0) {
- Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
- } else {
- Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
- *Flag = Part.getValue(1);
- }
- Chains[i] = Part.getValue(0);
- }
- if (NumRegs == 1 || Flag)
- // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
- // flagged to it. That is the CopyToReg nodes and the user are considered
- // a single scheduling unit. If we create a TokenFactor and return it as
- // chain, then the TokenFactor is both a predecessor (operand) of the
- // user as well as a successor (the TF operands are flagged to the user).
- // c1, f1 = CopyToReg
- // c2, f2 = CopyToReg
- // c3 = TokenFactor c1, c2
- // ...
- // = op c3, ..., f2
- Chain = Chains[NumRegs-1];
- else
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
- }
- /// AddInlineAsmOperands - Add this value to the specified inlineasm node
- /// operand list. This adds the code marker and includes the number of
- /// values added into it.
- void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
- unsigned MatchingIdx,
- SelectionDAG &DAG,
- std::vector<SDValue> &Ops) const {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
- if (HasMatching)
- Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
- else if (!Regs.empty() &&
- TargetRegisterInfo::isVirtualRegister(Regs.front())) {
- // Put the register class of the virtual registers in the flag word. That
- // way, later passes can recompute register class constraints for inline
- // assembly as well as normal instructions.
- // Don't do this for tied operands that can use the regclass information
- // from the def.
- const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
- const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
- Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
- }
- SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
- Ops.push_back(Res);
- unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
- for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
- unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
- MVT RegisterVT = RegVTs[Value];
- for (unsigned i = 0; i != NumRegs; ++i) {
- assert(Reg < Regs.size() && "Mismatch in # registers expected");
- unsigned TheReg = Regs[Reg++];
- Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
- // Notice if we clobbered the stack pointer. Yes, inline asm can do this.
- if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
- MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
- MFI->setHasInlineAsmWithSPAdjust(true);
- }
- }
- }
- }
- void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
- const TargetLibraryInfo *li) {
- AA = &aa;
- GFI = gfi;
- LibInfo = li;
- TD = DAG.getTarget().getDataLayout();
- Context = DAG.getContext();
- LPadToCallSiteMap.clear();
- }
- /// clear - Clear out the current SelectionDAG and the associated
- /// state and prepare this SelectionDAGBuilder object to be used
- /// for a new block. This doesn't clear out information about
- /// additional blocks that are needed to complete switch lowering
- /// or PHI node updating; that information is cleared out as it is
- /// consumed.
- void SelectionDAGBuilder::clear() {
- NodeMap.clear();
- UnusedArgNodeMap.clear();
- PendingLoads.clear();
- PendingExports.clear();
- CurInst = NULL;
- HasTailCall = false;
- }
- /// clearDanglingDebugInfo - Clear the dangling debug information
- /// map. This function is separated from the clear so that debug
- /// information that is dangling in a basic block can be properly
- /// resolved in a different basic block. This allows the
- /// SelectionDAG to resolve dangling debug information attached
- /// to PHI nodes.
- void SelectionDAGBuilder::clearDanglingDebugInfo() {
- DanglingDebugInfoMap.clear();
- }
- /// getRoot - Return the current virtual root of the Selection DAG,
- /// flushing any PendingLoad items. This must be done before emitting
- /// a store or any other node that may need to be ordered after any
- /// prior load instructions.
- ///
- SDValue SelectionDAGBuilder::getRoot() {
- if (PendingLoads.empty())
- return DAG.getRoot();
- if (PendingLoads.size() == 1) {
- SDValue Root = PendingLoads[0];
- DAG.setRoot(Root);
- PendingLoads.clear();
- return Root;
- }
- // Otherwise, we have to make a token factor node.
- SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
- &PendingLoads[0], PendingLoads.size());
- PendingLoads.clear();
- DAG.setRoot(Root);
- return Root;
- }
- /// getControlRoot - Similar to getRoot, but instead of flushing all the
- /// PendingLoad items, flush all the PendingExports items. It is necessary
- /// to do this before emitting a terminator instruction.
- ///
- SDValue SelectionDAGBuilder::getControlRoot() {
- SDValue Root = DAG.getRoot();
- if (PendingExports.empty())
- return Root;
- // Turn all of the CopyToReg chains into one factored node.
- if (Root.getOpcode() != ISD::EntryToken) {
- unsigned i = 0, e = PendingExports.size();
- for (; i != e; ++i) {
- assert(PendingExports[i].getNode()->getNumOperands() > 1);
- if (PendingExports[i].getNode()->getOperand(0) == Root)
- break; // Don't add the root if we already indirectly depend on it.
- }
- if (i == e)
- PendingExports.push_back(Root);
- }
- Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
- &PendingExports[0],
- PendingExports.size());
- PendingExports.clear();
- DAG.setRoot(Root);
- return Root;
- }
- void SelectionDAGBuilder::visit(const Instruction &I) {
- // Set up outgoing PHI node register values before emitting the terminator.
- if (isa<TerminatorInst>(&I))
- HandlePHINodesInSuccessorBlocks(I.getParent());
- ++SDNodeOrder;
- CurInst = &I;
- visit(I.getOpcode(), I);
- if (!isa<TerminatorInst>(&I) && !HasTailCall)
- CopyToExportRegsIfNeeded(&I);
- CurInst = NULL;
- }
- void SelectionDAGBuilder::visitPHI(const PHINode &) {
- llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
- }
- void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
- // Note: this doesn't use InstVisitor, because it has to work with
- // ConstantExpr's in addition to instructions.
- switch (Opcode) {
- default: llvm_unreachable("Unknown instruction type encountered!");
- // Build the switch statement using the Instruction.def file.
- #define HANDLE_INST(NUM, OPCODE, CLASS) \
- case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
- #include "llvm/IR/Instruction.def"
- }
- }
- // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
- // generate the debug data structures now that we've seen its definition.
- void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
- SDValue Val) {
- DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
- if (DDI.getDI()) {
- const DbgValueInst *DI = DDI.getDI();
- DebugLoc dl = DDI.getdl();
- unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
- MDNode *Variable = DI->getVariable();
- uint64_t Offset = DI->getOffset();
- SDDbgValue *SDV;
- if (Val.getNode()) {
- if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
- SDV = DAG.getDbgValue(Variable, Val.getNode(),
- Val.getResNo(), Offset, dl, DbgSDNodeOrder);
- DAG.AddDbgValue(SDV, Val.getNode(), false);
- }
- } else
- DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
- DanglingDebugInfoMap[V] = DanglingDebugInfo();
- }
- }
- /// getValue - Return an SDValue for the given Value.
- SDValue SelectionDAGBuilder::getValue(const Value *V) {
- // If we already have an SDValue for this value, use it. It's important
- // to do this first, so that we don't create a CopyFromReg if we already
- // have a regular SDValue.
- SDValue &N = NodeMap[V];
- if (N.getNode()) return N;
- // If there's a virtual register allocated and initialized for this
- // value, use it.
- DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
- if (It != FuncInfo.ValueMap.end()) {
- unsigned InReg = It->second;
- RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(),
- InReg, V->getType());
- SDValue Chain = DAG.getEntryNode();
- N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
- resolveDanglingDebugInfo(V, N);
- return N;
- }
- // Otherwise create a new SDValue and remember it.
- SDValue Val = getValueImpl(V);
- NodeMap[V] = Val;
- resolveDanglingDebugInfo(V, Val);
- return Val;
- }
- /// getNonRegisterValue - Return an SDValue for the given Value, but
- /// don't look in FuncInfo.ValueMap for a virtual register.
- SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
- // If we already have an SDValue for this value, use it.
- SDValue &N = NodeMap[V];
- if (N.getNode()) return N;
- // Otherwise create a new SDValue and remember it.
- SDValue Val = getValueImpl(V);
- NodeMap[V] = Val;
- resolveDanglingDebugInfo(V, Val);
- return Val;
- }
- /// getValueImpl - Helper function for getValue and getNonRegisterValue.
- /// Create an SDValue for the given value.
- SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
- const TargetLowering *TLI = TM.getTargetLowering();
- if (const Constant *C = dyn_cast<Constant>(V)) {
- EVT VT = TLI->getValueType(V->getType(), true);
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
- return DAG.getConstant(*CI, VT);
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
- return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
- if (isa<ConstantPointerNull>(C)) {
- unsigned AS = V->getType()->getPointerAddressSpace();
- return DAG.getConstant(0, TLI->getPointerTy(AS));
- }
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
- return DAG.getConstantFP(*CFP, VT);
- if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
- return DAG.getUNDEF(VT);
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- visit(CE->getOpcode(), *CE);
- SDValue N1 = NodeMap[V];
- assert(N1.getNode() && "visit didn't populate the NodeMap!");
- return N1;
- }
- if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
- SmallVector<SDValue, 4> Constants;
- for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
- OI != OE; ++OI) {
- SDNode *Val = getValue(*OI).getNode();
- // If the operand is an empty aggregate, there are no values.
- if (!Val) continue;
- // Add each leaf value from the operand to the Constants list
- // to form a flattened list of all the values.
- for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
- Constants.push_back(SDValue(Val, i));
- }
- return DAG.getMergeValues(&Constants[0], Constants.size(),
- getCurSDLoc());
- }
- if (const ConstantDataSequential *CDS =
- dyn_cast<ConstantDataSequential>(C)) {
- SmallVector<SDValue, 4> Ops;
- for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
- SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
- // Add each leaf value from the operand to the Constants list
- // to form a flattened list of all the values.
- for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
- Ops.push_back(SDValue(Val, i));
- }
- if (isa<ArrayType>(CDS->getType()))
- return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc());
- return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
- VT, &Ops[0], Ops.size());
- }
- if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
- assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
- "Unknown struct or array constant!");
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*TLI, C->getType(), ValueVTs);
- unsigned NumElts = ValueVTs.size();
- if (NumElts == 0)
- return SDValue(); // empty struct
- SmallVector<SDValue, 4> Constants(NumElts);
- for (unsigned i = 0; i != NumElts; ++i) {
- EVT EltVT = ValueVTs[i];
- if (isa<UndefValue>(C))
- Constants[i] = DAG.getUNDEF(EltVT);
- else if (EltVT.isFloatingPoint())
- Constants[i] = DAG.getConstantFP(0, EltVT);
- else
- Constants[i] = DAG.getConstant(0, EltVT);
- }
- return DAG.getMergeValues(&Constants[0], NumElts,
- getCurSDLoc());
- }
- if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
- return DAG.getBlockAddress(BA, VT);
- VectorType *VecTy = cast<VectorType>(V->getType());
- unsigned NumElements = VecTy->getNumElements();
- // Now that we know the number and type of the elements, get that number of
- // elements into the Ops array based on what kind of constant it is.
- SmallVector<SDValue, 16> Ops;
- if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
- for (unsigned i = 0; i != NumElements; ++i)
- Ops.push_back(getValue(CV->getOperand(i)));
- } else {
- assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
- EVT EltVT = TLI->getValueType(VecTy->getElementType());
- SDValue Op;
- if (EltVT.isFloatingPoint())
- Op = DAG.getConstantFP(0, EltVT);
- else
- Op = DAG.getConstant(0, EltVT);
- Ops.assign(NumElements, Op);
- }
- // Create a BUILD_VECTOR node.
- return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
- VT, &Ops[0], Ops.size());
- }
- // If this is a static alloca, generate it as the frameindex instead of
- // computation.
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- DenseMap<const AllocaInst*, int>::iterator SI =
- FuncInfo.StaticAllocaMap.find(AI);
- if (SI != FuncInfo.StaticAllocaMap.end())
- return DAG.getFrameIndex(SI->second, TLI->getPointerTy());
- }
- // If this is an instruction which fast-isel has deferred, select it now.
- if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
- unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
- RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType());
- SDValue Chain = DAG.getEntryNode();
- return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
- }
- llvm_unreachable("Can't get register for value!");
- }
- void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
- const TargetLowering *TLI = TM.getTargetLowering();
- SDValue Chain = getControlRoot();
- SmallVector<ISD::OutputArg, 8> Outs;
- SmallVector<SDValue, 8> OutVals;
- if (!FuncInfo.CanLowerReturn) {
- unsigned DemoteReg = FuncInfo.DemoteRegister;
- const Function *F = I.getParent()->getParent();
- // Emit a store of the return value through the virtual register.
- // Leave Outs empty so that LowerReturn won't try to load return
- // registers the usual way.
- SmallVector<EVT, 1> PtrValueVTs;
- ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()),
- PtrValueVTs);
- SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
- SDValue RetOp = getValue(I.getOperand(0));
- SmallVector<EVT, 4> ValueVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
- unsigned NumValues = ValueVTs.size();
- SmallVector<SDValue, 4> Chains(NumValues);
- for (unsigned i = 0; i != NumValues; ++i) {
- SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
- RetPtr.getValueType(), RetPtr,
- DAG.getIntPtrConstant(Offsets[i]));
- Chains[i] =
- DAG.getStore(Chain, getCurSDLoc(),
- SDValue(RetOp.getNode(), RetOp.getResNo() + i),
- // FIXME: better loc info would be nice.
- Add, MachinePointerInfo(), false, false, 0);
- }
- Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
- MVT::Other, &Chains[0], NumValues);
- } else if (I.getNumOperands() != 0) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs);
- unsigned NumValues = ValueVTs.size();
- if (NumValues) {
- SDValue RetOp = getValue(I.getOperand(0));
- for (unsigned j = 0, f = NumValues; j != f; ++j) {
- EVT VT = ValueVTs[j];
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
- const Function *F = I.getParent()->getParent();
- if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
- Attribute::SExt))
- ExtendKind = ISD::SIGN_EXTEND;
- else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
- Attribute::ZExt))
- ExtendKind = ISD::ZERO_EXTEND;
- if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
- VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
- unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT);
- MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT);
- SmallVector<SDValue, 4> Parts(NumParts);
- getCopyToParts(DAG, getCurSDLoc(),
- SDValue(RetOp.getNode(), RetOp.getResNo() + j),
- &Parts[0], NumParts, PartVT, &I, ExtendKind);
- // 'inreg' on function refers to return value
- ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
- if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
- Attribute::InReg))
- Flags.setInReg();
- // Propagate extension type if any
- if (ExtendKind == ISD::SIGN_EXTEND)
- Flags.setSExt();
- else if (ExtendKind == ISD::ZERO_EXTEND)
- Flags.setZExt();
- for (unsigned i = 0; i < NumParts; ++i) {
- Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
- VT, /*isfixed=*/true, 0, 0));
- OutVals.push_back(Parts[i]);
- }
- }
- }
- }
- bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
- CallingConv::ID CallConv =
- DAG.getMachineFunction().getFunction()->getCallingConv();
- Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg,
- Outs, OutVals, getCurSDLoc(),
- DAG);
- // Verify that the target's LowerReturn behaved as expected.
- assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
- "LowerReturn didn't return a valid chain!");
- // Update the DAG with the new chain value resulting from return lowering.
- DAG.setRoot(Chain);
- }
- /// CopyToExportRegsIfNeeded - If the given value has virtual registers
- /// created for it, emit nodes to copy the value into the virtual
- /// registers.
- void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
- // Skip empty types
- if (V->getType()->isEmptyTy())
- return;
- DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
- if (VMI != FuncInfo.ValueMap.end()) {
- assert(!V->use_empty() && "Unused value assigned virtual registers!");
- CopyValueToVirtualRegister(V, VMI->second);
- }
- }
- /// ExportFromCurrentBlock - If this condition isn't known to be exported from
- /// the current basic block, add it to ValueMap now so that we'll get a
- /// CopyTo/FromReg.
- void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
- // No need to export constants.
- if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
- // Already exported?
- if (FuncInfo.isExportedInst(V)) return;
- unsigned Reg = FuncInfo.InitializeRegForValue(V);
- CopyValueToVirtualRegister(V, Reg);
- }
- bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
- const BasicBlock *FromBB) {
- // The operands of the setcc have to be in this block. We don't know
- // how to export them from some other block.
- if (const Instruction *VI = dyn_cast<Instruction>(V)) {
- // Can export from current BB.
- if (VI->getParent() == FromBB)
- return true;
- // Is already exported, noop.
- return FuncInfo.isExportedInst(V);
- }
- // If this is an argument, we can export it if the BB is the entry block or
- // if it is already exported.
- if (isa<Argument>(V)) {
- if (FromBB == &FromBB->getParent()->getEntryBlock())
- return true;
- // Otherwise, can only export this if it is already exported.
- return FuncInfo.isExportedInst(V);
- }
- // Otherwise, constants can always be exported.
- return true;
- }
- /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
- uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
- const MachineBasicBlock *Dst) const {
- BranchProbabilityInfo *BPI = FuncInfo.BPI;
- if (!BPI)
- return 0;
- const BasicBlock *SrcBB = Src->getBasicBlock();
- const BasicBlock *DstBB = Dst->getBasicBlock();
- return BPI->getEdgeWeight(SrcBB, DstBB);
- }
- void SelectionDAGBuilder::
- addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
- uint32_t Weight /* = 0 */) {
- if (!Weight)
- Weight = getEdgeWeight(Src, Dst);
- Src->addSuccessor(Dst, Weight);
- }
- static bool InBlock(const Value *V, const BasicBlock *BB) {
- if (const Instruction *I = dyn_cast<Instruction>(V))
- return I->getParent() == BB;
- return true;
- }
- /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
- /// This function emits a branch and is used at the leaves of an OR or an
- /// AND operator tree.
- ///
- void
- SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
- MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- MachineBasicBlock *CurBB,
- MachineBasicBlock *SwitchBB) {
- const BasicBlock *BB = CurBB->getBasicBlock();
- // If the leaf of the tree is a comparison, merge the condition into
- // the caseblock.
- if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
- // The operands of the cmp have to be in this block. We don't know
- // how to export them from some other block. If this is the first block
- // of the sequence, no exporting is needed.
- if (CurBB == SwitchBB ||
- (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
- isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
- ISD::CondCode Condition;
- if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
- Condition = getICmpCondCode(IC->getPredicate());
- } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
- Condition = getFCmpCondCode(FC->getPredicate());
- if (TM.Options.NoNaNsFPMath)
- Condition = getFCmpCodeWithoutNaN(Condition);
- } else {
- Condition = ISD::SETEQ; // silence warning.
- llvm_unreachable("Unknown compare instruction");
- }
- CaseBlock CB(Condition, BOp->getOperand(0),
- BOp->getOperand(1), NULL, TBB, FBB, CurBB);
- SwitchCases.push_back(CB);
- return;
- }
- }
- // Create a CaseBlock record representing this branch.
- CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
- NULL, TBB, FBB, CurBB);
- SwitchCases.push_back(CB);
- }
- /// FindMergedConditions - If Cond is an expression like
- void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
- MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- MachineBasicBlock *CurBB,
- MachineBasicBlock *SwitchBB,
- unsigned Opc) {
- // If this node is not part of the or/and tree, emit it as a branch.
- const Instruction *BOp = dyn_cast<Instruction>(Cond);
- if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
- (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
- BOp->getParent() != CurBB->getBasicBlock() ||
- !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
- !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
- EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
- return;
- }
- // Create TmpBB after CurBB.
- MachineFunction::iterator BBI = CurBB;
- MachineFunction &MF = DAG.getMachineFunction();
- MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
- CurBB->getParent()->insert(++BBI, TmpBB);
- if (Opc == Instruction::Or) {
- // Codegen X | Y as:
- // jmp_if_X TBB
- // jmp TmpBB
- // TmpBB:
- // jmp_if_Y TBB
- // jmp FBB
- //
- // Emit the LHS condition.
- FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
- // Emit the RHS condition into TmpBB.
- FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
- } else {
- assert(Opc == Instruction::And && "Unknown merge op!");
- // Codegen X & Y as:
- // jmp_if_X TmpBB
- // jmp FBB
- // TmpBB:
- // jmp_if_Y TBB
- // jmp FBB
- //
- // This requires creation of TmpBB after CurBB.
- // Emit the LHS condition.
- FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
- // Emit the RHS condition into TmpBB.
- FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
- }
- }
- /// If the set of cases should be emitted as a series of branches, return true.
- /// If we should emit this as a bunch of and/or'd together conditions, return
- /// false.
- bool
- SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
- if (Cases.size() != 2) return true;
- // If this is two comparisons of the same values or'd or and'd together, they
- // will get folded into a single comparison, so don't emit two blocks.
- if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
- Cases[0].CmpRHS == Cases[1].CmpRHS) ||
- (Cases[0].CmpRHS == Cases[1].CmpLHS &&
- Cases[0].CmpLHS == Cases[1].CmpRHS)) {
- return false;
- }
- // Handle: (X != null) | (Y != null) --> (X|Y) != 0
- // Handle: (X == null) & (Y == null) --> (X|Y) == 0
- if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
- Cases[0].CC == Cases[1].CC &&
- isa<Constant>(Cases[0].CmpRHS) &&
- cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
- if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
- return false;
- if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
- return false;
- }
- return true;
- }
- void SelectionDAGBuilder::visitBr(const BranchInst &I) {
- MachineBasicBlock *BrMBB = FuncInfo.MBB;
- // Update machine-CFG edges.
- MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
- // Figure out which block is immediately after the current one.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = BrMBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
- if (I.isUnconditional()) {
- // Update machine-CFG edges.
- BrMBB->addSuccessor(Succ0MBB);
- // If this is not a fall-through branch, emit the branch.
- if (Succ0MBB != NextBlock)
- DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
- MVT::Other, getControlRoot(),
- DAG.getBasicBlock(Succ0MBB)));
- return;
- }
- // If this condition is one of the special cases we handle, do special stuff
- // now.
- const Value *CondVal = I.getCondition();
- MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
- // If this is a series of conditions that are or'd or and'd together, emit
- // this as a sequence of branches instead of setcc's with and/or operations.
- // As long as jumps are not expensive, this should improve performance.
- // For example, instead of something like:
- // cmp A, B
- // C = seteq
- // cmp D, E
- // F = setle
- // or C, F
- // jnz foo
- // Emit:
- // cmp A, B
- // je foo
- // cmp D, E
- // jle foo
- //
- if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
- if (!TM.getTargetLowering()->isJumpExpensive() &&
- BOp->hasOneUse() &&
- (BOp->getOpcode() == Instruction::And ||
- BOp->getOpcode() == Instruction::Or)) {
- FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
- BOp->getOpcode());
- // If the compares in later blocks need to use values not currently
- // exported from this block, export them now. This block should always
- // be the first entry.
- assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
- // Allow some cases to be rejected.
- if (ShouldEmitAsBranches(SwitchCases)) {
- for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
- ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
- ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
- }
- // Emit the branch for this block.
- visitSwitchCase(SwitchCases[0], BrMBB);
- SwitchCases.erase(SwitchCases.begin());
- return;
- }
- // Okay, we decided not to do this, remove any inserted MBB's and clear
- // SwitchCases.
- for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
- FuncInfo.MF->erase(SwitchCases[i].ThisBB);
- SwitchCases.clear();
- }
- }
- // Create a CaseBlock record representing this branch.
- CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
- NULL, Succ0MBB, Succ1MBB, BrMBB);
- // Use visitSwitchCase to actually insert the fast branch sequence for this
- // cond branch.
- visitSwitchCase(CB, BrMBB);
- }
- /// visitSwitchCase - Emits the necessary code to represent a single node in
- /// the binary search tree resulting from lowering a switch instruction.
- void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
- MachineBasicBlock *SwitchBB) {
- SDValue Cond;
- SDValue CondLHS = getValue(CB.CmpLHS);
- SDLoc dl = getCurSDLoc();
- // Build the setcc now.
- if (CB.CmpMHS == NULL) {
- // Fold "(X == true)" to X and "(X == false)" to !X to
- // handle common cases produced by branch lowering.
- if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
- CB.CC == ISD::SETEQ)
- Cond = CondLHS;
- else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
- CB.CC == ISD::SETEQ) {
- SDValue True = DAG.getConstant(1, CondLHS.getValueType());
- Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
- } else
- Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
- } else {
- assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
- const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
- const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
- SDValue CmpOp = getValue(CB.CmpMHS);
- EVT VT = CmpOp.getValueType();
- if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
- Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
- ISD::SETLE);
- } else {
- SDValue SUB = DAG.getNode(ISD::SUB, dl,
- VT, CmpOp, DAG.getConstant(Low, VT));
- Cond = DAG.getSetCC(dl, MVT::i1, SUB,
- DAG.getConstant(High-Low, VT), ISD::SETULE);
- }
- }
- // Update successor info
- addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
- // TrueBB and FalseBB are always different unless the incoming IR is
- // degenerate. This only happens when running llc on weird IR.
- if (CB.TrueBB != CB.FalseBB)
- addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = SwitchBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
- // If the lhs block is the next block, invert the condition so that we can
- // fall through to the lhs instead of the rhs block.
- if (CB.TrueBB == NextBlock) {
- std::swap(CB.TrueBB, CB.FalseBB);
- SDValue True = DAG.getConstant(1, Cond.getValueType());
- Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
- }
- SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
- MVT::Other, getControlRoot(), Cond,
- DAG.getBasicBlock(CB.TrueBB));
- // Insert the false branch. Do this even if it's a fall through branch,
- // this makes it easier to do DAG optimizations which require inverting
- // the branch condition.
- BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
- DAG.getBasicBlock(CB.FalseBB));
- DAG.setRoot(BrCond);
- }
- /// visitJumpTable - Emit JumpTable node in the current MBB
- void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
- // Emit the code for the jump table
- assert(JT.Reg != -1U && "Should lower JT Header first!");
- EVT PTy = TM.getTargetLowering()->getPointerTy();
- SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
- JT.Reg, PTy);
- SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
- SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
- MVT::Other, Index.getValue(1),
- Table, Index);
- DAG.setRoot(BrJumpTable);
- }
- /// visitJumpTableHeader - This function emits necessary code to produce index
- /// in the JumpTable from switch case.
- void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
- JumpTableHeader &JTH,
- MachineBasicBlock *SwitchBB) {
- // Subtract the lowest switch case value from the value being switched on and
- // conditional branch to default mbb if the result is greater than the
- // difference between smallest and largest cases.
- SDValue SwitchOp = getValue(JTH.SValue);
- EVT VT = SwitchOp.getValueType();
- SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
- DAG.getConstant(JTH.First, VT));
- // The SDNode we just created, which holds the value being switched on minus
- // the smallest case value, needs to be copied to a virtual register so it
- // can be used as an index into the jump table in a subsequent basic block.
- // This value may be smaller or larger than the target's pointer type, and
- // therefore require extension or truncating.
- const TargetLowering *TLI = TM.getTargetLowering();
- SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy());
- unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy());
- SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
- JumpTableReg, SwitchOp);
- JT.Reg = JumpTableReg;
- // Emit the range check for the jump table, and branch to the default block
- // for the switch statement if the value being switched on exceeds the largest
- // case in the switch.
- SDValue CMP = DAG.getSetCC(getCurSDLoc(),
- TLI->getSetCCResultType(*DAG.getContext(),
- Sub.getValueType()),
- Sub,
- DAG.getConstant(JTH.Last - JTH.First,VT),
- ISD::SETUGT);
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = SwitchBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
- SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
- MVT::Other, CopyTo, CMP,
- DAG.getBasicBlock(JT.Default));
- if (JT.MBB != NextBlock)
- BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
- DAG.getBasicBlock(JT.MBB));
- DAG.setRoot(BrCond);
- }
- /// Codegen a new tail for a stack protector check ParentMBB which has had its
- /// tail spliced into a stack protector check success bb.
- ///
- /// For a high level explanation of how this fits into the stack protector
- /// generation see the comment on the declaration of class
- /// StackProtectorDescriptor.
- void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
- MachineBasicBlock *ParentBB) {
- // First create the loads to the guard/stack slot for the comparison.
- const TargetLowering *TLI = TM.getTargetLowering();
- EVT PtrTy = TLI->getPointerTy();
- MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
- int FI = MFI->getStackProtectorIndex();
- const Value *IRGuard = SPD.getGuard();
- SDValue GuardPtr = getValue(IRGuard);
- SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
- unsigned Align =
- TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
- SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
- GuardPtr, MachinePointerInfo(IRGuard, 0),
- true, false, false, Align);
- SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
- StackSlotPtr,
- MachinePointerInfo::getFixedStack(FI),
- true, false, false, Align);
- // Perform the comparison via a subtract/getsetcc.
- EVT VT = Guard.getValueType();
- SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
- SDValue Cmp = DAG.getSetCC(getCurSDLoc(),
- TLI->getSetCCResultType(*DAG.getContext(),
- Sub.getValueType()),
- Sub, DAG.getConstant(0, VT),
- ISD::SETNE);
- // If the sub is not 0, then we know the guard/stackslot do not equal, so
- // branch to failure MBB.
- SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
- MVT::Other, StackSlot.getOperand(0),
- Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
- // Otherwise branch to success MBB.
- SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
- MVT::Other, BrCond,
- DAG.getBasicBlock(SPD.getSuccessMBB()));
- DAG.setRoot(Br);
- }
- /// Codegen the failure basic block for a stack protector check.
- ///
- /// A failure stack protector machine basic block consists simply of a call to
- /// __stack_chk_fail().
- ///
- /// For a high level explanation of how this fits into the stack protector
- /// generation see the comment on the declaration of class
- /// StackProtectorDescriptor.
- void
- SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
- const TargetLowering *TLI = TM.getTargetLowering();
- SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL,
- MVT::isVoid, 0, 0, false, getCurSDLoc(),
- false, false).second;
- DAG.setRoot(Chain);
- }
- /// visitBitTestHeader - This function emits necessary code to produce value
- /// suitable for "bit tests"
- void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
- MachineBasicBlock *SwitchBB) {
- // Subtract the minimum value
- SDValue SwitchOp = getValue(B.SValue);
- EVT VT = SwitchOp.getValueType();
- SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
- DAG.getConstant(B.First, VT));
- // Check range
- const TargetLowering *TLI = TM.getTargetLowering();
- SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
- TLI->getSetCCResultType(*DAG.getContext(),
- Sub.getValueType()),
- Sub, DAG.getConstant(B.Range, VT),
- ISD::SETUGT);
- // Determine the type of the test operands.
- bool UsePtrType = false;
- if (!TLI->isTypeLegal(VT))
- UsePtrType = true;
- else {
- for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
- if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
- // Switch table case range are encoded into series of masks.
- // Just use pointer type, it's guaranteed to fit.
- UsePtrType = true;
- break;
- }
- }
- if (UsePtrType) {
- VT = TLI->getPointerTy();
- Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
- }
- B.RegVT = VT.getSimpleVT();
- B.Reg = FuncInfo.CreateReg(B.RegVT);
- SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
- B.Reg, Sub);
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = SwitchBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
- MachineBasicBlock* MBB = B.Cases[0].ThisBB;
- addSuccessorWithWeight(SwitchBB, B.Default);
- addSuccessorWithWeight(SwitchBB, MBB);
- SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
- MVT::Other, CopyTo, RangeCmp,
- DAG.getBasicBlock(B.Default));
- if (MBB != NextBlock)
- BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
- DAG.getBasicBlock(MBB));
- DAG.setRoot(BrRange);
- }
- /// visitBitTestCase - this function produces one "bit test"
- void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
- MachineBasicBlock* NextMBB,
- uint32_t BranchWeightToNext,
- unsigned Reg,
- BitTestCase &B,
- MachineBasicBlock *SwitchBB) {
- MVT VT = BB.RegVT;
- SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
- Reg, VT);
- SDValue Cmp;
- unsigned PopCount = CountPopulation_64(B.Mask);
- const TargetLowering *TLI = TM.getTargetLowering();
- if (PopCount == 1) {
- // Testing for a single bit; just compare the shift count with what it
- // would need to be to shift a 1 bit in that position.
- Cmp = DAG.getSetCC(getCurSDLoc(),
- TLI->getSetCCResultType(*DAG.getContext(), VT),
- ShiftOp,
- DAG.getConstant(countTrailingZeros(B.Mask), VT),
- ISD::SETEQ);
- } else if (PopCount == BB.Range) {
- // There is only one zero bit in the range, test for it directly.
- Cmp = DAG.getSetCC(getCurSDLoc(),
- TLI->getSetCCResultType(*DAG.getContext(), VT),
- ShiftOp,
- DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
- ISD::SETNE);
- } else {
- // Make desired shift
- SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
- DAG.getConstant(1, VT), ShiftOp);
- // Emit bit tests and jumps
- SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
- VT, SwitchVal, DAG.getConstant(B.Mask, VT));
- Cmp = DAG.getSetCC(getCurSDLoc(),
- TLI->getSetCCResultType(*DAG.getContext(), VT),
- AndOp, DAG.getConstant(0, VT),
- ISD::SETNE);
- }
- // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
- addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
- // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
- addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
- SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
- MVT::Other, getControlRoot(),
- Cmp, DAG.getBasicBlock(B.TargetBB));
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = SwitchBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
- if (NextMBB != NextBlock)
- BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
- DAG.getBasicBlock(NextMBB));
- DAG.setRoot(BrAnd);
- }
- void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
- MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
- // Retrieve successors.
- MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
- MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
- const Value *Callee(I.getCalledValue());
- const Function *Fn = dyn_cast<Function>(Callee);
- if (isa<InlineAsm>(Callee))
- visitInlineAsm(&I);
- else if (Fn && Fn->isIntrinsic()) {
- assert(Fn->getIntrinsicID() == Intrinsic::donothing);
- // Ignore invokes to @llvm.donothing: jump directly to the next BB.
- } else
- LowerCallTo(&I, getValue(Callee), false, LandingPad);
- // If the value of the invoke is used outside of its defining block, make it
- // available as a virtual register.
- CopyToExportRegsIfNeeded(&I);
- // Update successor info
- addSuccessorWithWeight(InvokeMBB, Return);
- addSuccessorWithWeight(InvokeMBB, LandingPad);
- // Drop into normal successor.
- DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
- MVT::Other, getControlRoot(),
- DAG.getBasicBlock(Return)));
- }
- void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
- llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
- }
- void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
- assert(FuncInfo.MBB->isLandingPad() &&
- "Call to landingpad not in landing pad!");
- MachineBasicBlock *MBB = FuncInfo.MBB;
- MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
- AddLandingPadInfo(LP, MMI, MBB);
- // If there aren't registers to copy the values into (e.g., during SjLj
- // exceptions), then don't bother to create these DAG nodes.
- const TargetLowering *TLI = TM.getTargetLowering();
- if (TLI->getExceptionPointerRegister() == 0 &&
- TLI->getExceptionSelectorRegister() == 0)
- return;
- SmallVector<EVT, 2> ValueVTs;
- ComputeValueVTs(*TLI, LP.getType(), ValueVTs);
- assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
- // Get the two live-in registers as SDValues. The physregs have already been
- // copied into virtual registers.
- SDValue Ops[2];
- Ops[0] = DAG.getZExtOrTrunc(
- DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
- FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()),
- getCurSDLoc(), ValueVTs[0]);
- Ops[1] = DAG.getZExtOrTrunc(
- DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
- FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()),
- getCurSDLoc(), ValueVTs[1]);
- // Merge into one.
- SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
- DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
- &Ops[0], 2);
- setValue(&LP, Res);
- }
- /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
- /// small case ranges).
- bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
- CaseRecVector& WorkList,
- const Value* SV,
- MachineBasicBlock *Default,
- MachineBasicBlock *SwitchBB) {
- // Size is the number of Cases represented by this range.
- size_t Size = CR.Range.second - CR.Range.first;
- if (Size > 3)
- return false;
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = FuncInfo.MF;
- // Figure out which block is immediately after the current one.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = CR.CaseBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
- BranchProbabilityInfo *BPI = FuncInfo.BPI;
- // If any two of the cases has the same destination, and if one value
- // is the same as the other, but has one bit unset that the other has set,
- // use bit manipulation to do two compares at once. For example:
- // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
- // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
- // TODO: Handle cases where CR.CaseBB != SwitchBB.
- if (Size == 2 && CR.CaseBB == SwitchBB) {
- Case &Small = *CR.Range.first;
- Case &Big = *(CR.Range.second-1);
- if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
- const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
- const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
- // Check that there is only one bit different.
- if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
- (SmallValue | BigValue) == BigValue) {
- // Isolate the common bit.
- APInt CommonBit = BigValue & ~SmallValue;
- assert((SmallValue | CommonBit) == BigValue &&
- CommonBit.countPopulation() == 1 && "Not a common bit?");
- SDValue CondLHS = getValue(SV);
- EVT VT = CondLHS.getValueType();
- SDLoc DL = getCurSDLoc();
- SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
- DAG.getConstant(CommonBit, VT));
- SDValue Cond = DAG.getSetCC(DL, MVT::i1,
- Or, DAG.getConstant(BigValue, VT),
- ISD::SETEQ);
- // Update successor info.
- // Both Small and Big will jump to Small.BB, so we sum up the weights.
- addSuccessorWithWeight(SwitchBB, Small.BB,
- Small.ExtraWeight + Big.ExtraWeight);
- addSuccessorWithWeight(SwitchBB, Default,
- // The default destination is the first successor in IR.
- BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
- // Insert the true branch.
- SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
- getControlRoot(), Cond,
- DAG.getBasicBlock(Small.BB));
- // Insert the false branch.
- BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
- DAG.getBasicBlock(Default));
- DAG.setRoot(BrCond);
- return true;
- }
- }
- }
- // Order cases by weight so the most likely case will be checked first.
- uint32_t UnhandledWeights = 0;
- if (BPI) {
- for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
- uint32_t IWeight = I->ExtraWeight;
- UnhandledWeights += IWeight;
- for (CaseItr J = CR.Range.first; J < I; ++J) {
- uint32_t JWeight = J->ExtraWeight;
- if (IWeight > JWeight)
- std::swap(*I, *J);
- }
- }
- }
- // Rearrange the case blocks so that the last one falls through if possible.
- Case &BackCase = *(CR.Range.second-1);
- if (Size > 1 &&
- NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
- // The last case block won't fall through into 'NextBlock' if we emit the
- // branches in this order. See if rearranging a case value would help.
- // We start at the bottom as it's the case with the least weight.
- for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
- if (I->BB == NextBlock) {
- std::swap(*I, BackCase);
- break;
- }
- }
- // Create a CaseBlock record representing a conditional branch to
- // the Case's target mbb if the value being switched on SV is equal
- // to C.
- MachineBasicBlock *CurBlock = CR.CaseBB;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
- MachineBasicBlock *FallThrough;
- if (I != E-1) {
- FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
- CurMF->insert(BBI, FallThrough);
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- } else {
- // If the last case doesn't match, go to the default block.
- FallThrough = Default;
- }
- const Value *RHS, *LHS, *MHS;
- ISD::CondCode CC;
- if (I->High == I->Low) {
- // This is just small small case range :) containing exactly 1 case
- CC = ISD::SETEQ;
- LHS = SV; RHS = I->High; MHS = NULL;
- } else {
- CC = ISD::SETLE;
- LHS = I->Low; MHS = SV; RHS = I->High;
- }
- // The false weight should be sum of all un-handled cases.
- UnhandledWeights -= I->ExtraWeight;
- CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
- /* me */ CurBlock,
- /* trueweight */ I->ExtraWeight,
- /* falseweight */ UnhandledWeights);
- // If emitting the first comparison, just call visitSwitchCase to emit the
- // code into the current block. Otherwise, push the CaseBlock onto the
- // vector to be later processed by SDISel, and insert the node's MBB
- // before the next MBB.
- if (CurBlock == SwitchBB)
- visitSwitchCase(CB, SwitchBB);
- else
- SwitchCases.push_back(CB);
- CurBlock = FallThrough;
- }
- return true;
- }
- static inline bool areJTsAllowed(const TargetLowering &TLI) {
- return TLI.supportJumpTables() &&
- (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
- TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
- }
- static APInt ComputeRange(const APInt &First, const APInt &Last) {
- uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
- APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
- return (LastExt - FirstExt + 1ULL);
- }
- /// handleJTSwitchCase - Emit jumptable for current switch case range
- bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
- CaseRecVector &WorkList,
- const Value *SV,
- MachineBasicBlock *Default,
- MachineBasicBlock *SwitchBB) {
- Case& FrontCase = *CR.Range.first;
- Case& BackCase = *(CR.Range.second-1);
- const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
- const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
- APInt TSize(First.getBitWidth(), 0);
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
- TSize += I->size();
- const TargetLowering *TLI = TM.getTargetLowering();
- if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries()))
- return false;
- APInt Range = ComputeRange(First, Last);
- // The density is TSize / Range. Require at least 40%.
- // It should not be possible for IntTSize to saturate for sane code, but make
- // sure we handle Range saturation correctly.
- uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
- uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
- if (IntTSize * 10 < IntRange * 4)
- return false;
- DEBUG(dbgs() << "Lowering jump table\n"
- << "First entry: " << First << ". Last entry: " << Last << '\n'
- << "Range: " << Range << ". Size: " << TSize << ".\n\n");
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = FuncInfo.MF;
- // Figure out which block is immediately after the current one.
- MachineFunction::iterator BBI = CR.CaseBB;
- ++BBI;
- const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
- // Create a new basic block to hold the code for loading the address
- // of the jump table, and jumping to it. Update successor information;
- // we will either branch to the default case for the switch, or the jump
- // table.
- MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, JumpTableBB);
- addSuccessorWithWeight(CR.CaseBB, Default);
- addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
- // Build a vector of destination BBs, corresponding to each target
- // of the jump table. If the value of the jump table slot corresponds to
- // a case statement, push the case's BB onto the vector, otherwise, push
- // the default BB.
- std::vector<MachineBasicBlock*> DestBBs;
- APInt TEI = First;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
- const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
- const APInt &High = cast<ConstantInt>(I->High)->getValue();
- if (Low.sle(TEI) && TEI.sle(High)) {
- DestBBs.push_back(I->BB);
- if (TEI==High)
- ++I;
- } else {
- DestBBs.push_back(Default);
- }
- }
- // Calculate weight for each unique destination in CR.
- DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
- if (FuncInfo.BPI)
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
- DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
- DestWeights.find(I->BB);
- if (Itr != DestWeights.end())
- Itr->second += I->ExtraWeight;
- else
- DestWeights[I->BB] = I->ExtraWeight;
- }
- // Update successor info. Add one edge to each unique successor.
- BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
- for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
- E = DestBBs.end(); I != E; ++I) {
- if (!SuccsHandled[(*I)->getNumber()]) {
- SuccsHandled[(*I)->getNumber()] = true;
- DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
- DestWeights.find(*I);
- addSuccessorWithWeight(JumpTableBB, *I,
- Itr != DestWeights.end() ? Itr->second : 0);
- }
- }
- // Create a jump table index for this jump table.
- unsigned JTEncoding = TLI->getJumpTableEncoding();
- unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
- ->createJumpTableIndex(DestBBs);
- // Set the jump table information so that we can codegen it as a second
- // MachineBasicBlock
- JumpTable JT(-1U, JTI, JumpTableBB, Default);
- JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
- if (CR.CaseBB == SwitchBB)
- visitJumpTableHeader(JT, JTH, SwitchBB);
- JTCases.push_back(JumpTableBlock(JTH, JT));
- return true;
- }
- /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
- /// 2 subtrees.
- bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
- CaseRecVector& WorkList,
- const Value* SV,
- MachineBasicBlock* Default,
- MachineBasicBlock* SwitchBB) {
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = FuncInfo.MF;
- // Figure out which block is immediately after the current one.
- MachineFunction::iterator BBI = CR.CaseBB;
- ++BBI;
- Case& FrontCase = *CR.Range.first;
- Case& BackCase = *(CR.Range.second-1);
- const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
- // Size is the number of Cases represented by this range.
- unsigned Size = CR.Range.second - CR.Range.first;
- const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
- const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
- double FMetric = 0;
- CaseItr Pivot = CR.Range.first + Size/2;
- // Select optimal pivot, maximizing sum density of LHS and RHS. This will
- // (heuristically) allow us to emit JumpTable's later.
- APInt TSize(First.getBitWidth(), 0);
- for (CaseItr I = CR.Range.first, E = CR.Range.second;
- I!=E; ++I)
- TSize += I->size();
- APInt LSize = FrontCase.size();
- APInt RSize = TSize-LSize;
- DEBUG(dbgs() << "Selecting best pivot: \n"
- << "First: " << First << ", Last: " << Last <<'\n'
- << "LSize: " << LSize << ", RSize: " << RSize << '\n');
- for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
- J!=E; ++I, ++J) {
- const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
- const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
- APInt Range = ComputeRange(LEnd, RBegin);
- assert((Range - 2ULL).isNonNegative() &&
- "Invalid case distance");
- // Use volatile double here to avoid excess precision issues on some hosts,
- // e.g. that use 80-bit X87 registers.
- volatile double LDensity =
- (double)LSize.roundToDouble() /
- (LEnd - First + 1ULL).roundToDouble();
- volatile double RDensity =
- (double)RSize.roundToDouble() /
- (Last - RBegin + 1ULL).roundToDouble();
- volatile double Metric = Range.logBase2()*(LDensity+RDensity);
- // Should always split in some non-trivial place
- DEBUG(dbgs() <<"=>Step\n"
- << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
- << "LDensity: " << LDensity
- << ", RDensity: " << RDensity << '\n'
- << "Metric: " << Metric << '\n');
- if (FMetric < Metric) {
- Pivot = J;
- FMetric = Metric;
- DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
- }
- LSize += J->size();
- RSize -= J->size();
- }
- const TargetLowering *TLI = TM.getTargetLowering();
- if (areJTsAllowed(*TLI)) {
- // If our case is dense we *really* should handle it earlier!
