BitcodeWriter.cpp 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041
  1. //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // Bitcode writer implementation.
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #include "llvm/Bitcode/ReaderWriter.h"
  14. #include "ValueEnumerator.h"
  15. #include "llvm/ADT/Triple.h"
  16. #include "llvm/Bitcode/BitstreamWriter.h"
  17. #include "llvm/Bitcode/LLVMBitCodes.h"
  18. #include "llvm/IR/Constants.h"
  19. #include "llvm/IR/DerivedTypes.h"
  20. #include "llvm/IR/InlineAsm.h"
  21. #include "llvm/IR/Instructions.h"
  22. #include "llvm/IR/Module.h"
  23. #include "llvm/IR/Operator.h"
  24. #include "llvm/IR/ValueSymbolTable.h"
  25. #include "llvm/Support/CommandLine.h"
  26. #include "llvm/Support/ErrorHandling.h"
  27. #include "llvm/Support/MathExtras.h"
  28. #include "llvm/Support/Program.h"
  29. #include "llvm/Support/raw_ostream.h"
  30. #include <cctype>
  31. #include <map>
  32. using namespace llvm;
  33. static cl::opt<bool>
  34. EnablePreserveUseListOrdering("enable-bc-uselist-preserve",
  35. cl::desc("Turn on experimental support for "
  36. "use-list order preservation."),
  37. cl::init(false), cl::Hidden);
  38. /// These are manifest constants used by the bitcode writer. They do not need to
  39. /// be kept in sync with the reader, but need to be consistent within this file.
  40. enum {
  41. // VALUE_SYMTAB_BLOCK abbrev id's.
  42. VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  43. VST_ENTRY_7_ABBREV,
  44. VST_ENTRY_6_ABBREV,
  45. VST_BBENTRY_6_ABBREV,
  46. // CONSTANTS_BLOCK abbrev id's.
  47. CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  48. CONSTANTS_INTEGER_ABBREV,
  49. CONSTANTS_CE_CAST_Abbrev,
  50. CONSTANTS_NULL_Abbrev,
  51. // FUNCTION_BLOCK abbrev id's.
  52. FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  53. FUNCTION_INST_BINOP_ABBREV,
  54. FUNCTION_INST_BINOP_FLAGS_ABBREV,
  55. FUNCTION_INST_CAST_ABBREV,
  56. FUNCTION_INST_RET_VOID_ABBREV,
  57. FUNCTION_INST_RET_VAL_ABBREV,
  58. FUNCTION_INST_UNREACHABLE_ABBREV
  59. };
  60. static unsigned GetEncodedCastOpcode(unsigned Opcode) {
  61. switch (Opcode) {
  62. default: llvm_unreachable("Unknown cast instruction!");
  63. case Instruction::Trunc : return bitc::CAST_TRUNC;
  64. case Instruction::ZExt : return bitc::CAST_ZEXT;
  65. case Instruction::SExt : return bitc::CAST_SEXT;
  66. case Instruction::FPToUI : return bitc::CAST_FPTOUI;
  67. case Instruction::FPToSI : return bitc::CAST_FPTOSI;
  68. case Instruction::UIToFP : return bitc::CAST_UITOFP;
  69. case Instruction::SIToFP : return bitc::CAST_SITOFP;
  70. case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
  71. case Instruction::FPExt : return bitc::CAST_FPEXT;
  72. case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
  73. case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
  74. case Instruction::BitCast : return bitc::CAST_BITCAST;
  75. case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
  76. }
  77. }
  78. static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
  79. switch (Opcode) {
  80. default: llvm_unreachable("Unknown binary instruction!");
  81. case Instruction::Add:
  82. case Instruction::FAdd: return bitc::BINOP_ADD;
  83. case Instruction::Sub:
  84. case Instruction::FSub: return bitc::BINOP_SUB;
  85. case Instruction::Mul:
  86. case Instruction::FMul: return bitc::BINOP_MUL;
  87. case Instruction::UDiv: return bitc::BINOP_UDIV;
  88. case Instruction::FDiv:
  89. case Instruction::SDiv: return bitc::BINOP_SDIV;
  90. case Instruction::URem: return bitc::BINOP_UREM;
  91. case Instruction::FRem:
  92. case Instruction::SRem: return bitc::BINOP_SREM;
  93. case Instruction::Shl: return bitc::BINOP_SHL;
  94. case Instruction::LShr: return bitc::BINOP_LSHR;
  95. case Instruction::AShr: return bitc::BINOP_ASHR;
  96. case Instruction::And: return bitc::BINOP_AND;
  97. case Instruction::Or: return bitc::BINOP_OR;
  98. case Instruction::Xor: return bitc::BINOP_XOR;
  99. }
  100. }
  101. static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
  102. switch (Op) {
  103. default: llvm_unreachable("Unknown RMW operation!");
  104. case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
  105. case AtomicRMWInst::Add: return bitc::RMW_ADD;
  106. case AtomicRMWInst::Sub: return bitc::RMW_SUB;
  107. case AtomicRMWInst::And: return bitc::RMW_AND;
  108. case AtomicRMWInst::Nand: return bitc::RMW_NAND;
  109. case AtomicRMWInst::Or: return bitc::RMW_OR;
  110. case AtomicRMWInst::Xor: return bitc::RMW_XOR;
  111. case AtomicRMWInst::Max: return bitc::RMW_MAX;
  112. case AtomicRMWInst::Min: return bitc::RMW_MIN;
  113. case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
  114. case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
  115. }
  116. }
  117. static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
  118. switch (Ordering) {
  119. case NotAtomic: return bitc::ORDERING_NOTATOMIC;
  120. case Unordered: return bitc::ORDERING_UNORDERED;
  121. case Monotonic: return bitc::ORDERING_MONOTONIC;
  122. case Acquire: return bitc::ORDERING_ACQUIRE;
  123. case Release: return bitc::ORDERING_RELEASE;
  124. case AcquireRelease: return bitc::ORDERING_ACQREL;
  125. case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
  126. }
  127. llvm_unreachable("Invalid ordering");
  128. }
  129. static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
  130. switch (SynchScope) {
  131. case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
  132. case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
  133. }
  134. llvm_unreachable("Invalid synch scope");
  135. }
  136. static void WriteStringRecord(unsigned Code, StringRef Str,
  137. unsigned AbbrevToUse, BitstreamWriter &Stream) {
  138. SmallVector<unsigned, 64> Vals;
  139. // Code: [strchar x N]
  140. for (unsigned i = 0, e = Str.size(); i != e; ++i) {
  141. if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
  142. AbbrevToUse = 0;
  143. Vals.push_back(Str[i]);
  144. }
  145. // Emit the finished record.
