123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393 |
- //===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the MachineSSAUpdater class. It's based on SSAUpdater
- // class in lib/Transforms/Utils.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/MachineSSAUpdater.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Target/TargetRegisterInfo.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy;
- typedef std::vector<std::pair<MachineBasicBlock*, unsigned> >
- IncomingPredInfoTy;
- static AvailableValsTy &getAvailableVals(void *AV) {
- return *static_cast<AvailableValsTy*>(AV);
- }
- static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) {
- return *static_cast<IncomingPredInfoTy*>(IPI);
- }
- MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF,
- SmallVectorImpl<MachineInstr*> *NewPHI)
- : AV(0), IPI(0), InsertedPHIs(NewPHI) {
- TII = MF.getTarget().getInstrInfo();
- MRI = &MF.getRegInfo();
- }
- MachineSSAUpdater::~MachineSSAUpdater() {
- delete &getAvailableVals(AV);
- delete &getIncomingPredInfo(IPI);
- }
- /// Initialize - Reset this object to get ready for a new set of SSA
- /// updates. ProtoValue is the value used to name PHI nodes.
- void MachineSSAUpdater::Initialize(unsigned V) {
- if (AV == 0)
- AV = new AvailableValsTy();
- else
- getAvailableVals(AV).clear();
- if (IPI == 0)
- IPI = new IncomingPredInfoTy();
- else
- getIncomingPredInfo(IPI).clear();
- VR = V;
- VRC = MRI->getRegClass(VR);
- }
- /// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for
- /// the specified block.
- bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const {
- return getAvailableVals(AV).count(BB);
- }
- /// AddAvailableValue - Indicate that a rewritten value is available in the
- /// specified block with the specified value.
- void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) {
- getAvailableVals(AV)[BB] = V;
- }
- /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
- /// live at the end of the specified block.
- unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) {
- return GetValueAtEndOfBlockInternal(BB);
- }
- static
- unsigned LookForIdenticalPHI(MachineBasicBlock *BB,
- SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> &PredValues) {
- if (BB->empty())
- return 0;
- MachineBasicBlock::iterator I = BB->front();
- if (!I->isPHI())
- return 0;
- AvailableValsTy AVals;
- for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
- AVals[PredValues[i].first] = PredValues[i].second;
- while (I != BB->end() && I->isPHI()) {
- bool Same = true;
- for (unsigned i = 1, e = I->getNumOperands(); i != e; i += 2) {
- unsigned SrcReg = I->getOperand(i).getReg();
- MachineBasicBlock *SrcBB = I->getOperand(i+1).getMBB();
- if (AVals[SrcBB] != SrcReg) {
- Same = false;
- break;
- }
- }
- if (Same)
- return I->getOperand(0).getReg();
- ++I;
- }
- return 0;
- }
- /// InsertNewDef - Insert an empty PHI or IMPLICIT_DEF instruction which define
- /// a value of the given register class at the start of the specified basic
- /// block. It returns the virtual register defined by the instruction.
- static
- MachineInstr *InsertNewDef(unsigned Opcode,
- MachineBasicBlock *BB, MachineBasicBlock::iterator I,
- const TargetRegisterClass *RC,
- MachineRegisterInfo *MRI, const TargetInstrInfo *TII) {
- unsigned NewVR = MRI->createVirtualRegister(RC);
- return BuildMI(*BB, I, DebugLoc::getUnknownLoc(), TII->get(Opcode), NewVR);
- }
-
- /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
- /// is live in the middle of the specified block.
- ///
- /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
- /// important case: if there is a definition of the rewritten value after the
- /// 'use' in BB. Consider code like this:
- ///
- /// X1 = ...
- /// SomeBB:
- /// use(X)
- /// X2 = ...
- /// br Cond, SomeBB, OutBB
- ///
- /// In this case, there are two values (X1 and X2) added to the AvailableVals
- /// set by the client of the rewriter, and those values are both live out of
- /// their respective blocks. However, the use of X happens in the *middle* of
- /// a block. Because of this, we need to insert a new PHI node in SomeBB to
- /// merge the appropriate values, and this value isn't live out of the block.
- ///
- unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) {
- // If there is no definition of the renamed variable in this block, just use
- // GetValueAtEndOfBlock to do our work.