- assert((FMetric > 0) && "Should handle dense range earlier!");
- } else {
- Pivot = CR.Range.first + Size/2;
- }
- CaseRange LHSR(CR.Range.first, Pivot);
- CaseRange RHSR(Pivot, CR.Range.second);
- const Constant *C = Pivot->Low;
- MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
- // We know that we branch to the LHS if the Value being switched on is
- // less than the Pivot value, C. We use this to optimize our binary
- // tree a bit, by recognizing that if SV is greater than or equal to the
- // LHS's Case Value, and that Case Value is exactly one less than the
- // Pivot's Value, then we can branch directly to the LHS's Target,
- // rather than creating a leaf node for it.
- if ((LHSR.second - LHSR.first) == 1 &&
- LHSR.first->High == CR.GE &&
- cast<ConstantInt>(C)->getValue() ==
- (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
- TrueBB = LHSR.first->BB;
- } else {
- TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, TrueBB);
- WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- }
- // Similar to the optimization above, if the Value being switched on is
- // known to be less than the Constant CR.LT, and the current Case Value
- // is CR.LT - 1, then we can branch directly to the target block for
- // the current Case Value, rather than emitting a RHS leaf node for it.
- if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
- cast<ConstantInt>(RHSR.first->Low)->getValue() ==
- (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
- FalseBB = RHSR.first->BB;
- } else {
- FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, FalseBB);
- WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- }
- // Create a CaseBlock record representing a conditional branch to
- // the LHS node if the value being switched on SV is less than C.
- // Otherwise, branch to LHS.
- CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
- if (CR.CaseBB == SwitchBB)
- visitSwitchCase(CB, SwitchBB);
- else
- SwitchCases.push_back(CB);
- return true;
- }
- /// handleBitTestsSwitchCase - if current case range has few destination and
- /// range span less, than machine word bitwidth, encode case range into series
- /// of masks and emit bit tests with these masks.
- bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
- CaseRecVector& WorkList,
- const Value* SV,
- MachineBasicBlock* Default,
- MachineBasicBlock* SwitchBB) {
- const TargetLowering *TLI = TM.getTargetLowering();
- EVT PTy = TLI->getPointerTy();
- unsigned IntPtrBits = PTy.getSizeInBits();
- Case& FrontCase = *CR.Range.first;
- Case& BackCase = *(CR.Range.second-1);
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = FuncInfo.MF;
- // If target does not have legal shift left, do not emit bit tests at all.
- if (!TLI->isOperationLegal(ISD::SHL, PTy))
- return false;
- size_t numCmps = 0;
- for (CaseItr I = CR.Range.first, E = CR.Range.second;
- I!=E; ++I) {
- // Single case counts one, case range - two.
- numCmps += (I->Low == I->High ? 1 : 2);
- }
- // Count unique destinations
- SmallSet<MachineBasicBlock*, 4> Dests;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
- Dests.insert(I->BB);
- if (Dests.size() > 3)
- // Don't bother the code below, if there are too much unique destinations
- return false;
- }
- DEBUG(dbgs() << "Total number of unique destinations: "
- << Dests.size() << '\n'
- << "Total number of comparisons: " << numCmps << '\n');
- // Compute span of values.
- const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
- const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
- APInt cmpRange = maxValue - minValue;
- DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
- << "Low bound: " << minValue << '\n'
- << "High bound: " << maxValue << '\n');
- if (cmpRange.uge(IntPtrBits) ||
- (!(Dests.size() == 1 && numCmps >= 3) &&
- !(Dests.size() == 2 && numCmps >= 5) &&
- !(Dests.size() >= 3 && numCmps >= 6)))
- return false;
- DEBUG(dbgs() << "Emitting bit tests\n");
- APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
- // Optimize the case where all the case values fit in a
- // word without having to subtract minValue. In this case,
- // we can optimize away the subtraction.
- if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
- cmpRange = maxValue;
- } else {
- lowBound = minValue;
- }
- CaseBitsVector CasesBits;
- unsigned i, count = 0;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
- MachineBasicBlock* Dest = I->BB;
- for (i = 0; i < count; ++i)
- if (Dest == CasesBits[i].BB)
- break;
- if (i == count) {
- assert((count < 3) && "Too much destinations to test!");
- CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
- count++;
- }
- const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
- const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
- uint64_t lo = (lowValue - lowBound).getZExtValue();
- uint64_t hi = (highValue - lowBound).getZExtValue();
- CasesBits[i].ExtraWeight += I->ExtraWeight;
- for (uint64_t j = lo; j <= hi; j++) {
- CasesBits[i].Mask |= 1ULL << j;
- CasesBits[i].Bits++;
- }
- }
- std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
- BitTestInfo BTC;
- // Figure out which block is immediately after the current one.
- MachineFunction::iterator BBI = CR.CaseBB;
- ++BBI;
- const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
- DEBUG(dbgs() << "Cases:\n");
- for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
- DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
- << ", Bits: " << CasesBits[i].Bits
- << ", BB: " << CasesBits[i].BB << '\n');
- MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, CaseBB);
- BTC.push_back(BitTestCase(CasesBits[i].Mask,
- CaseBB,
- CasesBits[i].BB, CasesBits[i].ExtraWeight));
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- }
- BitTestBlock BTB(lowBound, cmpRange, SV,
- -1U, MVT::Other, (CR.CaseBB == SwitchBB),
- CR.CaseBB, Default, BTC);
- if (CR.CaseBB == SwitchBB)
- visitBitTestHeader(BTB, SwitchBB);
- BitTestCases.push_back(BTB);
- return true;
- }
- /// Clusterify - Transform simple list of Cases into list of CaseRange's
- size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
- const SwitchInst& SI) {
- size_t numCmps = 0;
- BranchProbabilityInfo *BPI = FuncInfo.BPI;
- // Start with "simple" cases
- for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
- i != e; ++i) {
- const BasicBlock *SuccBB = i.getCaseSuccessor();
- MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
- uint32_t ExtraWeight =
- BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0;
- Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
- SMBB, ExtraWeight));
- }
- std::sort(Cases.begin(), Cases.end(), CaseCmp());
- // Merge case into clusters
- if (Cases.size() >= 2)
- // Must recompute end() each iteration because it may be
- // invalidated by erase if we hold on to it
- for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
- J != Cases.end(); ) {
- const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
- const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
- MachineBasicBlock* nextBB = J->BB;
- MachineBasicBlock* currentBB = I->BB;
- // If the two neighboring cases go to the same destination, merge them
- // into a single case.
- if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
- I->High = J->High;
- I->ExtraWeight += J->ExtraWeight;
- J = Cases.erase(J);
- } else {
- I = J++;
- }
- }
- for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
- if (I->Low != I->High)
- // A range counts double, since it requires two compares.
- ++numCmps;
- }
- return numCmps;
- }
- void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
- MachineBasicBlock *Last) {
- // Update JTCases.
- for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
- if (JTCases[i].first.HeaderBB == First)
- JTCases[i].first.HeaderBB = Last;
- // Update BitTestCases.
- for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
- if (BitTestCases[i].Parent == First)
- BitTestCases[i].Parent = Last;
- }
- void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
- MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
- // Figure out which block is immediately after the current one.
- MachineBasicBlock *NextBlock = 0;
- MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
- // If there is only the default destination, branch to it if it is not the
- // next basic block. Otherwise, just fall through.
- if (!SI.getNumCases()) {
- // Update machine-CFG edges.
- // If this is not a fall-through branch, emit the branch.
- SwitchMBB->addSuccessor(Default);
- if (Default != NextBlock)
- DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
- MVT::Other, getControlRoot(),
- DAG.getBasicBlock(Default)));
- return;
- }
- // If there are any non-default case statements, create a vector of Cases
- // representing each one, and sort the vector so that we can efficiently
- // create a binary search tree from them.
- CaseVector Cases;
- size_t numCmps = Clusterify(Cases, SI);
- DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
- << ". Total compares: " << numCmps << '\n');
- (void)numCmps;
- // Get the Value to be switched on and default basic blocks, which will be
- // inserted into CaseBlock records, representing basic blocks in the binary
- // search tree.
- const Value *SV = SI.getCondition();
- // Push the initial CaseRec onto the worklist
- CaseRecVector WorkList;
- WorkList.push_back(CaseRec(SwitchMBB,0,0,
- CaseRange(Cases.begin(),Cases.end())));
- while (!WorkList.empty()) {
- // Grab a record representing a case range to process off the worklist
- CaseRec CR = WorkList.back();
- WorkList.pop_back();
- if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
- continue;
- // If the range has few cases (two or less) emit a series of specific
- // tests.
- if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
- continue;
- // If the switch has more than N blocks, and is at least 40% dense, and the
- // target supports indirect branches, then emit a jump table rather than
- // lowering the switch to a binary tree of conditional branches.
- // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
- if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
- continue;
- // Emit binary tree. We need to pick a pivot, and push left and right ranges
- // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
- handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
- }
- }
- void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
- MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
- // Update machine-CFG edges with unique successors.
- SmallSet<BasicBlock*, 32> Done;
- for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
- BasicBlock *BB = I.getSuccessor(i);
- bool Inserted = Done.insert(BB);
- if (!Inserted)
- continue;
- MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
- addSuccessorWithWeight(IndirectBrMBB, Succ);
- }
- DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
- MVT::Other, getControlRoot(),
- getValue(I.getAddress())));
- }
- void SelectionDAGBuilder::visitFSub(const User &I) {
- // -0.0 - X --> fneg
- Type *Ty = I.getType();
- if (isa<Constant>(I.getOperand(0)) &&
- I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
- SDValue Op2 = getValue(I.getOperand(1));
- setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
- Op2.getValueType(), Op2));
- return;
- }
- visitBinary(I, ISD::FSUB);
- }
- void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- setValue(&I, DAG.getNode(OpCode, getCurSDLoc(),
- Op1.getValueType(), Op1, Op2));
- }
- void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType());
- // Coerce the shift amount to the right type if we can.
- if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
- unsigned ShiftSize = ShiftTy.getSizeInBits();
- unsigned Op2Size = Op2.getValueType().getSizeInBits();
- SDLoc DL = getCurSDLoc();
- // If the operand is smaller than the shift count type, promote it.
- if (ShiftSize > Op2Size)
- Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
- // If the operand is larger than the shift count type but the shift
- // count type has enough bits to represent any shift value, truncate
- // it now. This is a common case and it exposes the truncate to
- // optimization early.
- else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
- Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
- // Otherwise we'll need to temporarily settle for some other convenient
- // type. Type legalization will make adjustments once the shiftee is split.
- else
- Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
- }
- setValue(&I, DAG.getNode(Opcode, getCurSDLoc(),
- Op1.getValueType(), Op1, Op2));
- }
- void SelectionDAGBuilder::visitSDiv(const User &I) {
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- // Turn exact SDivs into multiplications.
- // FIXME: This should be in DAGCombiner, but it doesn't have access to the
- // exact bit.
- if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
- !isa<ConstantSDNode>(Op1) &&
- isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
- setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2,
- getCurSDLoc(), DAG));
- else
- setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
- Op1, Op2));
- }
- void SelectionDAGBuilder::visitICmp(const User &I) {
- ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
- if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
- predicate = IC->getPredicate();
- else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
- predicate = ICmpInst::Predicate(IC->getPredicate());
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- ISD::CondCode Opcode = getICmpCondCode(predicate);
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
- setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
- }
- void SelectionDAGBuilder::visitFCmp(const User &I) {
- FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
- if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
- predicate = FC->getPredicate();
- else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
- predicate = FCmpInst::Predicate(FC->getPredicate());
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- ISD::CondCode Condition = getFCmpCondCode(predicate);
- if (TM.Options.NoNaNsFPMath)
- Condition = getFCmpCodeWithoutNaN(Condition);
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
- setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
- }
- void SelectionDAGBuilder::visitSelect(const User &I) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0) return;
- SmallVector<SDValue, 4> Values(NumValues);
- SDValue Cond = getValue(I.getOperand(0));
- SDValue TrueVal = getValue(I.getOperand(1));
- SDValue FalseVal = getValue(I.getOperand(2));
- ISD::NodeType OpCode = Cond.getValueType().isVector() ?
- ISD::VSELECT : ISD::SELECT;
- for (unsigned i = 0; i != NumValues; ++i)
- Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
- TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
- Cond,
- SDValue(TrueVal.getNode(),
- TrueVal.getResNo() + i),
- SDValue(FalseVal.getNode(),
- FalseVal.getResNo() + i));
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
- DAG.getVTList(&ValueVTs[0], NumValues),
- &Values[0], NumValues));
- }
- void SelectionDAGBuilder::visitTrunc(const User &I) {
- // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitZExt(const User &I) {
- // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
- // ZExt also can't be a cast to bool for same reason. So, nothing much to do
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitSExt(const User &I) {
- // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
- // SExt also can't be a cast to bool for same reason. So, nothing much to do
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitFPTrunc(const User &I) {
- // FPTrunc is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- const TargetLowering *TLI = TM.getTargetLowering();
- EVT DestVT = TLI->getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
- DestVT, N,
- DAG.getTargetConstant(0, TLI->getPointerTy())));
- }
- void SelectionDAGBuilder::visitFPExt(const User &I) {
- // FPExt is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitFPToUI(const User &I) {
- // FPToUI is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitFPToSI(const User &I) {
- // FPToSI is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitUIToFP(const User &I) {
- // UIToFP is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitSIToFP(const User &I) {
- // SIToFP is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitPtrToInt(const User &I) {
- // What to do depends on the size of the integer and the size of the pointer.
- // We can either truncate, zero extend, or no-op, accordingly.
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
- setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
- }
- void SelectionDAGBuilder::visitIntToPtr(const User &I) {
- // What to do depends on the size of the integer and the size of the pointer.
- // We can either truncate, zero extend, or no-op, accordingly.
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
- setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
- }
- void SelectionDAGBuilder::visitBitCast(const User &I) {
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
- // BitCast assures us that source and destination are the same size so this is
- // either a BITCAST or a no-op.
- if (DestVT != N.getValueType())
- setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
- DestVT, N)); // convert types.
- else
- setValue(&I, N); // noop cast.
- }
- void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- const Value *SV = I.getOperand(0);
- SDValue N = getValue(SV);
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
- unsigned SrcAS = SV->getType()->getPointerAddressSpace();
- unsigned DestAS = I.getType()->getPointerAddressSpace();
- if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
- N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
- setValue(&I, N);
- }
- void SelectionDAGBuilder::visitInsertElement(const User &I) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue InVec = getValue(I.getOperand(0));
- SDValue InVal = getValue(I.getOperand(1));
- SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
- getCurSDLoc(), TLI.getVectorIdxTy());
- setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
- TM.getTargetLowering()->getValueType(I.getType()),
- InVec, InVal, InIdx));
- }
- void SelectionDAGBuilder::visitExtractElement(const User &I) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue InVec = getValue(I.getOperand(0));
- SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
- getCurSDLoc(), TLI.getVectorIdxTy());
- setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
- TM.getTargetLowering()->getValueType(I.getType()),
- InVec, InIdx));
- }
- // Utility for visitShuffleVector - Return true if every element in Mask,
- // beginning from position Pos and ending in Pos+Size, falls within the
- // specified sequential range [L, L+Pos). or is undef.
- static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
- unsigned Pos, unsigned Size, int Low) {
- for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
- if (Mask[i] >= 0 && Mask[i] != Low)
- return false;
- return true;
- }
- void SelectionDAGBuilder::visitShuffleVector(const User &I) {
- SDValue Src1 = getValue(I.getOperand(0));
- SDValue Src2 = getValue(I.getOperand(1));
- SmallVector<int, 8> Mask;
- ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
- unsigned MaskNumElts = Mask.size();
- const TargetLowering *TLI = TM.getTargetLowering();
- EVT VT = TLI->getValueType(I.getType());
- EVT SrcVT = Src1.getValueType();
- unsigned SrcNumElts = SrcVT.getVectorNumElements();
- if (SrcNumElts == MaskNumElts) {
- setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
- &Mask[0]));
- return;
- }
- // Normalize the shuffle vector since mask and vector length don't match.
- if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
- // Mask is longer than the source vectors and is a multiple of the source
- // vectors. We can use concatenate vector to make the mask and vectors
- // lengths match.
- if (SrcNumElts*2 == MaskNumElts) {
- // First check for Src1 in low and Src2 in high
- if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
- isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
- // The shuffle is concatenating two vectors together.
- setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
- VT, Src1, Src2));
- return;
- }
- // Then check for Src2 in low and Src1 in high
- if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
- isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
- // The shuffle is concatenating two vectors together.
- setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
- VT, Src2, Src1));
- return;
- }
- }
- // Pad both vectors with undefs to make them the same length as the mask.
- unsigned NumConcat = MaskNumElts / SrcNumElts;
- bool Src1U = Src1.getOpcode() == ISD::UNDEF;
- bool Src2U = Src2.getOpcode() == ISD::UNDEF;
- SDValue UndefVal = DAG.getUNDEF(SrcVT);
- SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
- SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
- MOps1[0] = Src1;
- MOps2[0] = Src2;
- Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
- getCurSDLoc(), VT,
- &MOps1[0], NumConcat);
- Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
- getCurSDLoc(), VT,
- &MOps2[0], NumConcat);
- // Readjust mask for new input vector length.
- SmallVector<int, 8> MappedOps;
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- if (Idx >= (int)SrcNumElts)
- Idx -= SrcNumElts - MaskNumElts;
- MappedOps.push_back(Idx);
- }
- setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
- &MappedOps[0]));
- return;
- }
- if (SrcNumElts > MaskNumElts) {
- // Analyze the access pattern of the vector to see if we can extract
- // two subvectors and do the shuffle. The analysis is done by calculating
- // the range of elements the mask access on both vectors.
- int MinRange[2] = { static_cast<int>(SrcNumElts),
- static_cast<int>(SrcNumElts)};
- int MaxRange[2] = {-1, -1};
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- unsigned Input = 0;
- if (Idx < 0)
- continue;
- if (Idx >= (int)SrcNumElts) {
- Input = 1;
- Idx -= SrcNumElts;
- }
- if (Idx > MaxRange[Input])
- MaxRange[Input] = Idx;
- if (Idx < MinRange[Input])
- MinRange[Input] = Idx;
- }
- // Check if the access is smaller than the vector size and can we find
- // a reasonable extract index.
- int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not
- // Extract.
- int StartIdx[2]; // StartIdx to extract from
- for (unsigned Input = 0; Input < 2; ++Input) {
- if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
- RangeUse[Input] = 0; // Unused
- StartIdx[Input] = 0;
- continue;
- }
- // Find a good start index that is a multiple of the mask length. Then
- // see if the rest of the elements are in range.
- StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
- if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
- StartIdx[Input] + MaskNumElts <= SrcNumElts)
- RangeUse[Input] = 1; // Extract from a multiple of the mask length.
- }
- if (RangeUse[0] == 0 && RangeUse[1] == 0) {
- setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
- return;
- }
- if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
- // Extract appropriate subvector and generate a vector shuffle
- for (unsigned Input = 0; Input < 2; ++Input) {
- SDValue &Src = Input == 0 ? Src1 : Src2;
- if (RangeUse[Input] == 0)
- Src = DAG.getUNDEF(VT);
- else
- Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
- Src, DAG.getConstant(StartIdx[Input],
- TLI->getVectorIdxTy()));
- }
- // Calculate new mask.
- SmallVector<int, 8> MappedOps;
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- if (Idx >= 0) {
- if (Idx < (int)SrcNumElts)
- Idx -= StartIdx[0];
- else
- Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
- }
- MappedOps.push_back(Idx);
- }
- setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
- &MappedOps[0]));
- return;
- }
- }
- // We can't use either concat vectors or extract subvectors so fall back to
- // replacing the shuffle with extract and build vector.
- // to insert and build vector.
- EVT EltVT = VT.getVectorElementType();
- EVT IdxVT = TLI->getVectorIdxTy();
- SmallVector<SDValue,8> Ops;
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- SDValue Res;
- if (Idx < 0) {
- Res = DAG.getUNDEF(EltVT);
- } else {
- SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
- if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
- Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
- EltVT, Src, DAG.getConstant(Idx, IdxVT));
- }
- Ops.push_back(Res);
- }
- setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
- VT, &Ops[0], Ops.size()));
- }
- void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
- const Value *Op0 = I.getOperand(0);
- const Value *Op1 = I.getOperand(1);
- Type *AggTy = I.getType();
- Type *ValTy = Op1->getType();
- bool IntoUndef = isa<UndefValue>(Op0);
- bool FromUndef = isa<UndefValue>(Op1);
- unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
- const TargetLowering *TLI = TM.getTargetLowering();
- SmallVector<EVT, 4> AggValueVTs;
- ComputeValueVTs(*TLI, AggTy, AggValueVTs);
- SmallVector<EVT, 4> ValValueVTs;
- ComputeValueVTs(*TLI, ValTy, ValValueVTs);
- unsigned NumAggValues = AggValueVTs.size();
- unsigned NumValValues = ValValueVTs.size();
- SmallVector<SDValue, 4> Values(NumAggValues);
- SDValue Agg = getValue(Op0);
- unsigned i = 0;
- // Copy the beginning value(s) from the original aggregate.
- for (; i != LinearIndex; ++i)
- Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
- SDValue(Agg.getNode(), Agg.getResNo() + i);
- // Copy values from the inserted value(s).
- if (NumValValues) {
- SDValue Val = getValue(Op1);
- for (; i != LinearIndex + NumValValues; ++i)
- Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
- SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
- }
- // Copy remaining value(s) from the original aggregate.
- for (; i != NumAggValues; ++i)
- Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
- SDValue(Agg.getNode(), Agg.getResNo() + i);
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
- DAG.getVTList(&AggValueVTs[0], NumAggValues),
- &Values[0], NumAggValues));
- }
- void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
- const Value *Op0 = I.getOperand(0);
- Type *AggTy = Op0->getType();
- Type *ValTy = I.getType();
- bool OutOfUndef = isa<UndefValue>(Op0);
- unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
- const TargetLowering *TLI = TM.getTargetLowering();
- SmallVector<EVT, 4> ValValueVTs;
- ComputeValueVTs(*TLI, ValTy, ValValueVTs);
- unsigned NumValValues = ValValueVTs.size();
- // Ignore a extractvalue that produces an empty object
- if (!NumValValues) {
- setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
- return;
- }
- SmallVector<SDValue, 4> Values(NumValValues);
- SDValue Agg = getValue(Op0);
- // Copy out the selected value(s).
- for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
- Values[i - LinearIndex] =
- OutOfUndef ?
- DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
- SDValue(Agg.getNode(), Agg.getResNo() + i);
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
- DAG.getVTList(&ValValueVTs[0], NumValValues),
- &Values[0], NumValValues));
- }
- void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
- Value *Op0 = I.getOperand(0);
- // Note that the pointer operand may be a vector of pointers. Take the scalar
- // element which holds a pointer.
- Type *Ty = Op0->getType()->getScalarType();
- unsigned AS = Ty->getPointerAddressSpace();
- SDValue N = getValue(Op0);
- for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
- OI != E; ++OI) {
- const Value *Idx = *OI;
- if (StructType *StTy = dyn_cast<StructType>(Ty)) {
- unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
- if (Field) {
- // N = N + Offset
- uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
- N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
- DAG.getConstant(Offset, N.getValueType()));
- }
- Ty = StTy->getElementType(Field);
- } else {
- Ty = cast<SequentialType>(Ty)->getElementType();
- // If this is a constant subscript, handle it quickly.