  146. Stream.EmitRecord(Code, Vals, AbbrevToUse);
  147. }
  148. static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
  149. switch (Kind) {
  150. case Attribute::Alignment:
  151. return bitc::ATTR_KIND_ALIGNMENT;
  152. case Attribute::AlwaysInline:
  153. return bitc::ATTR_KIND_ALWAYS_INLINE;
  154. case Attribute::Builtin:
  155. return bitc::ATTR_KIND_BUILTIN;
  156. case Attribute::ByVal:
  157. return bitc::ATTR_KIND_BY_VAL;
  158. case Attribute::InAlloca:
  159. return bitc::ATTR_KIND_IN_ALLOCA;
  160. case Attribute::Cold:
  161. return bitc::ATTR_KIND_COLD;
  162. case Attribute::InlineHint:
  163. return bitc::ATTR_KIND_INLINE_HINT;
  164. case Attribute::InReg:
  165. return bitc::ATTR_KIND_IN_REG;
  166. case Attribute::MinSize:
  167. return bitc::ATTR_KIND_MIN_SIZE;
  168. case Attribute::Naked:
  169. return bitc::ATTR_KIND_NAKED;
  170. case Attribute::Nest:
  171. return bitc::ATTR_KIND_NEST;
  172. case Attribute::NoAlias:
  173. return bitc::ATTR_KIND_NO_ALIAS;
  174. case Attribute::NoBuiltin:
  175. return bitc::ATTR_KIND_NO_BUILTIN;
  176. case Attribute::NoCapture:
  177. return bitc::ATTR_KIND_NO_CAPTURE;
  178. case Attribute::NoDuplicate:
  179. return bitc::ATTR_KIND_NO_DUPLICATE;
  180. case Attribute::NoImplicitFloat:
  181. return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
  182. case Attribute::NoInline:
  183. return bitc::ATTR_KIND_NO_INLINE;
  184. case Attribute::NonLazyBind:
  185. return bitc::ATTR_KIND_NON_LAZY_BIND;
  186. case Attribute::NoRedZone:
  187. return bitc::ATTR_KIND_NO_RED_ZONE;
  188. case Attribute::NoReturn:
  189. return bitc::ATTR_KIND_NO_RETURN;
  190. case Attribute::NoUnwind:
  191. return bitc::ATTR_KIND_NO_UNWIND;
  192. case Attribute::OptimizeForSize:
  193. return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
  194. case Attribute::OptimizeNone:
  195. return bitc::ATTR_KIND_OPTIMIZE_NONE;
  196. case Attribute::ReadNone:
  197. return bitc::ATTR_KIND_READ_NONE;
  198. case Attribute::ReadOnly:
  199. return bitc::ATTR_KIND_READ_ONLY;
  200. case Attribute::Returned:
  201. return bitc::ATTR_KIND_RETURNED;
  202. case Attribute::ReturnsTwice:
  203. return bitc::ATTR_KIND_RETURNS_TWICE;
  204. case Attribute::SExt:
  205. return bitc::ATTR_KIND_S_EXT;
  206. case Attribute::StackAlignment:
  207. return bitc::ATTR_KIND_STACK_ALIGNMENT;
  208. case Attribute::StackProtect:
  209. return bitc::ATTR_KIND_STACK_PROTECT;
  210. case Attribute::StackProtectReq:
  211. return bitc::ATTR_KIND_STACK_PROTECT_REQ;
  212. case Attribute::StackProtectStrong:
  213. return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
  214. case Attribute::StructRet:
  215. return bitc::ATTR_KIND_STRUCT_RET;
  216. case Attribute::SanitizeAddress:
  217. return bitc::ATTR_KIND_SANITIZE_ADDRESS;
  218. case Attribute::SanitizeThread:
  219. return bitc::ATTR_KIND_SANITIZE_THREAD;
  220. case Attribute::SanitizeMemory:
  221. return bitc::ATTR_KIND_SANITIZE_MEMORY;
  222. case Attribute::UWTable:
  223. return bitc::ATTR_KIND_UW_TABLE;
  224. case Attribute::ZExt:
  225. return bitc::ATTR_KIND_Z_EXT;
  226. case Attribute::EndAttrKinds:
  227. llvm_unreachable("Can not encode end-attribute kinds marker.");
  228. case Attribute::None:
  229. llvm_unreachable("Can not encode none-attribute.");
  230. }
  231. llvm_unreachable("Trying to encode unknown attribute");
  232. }
  233. static void WriteAttributeGroupTable(const ValueEnumerator &VE,
  234. BitstreamWriter &Stream) {
  235. const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
  236. if (AttrGrps.empty()) return;
  237. Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
  238. SmallVector<uint64_t, 64> Record;
  239. for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
  240. AttributeSet AS = AttrGrps[i];
  241. for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
  242. AttributeSet A = AS.getSlotAttributes(i);
  243. Record.push_back(VE.getAttributeGroupID(A));
  244. Record.push_back(AS.getSlotIndex(i));
  245. for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
  246. I != E; ++I) {
  247. Attribute Attr = *I;
  248. if (Attr.isEnumAttribute()) {
  249. Record.push_back(0);
  250. Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
  251. } else if (Attr.isAlignAttribute()) {
  252. Record.push_back(1);
  253. Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
  254. Record.push_back(Attr.getValueAsInt());
  255. } else {
  256. StringRef Kind = Attr.getKindAsString();
  257. StringRef Val = Attr.getValueAsString();
  258. Record.push_back(Val.empty() ? 3 : 4);
  259. Record.append(Kind.begin(), Kind.end());
  260. Record.push_back(0);
  261. if (!Val.empty()) {
  262. Record.append(Val.begin(), Val.end());
  263. Record.push_back(0);
  264. }
  265. }
  266. }
  267. Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
  268. Record.clear();
  269. }
  270. }
  271. Stream.ExitBlock();
  272. }
  273. static void WriteAttributeTable(const ValueEnumerator &VE,
  274. BitstreamWriter &Stream) {
  275. const std::vector<AttributeSet> &Attrs = VE.getAttributes();
  276. if (Attrs.empty()) return;
  277. Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
  278. SmallVector<uint64_t, 64> Record;
  279. for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
  280. const AttributeSet &A = Attrs[i];
  281. for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
  282. Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
  283. Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
  284. Record.clear();
  285. }
  286. Stream.ExitBlock();
  287. }
  288. /// WriteTypeTable - Write out the type table for a module.