- if (!getAvailableVals(AV).count(BB))
- return GetValueAtEndOfBlockInternal(BB);
- // If there are no predecessors, just return undef.
- if (BB->pred_empty()) {
- // Insert an implicit_def to represent an undef value.
- MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
- BB, BB->getFirstTerminator(),
- VRC, MRI, TII);
- return NewDef->getOperand(0).getReg();
- }
- // Otherwise, we have the hard case. Get the live-in values for each
- // predecessor.
- SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues;
- unsigned SingularValue = 0;
- bool isFirstPred = true;
- for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
- E = BB->pred_end(); PI != E; ++PI) {
- MachineBasicBlock *PredBB = *PI;
- unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
- PredValues.push_back(std::make_pair(PredBB, PredVal));
- // Compute SingularValue.
- if (isFirstPred) {
- SingularValue = PredVal;
- isFirstPred = false;
- } else if (PredVal != SingularValue)
- SingularValue = 0;
- }
- // Otherwise, if all the merged values are the same, just use it.
- if (SingularValue != 0)
- return SingularValue;
- // If an identical PHI is already in BB, just reuse it.
- unsigned DupPHI = LookForIdenticalPHI(BB, PredValues);
- if (DupPHI)
- return DupPHI;
- // Otherwise, we do need a PHI: insert one now.
- MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
- MachineInstr *InsertedPHI = InsertNewDef(TargetOpcode::PHI, BB,
- Loc, VRC, MRI, TII);
- // Fill in all the predecessors of the PHI.
- MachineInstrBuilder MIB(InsertedPHI);
- for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
- MIB.addReg(PredValues[i].second).addMBB(PredValues[i].first);
- // See if the PHI node can be merged to a single value. This can happen in
- // loop cases when we get a PHI of itself and one other value.
- if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
- InsertedPHI->eraseFromParent();
- return ConstVal;
- }
- // If the client wants to know about all new instructions, tell it.
- if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
- DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
- return InsertedPHI->getOperand(0).getReg();
- }
- static
- MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI,
- MachineOperand *U) {
- for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
- if (&MI->getOperand(i) == U)
- return MI->getOperand(i+1).getMBB();
- }
- llvm_unreachable("MachineOperand::getParent() failure?");
- return 0;
- }
- /// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes,
- /// which use their value in the corresponding predecessor.
- void MachineSSAUpdater::RewriteUse(MachineOperand &U) {
- MachineInstr *UseMI = U.getParent();
- unsigned NewVR = 0;
- if (UseMI->isPHI()) {
- MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U);
- NewVR = GetValueAtEndOfBlockInternal(SourceBB);
- } else {
- NewVR = GetValueInMiddleOfBlock(UseMI->getParent());
- }
- U.setReg(NewVR);
- }
- void MachineSSAUpdater::ReplaceRegWith(unsigned OldReg, unsigned NewReg) {
- MRI->replaceRegWith(OldReg, NewReg);
- AvailableValsTy &AvailableVals = getAvailableVals(AV);
- for (DenseMap<MachineBasicBlock*, unsigned>::iterator
- I = AvailableVals.begin(), E = AvailableVals.end(); I != E; ++I)
- if (I->second == OldReg)
- I->second = NewReg;
- }
- /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
- /// for the specified BB and if so, return it. If not, construct SSA form by
- /// walking predecessors inserting PHI nodes as needed until we get to a block
- /// where the value is available.
- ///
- unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){
- AvailableValsTy &AvailableVals = getAvailableVals(AV);
- // Query AvailableVals by doing an insertion of null.
- std::pair<AvailableValsTy::iterator, bool> InsertRes =
- AvailableVals.insert(std::make_pair(BB, 0));
- // Handle the case when the insertion fails because we have already seen BB.
- if (!InsertRes.second) {
- // If the insertion failed, there are two cases. The first case is that the
- // value is already available for the specified block. If we get this, just
- // return the value.
- if (InsertRes.first->second != 0)
- return InsertRes.first->second;
- // Otherwise, if the value we find is null, then this is the value is not
- // known but it is being computed elsewhere in our recursion. This means
- // that we have a cycle. Handle this by inserting a PHI node and returning
- // it. When we get back to the first instance of the recursion we will fill
- // in the PHI node.
- MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
- MachineInstr *NewPHI = InsertNewDef(TargetOpcode::PHI, BB, Loc,
- VRC, MRI,TII);
- unsigned NewVR = NewPHI->getOperand(0).getReg();
- InsertRes.first->second = NewVR;
- return NewVR;
- }
- // If there are no predecessors, then we must have found an unreachable block
- // just return 'undef'. Since there are no predecessors, InsertRes must not
- // be invalidated.
- if (BB->pred_empty()) {
- // Insert an implicit_def to represent an undef value.
- MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
- BB, BB->getFirstTerminator(),
- VRC, MRI, TII);
- return InsertRes.first->second = NewDef->getOperand(0).getReg();
- }
- // Okay, the value isn't in the map and we just inserted a null in the entry
- // to indicate that we're processing the block. Since we have no idea what
- // value is in this block, we have to recurse through our predecessors.
- //
- // While we're walking our predecessors, we keep track of them in a vector,
- // then insert a PHI node in the end if we actually need one. We could use a
- // smallvector here, but that would take a lot of stack space for every level
- // of the recursion, just use IncomingPredInfo as an explicit stack.
- IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI);
- unsigned FirstPredInfoEntry = IncomingPredInfo.size();
- // As we're walking the predecessors, keep track of whether they are all
- // producing the same value. If so, this value will capture it, if not, it
- // will get reset to null. We distinguish the no-predecessor case explicitly
- // below.
- unsigned SingularValue = 0;
- bool isFirstPred = true;
- for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
- E = BB->pred_end(); PI != E; ++PI) {
- MachineBasicBlock *PredBB = *PI;
- unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
- IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
- // Compute SingularValue.
- if (isFirstPred) {
- SingularValue = PredVal;
- isFirstPred = false;
- } else if (PredVal != SingularValue)
- SingularValue = 0;
- }
- /// Look up BB's entry in AvailableVals. 'InsertRes' may be invalidated. If
- /// this block is involved in a loop, a no-entry PHI node will have been
- /// inserted as InsertedVal. Otherwise, we'll still have the null we inserted
- /// above.
- unsigned &InsertedVal = AvailableVals[BB];
- // If all the predecessor values are the same then we don't need to insert a
- // PHI. This is the simple and common case.
- if (SingularValue) {
- // If a PHI node got inserted, replace it with the singlar value and delete
- // it.
- if (InsertedVal) {
- MachineInstr *OldVal = MRI->getVRegDef(InsertedVal);
- // Be careful about dead loops. These RAUW's also update InsertedVal.
- assert(InsertedVal != SingularValue && "Dead loop?");
- ReplaceRegWith(InsertedVal, SingularValue);
- OldVal->eraseFromParent();
- }
- InsertedVal = SingularValue;
- // Drop the entries we added in IncomingPredInfo to restore the stack.
- IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
- IncomingPredInfo.end());
- return InsertedVal;
- }
- // Otherwise, we do need a PHI: insert one now if we don't already have one.
- MachineInstr *InsertedPHI;
- if (InsertedVal == 0) {
- MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
- InsertedPHI = InsertNewDef(TargetOpcode::PHI, BB, Loc,
- VRC, MRI, TII);
- InsertedVal = InsertedPHI->getOperand(0).getReg();
- } else {
- InsertedPHI = MRI->getVRegDef(InsertedVal);
- }
- // Fill in all the predecessors of the PHI.
- MachineInstrBuilder MIB(InsertedPHI);
- for (IncomingPredInfoTy::iterator I =
- IncomingPredInfo.begin()+FirstPredInfoEntry,
- E = IncomingPredInfo.end(); I != E; ++I)
- MIB.addReg(I->second).addMBB(I->first);
- // Drop the entries we added in IncomingPredInfo to restore the stack.
- IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
- IncomingPredInfo.end());
- // See if the PHI node can be merged to a single value. This can happen in
- // loop cases when we get a PHI of itself and one other value.
- if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
- MRI->replaceRegWith(InsertedVal, ConstVal);
- InsertedPHI->eraseFromParent();
- InsertedVal = ConstVal;
- } else {
- DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
- // If the client wants to know about all new instructions, tell it.
- if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
- }
- return InsertedVal;
- }
|