- const TargetLowering *TLI = TM.getTargetLowering();
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
- if (CI->isZero()) continue;
- uint64_t Offs =
- TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
- SDValue OffsVal;
- EVT PTy = TLI->getPointerTy(AS);
- unsigned PtrBits = PTy.getSizeInBits();
- if (PtrBits < 64)
- OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy,
- DAG.getConstant(Offs, MVT::i64));
- else
- OffsVal = DAG.getConstant(Offs, PTy);
- N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
- OffsVal);
- continue;
- }
- // N = N + Idx * ElementSize;
- APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS),
- TD->getTypeAllocSize(Ty));
- SDValue IdxN = getValue(Idx);
- // If the index is smaller or larger than intptr_t, truncate or extend
- // it.
- IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
- // If this is a multiply by a power of two, turn it into a shl
- // immediately. This is a very common case.
- if (ElementSize != 1) {
- if (ElementSize.isPowerOf2()) {
- unsigned Amt = ElementSize.logBase2();
- IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
- N.getValueType(), IdxN,
- DAG.getConstant(Amt, IdxN.getValueType()));
- } else {
- SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
- IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
- N.getValueType(), IdxN, Scale);
- }
- }
- N = DAG.getNode(ISD::ADD, getCurSDLoc(),
- N.getValueType(), N, IdxN);
- }
- }
- setValue(&I, N);
- }
- void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
- // If this is a fixed sized alloca in the entry block of the function,
- // allocate it statically on the stack.
- if (FuncInfo.StaticAllocaMap.count(&I))
- return; // getValue will auto-populate this.
- Type *Ty = I.getAllocatedType();
- const TargetLowering *TLI = TM.getTargetLowering();
- uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
- unsigned Align =
- std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
- I.getAlignment());
- SDValue AllocSize = getValue(I.getArraySize());
- EVT IntPtr = TLI->getPointerTy();
- if (AllocSize.getValueType() != IntPtr)
- AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
- AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
- AllocSize,
- DAG.getConstant(TySize, IntPtr));
- // Handle alignment. If the requested alignment is less than or equal to
- // the stack alignment, ignore it. If the size is greater than or equal to
- // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
- unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
- if (Align <= StackAlign)
- Align = 0;
- // Round the size of the allocation up to the stack alignment size
- // by add SA-1 to the size.
- AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
- AllocSize.getValueType(), AllocSize,
- DAG.getIntPtrConstant(StackAlign-1));
- // Mask out the low bits for alignment purposes.
- AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
- AllocSize.getValueType(), AllocSize,
- DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
- SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
- SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
- SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(),
- VTs, Ops, 3);
- setValue(&I, DSA);
- DAG.setRoot(DSA.getValue(1));
- // Inform the Frame Information that we have just allocated a variable-sized
- // object.
- FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
- }
- void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
- if (I.isAtomic())
- return visitAtomicLoad(I);
- const Value *SV = I.getOperand(0);
- SDValue Ptr = getValue(SV);
- Type *Ty = I.getType();
- bool isVolatile = I.isVolatile();
- bool isNonTemporal = I.getMetadata("nontemporal") != 0;
- bool isInvariant = I.getMetadata("invariant.load") != 0;
- unsigned Alignment = I.getAlignment();
- const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
- const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
- SmallVector<EVT, 4> ValueVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0)
- return;
- SDValue Root;
- bool ConstantMemory = false;
- if (isVolatile || NumValues > MaxParallelChains)
- // Serialize volatile loads with other side effects.
- Root = getRoot();
- else if (AA->pointsToConstantMemory(
- AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
- // Do not serialize (non-volatile) loads of constant memory with anything.
- Root = DAG.getEntryNode();
- ConstantMemory = true;
- } else {
- // Do not serialize non-volatile loads against each other.
- Root = DAG.getRoot();
- }
- const TargetLowering *TLI = TM.getTargetLowering();
- if (isVolatile)
- Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG);
- SmallVector<SDValue, 4> Values(NumValues);
- SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
- NumValues));
- EVT PtrVT = Ptr.getValueType();
- unsigned ChainI = 0;
- for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
- // Serializing loads here may result in excessive register pressure, and
- // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
- // could recover a bit by hoisting nodes upward in the chain by recognizing
- // they are side-effect free or do not alias. The optimizer should really
- // avoid this case by converting large object/array copies to llvm.memcpy
- // (MaxParallelChains should always remain as failsafe).
- if (ChainI == MaxParallelChains) {
- assert(PendingLoads.empty() && "PendingLoads must be serialized first");
- SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
- MVT::Other, &Chains[0], ChainI);
- Root = Chain;
- ChainI = 0;
- }
- SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
- PtrVT, Ptr,
- DAG.getConstant(Offsets[i], PtrVT));
- SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
- A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
- isNonTemporal, isInvariant, Alignment, TBAAInfo,
- Ranges);
- Values[i] = L;
- Chains[ChainI] = L.getValue(1);
- }
- if (!ConstantMemory) {
- SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
- MVT::Other, &Chains[0], ChainI);
- if (isVolatile)
- DAG.setRoot(Chain);
- else
- PendingLoads.push_back(Chain);
- }
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
- DAG.getVTList(&ValueVTs[0], NumValues),
- &Values[0], NumValues));
- }
- void SelectionDAGBuilder::visitStore(const StoreInst &I) {
- if (I.isAtomic())
- return visitAtomicStore(I);
- const Value *SrcV = I.getOperand(0);
- const Value *PtrV = I.getOperand(1);
- SmallVector<EVT, 4> ValueVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0)
- return;
- // Get the lowered operands. Note that we do this after
- // checking if NumResults is zero, because with zero results
- // the operands won't have values in the map.
- SDValue Src = getValue(SrcV);
- SDValue Ptr = getValue(PtrV);
- SDValue Root = getRoot();
- SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
- NumValues));
- EVT PtrVT = Ptr.getValueType();
- bool isVolatile = I.isVolatile();
- bool isNonTemporal = I.getMetadata("nontemporal") != 0;
- unsigned Alignment = I.getAlignment();
- const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
- unsigned ChainI = 0;
- for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
- // See visitLoad comments.
- if (ChainI == MaxParallelChains) {
- SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
- MVT::Other, &Chains[0], ChainI);
- Root = Chain;
- ChainI = 0;
- }
- SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
- DAG.getConstant(Offsets[i], PtrVT));
- SDValue St = DAG.getStore(Root, getCurSDLoc(),
- SDValue(Src.getNode(), Src.getResNo() + i),
- Add, MachinePointerInfo(PtrV, Offsets[i]),
- isVolatile, isNonTemporal, Alignment, TBAAInfo);
- Chains[ChainI] = St;
- }
- SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
- MVT::Other, &Chains[0], ChainI);
- DAG.setRoot(StoreNode);
- }
- static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
- SynchronizationScope Scope,
- bool Before, SDLoc dl,
- SelectionDAG &DAG,
- const TargetLowering &TLI) {
- // Fence, if necessary
- if (Before) {
- if (Order == AcquireRelease || Order == SequentiallyConsistent)
- Order = Release;
- else if (Order == Acquire || Order == Monotonic)
- return Chain;
- } else {
- if (Order == AcquireRelease)
- Order = Acquire;
- else if (Order == Release || Order == Monotonic)
- return Chain;
- }
- SDValue Ops[3];
- Ops[0] = Chain;
- Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
- Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
- return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
- }
- void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
- SDLoc dl = getCurSDLoc();
- AtomicOrdering Order = I.getOrdering();
- SynchronizationScope Scope = I.getSynchScope();
- SDValue InChain = getRoot();
- const TargetLowering *TLI = TM.getTargetLowering();
- if (TLI->getInsertFencesForAtomic())
- InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
- DAG, *TLI);
- SDValue L =
- DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
- getValue(I.getCompareOperand()).getSimpleValueType(),
- InChain,
- getValue(I.getPointerOperand()),
- getValue(I.getCompareOperand()),
- getValue(I.getNewValOperand()),
- MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
- TLI->getInsertFencesForAtomic() ? Monotonic : Order,
- Scope);
- SDValue OutChain = L.getValue(1);
- if (TLI->getInsertFencesForAtomic())
- OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
- DAG, *TLI);
- setValue(&I, L);
- DAG.setRoot(OutChain);
- }
- void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
- SDLoc dl = getCurSDLoc();
- ISD::NodeType NT;
- switch (I.getOperation()) {
- default: llvm_unreachable("Unknown atomicrmw operation");
- case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
- case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
- case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
- case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
- case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
- case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
- case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
- case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
- case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
- case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
- case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
- }
- AtomicOrdering Order = I.getOrdering();
- SynchronizationScope Scope = I.getSynchScope();
- SDValue InChain = getRoot();
- const TargetLowering *TLI = TM.getTargetLowering();
- if (TLI->getInsertFencesForAtomic())
- InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
- DAG, *TLI);
- SDValue L =
- DAG.getAtomic(NT, dl,
- getValue(I.getValOperand()).getSimpleValueType(),
- InChain,
- getValue(I.getPointerOperand()),
- getValue(I.getValOperand()),
- I.getPointerOperand(), 0 /* Alignment */,
- TLI->getInsertFencesForAtomic() ? Monotonic : Order,
- Scope);
- SDValue OutChain = L.getValue(1);
- if (TLI->getInsertFencesForAtomic())
- OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
- DAG, *TLI);
- setValue(&I, L);
- DAG.setRoot(OutChain);
- }
- void SelectionDAGBuilder::visitFence(const FenceInst &I) {
- SDLoc dl = getCurSDLoc();
- const TargetLowering *TLI = TM.getTargetLowering();
- SDValue Ops[3];
- Ops[0] = getRoot();
- Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy());
- Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy());
- DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
- }
- void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
- SDLoc dl = getCurSDLoc();
- AtomicOrdering Order = I.getOrdering();
- SynchronizationScope Scope = I.getSynchScope();
- SDValue InChain = getRoot();
- const TargetLowering *TLI = TM.getTargetLowering();
- EVT VT = TLI->getValueType(I.getType());
- if (I.getAlignment() < VT.getSizeInBits() / 8)
- report_fatal_error("Cannot generate unaligned atomic load");
- InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG);
- SDValue L =
- DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
- getValue(I.getPointerOperand()),
- I.getPointerOperand(), I.getAlignment(),
- TLI->getInsertFencesForAtomic() ? Monotonic : Order,
- Scope);
- SDValue OutChain = L.getValue(1);
- if (TLI->getInsertFencesForAtomic())
- OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
- DAG, *TLI);
- setValue(&I, L);
- DAG.setRoot(OutChain);
- }
- void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
- SDLoc dl = getCurSDLoc();
- AtomicOrdering Order = I.getOrdering();
- SynchronizationScope Scope = I.getSynchScope();
- SDValue InChain = getRoot();
- const TargetLowering *TLI = TM.getTargetLowering();
- EVT VT = TLI->getValueType(I.getValueOperand()->getType());
- if (I.getAlignment() < VT.getSizeInBits() / 8)
- report_fatal_error("Cannot generate unaligned atomic store");
- if (TLI->getInsertFencesForAtomic())
- InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
- DAG, *TLI);
- SDValue OutChain =
- DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
- InChain,
- getValue(I.getPointerOperand()),
- getValue(I.getValueOperand()),
- I.getPointerOperand(), I.getAlignment(),
- TLI->getInsertFencesForAtomic() ? Monotonic : Order,
- Scope);
- if (TLI->getInsertFencesForAtomic())
- OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
- DAG, *TLI);
- DAG.setRoot(OutChain);
- }
- /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
- /// node.
- void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
- unsigned Intrinsic) {
- bool HasChain = !I.doesNotAccessMemory();
- bool OnlyLoad = HasChain && I.onlyReadsMemory();
- // Build the operand list.
- SmallVector<SDValue, 8> Ops;
- if (HasChain) { // If this intrinsic has side-effects, chainify it.
- if (OnlyLoad) {
- // We don't need to serialize loads against other loads.
- Ops.push_back(DAG.getRoot());
- } else {
- Ops.push_back(getRoot());
- }
- }
- // Info is set by getTgtMemInstrinsic
- TargetLowering::IntrinsicInfo Info;
- const TargetLowering *TLI = TM.getTargetLowering();
- bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic);
- // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
- if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
- Info.opc == ISD::INTRINSIC_W_CHAIN)
- Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy()));
- // Add all operands of the call to the operand list.
- for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
- SDValue Op = getValue(I.getArgOperand(i));
- Ops.push_back(Op);
- }
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*TLI, I.getType(), ValueVTs);
- if (HasChain)
- ValueVTs.push_back(MVT::Other);
- SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
- // Create the node.
- SDValue Result;
- if (IsTgtIntrinsic) {
- // This is target intrinsic that touches memory
- Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
- VTs, &Ops[0], Ops.size(),
- Info.memVT,
- MachinePointerInfo(Info.ptrVal, Info.offset),
- Info.align, Info.vol,
- Info.readMem, Info.writeMem);
- } else if (!HasChain) {
- Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(),
- VTs, &Ops[0], Ops.size());
- } else if (!I.getType()->isVoidTy()) {
- Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(),
- VTs, &Ops[0], Ops.size());
- } else {
- Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(),
- VTs, &Ops[0], Ops.size());
- }
- if (HasChain) {
- SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
- if (OnlyLoad)
- PendingLoads.push_back(Chain);
- else
- DAG.setRoot(Chain);
- }
- if (!I.getType()->isVoidTy()) {
- if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
- EVT VT = TLI->getValueType(PTy);
- Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
- }
- setValue(&I, Result);
- }
- }
- /// GetSignificand - Get the significand and build it into a floating-point
- /// number with exponent of 1:
- ///
- /// Op = (Op & 0x007fffff) | 0x3f800000;
- ///
- /// where Op is the hexadecimal representation of floating point value.
- static SDValue
- GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
- SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
- DAG.getConstant(0x007fffff, MVT::i32));
- SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
- DAG.getConstant(0x3f800000, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
- }
- /// GetExponent - Get the exponent:
- ///
- /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
- ///
- /// where Op is the hexadecimal representation of floating point value.
- static SDValue
- GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
- SDLoc dl) {
- SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
- DAG.getConstant(0x7f800000, MVT::i32));
- SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
- DAG.getConstant(23, TLI.getPointerTy()));
- SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
- DAG.getConstant(127, MVT::i32));
- return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
- }
- /// getF32Constant - Get 32-bit floating point constant.
- static SDValue
- getF32Constant(SelectionDAG &DAG, unsigned Flt) {
- return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
- MVT::f32);
- }
- /// expandExp - Lower an exp intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- // Put the exponent in the right bit position for later addition to the
- // final result:
- //
- // #define LOG2OFe 1.4426950f
- // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
- getF32Constant(DAG, 0x3fb8aa3b));
- SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
- // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
- SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
- SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
- // IntegerPartOfX <<= 23;
- IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
- DAG.getConstant(23, TLI.getPointerTy()));
- SDValue TwoToFracPartOfX;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // TwoToFractionalPartOfX =
- // 0.997535578f +
- // (0.735607626f + 0.252464424f * x) * x;
- //
- // error 0.0144103317, which is 6 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3e814304));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f3c50c8));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f7f5e7e));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // TwoToFractionalPartOfX =
- // 0.999892986f +
- // (0.696457318f +
- // (0.224338339f + 0.792043434e-1f * x) * x) * x;
- //
- // 0.000107046256 error, which is 13 to 14 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3da235e3));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3e65b8f3));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f324b07));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3f7ff8fd));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // TwoToFractionalPartOfX =
- // 0.999999982f +
- // (0.693148872f +
- // (0.240227044f +
- // (0.554906021e-1f +
- // (0.961591928e-2f +
- // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
- //
- // error 2.47208000*10^(-7), which is better than 18 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3924b03e));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3ab24b87));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3c1d8c17));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3d634a1d));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3e75fe14));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x3f317234));
- SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
- TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
- getF32Constant(DAG, 0x3f800000));
- }
- // Add the exponent into the result in integer domain.
- SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
- return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
- DAG.getNode(ISD::ADD, dl, MVT::i32,
- t13, IntegerPartOfX));
- }
- // No special expansion.
- return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
- }
- /// expandLog - Lower a log intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
- // Scale the exponent by log(2) [0.69314718f].
- SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
- SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
- getF32Constant(DAG, 0x3f317218));
- // Get the significand and build it into a floating-point number with
- // exponent of 1.
- SDValue X = GetSignificand(DAG, Op1, dl);
- SDValue LogOfMantissa;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // LogofMantissa =
- // -1.1609546f +
- // (1.4034025f - 0.23903021f * x) * x;
- //
- // error 0.0034276066, which is better than 8 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbe74c456));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3fb3a2b1));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f949a29));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // LogOfMantissa =
- // -1.7417939f +
- // (2.8212026f +
- // (-1.4699568f +
- // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
- //
- // error 0.000061011436, which is 14 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbd67b6d6));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3ee4f4b8));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fbc278b));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40348e95));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3fdef31a));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // LogOfMantissa =
- // -2.1072184f +
- // (4.2372794f +
- // (-3.7029485f +
- // (2.2781945f +
- // (-0.87823314f +
- // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
- //
- // error 0.0000023660568, which is better than 18 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbc91e5ac));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e4350aa));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f60d3e3));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x4011cdf0));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x406cfd1c));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x408797cb));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x4006dcab));
- }
- return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
- }
- // No special expansion.
- return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
- }
- /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
- // Get the exponent.
- SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
- // Get the significand and build it into a floating-point number with
- // exponent of 1.
- SDValue X = GetSignificand(DAG, Op1, dl);
- // Different possible minimax approximations of significand in
- // floating-point for various degrees of accuracy over [1,2].
- SDValue Log2ofMantissa;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
- //
- // error 0.0049451742, which is more than 7 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbeb08fe0));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x40019463));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fd6633d));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // Log2ofMantissa =
- // -2.51285454f +
- // (4.07009056f +
- // (-2.12067489f +
- // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
- //
- // error 0.0000876136000, which is better than 13 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbda7262e));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3f25280b));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x4007b923));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40823e2f));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x4020d29c));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // Log2ofMantissa =
- // -3.0400495f +
- // (6.1129976f +
- // (-5.3420409f +
- // (3.2865683f +
- // (-1.2669343f +
- // (0.27515199f -
- // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
- //
- // error 0.0000018516, which is better than 18 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbcd2769e));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e8ce0b9));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fa22ae7));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40525723));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x40aaf200));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x40c39dad));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x4042902c));
- }
- return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
- }
- // No special expansion.
- return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
- }
- /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
- // Scale the exponent by log10(2) [0.30102999f].
- SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
- SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
- getF32Constant(DAG, 0x3e9a209a));
- // Get the significand and build it into a floating-point number with
- // exponent of 1.
- SDValue X = GetSignificand(DAG, Op1, dl);
- SDValue Log10ofMantissa;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // Log10ofMantissa =
- // -0.50419619f +
- // (0.60948995f - 0.10380950f * x) * x;
- //
- // error 0.0014886165, which is 6 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbdd49a13));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3f1c0789));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f011300));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // Log10ofMantissa =
- // -0.64831180f +
- // (0.91751397f +
- // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
- //
- // error 0.00019228036, which is better than 12 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3d431f31));
- SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3ea21fb2));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f6ae232));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f25f7c3));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // Log10ofMantissa =
- // -0.84299375f +
- // (1.5327582f +
- // (-1.0688956f +
- // (0.49102474f +
- // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
- //
- // error 0.0000037995730, which is better than 18 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3c5d51ce));
- SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e00685a));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3efb6798));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f88d192));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3fc4316c));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3f57ce70));
- }
- return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
- }
- // No special expansion.
- return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
- }
- /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
- // FractionalPartOfX = x - (float)IntegerPartOfX;
- SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
- SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
- // IntegerPartOfX <<= 23;
- IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
- DAG.getConstant(23, TLI.getPointerTy()));
- SDValue TwoToFractionalPartOfX;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // TwoToFractionalPartOfX =
- // 0.997535578f +
- // (0.735607626f + 0.252464424f * x) * x;
- //
- // error 0.0144103317, which is 6 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3e814304));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f3c50c8));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f7f5e7e));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // TwoToFractionalPartOfX =
- // 0.999892986f +
- // (0.696457318f +
- // (0.224338339f + 0.792043434e-1f * x) * x) * x;
- //
- // error 0.000107046256, which is 13 to 14 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3da235e3));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3e65b8f3));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f324b07));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3f7ff8fd));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // TwoToFractionalPartOfX =
- // 0.999999982f +
- // (0.693148872f +
- // (0.240227044f +
- // (0.554906021e-1f +
- // (0.961591928e-2f +
- // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
- // error 2.47208000*10^(-7), which is better than 18 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3924b03e));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3ab24b87));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3c1d8c17));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3d634a1d));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3e75fe14));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x3f317234));
- SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
- getF32Constant(DAG, 0x3f800000));
- }
- // Add the exponent into the result in integer domain.
- SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
- TwoToFractionalPartOfX);
- return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
- DAG.getNode(ISD::ADD, dl, MVT::i32,
- t13, IntegerPartOfX));
- }
- // No special expansion.
- return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
- }
- /// visitPow - Lower a pow intrinsic. Handles the special sequences for
- /// limited-precision mode with x == 10.0f.
- static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
- SelectionDAG &DAG, const TargetLowering &TLI) {
- bool IsExp10 = false;
- if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
- APFloat Ten(10.0f);
- IsExp10 = LHSC->isExactlyValue(Ten);
- }
- }
- if (IsExp10) {
- // Put the exponent in the right bit position for later addition to the
- // final result:
- //
- // #define LOG2OF10 3.3219281f
- // IntegerPartOfX = (int32_t)(x * LOG2OF10);
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
- getF32Constant(DAG, 0x40549a78));
- SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
- // FractionalPartOfX = x - (float)IntegerPartOfX;
- SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
- SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
- // IntegerPartOfX <<= 23;
- IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
- DAG.getConstant(23, TLI.getPointerTy()));
- SDValue TwoToFractionalPartOfX;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // twoToFractionalPartOfX =
- // 0.997535578f +
- // (0.735607626f + 0.252464424f * x) * x;
- //
- // error 0.0144103317, which is 6 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3e814304));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f3c50c8));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f7f5e7e));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // TwoToFractionalPartOfX =
- // 0.999892986f +
- // (0.696457318f +
- // (0.224338339f + 0.792043434e-1f * x) * x) * x;
- //
- // error 0.000107046256, which is 13 to 14 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3da235e3));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3e65b8f3));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f324b07));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3f7ff8fd));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // TwoToFractionalPartOfX =
- // 0.999999982f +
- // (0.693148872f +
- // (0.240227044f +
- // (0.554906021e-1f +
- // (0.961591928e-2f +
- // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
- // error 2.47208000*10^(-7), which is better than 18 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3924b03e));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3ab24b87));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3c1d8c17));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3d634a1d));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3e75fe14));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x3f317234));
- SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
- getF32Constant(DAG, 0x3f800000));
- }
- SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
- return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
- DAG.getNode(ISD::ADD, dl, MVT::i32,
- t13, IntegerPartOfX));
- }
- // No special expansion.