  289. static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  290. const ValueEnumerator::TypeList &TypeList = VE.getTypes();
  291. Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
  292. SmallVector<uint64_t, 64> TypeVals;
  293. uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
  294. // Abbrev for TYPE_CODE_POINTER.
  295. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  296. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
  297. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  298. Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
  299. unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
  300. // Abbrev for TYPE_CODE_FUNCTION.
  301. Abbv = new BitCodeAbbrev();
  302. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
  303. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
  304. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  305. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  306. unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
  307. // Abbrev for TYPE_CODE_STRUCT_ANON.
  308. Abbv = new BitCodeAbbrev();
  309. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
  310. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
  311. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  312. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  313. unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
  314. // Abbrev for TYPE_CODE_STRUCT_NAME.
  315. Abbv = new BitCodeAbbrev();
  316. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
  317. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  318. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  319. unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
  320. // Abbrev for TYPE_CODE_STRUCT_NAMED.
  321. Abbv = new BitCodeAbbrev();
  322. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
  323. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
  324. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  325. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  326. unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
  327. // Abbrev for TYPE_CODE_ARRAY.
  328. Abbv = new BitCodeAbbrev();
  329. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
  330. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
  331. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  332. unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
  333. // Emit an entry count so the reader can reserve space.
  334. TypeVals.push_back(TypeList.size());
  335. Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
  336. TypeVals.clear();
  337. // Loop over all of the types, emitting each in turn.
  338. for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
  339. Type *T = TypeList[i];
  340. int AbbrevToUse = 0;
  341. unsigned Code = 0;
  342. switch (T->getTypeID()) {
  343. case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
  344. case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
  345. case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
  346. case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
  347. case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
  348. case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
  349. case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
  350. case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
  351. case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
  352. case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
  353. case Type::IntegerTyID:
  354. // INTEGER: [width]
  355. Code = bitc::TYPE_CODE_INTEGER;
  356. TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
  357. break;
  358. case Type::PointerTyID: {
  359. PointerType *PTy = cast<PointerType>(T);
  360. // POINTER: [pointee type, address space]
  361. Code = bitc::TYPE_CODE_POINTER;
  362. TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
  363. unsigned AddressSpace = PTy->getAddressSpace();
  364. TypeVals.push_back(AddressSpace);
  365. if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
  366. break;
  367. }
  368. case Type::FunctionTyID: {
  369. FunctionType *FT = cast<FunctionType>(T);
  370. // FUNCTION: [isvararg, retty, paramty x N]
  371. Code = bitc::TYPE_CODE_FUNCTION;
  372. TypeVals.push_back(FT->isVarArg());
  373. TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
  374. for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
  375. TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
  376. AbbrevToUse = FunctionAbbrev;
  377. break;
  378. }
  379. case Type::StructTyID: {
  380. StructType *ST = cast<StructType>(T);
  381. // STRUCT: [ispacked, eltty x N]
  382. TypeVals.push_back(ST->isPacked());
  383. // Output all of the element types.
  384. for (StructType::element_iterator I = ST->element_begin(),
  385. E = ST->element_end(); I != E; ++I)
  386. TypeVals.push_back(VE.getTypeID(*I));
  387. if (ST->isLiteral()) {
  388. Code = bitc::TYPE_CODE_STRUCT_ANON;
  389. AbbrevToUse = StructAnonAbbrev;
  390. } else {
  391. if (ST->isOpaque()) {
  392. Code = bitc::TYPE_CODE_OPAQUE;
  393. } else {
  394. Code = bitc::TYPE_CODE_STRUCT_NAMED;
  395. AbbrevToUse = StructNamedAbbrev;
  396. }
  397. // Emit the name if it is present.
  398. if (!ST->getName().empty())
  399. WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
  400. StructNameAbbrev, Stream);
  401. }
  402. break;
  403. }
  404. case Type::ArrayTyID: {
  405. ArrayType *AT = cast<ArrayType>(T);
  406. // ARRAY: [numelts, eltty]
  407. Code = bitc::TYPE_CODE_ARRAY;
  408. TypeVals.push_back(AT->getNumElements());
  409. TypeVals.push_back(VE.getTypeID(AT->getElementType()));
  410. AbbrevToUse = ArrayAbbrev;
  411. break;
  412. }
  413. case Type::VectorTyID: {
  414. VectorType *VT = cast<VectorType>(T);
  415. // VECTOR [numelts, eltty]
  416. Code = bitc::TYPE_CODE_VECTOR;
  417. TypeVals.push_back(VT->getNumElements());
  418. TypeVals.push_back(VE.getTypeID(VT->getElementType()));
  419. break;
  420. }
  421. }
  422. // Emit the finished record.
  423. Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
  424. TypeVals.clear();
  425. }
  426. Stream.ExitBlock();
  427. }
  428. static unsigned getEncodedLinkage(const GlobalValue *GV) {
  429. switch (GV->getLinkage()) {
  430. case GlobalValue::ExternalLinkage: return 0;
  431. case GlobalValue::WeakAnyLinkage: return 1;
  432. case GlobalValue::AppendingLinkage: return 2;
  433. case GlobalValue::InternalLinkage: return 3;
  434. case GlobalValue::LinkOnceAnyLinkage: return 4;
  435. case GlobalValue::DLLImportLinkage: return 5;
  436. case GlobalValue::DLLExportLinkage: return 6;
  437. case GlobalValue::ExternalWeakLinkage: return 7;
  438. case GlobalValue::CommonLinkage: return 8;
  439. case GlobalValue::PrivateLinkage: return 9;
  440. case GlobalValue::WeakODRLinkage: return 10;
  441. case GlobalValue::LinkOnceODRLinkage: return 11;
  442. case GlobalValue::AvailableExternallyLinkage: return 12;
  443. case GlobalValue::LinkerPrivateLinkage: return 13;
  444. case GlobalValue::LinkerPrivateWeakLinkage: return 14;
  445. }
  446. llvm_unreachable("Invalid linkage");
  447. }
  448. static unsigned getEncodedVisibility(const GlobalValue *GV) {
  449. switch (GV->getVisibility()) {
  450. case GlobalValue::DefaultVisibility: return 0;
  451. case GlobalValue::HiddenVisibility: return 1;
  452. case GlobalValue::ProtectedVisibility: return 2;
  453. }
  454. llvm_unreachable("Invalid visibility");
  455. }
  456. static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) {
  457. switch (GV->getThreadLocalMode()) {
  458. case GlobalVariable::NotThreadLocal: return 0;
  459. case GlobalVariable::GeneralDynamicTLSModel: return 1;
  460. case GlobalVariable::LocalDynamicTLSModel: return 2;
  461. case GlobalVariable::InitialExecTLSModel: return 3;
  462. case GlobalVariable::LocalExecTLSModel: return 4;
  463. }
  464. llvm_unreachable("Invalid TLS model");
  465. }
  466. // Emit top-level description of module, including target triple, inline asm,
  467. // descriptors for global variables, and function prototype info.
  468. static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
  469. BitstreamWriter &Stream) {
  470. // Emit various pieces of data attached to a module.
  471. if (!M->getTargetTriple().empty())
  472. WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
  473. 0/*TODO*/, Stream);
  474. if (!M->getDataLayout().empty())
  475. WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
  476. 0/*TODO*/, Stream);
  477. if (!M->getModuleInlineAsm().empty())
  478. WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
  479. 0/*TODO*/, Stream);
  480. // Emit information about sections and GC, computing how many there are. Also
  481. // compute the maximum alignment value.
  482. std::map<std::string, unsigned> SectionMap;
  483. std::map<std::string, unsigned> GCMap;
  484. unsigned MaxAlignment = 0;
  485. unsigned MaxGlobalType = 0;
  486. for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
  487. GV != E; ++GV) {
  488. MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
  489. MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
  490. if (GV->hasSection()) {
  491. // Give section names unique ID's.
  492. unsigned &Entry = SectionMap[GV->getSection()];
  493. if (!Entry) {
  494. WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
  495. 0/*TODO*/, Stream);
  496. Entry = SectionMap.size();
  497. }
  498. }
  499. }
  500. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
  501. MaxAlignment = std::max(MaxAlignment, F->getAlignment());
  502. if (F->hasSection()) {
  503. // Give section names unique ID's.
  504. unsigned &Entry = SectionMap[F->getSection()];
  505. if (!Entry) {
  506. WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
  507. 0/*TODO*/, Stream);
  508. Entry = SectionMap.size();
  509. }
  510. }
  511. if (F->hasGC()) {
  512. // Same for GC names.
  513. unsigned &Entry = GCMap[F->getGC()];
  514. if (!Entry) {
  515. WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
  516. 0/*TODO*/, Stream);
  517. Entry = GCMap.size();
  518. }
  519. }
  520. }
  521. // Emit abbrev for globals, now that we know # sections and max alignment.
  522. unsigned SimpleGVarAbbrev = 0;
  523. if (!M->global_empty()) {
  524. // Add an abbrev for common globals with no visibility or thread localness.
  525. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  526. Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
  527. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  528. Log2_32_Ceil(MaxGlobalType+1)));
  529. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
  530. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
  531. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage.
  532. if (MaxAlignment == 0) // Alignment.
  533. Abbv->Add(BitCodeAbbrevOp(0));
  534. else {
  535. unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
  536. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  537. Log2_32_Ceil(MaxEncAlignment+1)));
  538. }
  539. if (SectionMap.empty()) // Section.
  540. Abbv->Add(BitCodeAbbrevOp(0));
  541. else
  542. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  543. Log2_32_Ceil(SectionMap.size()+1)));
  544. // Don't bother emitting vis + thread local.
  545. SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
  546. }
  547. // Emit the global variable information.
  548. SmallVector<unsigned, 64> Vals;
  549. for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
  550. GV != E; ++GV) {
  551. unsigned AbbrevToUse = 0;
  552. // GLOBALVAR: [type, isconst, initid,
  553. // linkage, alignment, section, visibility, threadlocal,
  554. // unnamed_addr, externally_initialized]
  555. Vals.push_back(VE.getTypeID(GV->getType()));
  556. Vals.push_back(GV->isConstant());
  557. Vals.push_back(GV->isDeclaration() ? 0 :
  558. (VE.getValueID(GV->getInitializer()) + 1));
  559. Vals.push_back(getEncodedLinkage(GV));
  560. Vals.push_back(Log2_32(GV->getAlignment())+1);
  561. Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
  562. if (GV->isThreadLocal() ||
  563. GV->getVisibility() != GlobalValue::DefaultVisibility ||
  564. GV->hasUnnamedAddr() || GV->isExternallyInitialized()) {
  565. Vals.push_back(getEncodedVisibility(GV));
  566. Vals.push_back(getEncodedThreadLocalMode(GV));
  567. Vals.push_back(GV->hasUnnamedAddr());
  568. Vals.push_back(GV->isExternallyInitialized());
  569. } else {
  570. AbbrevToUse = SimpleGVarAbbrev;
  571. }
  572. Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
  573. Vals.clear();
  574. }
  575. // Emit the function proto information.
  576. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
  577. // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
  578. // section, visibility, gc, unnamed_addr, prefix]
  579. Vals.push_back(VE.getTypeID(F->getType()));
  580. Vals.push_back(F->getCallingConv());
  581. Vals.push_back(F->isDeclaration());
  582. Vals.push_back(getEncodedLinkage(F));
  583. Vals.push_back(VE.getAttributeID(F->getAttributes()));
  584. Vals.push_back(Log2_32(F->getAlignment())+1);
  585. Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
  586. Vals.push_back(getEncodedVisibility(F));
  587. Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
  588. Vals.push_back(F->hasUnnamedAddr());
  589. Vals.push_back(F->hasPrefixData() ? (VE.getValueID(F->getPrefixData()) + 1)
  590. : 0);
  591. unsigned AbbrevToUse = 0;
  592. Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
  593. Vals.clear();
  594. }
  595. // Emit the alias information.