- return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
- }
- /// ExpandPowI - Expand a llvm.powi intrinsic.
- static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
- SelectionDAG &DAG) {
- // If RHS is a constant, we can expand this out to a multiplication tree,
- // otherwise we end up lowering to a call to __powidf2 (for example). When
- // optimizing for size, we only want to do this if the expansion would produce
- // a small number of multiplies, otherwise we do the full expansion.
- if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
- // Get the exponent as a positive value.
- unsigned Val = RHSC->getSExtValue();
- if ((int)Val < 0) Val = -Val;
- // powi(x, 0) -> 1.0
- if (Val == 0)
- return DAG.getConstantFP(1.0, LHS.getValueType());
- const Function *F = DAG.getMachineFunction().getFunction();
- if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
- Attribute::OptimizeForSize) ||
- // If optimizing for size, don't insert too many multiplies. This
- // inserts up to 5 multiplies.
- CountPopulation_32(Val)+Log2_32(Val) < 7) {
- // We use the simple binary decomposition method to generate the multiply
- // sequence. There are more optimal ways to do this (for example,
- // powi(x,15) generates one more multiply than it should), but this has
- // the benefit of being both really simple and much better than a libcall.
- SDValue Res; // Logically starts equal to 1.0
- SDValue CurSquare = LHS;
- while (Val) {
- if (Val & 1) {
- if (Res.getNode())
- Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
- else
- Res = CurSquare; // 1.0*CurSquare.
- }
- CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
- CurSquare, CurSquare);
- Val >>= 1;
- }
- // If the original was negative, invert the result, producing 1/(x*x*x).
- if (RHSC->getSExtValue() < 0)
- Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
- DAG.getConstantFP(1.0, LHS.getValueType()), Res);
- return Res;
- }
- }
- // Otherwise, expand to a libcall.
- return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
- }
- // getTruncatedArgReg - Find underlying register used for an truncated
- // argument.
- static unsigned getTruncatedArgReg(const SDValue &N) {
- if (N.getOpcode() != ISD::TRUNCATE)
- return 0;
- const SDValue &Ext = N.getOperand(0);
- if (Ext.getOpcode() == ISD::AssertZext ||
- Ext.getOpcode() == ISD::AssertSext) {
- const SDValue &CFR = Ext.getOperand(0);
- if (CFR.getOpcode() == ISD::CopyFromReg)
- return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
- if (CFR.getOpcode() == ISD::TRUNCATE)
- return getTruncatedArgReg(CFR);
- }
- return 0;
- }
- /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
- /// argument, create the corresponding DBG_VALUE machine instruction for it now.
- /// At the end of instruction selection, they will be inserted to the entry BB.
- bool
- SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
- int64_t Offset,
- const SDValue &N) {
- const Argument *Arg = dyn_cast<Argument>(V);
- if (!Arg)
- return false;
- MachineFunction &MF = DAG.getMachineFunction();
- const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
- // Ignore inlined function arguments here.
- DIVariable DV(Variable);
- if (DV.isInlinedFnArgument(MF.getFunction()))
- return false;
- Optional<MachineOperand> Op;
- // Some arguments' frame index is recorded during argument lowering.
- if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
- Op = MachineOperand::CreateFI(FI);
- if (!Op && N.getNode()) {
- unsigned Reg;
- if (N.getOpcode() == ISD::CopyFromReg)
- Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
- else
- Reg = getTruncatedArgReg(N);
- if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
- MachineRegisterInfo &RegInfo = MF.getRegInfo();
- unsigned PR = RegInfo.getLiveInPhysReg(Reg);
- if (PR)
- Reg = PR;
- }
- if (Reg)
- Op = MachineOperand::CreateReg(Reg, false);
- }
- if (!Op) {
- // Check if ValueMap has reg number.
- DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
- if (VMI != FuncInfo.ValueMap.end())
- Op = MachineOperand::CreateReg(VMI->second, false);
- }
- if (!Op && N.getNode())
- // Check if frame index is available.
- if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
- if (FrameIndexSDNode *FINode =
- dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
- Op = MachineOperand::CreateFI(FINode->getIndex());
- if (!Op)
- return false;
- // FIXME: This does not handle register-indirect values at offset 0.
- bool IsIndirect = Offset != 0;
- if (Op->isReg())
- FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(),
- TII->get(TargetOpcode::DBG_VALUE),
- IsIndirect,
- Op->getReg(), Offset, Variable));
- else
- FuncInfo.ArgDbgValues.push_back(
- BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
- .addOperand(*Op).addImm(Offset).addMetadata(Variable));
- return true;
- }
- // VisualStudio defines setjmp as _setjmp
- #if defined(_MSC_VER) && defined(setjmp) && \
- !defined(setjmp_undefined_for_msvc)
- # pragma push_macro("setjmp")
- # undef setjmp
- # define setjmp_undefined_for_msvc
- #endif
- /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
- /// we want to emit this as a call to a named external function, return the name
- /// otherwise lower it and return null.
- const char *
- SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
- const TargetLowering *TLI = TM.getTargetLowering();
- SDLoc sdl = getCurSDLoc();
- DebugLoc dl = getCurDebugLoc();
- SDValue Res;
- switch (Intrinsic) {
- default:
- // By default, turn this into a target intrinsic node.
- visitTargetIntrinsic(I, Intrinsic);
- return 0;
- case Intrinsic::vastart: visitVAStart(I); return 0;
- case Intrinsic::vaend: visitVAEnd(I); return 0;
- case Intrinsic::vacopy: visitVACopy(I); return 0;
- case Intrinsic::returnaddress:
- setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(),
- getValue(I.getArgOperand(0))));
- return 0;
- case Intrinsic::frameaddress:
- setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(),
- getValue(I.getArgOperand(0))));
- return 0;
- case Intrinsic::setjmp:
- return &"_setjmp"[!TLI->usesUnderscoreSetJmp()];
- case Intrinsic::longjmp:
- return &"_longjmp"[!TLI->usesUnderscoreLongJmp()];
- case Intrinsic::memcpy: {
- // Assert for address < 256 since we support only user defined address
- // spaces.
- assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
- < 256 &&
- cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
- < 256 &&
- "Unknown address space");
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- SDValue Op3 = getValue(I.getArgOperand(2));
- unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
- if (!Align)
- Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
- bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
- DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
- MachinePointerInfo(I.getArgOperand(0)),
- MachinePointerInfo(I.getArgOperand(1))));
- return 0;
- }
- case Intrinsic::memset: {
- // Assert for address < 256 since we support only user defined address
- // spaces.
- assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
- < 256 &&
- "Unknown address space");
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- SDValue Op3 = getValue(I.getArgOperand(2));
- unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
- if (!Align)
- Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
- bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
- DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
- MachinePointerInfo(I.getArgOperand(0))));
- return 0;
- }
- case Intrinsic::memmove: {
- // Assert for address < 256 since we support only user defined address
- // spaces.
- assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
- < 256 &&
- cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
- < 256 &&
- "Unknown address space");
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- SDValue Op3 = getValue(I.getArgOperand(2));
- unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
- if (!Align)
- Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
- bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
- DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
- MachinePointerInfo(I.getArgOperand(0)),
- MachinePointerInfo(I.getArgOperand(1))));
- return 0;
- }
- case Intrinsic::dbg_declare: {
- const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
- MDNode *Variable = DI.getVariable();
- const Value *Address = DI.getAddress();
- DIVariable DIVar(Variable);
- assert((!DIVar || DIVar.isVariable()) &&
- "Variable in DbgDeclareInst should be either null or a DIVariable.");
- if (!Address || !DIVar) {
- DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
- return 0;
- }
- // Check if address has undef value.
- if (isa<UndefValue>(Address) ||
- (Address->use_empty() && !isa<Argument>(Address))) {
- DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
- return 0;
- }
- SDValue &N = NodeMap[Address];
- if (!N.getNode() && isa<Argument>(Address))
- // Check unused arguments map.
- N = UnusedArgNodeMap[Address];
- SDDbgValue *SDV;
- if (N.getNode()) {
- if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
- Address = BCI->getOperand(0);
- // Parameters are handled specially.
- bool isParameter =
- (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
- isa<Argument>(Address));
- const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
- if (isParameter && !AI) {
- FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
- if (FINode)
- // Byval parameter. We have a frame index at this point.
- SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
- 0, dl, SDNodeOrder);
- else {
- // Address is an argument, so try to emit its dbg value using
- // virtual register info from the FuncInfo.ValueMap.
- EmitFuncArgumentDbgValue(Address, Variable, 0, N);
- return 0;
- }
- } else if (AI)
- SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
- 0, dl, SDNodeOrder);
- else {
- // Can't do anything with other non-AI cases yet.
- DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
- DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
- DEBUG(Address->dump());
- return 0;
- }
- DAG.AddDbgValue(SDV, N.getNode(), isParameter);
- } else {
- // If Address is an argument then try to emit its dbg value using
- // virtual register info from the FuncInfo.ValueMap.
- if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
- // If variable is pinned by a alloca in dominating bb then
- // use StaticAllocaMap.
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
- if (AI->getParent() != DI.getParent()) {
- DenseMap<const AllocaInst*, int>::iterator SI =
- FuncInfo.StaticAllocaMap.find(AI);
- if (SI != FuncInfo.StaticAllocaMap.end()) {
- SDV = DAG.getDbgValue(Variable, SI->second,
- 0, dl, SDNodeOrder);
- DAG.AddDbgValue(SDV, 0, false);
- return 0;
- }
- }
- }
- DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
- }
- }
- return 0;
- }
- case Intrinsic::dbg_value: {
- const DbgValueInst &DI = cast<DbgValueInst>(I);
- DIVariable DIVar(DI.getVariable());
- assert((!DIVar || DIVar.isVariable()) &&
- "Variable in DbgValueInst should be either null or a DIVariable.");
- if (!DIVar)
- return 0;
- MDNode *Variable = DI.getVariable();
- uint64_t Offset = DI.getOffset();
- const Value *V = DI.getValue();
- if (!V)
- return 0;
- SDDbgValue *SDV;
- if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
- SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
- DAG.AddDbgValue(SDV, 0, false);
- } else {
- // Do not use getValue() in here; we don't want to generate code at
- // this point if it hasn't been done yet.
- SDValue N = NodeMap[V];
- if (!N.getNode() && isa<Argument>(V))
- // Check unused arguments map.
- N = UnusedArgNodeMap[V];
- if (N.getNode()) {
- if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
- SDV = DAG.getDbgValue(Variable, N.getNode(),
- N.getResNo(), Offset, dl, SDNodeOrder);
- DAG.AddDbgValue(SDV, N.getNode(), false);
- }
- } else if (!V->use_empty() ) {
- // Do not call getValue(V) yet, as we don't want to generate code.
- // Remember it for later.
- DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
- DanglingDebugInfoMap[V] = DDI;
- } else {
- // We may expand this to cover more cases. One case where we have no
- // data available is an unreferenced parameter.
- DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
- }
- }
- // Build a debug info table entry.
- if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
- V = BCI->getOperand(0);
- const AllocaInst *AI = dyn_cast<AllocaInst>(V);
- // Don't handle byval struct arguments or VLAs, for example.
- if (!AI) {
- DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n");
- DEBUG(dbgs() << " Last seen at:\n " << *V << "\n");
- return 0;
- }
- DenseMap<const AllocaInst*, int>::iterator SI =
- FuncInfo.StaticAllocaMap.find(AI);
- if (SI == FuncInfo.StaticAllocaMap.end())
- return 0; // VLAs.
- int FI = SI->second;
- MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
- if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
- MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
- return 0;
- }
- case Intrinsic::eh_typeid_for: {
- // Find the type id for the given typeinfo.
- GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
- unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
- Res = DAG.getConstant(TypeID, MVT::i32);
- setValue(&I, Res);
- return 0;
- }
- case Intrinsic::eh_return_i32:
- case Intrinsic::eh_return_i64:
- DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
- DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
- MVT::Other,
- getControlRoot(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1))));
- return 0;
- case Intrinsic::eh_unwind_init:
- DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
- return 0;
- case Intrinsic::eh_dwarf_cfa: {
- SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
- TLI->getPointerTy());
- SDValue Offset = DAG.getNode(ISD::ADD, sdl,
- CfaArg.getValueType(),
- DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
- CfaArg.getValueType()),
- CfaArg);
- SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
- TLI->getPointerTy(),
- DAG.getConstant(0, TLI->getPointerTy()));
- setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
- FA, Offset));
- return 0;
- }
- case Intrinsic::eh_sjlj_callsite: {
- MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
- ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
- assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
- assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
- MMI.setCurrentCallSite(CI->getZExtValue());
- return 0;
- }
- case Intrinsic::eh_sjlj_functioncontext: {
- // Get and store the index of the function context.
- MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
- AllocaInst *FnCtx =
- cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
- int FI = FuncInfo.StaticAllocaMap[FnCtx];
- MFI->setFunctionContextIndex(FI);
- return 0;
- }
- case Intrinsic::eh_sjlj_setjmp: {
- SDValue Ops[2];
- Ops[0] = getRoot();
- Ops[1] = getValue(I.getArgOperand(0));
- SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
- DAG.getVTList(MVT::i32, MVT::Other),
- Ops, 2);
- setValue(&I, Op.getValue(0));
- DAG.setRoot(Op.getValue(1));
- return 0;
- }
- case Intrinsic::eh_sjlj_longjmp: {
- DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
- getRoot(), getValue(I.getArgOperand(0))));
- return 0;
- }
- case Intrinsic::x86_mmx_pslli_w:
- case Intrinsic::x86_mmx_pslli_d:
- case Intrinsic::x86_mmx_pslli_q:
- case Intrinsic::x86_mmx_psrli_w:
- case Intrinsic::x86_mmx_psrli_d:
- case Intrinsic::x86_mmx_psrli_q:
- case Intrinsic::x86_mmx_psrai_w:
- case Intrinsic::x86_mmx_psrai_d: {
- SDValue ShAmt = getValue(I.getArgOperand(1));
- if (isa<ConstantSDNode>(ShAmt)) {
- visitTargetIntrinsic(I, Intrinsic);
- return 0;
- }
- unsigned NewIntrinsic = 0;
- EVT ShAmtVT = MVT::v2i32;
- switch (Intrinsic) {
- case Intrinsic::x86_mmx_pslli_w:
- NewIntrinsic = Intrinsic::x86_mmx_psll_w;
- break;
- case Intrinsic::x86_mmx_pslli_d:
- NewIntrinsic = Intrinsic::x86_mmx_psll_d;
- break;
- case Intrinsic::x86_mmx_pslli_q:
- NewIntrinsic = Intrinsic::x86_mmx_psll_q;
- break;
- case Intrinsic::x86_mmx_psrli_w:
- NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
- break;
- case Intrinsic::x86_mmx_psrli_d:
- NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
- break;
- case Intrinsic::x86_mmx_psrli_q:
- NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
- break;
- case Intrinsic::x86_mmx_psrai_w:
- NewIntrinsic = Intrinsic::x86_mmx_psra_w;
- break;
- case Intrinsic::x86_mmx_psrai_d:
- NewIntrinsic = Intrinsic::x86_mmx_psra_d;
- break;
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- }
- // The vector shift intrinsics with scalars uses 32b shift amounts but
- // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
- // to be zero.
- // We must do this early because v2i32 is not a legal type.
- SDValue ShOps[2];
- ShOps[0] = ShAmt;
- ShOps[1] = DAG.getConstant(0, MVT::i32);
- ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2);
- EVT DestVT = TLI->getValueType(I.getType());
- ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
- Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
- DAG.getConstant(NewIntrinsic, MVT::i32),
- getValue(I.getArgOperand(0)), ShAmt);
- setValue(&I, Res);
- return 0;
- }
- case Intrinsic::x86_avx_vinsertf128_pd_256:
- case Intrinsic::x86_avx_vinsertf128_ps_256:
- case Intrinsic::x86_avx_vinsertf128_si_256:
- case Intrinsic::x86_avx2_vinserti128: {
- EVT DestVT = TLI->getValueType(I.getType());
- EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType());
- uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
- ElVT.getVectorNumElements();
- Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)),
- DAG.getConstant(Idx, TLI->getVectorIdxTy()));
- setValue(&I, Res);
- return 0;
- }
- case Intrinsic::x86_avx_vextractf128_pd_256:
- case Intrinsic::x86_avx_vextractf128_ps_256:
- case Intrinsic::x86_avx_vextractf128_si_256:
- case Intrinsic::x86_avx2_vextracti128: {
- EVT DestVT = TLI->getValueType(I.getType());
- uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
- DestVT.getVectorNumElements();
- Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
- getValue(I.getArgOperand(0)),
- DAG.getConstant(Idx, TLI->getVectorIdxTy()));
- setValue(&I, Res);
- return 0;
- }
- case Intrinsic::convertff:
- case Intrinsic::convertfsi:
- case Intrinsic::convertfui:
- case Intrinsic::convertsif:
- case Intrinsic::convertuif:
- case Intrinsic::convertss:
- case Intrinsic::convertsu:
- case Intrinsic::convertus:
- case Intrinsic::convertuu: {
- ISD::CvtCode Code = ISD::CVT_INVALID;
- switch (Intrinsic) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::convertff: Code = ISD::CVT_FF; break;
- case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
- case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
- case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
- case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
- case Intrinsic::convertss: Code = ISD::CVT_SS; break;
- case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
- case Intrinsic::convertus: Code = ISD::CVT_US; break;
- case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
- }
- EVT DestVT = TLI->getValueType(I.getType());
- const Value *Op1 = I.getArgOperand(0);
- Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
- DAG.getValueType(DestVT),
- DAG.getValueType(getValue(Op1).getValueType()),
- getValue(I.getArgOperand(1)),
- getValue(I.getArgOperand(2)),
- Code);
- setValue(&I, Res);
- return 0;
- }
- case Intrinsic::powi:
- setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)), DAG));
- return 0;
- case Intrinsic::log:
- setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
- return 0;
- case Intrinsic::log2:
- setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
- return 0;
- case Intrinsic::log10:
- setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
- return 0;
- case Intrinsic::exp:
- setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
- return 0;
- case Intrinsic::exp2:
- setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
- return 0;
- case Intrinsic::pow:
- setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)), DAG, *TLI));
- return 0;
- case Intrinsic::sqrt:
- case Intrinsic::fabs:
- case Intrinsic::sin:
- case Intrinsic::cos:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::round: {
- unsigned Opcode;
- switch (Intrinsic) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
- case Intrinsic::fabs: Opcode = ISD::FABS; break;
- case Intrinsic::sin: Opcode = ISD::FSIN; break;
- case Intrinsic::cos: Opcode = ISD::FCOS; break;
- case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
- case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
- case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
- case Intrinsic::rint: Opcode = ISD::FRINT; break;
- case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
- case Intrinsic::round: Opcode = ISD::FROUND; break;
- }
- setValue(&I, DAG.getNode(Opcode, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0))));
- return 0;
- }
- case Intrinsic::copysign:
- setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1))));
- return 0;
- case Intrinsic::fma:
- setValue(&I, DAG.getNode(ISD::FMA, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)),
- getValue(I.getArgOperand(2))));
- return 0;
- case Intrinsic::fmuladd: {
- EVT VT = TLI->getValueType(I.getType());
- if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
- TLI->isFMAFasterThanFMulAndFAdd(VT)) {
- setValue(&I, DAG.getNode(ISD::FMA, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)),
- getValue(I.getArgOperand(2))));
- } else {
- SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)));
- SDValue Add = DAG.getNode(ISD::FADD, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- Mul,
- getValue(I.getArgOperand(2)));
- setValue(&I, Add);
- }
- return 0;
- }
- case Intrinsic::convert_to_fp16:
- setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
- MVT::i16, getValue(I.getArgOperand(0))));
- return 0;
- case Intrinsic::convert_from_fp16:
- setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
- MVT::f32, getValue(I.getArgOperand(0))));
- return 0;
- case Intrinsic::pcmarker: {
- SDValue Tmp = getValue(I.getArgOperand(0));
- DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
- return 0;
- }
- case Intrinsic::readcyclecounter: {
- SDValue Op = getRoot();
- Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
- DAG.getVTList(MVT::i64, MVT::Other),
- &Op, 1);
- setValue(&I, Res);
- DAG.setRoot(Res.getValue(1));
- return 0;
- }
- case Intrinsic::bswap:
- setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0))));
- return 0;
- case Intrinsic::cttz: {
- SDValue Arg = getValue(I.getArgOperand(0));
- ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
- EVT Ty = Arg.getValueType();
- setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
- sdl, Ty, Arg));
- return 0;
- }
- case Intrinsic::ctlz: {
- SDValue Arg = getValue(I.getArgOperand(0));
- ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
- EVT Ty = Arg.getValueType();
- setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
- sdl, Ty, Arg));
- return 0;
- }
- case Intrinsic::ctpop: {
- SDValue Arg = getValue(I.getArgOperand(0));
- EVT Ty = Arg.getValueType();
- setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
- return 0;
- }
- case Intrinsic::stacksave: {
- SDValue Op = getRoot();
- Res = DAG.getNode(ISD::STACKSAVE, sdl,
- DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1);
- setValue(&I, Res);
- DAG.setRoot(Res.getValue(1));
- return 0;
- }
- case Intrinsic::stackrestore: {
- Res = getValue(I.getArgOperand(0));
- DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
- return 0;
- }
- case Intrinsic::stackprotector: {
- // Emit code into the DAG to store the stack guard onto the stack.
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- EVT PtrTy = TLI->getPointerTy();
- SDValue Src = getValue(I.getArgOperand(0)); // The guard's value.
- AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
- int FI = FuncInfo.StaticAllocaMap[Slot];
- MFI->setStackProtectorIndex(FI);
- SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
- // Store the stack protector onto the stack.
- Res = DAG.getStore(getRoot(), sdl, Src, FIN,
- MachinePointerInfo::getFixedStack(FI),
- true, false, 0);
- setValue(&I, Res);
- DAG.setRoot(Res);
- return 0;
- }
- case Intrinsic::objectsize: {
- // If we don't know by now, we're never going to know.
- ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
- assert(CI && "Non-constant type in __builtin_object_size?");
- SDValue Arg = getValue(I.getCalledValue());
- EVT Ty = Arg.getValueType();
- if (CI->isZero())
- Res = DAG.getConstant(-1ULL, Ty);
- else
- Res = DAG.getConstant(0, Ty);
- setValue(&I, Res);
- return 0;
- }
- case Intrinsic::annotation:
- case Intrinsic::ptr_annotation:
- // Drop the intrinsic, but forward the value
- setValue(&I, getValue(I.getOperand(0)));
- return 0;
- case Intrinsic::var_annotation:
- // Discard annotate attributes
- return 0;
- case Intrinsic::init_trampoline: {
- const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
- SDValue Ops[6];
- Ops[0] = getRoot();
- Ops[1] = getValue(I.getArgOperand(0));
- Ops[2] = getValue(I.getArgOperand(1));
- Ops[3] = getValue(I.getArgOperand(2));
- Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
- Ops[5] = DAG.getSrcValue(F);
- Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6);
- DAG.setRoot(Res);
- return 0;
- }
- case Intrinsic::adjust_trampoline: {
- setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
- TLI->getPointerTy(),
- getValue(I.getArgOperand(0))));
- return 0;
- }
- case Intrinsic::gcroot:
- if (GFI) {
- const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
- const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
- FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
- GFI->addStackRoot(FI->getIndex(), TypeMap);
- }
- return 0;
- case Intrinsic::gcread:
- case Intrinsic::gcwrite:
- llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
- case Intrinsic::flt_rounds:
- setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
- return 0;
- case Intrinsic::expect: {
- // Just replace __builtin_expect(exp, c) with EXP.