  596. for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
  597. AI != E; ++AI) {
  598. // ALIAS: [alias type, aliasee val#, linkage, visibility]
  599. Vals.push_back(VE.getTypeID(AI->getType()));
  600. Vals.push_back(VE.getValueID(AI->getAliasee()));
  601. Vals.push_back(getEncodedLinkage(AI));
  602. Vals.push_back(getEncodedVisibility(AI));
  603. unsigned AbbrevToUse = 0;
  604. Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
  605. Vals.clear();
  606. }
  607. }
  608. static uint64_t GetOptimizationFlags(const Value *V) {
  609. uint64_t Flags = 0;
  610. if (const OverflowingBinaryOperator *OBO =
  611. dyn_cast<OverflowingBinaryOperator>(V)) {
  612. if (OBO->hasNoSignedWrap())
  613. Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
  614. if (OBO->hasNoUnsignedWrap())
  615. Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
  616. } else if (const PossiblyExactOperator *PEO =
  617. dyn_cast<PossiblyExactOperator>(V)) {
  618. if (PEO->isExact())
  619. Flags |= 1 << bitc::PEO_EXACT;
  620. } else if (const FPMathOperator *FPMO =
  621. dyn_cast<const FPMathOperator>(V)) {
  622. if (FPMO->hasUnsafeAlgebra())
  623. Flags |= FastMathFlags::UnsafeAlgebra;
  624. if (FPMO->hasNoNaNs())
  625. Flags |= FastMathFlags::NoNaNs;
  626. if (FPMO->hasNoInfs())
  627. Flags |= FastMathFlags::NoInfs;
  628. if (FPMO->hasNoSignedZeros())
  629. Flags |= FastMathFlags::NoSignedZeros;
  630. if (FPMO->hasAllowReciprocal())
  631. Flags |= FastMathFlags::AllowReciprocal;
  632. }
  633. return Flags;
  634. }
  635. static void WriteMDNode(const MDNode *N,
  636. const ValueEnumerator &VE,
  637. BitstreamWriter &Stream,
  638. SmallVectorImpl<uint64_t> &Record) {
  639. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
  640. if (N->getOperand(i)) {
  641. Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
  642. Record.push_back(VE.getValueID(N->getOperand(i)));
  643. } else {
  644. Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
  645. Record.push_back(0);
  646. }
  647. }
  648. unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
  649. bitc::METADATA_NODE;
  650. Stream.EmitRecord(MDCode, Record, 0);
  651. Record.clear();
  652. }
  653. static void WriteModuleMetadata(const Module *M,
  654. const ValueEnumerator &VE,
  655. BitstreamWriter &Stream) {
  656. const ValueEnumerator::ValueList &Vals = VE.getMDValues();
  657. bool StartedMetadataBlock = false;
  658. unsigned MDSAbbrev = 0;
  659. SmallVector<uint64_t, 64> Record;
  660. for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
  661. if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
  662. if (!N->isFunctionLocal() || !N->getFunction()) {
  663. if (!StartedMetadataBlock) {
  664. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  665. StartedMetadataBlock = true;
  666. }
  667. WriteMDNode(N, VE, Stream, Record);
  668. }
  669. } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
  670. if (!StartedMetadataBlock) {
  671. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  672. // Abbrev for METADATA_STRING.
  673. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  674. Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
  675. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  676. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  677. MDSAbbrev = Stream.EmitAbbrev(Abbv);
  678. StartedMetadataBlock = true;
  679. }
  680. // Code: [strchar x N]
  681. Record.append(MDS->begin(), MDS->end());
  682. // Emit the finished record.
  683. Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
  684. Record.clear();
  685. }
  686. }
  687. // Write named metadata.
  688. for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
  689. E = M->named_metadata_end(); I != E; ++I) {
  690. const NamedMDNode *NMD = I;
  691. if (!StartedMetadataBlock) {
  692. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  693. StartedMetadataBlock = true;
  694. }
  695. // Write name.
  696. StringRef Str = NMD->getName();
  697. for (unsigned i = 0, e = Str.size(); i != e; ++i)
  698. Record.push_back(Str[i]);
  699. Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
  700. Record.clear();
  701. // Write named metadata operands.
  702. for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
  703. Record.push_back(VE.getValueID(NMD->getOperand(i)));
  704. Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
  705. Record.clear();
  706. }
  707. if (StartedMetadataBlock)
  708. Stream.ExitBlock();
  709. }
  710. static void WriteFunctionLocalMetadata(const Function &F,
  711. const ValueEnumerator &VE,
  712. BitstreamWriter &Stream) {
  713. bool StartedMetadataBlock = false;
  714. SmallVector<uint64_t, 64> Record;
  715. const SmallVectorImpl<const MDNode *> &Vals = VE.getFunctionLocalMDValues();
  716. for (unsigned i = 0, e = Vals.size(); i != e; ++i)
  717. if (const MDNode *N = Vals[i])
  718. if (N->isFunctionLocal() && N->getFunction() == &F) {
  719. if (!StartedMetadataBlock) {
  720. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  721. StartedMetadataBlock = true;
  722. }
  723. WriteMDNode(N, VE, Stream, Record);
  724. }
  725. if (StartedMetadataBlock)
  726. Stream.ExitBlock();
  727. }
  728. static void WriteMetadataAttachment(const Function &F,
  729. const ValueEnumerator &VE,
  730. BitstreamWriter &Stream) {
  731. Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
  732. SmallVector<uint64_t, 64> Record;
  733. // Write metadata attachments
  734. // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
  735. SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
  736. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
  737. for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
  738. I != E; ++I) {
  739. MDs.clear();
  740. I->getAllMetadataOtherThanDebugLoc(MDs);
  741. // If no metadata, ignore instruction.
  742. if (MDs.empty()) continue;
  743. Record.push_back(VE.getInstructionID(I));
  744. for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
  745. Record.push_back(MDs[i].first);
  746. Record.push_back(VE.getValueID(MDs[i].second));
  747. }
  748. Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
  749. Record.clear();
  750. }
  751. Stream.ExitBlock();
  752. }
  753. static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
  754. SmallVector<uint64_t, 64> Record;
  755. // Write metadata kinds
  756. // METADATA_KIND - [n x [id, name]]
  757. SmallVector<StringRef, 8> Names;
  758. M->getMDKindNames(Names);
  759. if (Names.empty()) return;
  760. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  761. for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
  762. Record.push_back(MDKindID);
  763. StringRef KName = Names[MDKindID];
  764. Record.append(KName.begin(), KName.end());
  765. Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
  766. Record.clear();
  767. }
  768. Stream.ExitBlock();
  769. }
  770. static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
  771. if ((int64_t)V >= 0)
  772. Vals.push_back(V << 1);
  773. else
  774. Vals.push_back((-V << 1) | 1);
  775. }
  776. static void WriteConstants(unsigned FirstVal, unsigned LastVal,
  777. const ValueEnumerator &VE,
  778. BitstreamWriter &Stream, bool isGlobal) {
  779. if (FirstVal == LastVal) return;
  780. Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
  781. unsigned AggregateAbbrev = 0;
  782. unsigned String8Abbrev = 0;
  783. unsigned CString7Abbrev = 0;
  784. unsigned CString6Abbrev = 0;
  785. // If this is a constant pool for the module, emit module-specific abbrevs.
  786. if (isGlobal) {
  787. // Abbrev for CST_CODE_AGGREGATE.
  788. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  789. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
  790. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  791. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
  792. AggregateAbbrev = Stream.EmitAbbrev(Abbv);
  793. // Abbrev for CST_CODE_STRING.
  794. Abbv = new BitCodeAbbrev();
  795. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
  796. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  797. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  798. String8Abbrev = Stream.EmitAbbrev(Abbv);
  799. // Abbrev for CST_CODE_CSTRING.
  800. Abbv = new BitCodeAbbrev();
  801. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
  802. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  803. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
  804. CString7Abbrev = Stream.EmitAbbrev(Abbv);
  805. // Abbrev for CST_CODE_CSTRING.
  806. Abbv = new BitCodeAbbrev();
  807. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
  808. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  809. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  810. CString6Abbrev = Stream.EmitAbbrev(Abbv);
  811. }
  812. SmallVector<uint64_t, 64> Record;
  813. const ValueEnumerator::ValueList &Vals = VE.getValues();
  814. Type *LastTy = 0;
  815. for (unsigned i = FirstVal; i != LastVal; ++i) {
  816. const Value *V = Vals[i].first;
  817. // If we need to switch types, do so now.
  818. if (V->getType() != LastTy) {
  819. LastTy = V->getType();
  820. Record.push_back(VE.getTypeID(LastTy));
  821. Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
  822. CONSTANTS_SETTYPE_ABBREV);
  823. Record.clear();
  824. }
  825. if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
  826. Record.push_back(unsigned(IA->hasSideEffects()) |
  827. unsigned(IA->isAlignStack()) << 1 |
  828. unsigned(IA->getDialect()&1) << 2);
  829. // Add the asm string.
  830. const std::string &AsmStr = IA->getAsmString();
  831. Record.push_back(AsmStr.size());
  832. for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
  833. Record.push_back(AsmStr[i]);
  834. // Add the constraint string.
  835. const std::string &ConstraintStr = IA->getConstraintString();
  836. Record.push_back(ConstraintStr.size());
  837. for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
  838. Record.push_back(ConstraintStr[i]);
  839. Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
  840. Record.clear();
  841. continue;
  842. }
  843. const Constant *C = cast<Constant>(V);
  844. unsigned Code = -1U;
  845. unsigned AbbrevToUse = 0;
  846. if (C->isNullValue()) {
  847. Code = bitc::CST_CODE_NULL;
  848. } else if (isa<UndefValue>(C)) {
  849. Code = bitc::CST_CODE_UNDEF;
  850. } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
  851. if (IV->getBitWidth() <= 64) {
  852. uint64_t V = IV->getSExtValue();
  853. emitSignedInt64(Record, V);
  854. Code = bitc::CST_CODE_INTEGER;
  855. AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
  856. } else { // Wide integers, > 64 bits in size.
  857. // We have an arbitrary precision integer value to write whose
  858. // bit width is > 64. However, in canonical unsigned integer
  859. // format it is likely that the high bits are going to be zero.
  860. // So, we only write the number of active words.
  861. unsigned NWords = IV->getValue().getActiveWords();
  862. const uint64_t *RawWords = IV->getValue().getRawData();
  863. for (unsigned i = 0; i != NWords; ++i) {
  864. emitSignedInt64(Record, RawWords[i]);
  865. }
  866. Code = bitc::CST_CODE_WIDE_INTEGER;
  867. }
  868. } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
  869. Code = bitc::CST_CODE_FLOAT;
  870. Type *Ty = CFP->getType();
  871. if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
  872. Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
  873. } else if (Ty->isX86_FP80Ty()) {
  874. // api needed to prevent premature destruction
  875. // bits are not in the same order as a normal i80 APInt, compensate.
  876. APInt api = CFP->getValueAPF().bitcastToAPInt();
  877. const uint64_t *p = api.getRawData();
  878. Record.push_back((p[1] << 48) | (p[0] >> 16));
  879. Record.push_back(p[0] & 0xffffLL);
  880. } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
  881. APInt api = CFP->getValueAPF().bitcastToAPInt();
  882. const uint64_t *p = api.getRawData();
  883. Record.push_back(p[0]);
  884. Record.push_back(p[1]);
  885. } else {
  886. assert (0 && "Unknown FP type!");
  887. }
  888. } else if (isa<ConstantDataSequential>(C) &&
  889. cast<ConstantDataSequential>(C)->isString()) {
  890. const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
  891. // Emit constant strings specially.
  892. unsigned NumElts = Str->getNumElements();
  893. // If this is a null-terminated string, use the denser CSTRING encoding.
  894. if (Str->isCString()) {
  895. Code = bitc::CST_CODE_CSTRING;
  896. --NumElts; // Don't encode the null, which isn't allowed by char6.