- setValue(&I, getValue(I.getArgOperand(0)));
- return 0;
- }
- case Intrinsic::debugtrap:
- case Intrinsic::trap: {
- StringRef TrapFuncName = TM.Options.getTrapFunctionName();
- if (TrapFuncName.empty()) {
- ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
- ISD::TRAP : ISD::DEBUGTRAP;
- DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
- return 0;
- }
- TargetLowering::ArgListTy Args;
- TargetLowering::
- CallLoweringInfo CLI(getRoot(), I.getType(),
- false, false, false, false, 0, CallingConv::C,
- /*isTailCall=*/false,
- /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
- DAG.getExternalSymbol(TrapFuncName.data(),
- TLI->getPointerTy()),
- Args, DAG, sdl);
- std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
- DAG.setRoot(Result.second);
- return 0;
- }
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::usub_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::umul_with_overflow:
- case Intrinsic::smul_with_overflow: {
- ISD::NodeType Op;
- switch (Intrinsic) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
- case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
- case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
- case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
- case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
- case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
- }
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
- setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
- return 0;
- }
- case Intrinsic::prefetch: {
- SDValue Ops[5];
- unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
- Ops[0] = getRoot();
- Ops[1] = getValue(I.getArgOperand(0));
- Ops[2] = getValue(I.getArgOperand(1));
- Ops[3] = getValue(I.getArgOperand(2));
- Ops[4] = getValue(I.getArgOperand(3));
- DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
- DAG.getVTList(MVT::Other),
- &Ops[0], 5,
- EVT::getIntegerVT(*Context, 8),
- MachinePointerInfo(I.getArgOperand(0)),
- 0, /* align */
- false, /* volatile */
- rw==0, /* read */
- rw==1)); /* write */
- return 0;
- }
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end: {
- bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
- // Stack coloring is not enabled in O0, discard region information.
- if (TM.getOptLevel() == CodeGenOpt::None)
- return 0;
- SmallVector<Value *, 4> Allocas;
- GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
- for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
- E = Allocas.end(); Object != E; ++Object) {
- AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
- // Could not find an Alloca.
- if (!LifetimeObject)
- continue;
- int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
- SDValue Ops[2];
- Ops[0] = getRoot();
- Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true);
- unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
- Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2);
- DAG.setRoot(Res);
- }
- return 0;
- }
- case Intrinsic::invariant_start:
- // Discard region information.
- setValue(&I, DAG.getUNDEF(TLI->getPointerTy()));
- return 0;
- case Intrinsic::invariant_end:
- // Discard region information.
- return 0;
- case Intrinsic::stackprotectorcheck: {
- // Do not actually emit anything for this basic block. Instead we initialize
- // the stack protector descriptor and export the guard variable so we can
- // access it in FinishBasicBlock.
- const BasicBlock *BB = I.getParent();
- SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
- ExportFromCurrentBlock(SPDescriptor.getGuard());
- // Flush our exports since we are going to process a terminator.
- (void)getControlRoot();
- return 0;
- }
- case Intrinsic::donothing:
- // ignore
- return 0;
- case Intrinsic::experimental_stackmap: {
- visitStackmap(I);
- return 0;
- }
- case Intrinsic::experimental_patchpoint_void:
- case Intrinsic::experimental_patchpoint_i64: {
- visitPatchpoint(I);
- return 0;
- }
- }
- }
- void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
- bool isTailCall,
- MachineBasicBlock *LandingPad) {
- PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
- FunctionType *FTy = cast<FunctionType>(PT->getElementType());
- Type *RetTy = FTy->getReturnType();
- MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
- MCSymbol *BeginLabel = 0;
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Args.reserve(CS.arg_size());
- // Check whether the function can return without sret-demotion.
- SmallVector<ISD::OutputArg, 4> Outs;
- const TargetLowering *TLI = TM.getTargetLowering();
- GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI);
- bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(),
- DAG.getMachineFunction(),
- FTy->isVarArg(), Outs,
- FTy->getContext());
- SDValue DemoteStackSlot;
- int DemoteStackIdx = -100;
- if (!CanLowerReturn) {
- uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(
- FTy->getReturnType());
- unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(
- FTy->getReturnType());
- MachineFunction &MF = DAG.getMachineFunction();
- DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
- Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
- DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy());
- Entry.Node = DemoteStackSlot;
- Entry.Ty = StackSlotPtrType;
- Entry.isSExt = false;
- Entry.isZExt = false;
- Entry.isInReg = false;
- Entry.isSRet = true;
- Entry.isNest = false;
- Entry.isByVal = false;
- Entry.isReturned = false;
- Entry.Alignment = Align;
- Args.push_back(Entry);
- RetTy = Type::getVoidTy(FTy->getContext());
- }
- for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
- i != e; ++i) {
- const Value *V = *i;
- // Skip empty types
- if (V->getType()->isEmptyTy())
- continue;
- SDValue ArgNode = getValue(V);
- Entry.Node = ArgNode; Entry.Ty = V->getType();
- // Skip the first return-type Attribute to get to params.
- Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
- Args.push_back(Entry);
- }
- if (LandingPad) {
- // Insert a label before the invoke call to mark the try range. This can be
- // used to detect deletion of the invoke via the MachineModuleInfo.
- BeginLabel = MMI.getContext().CreateTempSymbol();
- // For SjLj, keep track of which landing pads go with which invokes
- // so as to maintain the ordering of pads in the LSDA.
- unsigned CallSiteIndex = MMI.getCurrentCallSite();
- if (CallSiteIndex) {
- MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
- LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
- // Now that the call site is handled, stop tracking it.
- MMI.setCurrentCallSite(0);
- }
- // Both PendingLoads and PendingExports must be flushed here;
- // this call might not return.
- (void)getRoot();
- DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
- }
- // Check if target-independent constraints permit a tail call here.
- // Target-dependent constraints are checked within TLI->LowerCallTo.
- if (isTailCall && !isInTailCallPosition(CS, *TLI))
- isTailCall = false;
- TargetLowering::
- CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
- getCurSDLoc(), CS);
- std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI);
- assert((isTailCall || Result.second.getNode()) &&
- "Non-null chain expected with non-tail call!");
- assert((Result.second.getNode() || !Result.first.getNode()) &&
- "Null value expected with tail call!");
- if (Result.first.getNode()) {
- setValue(CS.getInstruction(), Result.first);
- } else if (!CanLowerReturn && Result.second.getNode()) {
- // The instruction result is the result of loading from the
- // hidden sret parameter.
- SmallVector<EVT, 1> PVTs;
- Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
- ComputeValueVTs(*TLI, PtrRetTy, PVTs);
- assert(PVTs.size() == 1 && "Pointers should fit in one register");
- EVT PtrVT = PVTs[0];
- SmallVector<EVT, 4> RetTys;
- SmallVector<uint64_t, 4> Offsets;
- RetTy = FTy->getReturnType();
- ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets);
- unsigned NumValues = RetTys.size();
- SmallVector<SDValue, 4> Values(NumValues);
- SmallVector<SDValue, 4> Chains(NumValues);
- for (unsigned i = 0; i < NumValues; ++i) {
- SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT,
- DemoteStackSlot,
- DAG.getConstant(Offsets[i], PtrVT));
- SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add,
- MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
- false, false, false, 1);
- Values[i] = L;
- Chains[i] = L.getValue(1);
- }
- SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
- MVT::Other, &Chains[0], NumValues);
- PendingLoads.push_back(Chain);
- setValue(CS.getInstruction(),
- DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
- DAG.getVTList(&RetTys[0], RetTys.size()),
- &Values[0], Values.size()));
- }
- if (!Result.second.getNode()) {
- // As a special case, a null chain means that a tail call has been emitted
- // and the DAG root is already updated.
- HasTailCall = true;
- // Since there's no actual continuation from this block, nothing can be
- // relying on us setting vregs for them.
- PendingExports.clear();
- } else {
- DAG.setRoot(Result.second);
- }
- if (LandingPad) {
- // Insert a label at the end of the invoke call to mark the try range. This
- // can be used to detect deletion of the invoke via the MachineModuleInfo.
- MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
- DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
- // Inform MachineModuleInfo of range.
- MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
- }
- }
- /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
- /// value is equal or not-equal to zero.
- static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
- for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
- UI != E; ++UI) {
- if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
- if (IC->isEquality())
- if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
- if (C->isNullValue())
- continue;
- // Unknown instruction.
- return false;
- }
- return true;
- }
- static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
- Type *LoadTy,
- SelectionDAGBuilder &Builder) {
- // Check to see if this load can be trivially constant folded, e.g. if the
- // input is from a string literal.
- if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
- // Cast pointer to the type we really want to load.
- LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
- PointerType::getUnqual(LoadTy));
- if (const Constant *LoadCst =
- ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
- Builder.TD))
- return Builder.getValue(LoadCst);
- }
- // Otherwise, we have to emit the load. If the pointer is to unfoldable but
- // still constant memory, the input chain can be the entry node.
- SDValue Root;
- bool ConstantMemory = false;
- // Do not serialize (non-volatile) loads of constant memory with anything.
- if (Builder.AA->pointsToConstantMemory(PtrVal)) {
- Root = Builder.DAG.getEntryNode();
- ConstantMemory = true;
- } else {
- // Do not serialize non-volatile loads against each other.
- Root = Builder.DAG.getRoot();
- }
- SDValue Ptr = Builder.getValue(PtrVal);
- SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
- Ptr, MachinePointerInfo(PtrVal),
- false /*volatile*/,
- false /*nontemporal*/,
- false /*isinvariant*/, 1 /* align=1 */);
- if (!ConstantMemory)
- Builder.PendingLoads.push_back(LoadVal.getValue(1));
- return LoadVal;
- }
- /// processIntegerCallValue - Record the value for an instruction that
- /// produces an integer result, converting the type where necessary.
- void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
- SDValue Value,
- bool IsSigned) {
- EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true);
- if (IsSigned)
- Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
- else
- Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
- setValue(&I, Value);
- }
- /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
- /// If so, return true and lower it, otherwise return false and it will be
- /// lowered like a normal call.
- bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
- // Verify that the prototype makes sense. int memcmp(void*,void*,size_t)
- if (I.getNumArgOperands() != 3)
- return false;
- const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
- if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
- !I.getArgOperand(2)->getType()->isIntegerTy() ||
- !I.getType()->isIntegerTy())
- return false;
- const Value *Size = I.getArgOperand(2);
- const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
- if (CSize && CSize->getZExtValue() == 0) {
- EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true);
- setValue(&I, DAG.getConstant(0, CallVT));
- return true;
- }
- const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
- std::pair<SDValue, SDValue> Res =
- TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
- getValue(LHS), getValue(RHS), getValue(Size),
- MachinePointerInfo(LHS),
- MachinePointerInfo(RHS));
- if (Res.first.getNode()) {
- processIntegerCallValue(I, Res.first, true);
- PendingLoads.push_back(Res.second);
- return true;
- }
- // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
- // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
- if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
- bool ActuallyDoIt = true;
- MVT LoadVT;
- Type *LoadTy;
- switch (CSize->getZExtValue()) {
- default:
- LoadVT = MVT::Other;
- LoadTy = 0;
- ActuallyDoIt = false;
- break;
- case 2:
- LoadVT = MVT::i16;
- LoadTy = Type::getInt16Ty(CSize->getContext());
- break;
- case 4:
- LoadVT = MVT::i32;
- LoadTy = Type::getInt32Ty(CSize->getContext());
- break;
- case 8:
- LoadVT = MVT::i64;
- LoadTy = Type::getInt64Ty(CSize->getContext());
- break;
- /*
- case 16:
- LoadVT = MVT::v4i32;
- LoadTy = Type::getInt32Ty(CSize->getContext());
- LoadTy = VectorType::get(LoadTy, 4);
- break;
- */
- }
- // This turns into unaligned loads. We only do this if the target natively
- // supports the MVT we'll be loading or if it is small enough (<= 4) that
- // we'll only produce a small number of byte loads.
- // Require that we can find a legal MVT, and only do this if the target
- // supports unaligned loads of that type. Expanding into byte loads would
- // bloat the code.
- const TargetLowering *TLI = TM.getTargetLowering();
- if (ActuallyDoIt && CSize->getZExtValue() > 4) {
- // TODO: Handle 5 byte compare as 4-byte + 1 byte.
- // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
- if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT))
- ActuallyDoIt = false;
- }
- if (ActuallyDoIt) {
- SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
- SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
- SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
- ISD::SETNE);
- processIntegerCallValue(I, Res, false);
- return true;
- }
- }
- return false;
- }
- /// visitMemChrCall -- See if we can lower a memchr call into an optimized
- /// form. If so, return true and lower it, otherwise return false and it
- /// will be lowered like a normal call.
- bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
- // Verify that the prototype makes sense. void *memchr(void *, int, size_t)
- if (I.getNumArgOperands() != 3)
- return false;
- const Value *Src = I.getArgOperand(0);
- const Value *Char = I.getArgOperand(1);
- const Value *Length = I.getArgOperand(2);
- if (!Src->getType()->isPointerTy() ||
- !Char->getType()->isIntegerTy() ||
- !Length->getType()->isIntegerTy() ||
- !I.getType()->isPointerTy())
- return false;
- const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
- std::pair<SDValue, SDValue> Res =
- TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
- getValue(Src), getValue(Char), getValue(Length),
- MachinePointerInfo(Src));
- if (Res.first.getNode()) {
- setValue(&I, Res.first);
- PendingLoads.push_back(Res.second);
- return true;
- }
- return false;
- }
- /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
- /// optimized form. If so, return true and lower it, otherwise return false
- /// and it will be lowered like a normal call.
- bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
- // Verify that the prototype makes sense. char *strcpy(char *, char *)
- if (I.getNumArgOperands() != 2)
- return false;
- const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
- if (!Arg0->getType()->isPointerTy() ||
- !Arg1->getType()->isPointerTy() ||
- !I.getType()->isPointerTy())
- return false;
- const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
- std::pair<SDValue, SDValue> Res =
- TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
- getValue(Arg0), getValue(Arg1),
- MachinePointerInfo(Arg0),
- MachinePointerInfo(Arg1), isStpcpy);
- if (Res.first.getNode()) {
- setValue(&I, Res.first);
- DAG.setRoot(Res.second);
- return true;
- }
- return false;
- }
- /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
- /// If so, return true and lower it, otherwise return false and it will be
- /// lowered like a normal call.
- bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
- // Verify that the prototype makes sense. int strcmp(void*,void*)
- if (I.getNumArgOperands() != 2)
- return false;
- const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
- if (!Arg0->getType()->isPointerTy() ||
- !Arg1->getType()->isPointerTy() ||
- !I.getType()->isIntegerTy())
- return false;
- const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
- std::pair<SDValue, SDValue> Res =
- TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
- getValue(Arg0), getValue(Arg1),
- MachinePointerInfo(Arg0),
- MachinePointerInfo(Arg1));
- if (Res.first.getNode()) {
- processIntegerCallValue(I, Res.first, true);
- PendingLoads.push_back(Res.second);
- return true;
- }
- return false;
- }
- /// visitStrLenCall -- See if we can lower a strlen call into an optimized
- /// form. If so, return true and lower it, otherwise return false and it
- /// will be lowered like a normal call.
- bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
- // Verify that the prototype makes sense. size_t strlen(char *)
- if (I.getNumArgOperands() != 1)
- return false;
- const Value *Arg0 = I.getArgOperand(0);
- if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
- return false;
- const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
- std::pair<SDValue, SDValue> Res =
- TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
- getValue(Arg0), MachinePointerInfo(Arg0));
- if (Res.first.getNode()) {
- processIntegerCallValue(I, Res.first, false);
- PendingLoads.push_back(Res.second);
- return true;
- }
- return false;
- }
- /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
- /// form. If so, return true and lower it, otherwise return false and it
- /// will be lowered like a normal call.
- bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
- // Verify that the prototype makes sense. size_t strnlen(char *, size_t)
- if (I.getNumArgOperands() != 2)
- return false;
- const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
- if (!Arg0->getType()->isPointerTy() ||
- !Arg1->getType()->isIntegerTy() ||
- !I.getType()->isIntegerTy())
- return false;
- const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
- std::pair<SDValue, SDValue> Res =
- TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
- getValue(Arg0), getValue(Arg1),
- MachinePointerInfo(Arg0));
- if (Res.first.getNode()) {
- processIntegerCallValue(I, Res.first, false);
- PendingLoads.push_back(Res.second);
- return true;
- }
- return false;
- }
- /// visitUnaryFloatCall - If a call instruction is a unary floating-point
- /// operation (as expected), translate it to an SDNode with the specified opcode
- /// and return true.
- bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
- unsigned Opcode) {
- // Sanity check that it really is a unary floating-point call.
- if (I.getNumArgOperands() != 1 ||
- !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
- I.getType() != I.getArgOperand(0)->getType() ||
- !I.onlyReadsMemory())
- return false;
- SDValue Tmp = getValue(I.getArgOperand(0));
- setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
- return true;
- }
- void SelectionDAGBuilder::visitCall(const CallInst &I) {
- // Handle inline assembly differently.
- if (isa<InlineAsm>(I.getCalledValue())) {
- visitInlineAsm(&I);
- return;
- }
- MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
- ComputeUsesVAFloatArgument(I, &MMI);
- const char *RenameFn = 0;
- if (Function *F = I.getCalledFunction()) {
- if (F->isDeclaration()) {
- if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
- if (unsigned IID = II->getIntrinsicID(F)) {
- RenameFn = visitIntrinsicCall(I, IID);
- if (!RenameFn)
- return;
- }
- }
- if (unsigned IID = F->getIntrinsicID()) {
- RenameFn = visitIntrinsicCall(I, IID);
- if (!RenameFn)
- return;
- }
- }
- // Check for well-known libc/libm calls. If the function is internal, it
- // can't be a library call.
- LibFunc::Func Func;
- if (!F->hasLocalLinkage() && F->hasName() &&
- LibInfo->getLibFunc(F->getName(), Func) &&
- LibInfo->hasOptimizedCodeGen(Func)) {
- switch (Func) {
- default: break;
- case LibFunc::copysign:
- case LibFunc::copysignf:
- case LibFunc::copysignl:
- if (I.getNumArgOperands() == 2 && // Basic sanity checks.
- I.getArgOperand(0)->getType()->isFloatingPointTy() &&
- I.getType() == I.getArgOperand(0)->getType() &&
- I.getType() == I.getArgOperand(1)->getType() &&
- I.onlyReadsMemory()) {
- SDValue LHS = getValue(I.getArgOperand(0));
- SDValue RHS = getValue(I.getArgOperand(1));
- setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
- LHS.getValueType(), LHS, RHS));
- return;
- }
- break;
- case LibFunc::fabs:
- case LibFunc::fabsf:
- case LibFunc::fabsl:
- if (visitUnaryFloatCall(I, ISD::FABS))
- return;
- break;
- case LibFunc::sin:
- case LibFunc::sinf:
- case LibFunc::sinl:
- if (visitUnaryFloatCall(I, ISD::FSIN))
- return;
- break;
- case LibFunc::cos:
- case LibFunc::cosf:
- case LibFunc::cosl:
- if (visitUnaryFloatCall(I, ISD::FCOS))
- return;
- break;
- case LibFunc::sqrt:
- case LibFunc::sqrtf:
- case LibFunc::sqrtl:
- case LibFunc::sqrt_finite:
- case LibFunc::sqrtf_finite:
- case LibFunc::sqrtl_finite:
- if (visitUnaryFloatCall(I, ISD::FSQRT))
- return;
- break;
- case LibFunc::floor:
- case LibFunc::floorf:
- case LibFunc::floorl:
- if (visitUnaryFloatCall(I, ISD::FFLOOR))
- return;
- break;
- case LibFunc::nearbyint:
- case LibFunc::nearbyintf:
- case LibFunc::nearbyintl:
- if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
- return;
- break;
- case LibFunc::ceil:
- case LibFunc::ceilf:
- case LibFunc::ceill:
- if (visitUnaryFloatCall(I, ISD::FCEIL))
- return;
- break;
- case LibFunc::rint:
- case LibFunc::rintf:
- case LibFunc::rintl:
- if (visitUnaryFloatCall(I, ISD::FRINT))
- return;
- break;
- case LibFunc::round:
- case LibFunc::roundf:
- case LibFunc::roundl:
- if (visitUnaryFloatCall(I, ISD::FROUND))
- return;
- break;
- case LibFunc::trunc:
- case LibFunc::truncf:
- case LibFunc::truncl:
- if (visitUnaryFloatCall(I, ISD::FTRUNC))
- return;
- break;
- case LibFunc::log2:
- case LibFunc::log2f:
- case LibFunc::log2l:
- if (visitUnaryFloatCall(I, ISD::FLOG2))
- return;
- break;
- case LibFunc::exp2:
- case LibFunc::exp2f:
- case LibFunc::exp2l:
- if (visitUnaryFloatCall(I, ISD::FEXP2))
- return;
- break;
- case LibFunc::memcmp:
- if (visitMemCmpCall(I))
- return;
- break;
- case LibFunc::memchr:
- if (visitMemChrCall(I))
- return;
- break;
- case LibFunc::strcpy:
- if (visitStrCpyCall(I, false))
- return;
- break;
- case LibFunc::stpcpy:
- if (visitStrCpyCall(I, true))
- return;
- break;
- case LibFunc::strcmp:
- if (visitStrCmpCall(I))
- return;
- break;
- case LibFunc::strlen:
- if (visitStrLenCall(I))
- return;
- break;
- case LibFunc::strnlen:
- if (visitStrNLenCall(I))
- return;
- break;
- }
- }
- }
- SDValue Callee;
- if (!RenameFn)
- Callee = getValue(I.getCalledValue());
- else
- Callee = DAG.getExternalSymbol(RenameFn,
- TM.getTargetLowering()->getPointerTy());
- // Check if we can potentially perform a tail call. More detailed checking is
- // be done within LowerCallTo, after more information about the call is known.
- LowerCallTo(&I, Callee, I.isTailCall());
- }
- namespace {
- /// AsmOperandInfo - This contains information for each constraint that we are
- /// lowering.
- class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
- public:
- /// CallOperand - If this is the result output operand or a clobber
- /// this is null, otherwise it is the incoming operand to the CallInst.
- /// This gets modified as the asm is processed.
- SDValue CallOperand;
- /// AssignedRegs - If this is a register or register class operand, this
- /// contains the set of register corresponding to the operand.
- RegsForValue AssignedRegs;
- explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
- : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
- }
- /// getCallOperandValEVT - Return the EVT of the Value* that this operand
- /// corresponds to. If there is no Value* for this operand, it returns
- /// MVT::Other.
- EVT getCallOperandValEVT(LLVMContext &Context,
- const TargetLowering &TLI,
- const DataLayout *TD) const {
- if (CallOperandVal == 0) return MVT::Other;
- if (isa<BasicBlock>(CallOperandVal))
- return TLI.getPointerTy();
- llvm::Type *OpTy = CallOperandVal->getType();
- // FIXME: code duplicated from TargetLowering::ParseConstraints().
- // If this is an indirect operand, the operand is a pointer to the
- // accessed type.
- if (isIndirect) {
- llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
- if (!PtrTy)
- report_fatal_error("Indirect operand for inline asm not a pointer!");
- OpTy = PtrTy->getElementType();
- }
- // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
- if (StructType *STy = dyn_cast<StructType>(OpTy))
- if (STy->getNumElements() == 1)
- OpTy = STy->getElementType(0);
- // If OpTy is not a single value, it may be a struct/union that we
- // can tile with integers.
- if (!OpTy->isSingleValueType() && OpTy->isSized()) {
- unsigned BitSize = TD->getTypeSizeInBits(OpTy);
- switch (BitSize) {
- default: break;
- case 1:
- case 8:
- case 16:
- case 32:
- case 64:
- case 128:
- OpTy = IntegerType::get(Context, BitSize);
- break;
- }
- }
- return TLI.getValueType(OpTy, true);
- }
- };
- typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
- } // end anonymous namespace
- /// GetRegistersForValue - Assign registers (virtual or physical) for the
- /// specified operand. We prefer to assign virtual registers, to allow the
- /// register allocator to handle the assignment process. However, if the asm
- /// uses features that we can't model on machineinstrs, we have SDISel do the
- /// allocation. This produces generally horrible, but correct, code.
- ///
- /// OpInfo describes the operand.
- ///
- static void GetRegistersForValue(SelectionDAG &DAG,
- const TargetLowering &TLI,
- SDLoc DL,
- SDISelAsmOperandInfo &OpInfo) {
- LLVMContext &Context = *DAG.getContext();
- MachineFunction &MF = DAG.getMachineFunction();
- SmallVector<unsigned, 4> Regs;
- // If this is a constraint for a single physreg, or a constraint for a
- // register class, find it.
- std::pair<unsigned, const TargetRegisterClass*> PhysReg =
- TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
- OpInfo.ConstraintVT);
- unsigned NumRegs = 1;
- if (OpInfo.ConstraintVT != MVT::Other) {
- // If this is a FP input in an integer register (or visa versa) insert a bit
- // cast of the input value. More generally, handle any case where the input
- // value disagrees with the register class we plan to stick this in.
- if (OpInfo.Type == InlineAsm::isInput &&
- PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
- // Try to convert to the first EVT that the reg class contains. If the
- // types are identical size, use a bitcast to convert (e.g. two differing
- // vector types).
- MVT RegVT = *PhysReg.second->vt_begin();
- if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
- OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
- RegVT, OpInfo.CallOperand);
- OpInfo.ConstraintVT = RegVT;
- } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
- // If the input is a FP value and we want it in FP registers, do a
- // bitcast to the corresponding integer type. This turns an f64 value
- // into i64, which can be passed with two i32 values on a 32-bit
- // machine.
- RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
- OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
- RegVT, OpInfo.CallOperand);
- OpInfo.ConstraintVT = RegVT;
- }
- }
- NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
- }
- MVT RegVT;
- EVT ValueVT = OpInfo.ConstraintVT;
- // If this is a constraint for a specific physical register, like {r17},
- // assign it now.
- if (unsigned AssignedReg = PhysReg.first) {
- const TargetRegisterClass *RC = PhysReg.second;
- if (OpInfo.ConstraintVT == MVT::Other)
- ValueVT = *RC->vt_begin();
- // Get the actual register value type. This is important, because the user
- // may have asked for (e.g.) the AX register in i32 type. We need to
- // remember that AX is actually i16 to get the right extension.
- RegVT = *RC->vt_begin();
- // This is a explicit reference to a physical register.
- Regs.push_back(AssignedReg);
- // If this is an expanded reference, add the rest of the regs to Regs.
- if (NumRegs != 1) {
- TargetRegisterClass::iterator I = RC->begin();
- for (; *I != AssignedReg; ++I)
- assert(I != RC->end() && "Didn't find reg!");
- // Already added the first reg.
- --NumRegs; ++I;
- for (; NumRegs; --NumRegs, ++I) {
- assert(I != RC->end() && "Ran out of registers to allocate!");
- Regs.push_back(*I);
- }
- }
- OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
- return;
- }
- // Otherwise, if this was a reference to an LLVM register class, create vregs
- // for this reference.
- if (const TargetRegisterClass *RC = PhysReg.second) {
- RegVT = *RC->vt_begin();
- if (OpInfo.ConstraintVT == MVT::Other)
- ValueVT = RegVT;
- // Create the appropriate number of virtual registers.
- MachineRegisterInfo &RegInfo = MF.getRegInfo();
- for (; NumRegs; --NumRegs)
- Regs.push_back(RegInfo.createVirtualRegister(RC));
- OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
- return;
- }
- // Otherwise, we couldn't allocate enough registers for this.
- }
- /// visitInlineAsm - Handle a call to an InlineAsm object.
- ///
- void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
- const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
- /// ConstraintOperands - Information about all of the constraints.
- SDISelAsmOperandInfoVector ConstraintOperands;
- const TargetLowering *TLI = TM.getTargetLowering();
- TargetLowering::AsmOperandInfoVector
- TargetConstraints = TLI->ParseConstraints(CS);
- bool hasMemory = false;
- unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
- unsigned ResNo = 0; // ResNo - The result number of the next output.
- for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
- ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
- MVT OpVT = MVT::Other;
- // Compute the value type for each operand.
- switch (OpInfo.Type) {
- case InlineAsm::isOutput:
- // Indirect outputs just consume an argument.
- if (OpInfo.isIndirect) {
- OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
- break;
- }
- // The return value of the call is this value. As such, there is no
- // corresponding argument.
- assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
- if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
- OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo));
- } else {
- assert(ResNo == 0 && "Asm only has one result!");
- OpVT = TLI->getSimpleValueType(CS.getType());
- }
- ++ResNo;
- break;
- case InlineAsm::isInput:
- OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
- break;
- case InlineAsm::isClobber:
- // Nothing to do.
- break;
- }
- // If this is an input or an indirect output, process the call argument.
- // BasicBlocks are labels, currently appearing only in asm's.
- if (OpInfo.CallOperandVal) {
- if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
- OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
- } else {
- OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
- }
- OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, TD).
- getSimpleVT();
- }
- OpInfo.ConstraintVT = OpVT;
- // Indirect operand accesses access memory.
- if (OpInfo.isIndirect)
- hasMemory = true;
- else {
- for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
- TargetLowering::ConstraintType
- CType = TLI->getConstraintType(OpInfo.Codes[j]);
- if (CType == TargetLowering::C_Memory) {
- hasMemory = true;
- break;
- }
- }
- }
- }
- SDValue Chain, Flag;
- // We won't need to flush pending loads if this asm doesn't touch
- // memory and is nonvolatile.
- if (hasMemory || IA->hasSideEffects())
- Chain = getRoot();
- else
- Chain = DAG.getRoot();
- // Second pass over the constraints: compute which constraint option to use
- // and assign registers to constraints that want a specific physreg.
- for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
- // If this is an output operand with a matching input operand, look up the
- // matching input. If their types mismatch, e.g. one is an integer, the
- // other is floating point, or their sizes are different, flag it as an
- // error.
- if (OpInfo.hasMatchingInput()) {
- SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
- if (OpInfo.ConstraintVT != Input.ConstraintVT) {
- std::pair<unsigned, const TargetRegisterClass*> MatchRC =
- TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
- OpInfo.ConstraintVT);
- std::pair<unsigned, const TargetRegisterClass*> InputRC =
- TLI->getRegForInlineAsmConstraint(Input.ConstraintCode,
- Input.ConstraintVT);
- if ((OpInfo.ConstraintVT.isInteger() !=
- Input.ConstraintVT.isInteger()) ||
- (MatchRC.second != InputRC.second)) {
- report_fatal_error("Unsupported asm: input constraint"
- " with a matching output constraint of"
- " incompatible type!");
- }
- Input.ConstraintVT = OpInfo.ConstraintVT;
- }
- }
- // Compute the constraint code and ConstraintType to use.
- TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
- if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
- OpInfo.Type == InlineAsm::isClobber)
- continue;
- // If this is a memory input, and if the operand is not indirect, do what we
- // need to to provide an address for the memory input.
- if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
- !OpInfo.isIndirect) {
- assert((OpInfo.isMultipleAlternative ||
- (OpInfo.Type == InlineAsm::isInput)) &&
- "Can only indirectify direct input operands!");
- // Memory operands really want the address of the value. If we don't have
- // an indirect input, put it in the constpool if we can, otherwise spill
- // it to a stack slot.
- // TODO: This isn't quite right. We need to handle these according to
- // the addressing mode that the constraint wants. Also, this may take
- // an additional register for the computation and we don't want that
- // either.
- // If the operand is a float, integer, or vector constant, spill to a
- // constant pool entry to get its address.
- const Value *OpVal = OpInfo.CallOperandVal;
- if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
- isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
- OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
- TLI->getPointerTy());
- } else {
- // Otherwise, create a stack slot and emit a store to it before the
- // asm.
- Type *Ty = OpVal->getType();
- uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
- unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty);
- MachineFunction &MF = DAG.getMachineFunction();
- int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
- SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy());
- Chain = DAG.getStore(Chain, getCurSDLoc(),
- OpInfo.CallOperand, StackSlot,
- MachinePointerInfo::getFixedStack(SSFI),
- false, false, 0);
- OpInfo.CallOperand = StackSlot;
- }
- // There is no longer a Value* corresponding to this operand.
- OpInfo.CallOperandVal = 0;
- // It is now an indirect operand.
- OpInfo.isIndirect = true;
- }
- // If this constraint is for a specific register, allocate it before
- // anything else.
- if (OpInfo.ConstraintType == TargetLowering::C_Register)
- GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
- }
- // Second pass - Loop over all of the operands, assigning virtual or physregs
- // to register class operands.
- for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
- // C_Register operands have already been allocated, Other/Memory don't need
- // to be.
- if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
- GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
- }
- // AsmNodeOperands - The operands for the ISD::INLINEASM node.
- std::vector<SDValue> AsmNodeOperands;
- AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
- AsmNodeOperands.push_back(
- DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
- TLI->getPointerTy()));
- // If we have a !srcloc metadata node associated with it, we want to attach
- // this to the ultimately generated inline asm machineinstr. To do this, we
- // pass in the third operand as this (potentially null) inline asm MDNode.
- const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
- AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
- // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
- // bits as operand 3.
- unsigned ExtraInfo = 0;
- if (IA->hasSideEffects())
- ExtraInfo |= InlineAsm::Extra_HasSideEffects;
- if (IA->isAlignStack())
- ExtraInfo |= InlineAsm::Extra_IsAlignStack;
- // Set the asm dialect.
- ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
- // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
- for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
- TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
- // Compute the constraint code and ConstraintType to use.
- TLI->ComputeConstraintToUse(OpInfo, SDValue());
- // Ideally, we would only check against memory constraints. However, the
- // meaning of an other constraint can be target-specific and we can't easily
- // reason about it. Therefore, be conservative and set MayLoad/MayStore
- // for other constriants as well.
- if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
- OpInfo.ConstraintType == TargetLowering::C_Other) {
- if (OpInfo.Type == InlineAsm::isInput)
- ExtraInfo |= InlineAsm::Extra_MayLoad;
- else if (OpInfo.Type == InlineAsm::isOutput)
- ExtraInfo |= InlineAsm::Extra_MayStore;
- else if (OpInfo.Type == InlineAsm::isClobber)
- ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
- }
- }
- AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
- TLI->getPointerTy()));
- // Loop over all of the inputs, copying the operand values into the
- // appropriate registers and processing the output regs.
- RegsForValue RetValRegs;
- // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
- std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
- for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
- switch (OpInfo.Type) {
- case InlineAsm::isOutput: {
- if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
- OpInfo.ConstraintType != TargetLowering::C_Register) {
- // Memory output, or 'other' output (e.g. 'X' constraint).
- assert(OpInfo.isIndirect && "Memory output must be indirect operand");
- // Add information to the INLINEASM node to know about this output.
- unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
- AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
- TLI->getPointerTy()));
- AsmNodeOperands.push_back(OpInfo.CallOperand);
- break;
- }
- // Otherwise, this is a register or register class output.
- // Copy the output from the appropriate register. Find a register that
- // we can use.
- if (OpInfo.AssignedRegs.Regs.empty()) {
- LLVMContext &Ctx = *DAG.getContext();
- Ctx.emitError(CS.getInstruction(),
- "couldn't allocate output register for constraint '" +
- Twine(OpInfo.ConstraintCode) + "'");
- return;
- }
- // If this is an indirect operand, store through the pointer after the
- // asm.
- if (OpInfo.isIndirect) {
- IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
- OpInfo.CallOperandVal));
- } else {
- // This is the result value of the call.
- assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
- // Concatenate this output onto the outputs list.
- RetValRegs.append(OpInfo.AssignedRegs);
- }
- // Add information to the INLINEASM node to know that this register is
- // set.
- OpInfo.AssignedRegs
- .AddInlineAsmOperands(OpInfo.isEarlyClobber
- ? InlineAsm::Kind_RegDefEarlyClobber
- : InlineAsm::Kind_RegDef,
- false, 0, DAG, AsmNodeOperands);
- break;
- }
- case InlineAsm::isInput: {
- SDValue InOperandVal = OpInfo.CallOperand;
- if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
- // If this is required to match an output register we have already set,
- // just use its register.
- unsigned OperandNo = OpInfo.getMatchedOperand();
- // Scan until we find the definition we already emitted of this operand.
- // When we find it, create a RegsForValue operand.
- unsigned CurOp = InlineAsm::Op_FirstOperand;
- for (; OperandNo; --OperandNo) {
- // Advance to the next operand.
- unsigned OpFlag =
- cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
- assert((InlineAsm::isRegDefKind(OpFlag) ||
- InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
- InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
- CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
- }
- unsigned OpFlag =
- cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
- if (InlineAsm::isRegDefKind(OpFlag) ||
- InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
- // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
- if (OpInfo.isIndirect) {
- // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
- LLVMContext &Ctx = *DAG.getContext();
- Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
- " don't know how to handle tied "
- "indirect register inputs");
- return;
- }
- RegsForValue MatchedRegs;
- MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
- MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
- MatchedRegs.RegVTs.push_back(RegVT);
- MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
- for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
- i != e; ++i) {
- if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT))
- MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
- else {
- LLVMContext &Ctx = *DAG.getContext();
- Ctx.emitError(CS.getInstruction(),
- "inline asm error: This value"
- " type register class is not natively supported!");
- return;
- }
- }
- // Use the produced MatchedRegs object to
- MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
- Chain, &Flag, CS.getInstruction());
- MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
- true, OpInfo.getMatchedOperand(),
- DAG, AsmNodeOperands);
- break;
- }
- assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
- assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
- "Unexpected number of operands");
- // Add information to the INLINEASM node to know about this input.
- // See InlineAsm.h isUseOperandTiedToDef.
- OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
- OpInfo.getMatchedOperand());
- AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
- TLI->getPointerTy()));
- AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
- break;
- }
- // Treat indirect 'X' constraint as memory.
- if (OpInfo.ConstraintType == TargetLowering::C_Other &&
- OpInfo.isIndirect)
- OpInfo.ConstraintType = TargetLowering::C_Memory;
- if (OpInfo.ConstraintType == TargetLowering::C_Other) {
- std::vector<SDValue> Ops;
- TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
- Ops, DAG);
- if (Ops.empty()) {
- LLVMContext &Ctx = *DAG.getContext();
- Ctx.emitError(CS.getInstruction(),
- "invalid operand for inline asm constraint '" +
- Twine(OpInfo.ConstraintCode) + "'");
- return;
- }
- // Add information to the INLINEASM node to know about this input.
- unsigned ResOpType =
- InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
- AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
- TLI->getPointerTy()));
- AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
- break;
- }
- if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
- assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
- assert(InOperandVal.getValueType() == TLI->getPointerTy() &&
- "Memory operands expect pointer values");
- // Add information to the INLINEASM node to know about this input.
- unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
- AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
- TLI->getPointerTy()));
- AsmNodeOperands.push_back(InOperandVal);
- break;
- }
- assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
- OpInfo.ConstraintType == TargetLowering::C_Register) &&
- "Unknown constraint type!");
- // TODO: Support this.
- if (OpInfo.isIndirect) {
- LLVMContext &Ctx = *DAG.getContext();
- Ctx.emitError(CS.getInstruction(),
- "Don't know how to handle indirect register inputs yet "
- "for constraint '" +
- Twine(OpInfo.ConstraintCode) + "'");
- return;
- }
- // Copy the input into the appropriate registers.
- if (OpInfo.AssignedRegs.Regs.empty()) {
- LLVMContext &Ctx = *DAG.getContext();
- Ctx.emitError(CS.getInstruction(),
- "couldn't allocate input reg for constraint '" +
- Twine(OpInfo.ConstraintCode) + "'");
- return;
- }
- OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
- Chain, &Flag, CS.getInstruction());
- OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
- DAG, AsmNodeOperands);
- break;
- }
- case InlineAsm::isClobber: {
- // Add the clobbered value to the operand list, so that the register
- // allocator is aware that the physreg got clobbered.
- if (!OpInfo.AssignedRegs.Regs.empty())
- OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
- false, 0, DAG,
- AsmNodeOperands);
- break;
- }
- }
- }
- // Finish up input operands. Set the input chain and add the flag last.
- AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
- if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
- Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
- DAG.getVTList(MVT::Other, MVT::Glue),
- &AsmNodeOperands[0], AsmNodeOperands.size());
- Flag = Chain.getValue(1);
- // If this asm returns a register value, copy the result from that register
- // and set it as the value of the call.
- if (!RetValRegs.Regs.empty()) {
- SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
- Chain, &Flag, CS.getInstruction());
- // FIXME: Why don't we do this for inline asms with MRVs?
- if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
- EVT ResultType = TLI->getValueType(CS.getType());
- // If any of the results of the inline asm is a vector, it may have the
- // wrong width/num elts. This can happen for register classes that can
- // contain multiple different value types. The preg or vreg allocated may
- // not have the same VT as was expected. Convert it to the right type
- // with bit_convert.
- if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
- Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
- ResultType, Val);
- } else if (ResultType != Val.getValueType() &&
- ResultType.isInteger() && Val.getValueType().isInteger()) {
- // If a result value was tied to an input value, the computed result may
- // have a wider width than the expected result. Extract the relevant
- // portion.
- Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
- }
- assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
- }
- setValue(CS.getInstruction(), Val);
- // Don't need to use this as a chain in this case.
- if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
- return;
- }
- std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
- // Process indirect outputs, first output all of the flagged copies out of
- // physregs.
- for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
- RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
- const Value *Ptr = IndirectStoresToEmit[i].second;
- SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
- Chain, &Flag, IA);
- StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
- }
- // Emit the non-flagged stores from the physregs.
- SmallVector<SDValue, 8> OutChains;
- for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
- SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
- StoresToEmit[i].first,
- getValue(StoresToEmit[i].second),
- MachinePointerInfo(StoresToEmit[i].second),
- false, false, 0);
- OutChains.push_back(Val);
- }
- if (!OutChains.empty())
- Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
- &OutChains[0], OutChains.size());
- DAG.setRoot(Chain);
- }
- void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
- DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
- MVT::Other, getRoot(),
- getValue(I.getArgOperand(0)),
- DAG.getSrcValue(I.getArgOperand(0))));
- }
- void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
- const TargetLowering *TLI = TM.getTargetLowering();
- const DataLayout &TD = *TLI->getDataLayout();
- SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(),
- getRoot(), getValue(I.getOperand(0)),
- DAG.getSrcValue(I.getOperand(0)),
- TD.getABITypeAlignment(I.getType()));
- setValue(&I, V);
- DAG.setRoot(V.getValue(1));
- }
- void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
- DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
- MVT::Other, getRoot(),
- getValue(I.getArgOperand(0)),
- DAG.getSrcValue(I.getArgOperand(0))));
- }
- void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
- DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
- MVT::Other, getRoot(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)),
- DAG.getSrcValue(I.getArgOperand(0)),
- DAG.getSrcValue(I.getArgOperand(1))));
- }
- /// \brief Lower an argument list according to the target calling convention.
- ///
- /// \return A tuple of <return-value, token-chain>
- ///
- /// This is a helper for lowering intrinsics that follow a target calling
- /// convention or require stack pointer adjustment. Only a subset of the
- /// intrinsic's operands need to participate in the calling convention.
- std::pair<SDValue, SDValue>
- SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx,
- unsigned NumArgs, SDValue Callee,
- bool useVoidTy) {
- TargetLowering::ArgListTy Args;
- Args.reserve(NumArgs);
- // Populate the argument list.
- // Attributes for args start at offset 1, after the return attribute.
- ImmutableCallSite CS(&CI);
- for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
- ArgI != ArgE; ++ArgI) {
- const Value *V = CI.getOperand(ArgI);
- assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
- TargetLowering::ArgListEntry Entry;
- Entry.Node = getValue(V);
- Entry.Ty = V->getType();
- Entry.setAttributes(&CS, AttrI);
- Args.push_back(Entry);
- }
- Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType();
- TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false,
- /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs,
- CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false,
- /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc());
- const TargetLowering *TLI = TM.getTargetLowering();
- return TLI->LowerCallTo(CLI);
- }
- /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
- /// or patchpoint target node's operand list.
- ///
- /// Constants are converted to TargetConstants purely as an optimization to
- /// avoid constant materialization and register allocation.
- ///
- /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
- /// generate addess computation nodes, and so ExpandISelPseudo can convert the
- /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
- /// address materialization and register allocation, but may also be required
- /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
- /// alloca in the entry block, then the runtime may assume that the alloca's
- /// StackMap location can be read immediately after compilation and that the
- /// location is valid at any point during execution (this is similar to the
- /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
- /// only available in a register, then the runtime would need to trap when
- /// execution reaches the StackMap in order to read the alloca's location.
- static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx,
- SmallVectorImpl<SDValue> &Ops,
- SelectionDAGBuilder &Builder) {
- for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) {
- SDValue OpVal = Builder.getValue(CI.getArgOperand(i));
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
- Ops.push_back(
- Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
- Ops.push_back(
- Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
- } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
- const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
- Ops.push_back(
- Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy()));
- } else
- Ops.push_back(OpVal);
- }
- }
- /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
- void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
- // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
- // [live variables...])
- assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
- SDValue Callee = getValue(CI.getCalledValue());
- // Lower into a call sequence with no args and no return value.
- std::pair<SDValue, SDValue> Result = LowerCallOperands(CI, 0, 0, Callee);
- // Set the root to the target-lowered call chain.
- SDValue Chain = Result.second;
- DAG.setRoot(Chain);
- /// Get a call instruction from the call sequence chain.
- /// Tail calls are not allowed.
- SDNode *CallEnd = Chain.getNode();
- assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
- "Expected a callseq node.");
- SDNode *Call = CallEnd->getOperand(0).getNode();
- bool hasGlue = Call->getGluedNode();
- // Replace the target specific call node with the stackmap intrinsic.
- SmallVector<SDValue, 8> Ops;
- // Add the <id> and <numShadowBytes> constants.
- for (unsigned i = 0; i < 2; ++i) {
- SDValue tmp = getValue(CI.getOperand(i));
- Ops.push_back(DAG.getTargetConstant(
- cast<ConstantSDNode>(tmp)->getZExtValue(), MVT::i32));
- }
- // Push live variables for the stack map.
- addStackMapLiveVars(CI, 2, Ops, *this);
- // Push the chain (this is originally the first operand of the call, but
- // becomes now the last or second to last operand).
- Ops.push_back(*(Call->op_begin()));
- // Push the glue flag (last operand).
- if (hasGlue)
- Ops.push_back(*(Call->op_end()-1));
- SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
- // Replace the target specific call node with a STACKMAP node.
- MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::STACKMAP, getCurSDLoc(),
- NodeTys, Ops);
- // StackMap generates no value, so nothing goes in the NodeMap.
- // Fixup the consumers of the intrinsic. The chain and glue may be used in the
- // call sequence.
- DAG.ReplaceAllUsesWith(Call, MN);
- DAG.DeleteNode(Call);
- // Inform the Frame Information that we have a stackmap in this function.
- FuncInfo.MF->getFrameInfo()->setHasStackMap();
- }
- /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
- void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) {
- // void|i64 @llvm.experimental.patchpoint.void|i64(i32 <id>,
- // i32 <numBytes>,
- // i8* <target>,
- // i32 <numArgs>,
- // [Args...],
- // [live variables...])
- CallingConv::ID CC = CI.getCallingConv();
- bool isAnyRegCC = CC == CallingConv::AnyReg;
- bool hasDef = !CI.getType()->isVoidTy();
- SDValue Callee = getValue(CI.getOperand(2)); // <target>
- // Get the real number of arguments participating in the call <numArgs>
- SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos));
- unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
- // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
- // Intrinsics include all meta-operands up to but not including CC.
- unsigned NumMetaOpers = PatchPointOpers::CCPos;
- assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs &&
- "Not enough arguments provided to the patchpoint intrinsic");
- // For AnyRegCC the arguments are lowered later on manually.
- unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs;
- std::pair<SDValue, SDValue> Result =
- LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC);
- // Set the root to the target-lowered call chain.
- SDValue Chain = Result.second;
- DAG.setRoot(Chain);
- SDNode *CallEnd = Chain.getNode();
- if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
- CallEnd = CallEnd->getOperand(0).getNode();
- /// Get a call instruction from the call sequence chain.
- /// Tail calls are not allowed.
- assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
- "Expected a callseq node.");
- SDNode *Call = CallEnd->getOperand(0).getNode();
- bool hasGlue = Call->getGluedNode();
- // Replace the target specific call node with the patchable intrinsic.
- SmallVector<SDValue, 8> Ops;
- // Add the <id> and <numBytes> constants.
- SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
- Ops.push_back(DAG.getTargetConstant(
- cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i32));
- SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
- Ops.push_back(DAG.getTargetConstant(
- cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
- // Assume that the Callee is a constant address.
- // FIXME: handle function symbols in the future.
- Ops.push_back(
- DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(),
- /*isTarget=*/true));
- // Adjust <numArgs> to account for any arguments that have been passed on the
- // stack instead.
- // Call Node: Chain, Target, {Args}, RegMask, [Glue]
- unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3);
- NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs;
- Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
- // Add the calling convention
- Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32));
- // Add the arguments we omitted previously. The register allocator should
- // place these in any free register.
- if (isAnyRegCC)
- for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
- Ops.push_back(getValue(CI.getArgOperand(i)));
- // Push the arguments from the call instruction up to the register mask.
- SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1;
- for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i)
- Ops.push_back(*i);
- // Push live variables for the stack map.
- addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this);
- // Push the register mask info.
- if (hasGlue)
- Ops.push_back(*(Call->op_end()-2));
- else
- Ops.push_back(*(Call->op_end()-1));
- // Push the chain (this is originally the first operand of the call, but
- // becomes now the last or second to last operand).
- Ops.push_back(*(Call->op_begin()));
- // Push the glue flag (last operand).
- if (hasGlue)
- Ops.push_back(*(Call->op_end()-1));
- SDVTList NodeTys;
- if (isAnyRegCC && hasDef) {
- // Create the return types based on the intrinsic definition
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SmallVector<EVT, 3> ValueVTs;
- ComputeValueVTs(TLI, CI.getType(), ValueVTs);
- assert(ValueVTs.size() == 1 && "Expected only one return value type.");
- // There is always a chain and a glue type at the end
- ValueVTs.push_back(MVT::Other);
- ValueVTs.push_back(MVT::Glue);
- NodeTys = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
- } else
- NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
- // Replace the target specific call node with a PATCHPOINT node.
- MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
- getCurSDLoc(), NodeTys, Ops);
- // Update the NodeMap.
- if (hasDef) {
- if (isAnyRegCC)
- setValue(&CI, SDValue(MN, 0));
- else
- setValue(&CI, Result.first);
- }
- // Fixup the consumers of the intrinsic. The chain and glue may be used in the
- // call sequence. Furthermore the location of the chain and glue can change
- // when the AnyReg calling convention is used and the intrinsic returns a
- // value.
- if (isAnyRegCC && hasDef) {
- SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
- SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
- DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
- } else
- DAG.ReplaceAllUsesWith(Call, MN);
- DAG.DeleteNode(Call);
- // Inform the Frame Information that we have a stackmap in this function.
- FuncInfo.MF->getFrameInfo()->setHasStackMap();
- }
- /// TargetLowering::LowerCallTo - This is the default LowerCallTo
- /// implementation, which just calls LowerCall.
- /// FIXME: When all targets are
- /// migrated to using LowerCall, this hook should be integrated into SDISel.
- std::pair<SDValue, SDValue>
- TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
- // Handle the incoming return values from the call.
- CLI.Ins.clear();
- SmallVector<EVT, 4> RetTys;
- ComputeValueVTs(*this, CLI.RetTy, RetTys);
- for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
- EVT VT = RetTys[I];
- MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
- unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
- for (unsigned i = 0; i != NumRegs; ++i) {
- ISD::InputArg MyFlags;
- MyFlags.VT = RegisterVT;
- MyFlags.ArgVT = VT;
- MyFlags.Used = CLI.IsReturnValueUsed;
- if (CLI.RetSExt)
- MyFlags.Flags.setSExt();
- if (CLI.RetZExt)
- MyFlags.Flags.setZExt();
- if (CLI.IsInReg)
- MyFlags.Flags.setInReg();
- CLI.Ins.push_back(MyFlags);
- }
- }
- // Handle all of the outgoing arguments.
- CLI.Outs.clear();
- CLI.OutVals.clear();
- ArgListTy &Args = CLI.Args;
- for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
- for (unsigned Value = 0, NumValues = ValueVTs.size();
- Value != NumValues; ++Value) {
- EVT VT = ValueVTs[Value];
- Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
- SDValue Op = SDValue(Args[i].Node.getNode(),
- Args[i].Node.getResNo() + Value);
- ISD::ArgFlagsTy Flags;
- unsigned OriginalAlignment =
- getDataLayout()->getABITypeAlignment(ArgTy);
- if (Args[i].isZExt)
- Flags.setZExt();
- if (Args[i].isSExt)
- Flags.setSExt();
- if (Args[i].isInReg)
- Flags.setInReg();
- if (Args[i].isSRet)
- Flags.setSRet();
- if (Args[i].isByVal) {
- Flags.setByVal();
- PointerType *Ty = cast<PointerType>(Args[i].Ty);
- Type *ElementTy = Ty->getElementType();
- Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
- // For ByVal, alignment should come from FE. BE will guess if this
- // info is not there but there are cases it cannot get right.
- unsigned FrameAlign;
- if (Args[i].Alignment)
- FrameAlign = Args[i].Alignment;
- else
- FrameAlign = getByValTypeAlignment(ElementTy);
- Flags.setByValAlign(FrameAlign);
- }
- if (Args[i].isNest)
- Flags.setNest();
- Flags.setOrigAlign(OriginalAlignment);
- MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
- unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
- SmallVector<SDValue, 4> Parts(NumParts);
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
- if (Args[i].isSExt)
- ExtendKind = ISD::SIGN_EXTEND;
- else if (Args[i].isZExt)
- ExtendKind = ISD::ZERO_EXTEND;
- // Conservatively only handle 'returned' on non-vectors for now
- if (Args[i].isReturned && !Op.getValueType().isVector()) {
- assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
- "unexpected use of 'returned'");
- // Before passing 'returned' to the target lowering code, ensure that
- // either the register MVT and the actual EVT are the same size or that
- // the return value and argument are extended in the same way; in these
- // cases it's safe to pass the argument register value unchanged as the
- // return register value (although it's at the target's option whether
- // to do so)
- // TODO: allow code generation to take advantage of partially preserved
- // registers rather than clobbering the entire register when the
- // parameter extension method is not compatible with the return
- // extension method
- if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
- (ExtendKind != ISD::ANY_EXTEND &&
- CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
- Flags.setReturned();
- }
- getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
- PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
- for (unsigned j = 0; j != NumParts; ++j) {
- // if it isn't first piece, alignment must be 1
- ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
- i < CLI.NumFixedArgs,
- i, j*Parts[j].getValueType().getStoreSize());
- if (NumParts > 1 && j == 0)
- MyFlags.Flags.setSplit();
- else if (j != 0)
- MyFlags.Flags.setOrigAlign(1);
- CLI.Outs.push_back(MyFlags);
- CLI.OutVals.push_back(Parts[j]);
- }
- }
- }
- SmallVector<SDValue, 4> InVals;
- CLI.Chain = LowerCall(CLI, InVals);
- // Verify that the target's LowerCall behaved as expected.
- assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
- "LowerCall didn't return a valid chain!");
- assert((!CLI.IsTailCall || InVals.empty()) &&
- "LowerCall emitted a return value for a tail call!");
- assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
- "LowerCall didn't emit the correct number of values!");
- // For a tail call, the return value is merely live-out and there aren't
- // any nodes in the DAG representing it. Return a special value to
- // indicate that a tail call has been emitted and no more Instructions
- // should be processed in the current block.
- if (CLI.IsTailCall) {
- CLI.DAG.setRoot(CLI.Chain);
- return std::make_pair(SDValue(), SDValue());
- }
- DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
- assert(InVals[i].getNode() &&
- "LowerCall emitted a null value!");
- assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
- "LowerCall emitted a value with the wrong type!");
- });
- // Collect the legal value parts into potentially illegal values
- // that correspond to the original function's return values.
- ISD::NodeType AssertOp = ISD::DELETED_NODE;
- if (CLI.RetSExt)
- AssertOp = ISD::AssertSext;
- else if (CLI.RetZExt)
- AssertOp = ISD::AssertZext;
- SmallVector<SDValue, 4> ReturnValues;
- unsigned CurReg = 0;
- for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
- EVT VT = RetTys[I];
- MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
- unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
- ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
- NumRegs, RegisterVT, VT, NULL,
- AssertOp));
- CurReg += NumRegs;
- }
- // For a function returning void, there is no return value. We can't create
- // such a node, so we just return a null return value in that case. In
- // that case, nothing will actually look at the value.
- if (ReturnValues.empty())
- return std::make_pair(SDValue(), CLI.Chain);
- SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
- CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
- &ReturnValues[0], ReturnValues.size());
- return std::make_pair(Res, CLI.Chain);
- }
- void TargetLowering::LowerOperationWrapper(SDNode *N,
- SmallVectorImpl<SDValue> &Results,
- SelectionDAG &DAG) const {
- SDValue Res = LowerOperation(SDValue(N, 0), DAG);
- if (Res.getNode())
- Results.push_back(Res);
- }
- SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
- llvm_unreachable("LowerOperation not implemented for this target!");
- }
- void
- SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
- SDValue Op = getNonRegisterValue(V);
- assert((Op.getOpcode() != ISD::CopyFromReg ||
- cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
- "Copy from a reg to the same reg!");
- assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
- const TargetLowering *TLI = TM.getTargetLowering();
- RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType());
- SDValue Chain = DAG.getEntryNode();
- RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V);
- PendingExports.push_back(Chain);
- }
- #include "llvm/CodeGen/SelectionDAGISel.h"
- /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
- /// entry block, return true. This includes arguments used by switches, since
- /// the switch may expand into multiple basic blocks.
- static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
- // With FastISel active, we may be splitting blocks, so force creation
- // of virtual registers for all non-dead arguments.
- if (FastISel)
- return A->use_empty();
- const BasicBlock *Entry = A->getParent()->begin();
- for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
- UI != E; ++UI) {
- const User *U = *UI;
- if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
- return false; // Use not in entry block.
- }
- return true;
- }
- void SelectionDAGISel::LowerArguments(const Function &F) {
- SelectionDAG &DAG = SDB->DAG;
- SDLoc dl = SDB->getCurSDLoc();
- const TargetLowering *TLI = getTargetLowering();
- const DataLayout *TD = TLI->getDataLayout();
- SmallVector<ISD::InputArg, 16> Ins;
- if (!FuncInfo->CanLowerReturn) {
- // Put in an sret pointer parameter before all the other parameters.
- SmallVector<EVT, 1> ValueVTs;
- ComputeValueVTs(*getTargetLowering(),
- PointerType::getUnqual(F.getReturnType()), ValueVTs);
- // NOTE: Assuming that a pointer will never break down to more than one VT
- // or one register.
- ISD::ArgFlagsTy Flags;
- Flags.setSRet();
- MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
- ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0);
- Ins.push_back(RetArg);
- }
- // Set up the incoming argument description vector.
- unsigned Idx = 1;
- for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
- I != E; ++I, ++Idx) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*TLI, I->getType(), ValueVTs);
- bool isArgValueUsed = !I->use_empty();
- unsigned PartBase = 0;
- for (unsigned Value = 0, NumValues = ValueVTs.size();
- Value != NumValues; ++Value) {
- EVT VT = ValueVTs[Value];
- Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
- ISD::ArgFlagsTy Flags;
- unsigned OriginalAlignment =
- TD->getABITypeAlignment(ArgTy);
- if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
- Flags.setZExt();
- if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
- Flags.setSExt();
- if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
- Flags.setInReg();
- if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
- Flags.setSRet();
- if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
- Flags.setByVal();
- PointerType *Ty = cast<PointerType>(I->getType());
- Type *ElementTy = Ty->getElementType();
- Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
- // For ByVal, alignment should be passed from FE. BE will guess if
- // this info is not there but there are cases it cannot get right.
- unsigned FrameAlign;
- if (F.getParamAlignment(Idx))
- FrameAlign = F.getParamAlignment(Idx);
- else
- FrameAlign = TLI->getByValTypeAlignment(ElementTy);
- Flags.setByValAlign(FrameAlign);
- }
- if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
- Flags.setNest();
- Flags.setOrigAlign(OriginalAlignment);
- MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
- unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
- for (unsigned i = 0; i != NumRegs; ++i) {
- ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
- Idx-1, PartBase+i*RegisterVT.getStoreSize());
- if (NumRegs > 1 && i == 0)
- MyFlags.Flags.setSplit();
- // if it isn't first piece, alignment must be 1
- else if (i > 0)
- MyFlags.Flags.setOrigAlign(1);
- Ins.push_back(MyFlags);
- }
- PartBase += VT.getStoreSize();
- }
- }
- // Call the target to set up the argument values.
- SmallVector<SDValue, 8> InVals;
- SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
- F.isVarArg(), Ins,
- dl, DAG, InVals);
- // Verify that the target's LowerFormalArguments behaved as expected.
- assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
- "LowerFormalArguments didn't return a valid chain!");
- assert(InVals.size() == Ins.size() &&
- "LowerFormalArguments didn't emit the correct number of values!");
- DEBUG({
- for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
- assert(InVals[i].getNode() &&
- "LowerFormalArguments emitted a null value!");
- assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
- "LowerFormalArguments emitted a value with the wrong type!");
- }
- });
- // Update the DAG with the new chain value resulting from argument lowering.
- DAG.setRoot(NewRoot);
- // Set up the argument values.
- unsigned i = 0;
- Idx = 1;
- if (!FuncInfo->CanLowerReturn) {
- // Create a virtual register for the sret pointer, and put in a copy
- // from the sret argument into it.
- SmallVector<EVT, 1> ValueVTs;
- ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
- MVT VT = ValueVTs[0].getSimpleVT();
- MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
- ISD::NodeType AssertOp = ISD::DELETED_NODE;
- SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
- RegVT, VT, NULL, AssertOp);
- MachineFunction& MF = SDB->DAG.getMachineFunction();
- MachineRegisterInfo& RegInfo = MF.getRegInfo();
- unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
- FuncInfo->DemoteRegister = SRetReg;
- NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
- SRetReg, ArgValue);
- DAG.setRoot(NewRoot);
- // i indexes lowered arguments. Bump it past the hidden sret argument.
- // Idx indexes LLVM arguments. Don't touch it.
- ++i;
- }
- for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
- ++I, ++Idx) {
- SmallVector<SDValue, 4> ArgValues;
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*TLI, I->getType(), ValueVTs);
- unsigned NumValues = ValueVTs.size();
- // If this argument is unused then remember its value. It is used to generate
- // debugging information.
- if (I->use_empty() && NumValues) {
- SDB->setUnusedArgValue(I, InVals[i]);
- // Also remember any frame index for use in FastISel.
- if (FrameIndexSDNode *FI =
- dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
- FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
- }
- for (unsigned Val = 0; Val != NumValues; ++Val) {
- EVT VT = ValueVTs[Val];
- MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
- unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
- if (!I->use_empty()) {
- ISD::NodeType AssertOp = ISD::DELETED_NODE;
- if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
- AssertOp = ISD::AssertSext;
- else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
- AssertOp = ISD::AssertZext;
- ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
- NumParts, PartVT, VT,
- NULL, AssertOp));
- }
- i += NumParts;
- }
- // We don't need to do anything else for unused arguments.
- if (ArgValues.empty())
- continue;
- // Note down frame index.
- if (FrameIndexSDNode *FI =
- dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
- FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
- SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
- SDB->getCurSDLoc());
- SDB->setValue(I, Res);
- if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
- if (LoadSDNode *LNode =
- dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
- if (FrameIndexSDNode *FI =
- dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
- FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
- }
- // If this argument is live outside of the entry block, insert a copy from
- // wherever we got it to the vreg that other BB's will reference it as.
- if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
- // If we can, though, try to skip creating an unnecessary vreg.
- // FIXME: This isn't very clean... it would be nice to make this more
- // general. It's also subtly incompatible with the hacks FastISel
- // uses with vregs.
- unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
- if (TargetRegisterInfo::isVirtualRegister(Reg)) {
- FuncInfo->ValueMap[I] = Reg;
- continue;
- }
- }
- if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
- FuncInfo->InitializeRegForValue(I);
- SDB->CopyToExportRegsIfNeeded(I);
- }
- }
- assert(i == InVals.size() && "Argument register count mismatch!");
- // Finally, if the target has anything special to do, allow it to do so.
- // FIXME: this should insert code into the DAG!
- EmitFunctionEntryCode();
- }
- /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
- /// ensure constants are generated when needed. Remember the virtual registers
- /// that need to be added to the Machine PHI nodes as input. We cannot just
- /// directly add them, because expansion might result in multiple MBB's for one
- /// BB. As such, the start of the BB might correspond to a different MBB than
- /// the end.
- ///
- void
- SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
- const TerminatorInst *TI = LLVMBB->getTerminator();
- SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
- // Check successor nodes' PHI nodes that expect a constant to be available
- // from this block.
- for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
- const BasicBlock *SuccBB = TI->getSuccessor(succ);
- if (!isa<PHINode>(SuccBB->begin())) continue;
- MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
- // If this terminator has multiple identical successors (common for
- // switches), only handle each succ once.
- if (!SuccsHandled.insert(SuccMBB)) continue;
- MachineBasicBlock::iterator MBBI = SuccMBB->begin();
- // At this point we know that there is a 1-1 correspondence between LLVM PHI
- // nodes and Machine PHI nodes, but the incoming operands have not been
- // emitted yet.
- for (BasicBlock::const_iterator I = SuccBB->begin();
- const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
- // Ignore dead phi's.
- if (PN->use_empty()) continue;
- // Skip empty types
- if (PN->getType()->isEmptyTy())
- continue;
- unsigned Reg;
- const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
- if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
- unsigned &RegOut = ConstantsOut[C];
- if (RegOut == 0) {
- RegOut = FuncInfo.CreateRegs(C->getType());
- CopyValueToVirtualRegister(C, RegOut);
- }
- Reg = RegOut;
- } else {
- DenseMap<const Value *, unsigned>::iterator I =
- FuncInfo.ValueMap.find(PHIOp);
- if (I != FuncInfo.ValueMap.end())
- Reg = I->second;
- else {
- assert(isa<AllocaInst>(PHIOp) &&
- FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
- "Didn't codegen value into a register!??");
- Reg = FuncInfo.CreateRegs(PHIOp->getType());
- CopyValueToVirtualRegister(PHIOp, Reg);
- }
- }
- // Remember that this register needs to added to the machine PHI node as
- // the input for this MBB.
- SmallVector<EVT, 4> ValueVTs;
- const TargetLowering *TLI = TM.getTargetLowering();
- ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
- for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
- EVT VT = ValueVTs[vti];
- unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT);
- for (unsigned i = 0, e = NumRegisters; i != e; ++i)
- FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
- Reg += NumRegisters;
- }
- }
- }
- ConstantsOut.clear();
- }
- /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
- /// is 0.
- MachineBasicBlock *
- SelectionDAGBuilder::StackProtectorDescriptor::
- AddSuccessorMBB(const BasicBlock *BB,
- MachineBasicBlock *ParentMBB,
- MachineBasicBlock *SuccMBB) {
- // If SuccBB has not been created yet, create it.
- if (!SuccMBB) {
- MachineFunction *MF = ParentMBB->getParent();
- MachineFunction::iterator BBI = ParentMBB;
- SuccMBB = MF->CreateMachineBasicBlock(BB);
- MF->insert(++BBI, SuccMBB);
- }
- // Add it as a successor of ParentMBB.
- ParentMBB->addSuccessor(SuccMBB);
- return SuccMBB;
- }
|