  897. } else {
  898. Code = bitc::CST_CODE_STRING;
  899. AbbrevToUse = String8Abbrev;
  900. }
  901. bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
  902. bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
  903. for (unsigned i = 0; i != NumElts; ++i) {
  904. unsigned char V = Str->getElementAsInteger(i);
  905. Record.push_back(V);
  906. isCStr7 &= (V & 128) == 0;
  907. if (isCStrChar6)
  908. isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
  909. }
  910. if (isCStrChar6)
  911. AbbrevToUse = CString6Abbrev;
  912. else if (isCStr7)
  913. AbbrevToUse = CString7Abbrev;
  914. } else if (const ConstantDataSequential *CDS =
  915. dyn_cast<ConstantDataSequential>(C)) {
  916. Code = bitc::CST_CODE_DATA;
  917. Type *EltTy = CDS->getType()->getElementType();
  918. if (isa<IntegerType>(EltTy)) {
  919. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
  920. Record.push_back(CDS->getElementAsInteger(i));
  921. } else if (EltTy->isFloatTy()) {
  922. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
  923. union { float F; uint32_t I; };
  924. F = CDS->getElementAsFloat(i);
  925. Record.push_back(I);
  926. }
  927. } else {
  928. assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
  929. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
  930. union { double F; uint64_t I; };
  931. F = CDS->getElementAsDouble(i);
  932. Record.push_back(I);
  933. }
  934. }
  935. } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
  936. isa<ConstantVector>(C)) {
  937. Code = bitc::CST_CODE_AGGREGATE;
  938. for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
  939. Record.push_back(VE.getValueID(C->getOperand(i)));
  940. AbbrevToUse = AggregateAbbrev;
  941. } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
  942. switch (CE->getOpcode()) {
  943. default:
  944. if (Instruction::isCast(CE->getOpcode())) {
  945. Code = bitc::CST_CODE_CE_CAST;
  946. Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
  947. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  948. Record.push_back(VE.getValueID(C->getOperand(0)));
  949. AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
  950. } else {
  951. assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
  952. Code = bitc::CST_CODE_CE_BINOP;
  953. Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
  954. Record.push_back(VE.getValueID(C->getOperand(0)));
  955. Record.push_back(VE.getValueID(C->getOperand(1)));
  956. uint64_t Flags = GetOptimizationFlags(CE);
  957. if (Flags != 0)
  958. Record.push_back(Flags);
  959. }
  960. break;
  961. case Instruction::GetElementPtr:
  962. Code = bitc::CST_CODE_CE_GEP;
  963. if (cast<GEPOperator>(C)->isInBounds())
  964. Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
  965. for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
  966. Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
  967. Record.push_back(VE.getValueID(C->getOperand(i)));
  968. }
  969. break;
  970. case Instruction::Select:
  971. Code = bitc::CST_CODE_CE_SELECT;
  972. Record.push_back(VE.getValueID(C->getOperand(0)));
  973. Record.push_back(VE.getValueID(C->getOperand(1)));
  974. Record.push_back(VE.getValueID(C->getOperand(2)));
  975. break;
  976. case Instruction::ExtractElement:
  977. Code = bitc::CST_CODE_CE_EXTRACTELT;
  978. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  979. Record.push_back(VE.getValueID(C->getOperand(0)));
  980. Record.push_back(VE.getValueID(C->getOperand(1)));
  981. break;
  982. case Instruction::InsertElement:
  983. Code = bitc::CST_CODE_CE_INSERTELT;
  984. Record.push_back(VE.getValueID(C->getOperand(0)));
  985. Record.push_back(VE.getValueID(C->getOperand(1)));
  986. Record.push_back(VE.getValueID(C->getOperand(2)));
  987. break;
  988. case Instruction::ShuffleVector:
  989. // If the return type and argument types are the same, this is a
  990. // standard shufflevector instruction. If the types are different,
  991. // then the shuffle is widening or truncating the input vectors, and
  992. // the argument type must also be encoded.
  993. if (C->getType() == C->getOperand(0)->getType()) {
  994. Code = bitc::CST_CODE_CE_SHUFFLEVEC;
  995. } else {
  996. Code = bitc::CST_CODE_CE_SHUFVEC_EX;
  997. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  998. }
  999. Record.push_back(VE.getValueID(C->getOperand(0)));
  1000. Record.push_back(VE.getValueID(C->getOperand(1)));
  1001. Record.push_back(VE.getValueID(C->getOperand(2)));
  1002. break;
  1003. case Instruction::ICmp:
  1004. case Instruction::FCmp:
  1005. Code = bitc::CST_CODE_CE_CMP;
  1006. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1007. Record.push_back(VE.getValueID(C->getOperand(0)));
  1008. Record.push_back(VE.getValueID(C->getOperand(1)));
  1009. Record.push_back(CE->getPredicate());
  1010. break;
  1011. }
  1012. } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
  1013. Code = bitc::CST_CODE_BLOCKADDRESS;
  1014. Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
  1015. Record.push_back(VE.getValueID(BA->getFunction()));
  1016. Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
  1017. } else {
  1018. #ifndef NDEBUG
  1019. C->dump();
  1020. #endif
  1021. llvm_unreachable("Unknown constant!");
  1022. }
  1023. Stream.EmitRecord(Code, Record, AbbrevToUse);
  1024. Record.clear();
  1025. }
  1026. Stream.ExitBlock();
  1027. }
  1028. static void WriteModuleConstants(const ValueEnumerator &VE,
  1029. BitstreamWriter &Stream) {
  1030. const ValueEnumerator::ValueList &Vals = VE.getValues();
  1031. // Find the first constant to emit, which is the first non-globalvalue value.
  1032. // We know globalvalues have been emitted by WriteModuleInfo.
  1033. for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
  1034. if (!isa<GlobalValue>(Vals[i].first)) {
  1035. WriteConstants(i, Vals.size(), VE, Stream, true);
  1036. return;
  1037. }
  1038. }
  1039. }
  1040. /// PushValueAndType - The file has to encode both the value and type id for
  1041. /// many values, because we need to know what type to create for forward
  1042. /// references. However, most operands are not forward references, so this type
  1043. /// field is not needed.
  1044. ///
  1045. /// This function adds V's value ID to Vals. If the value ID is higher than the
  1046. /// instruction ID, then it is a forward reference, and it also includes the
  1047. /// type ID. The value ID that is written is encoded relative to the InstID.
  1048. static bool PushValueAndType(const Value *V, unsigned InstID,
  1049. SmallVectorImpl<unsigned> &Vals,
  1050. ValueEnumerator &VE) {
  1051. unsigned ValID = VE.getValueID(V);
  1052. // Make encoding relative to the InstID.
  1053. Vals.push_back(InstID - ValID);
  1054. if (ValID >= InstID) {
  1055. Vals.push_back(VE.getTypeID(V->getType()));
  1056. return true;
  1057. }
  1058. return false;
  1059. }
  1060. /// pushValue - Like PushValueAndType, but where the type of the value is
  1061. /// omitted (perhaps it was already encoded in an earlier operand).
  1062. static void pushValue(const Value *V, unsigned InstID,
  1063. SmallVectorImpl<unsigned> &Vals,
  1064. ValueEnumerator &VE) {
  1065. unsigned ValID = VE.getValueID(V);
  1066. Vals.push_back(InstID - ValID);
  1067. }
  1068. static void pushValueSigned(const Value *V, unsigned InstID,
  1069. SmallVectorImpl<uint64_t> &Vals,
  1070. ValueEnumerator &VE) {
  1071. unsigned ValID = VE.getValueID(V);
  1072. int64_t diff = ((int32_t)InstID - (int32_t)ValID);
  1073. emitSignedInt64(Vals, diff);
  1074. }
  1075. /// WriteInstruction - Emit an instruction to the specified stream.
  1076. static void WriteInstruction(const Instruction &I, unsigned InstID,
  1077. ValueEnumerator &VE, BitstreamWriter &Stream,
  1078. SmallVectorImpl<unsigned> &Vals) {
  1079. unsigned Code = 0;
  1080. unsigned AbbrevToUse = 0;
  1081. VE.setInstructionID(&I);
  1082. switch (I.getOpcode()) {
  1083. default:
  1084. if (Instruction::isCast(I.getOpcode())) {
  1085. Code = bitc::FUNC_CODE_INST_CAST;
  1086. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1087. AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
  1088. Vals.push_back(VE.getTypeID(I.getType()));
  1089. Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
  1090. } else {
  1091. assert(isa<BinaryOperator>(I) && "Unknown instruction!");
  1092. Code = bitc::FUNC_CODE_INST_BINOP;
  1093. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1094. AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
  1095. pushValue(I.getOperand(1), InstID, Vals, VE);
  1096. Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
  1097. uint64_t Flags = GetOptimizationFlags(&I);
  1098. if (Flags != 0) {
  1099. if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
  1100. AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
  1101. Vals.push_back(Flags);
  1102. }
  1103. }
  1104. break;
  1105. case Instruction::GetElementPtr:
  1106. Code = bitc::FUNC_CODE_INST_GEP;
  1107. if (cast<GEPOperator>(&I)->isInBounds())
  1108. Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
  1109. for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
  1110. PushValueAndType(I.getOperand(i), InstID, Vals, VE);
  1111. break;
  1112. case Instruction::ExtractValue: {
  1113. Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
  1114. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1115. const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
  1116. for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
  1117. Vals.push_back(*i);
  1118. break;
  1119. }
  1120. case Instruction::InsertValue: {
  1121. Code = bitc::FUNC_CODE_INST_INSERTVAL;
  1122. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1123. PushValueAndType(I.getOperand(1), InstID, Vals, VE);
  1124. const InsertValueInst *IVI = cast<InsertValueInst>(&I);
  1125. for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
  1126. Vals.push_back(*i);
  1127. break;
  1128. }
  1129. case Instruction::Select:
  1130. Code = bitc::FUNC_CODE_INST_VSELECT;
  1131. PushValueAndType(I.getOperand(1), InstID, Vals, VE);
  1132. pushValue(I.getOperand(2), InstID, Vals, VE);
  1133. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1134. break;
  1135. case Instruction::ExtractElement:
  1136. Code = bitc::FUNC_CODE_INST_EXTRACTELT;
  1137. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1138. pushValue(I.getOperand(1), InstID, Vals, VE);
  1139. break;
  1140. case Instruction::InsertElement:
  1141. Code = bitc::FUNC_CODE_INST_INSERTELT;
  1142. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1143. pushValue(I.getOperand(1), InstID, Vals, VE);
  1144. pushValue(I.getOperand(2), InstID, Vals, VE);
  1145. break;
  1146. case Instruction::ShuffleVector:
  1147. Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
  1148. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1149. pushValue(I.getOperand(1), InstID, Vals, VE);
  1150. pushValue(I.getOperand(2), InstID, Vals, VE);
  1151. break;
  1152. case Instruction::ICmp:
  1153. case Instruction::FCmp:
  1154. // compare returning Int1Ty or vector of Int1Ty
  1155. Code = bitc::FUNC_CODE_INST_CMP2;
  1156. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1157. pushValue(I.getOperand(1), InstID, Vals, VE);
  1158. Vals.push_back(cast<CmpInst>(I).getPredicate());
  1159. break;
  1160. case Instruction::Ret:
  1161. {
  1162. Code = bitc::FUNC_CODE_INST_RET;
  1163. unsigned NumOperands = I.getNumOperands();
  1164. if (NumOperands == 0)
  1165. AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
  1166. else if (NumOperands == 1) {
  1167. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1168. AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
  1169. } else {
  1170. for (unsigned i = 0, e = NumOperands; i != e; ++i)
  1171. PushValueAndType(I.getOperand(i), InstID, Vals, VE);
  1172. }
  1173. }
  1174. break;
  1175. case Instruction::Br:
  1176. {
  1177. Code = bitc::FUNC_CODE_INST_BR;
  1178. const BranchInst &II = cast<BranchInst>(I);
  1179. Vals.push_back(VE.getValueID(II.getSuccessor(0)));
  1180. if (II.isConditional()) {
  1181. Vals.push_back(VE.getValueID(II.getSuccessor(1)));
  1182. pushValue(II.getCondition(), InstID, Vals, VE);
  1183. }
  1184. }
  1185. break;
  1186. case Instruction::Switch:
  1187. {
  1188. Code = bitc::FUNC_CODE_INST_SWITCH;
  1189. const SwitchInst &SI = cast<SwitchInst>(I);
  1190. Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
  1191. pushValue(SI.getCondition(), InstID, Vals, VE);
  1192. Vals.push_back(VE.getValueID(SI.getDefaultDest()));
  1193. for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
  1194. i != e; ++i) {
  1195. Vals.push_back(VE.getValueID(i.getCaseValue()));
  1196. Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
  1197. }
  1198. }
  1199. break;
  1200. case Instruction::IndirectBr:
  1201. Code = bitc::FUNC_CODE_INST_INDIRECTBR;
  1202. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
  1203. // Encode the address operand as relative, but not the basic blocks.
  1204. pushValue(I.getOperand(0), InstID, Vals, VE);
  1205. for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
  1206. Vals.push_back(VE.getValueID(I.getOperand(i)));
  1207. break;
  1208. case Instruction::Invoke: {
  1209. const InvokeInst *II = cast<InvokeInst>(&I);
  1210. const Value *Callee(II->getCalledValue());
  1211. PointerType *PTy = cast<PointerType>(Callee->getType());
  1212. FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
  1213. Code = bitc::FUNC_CODE_INST_INVOKE;
  1214. Vals.push_back(VE.getAttributeID(II->getAttributes()));
  1215. Vals.push_back(II->getCallingConv());
  1216. Vals.push_back(VE.getValueID(II->getNormalDest()));
  1217. Vals.push_back(VE.getValueID(II->getUnwindDest()));
  1218. PushValueAndType(Callee, InstID, Vals, VE);
  1219. // Emit value #'s for the fixed parameters.
  1220. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
  1221. pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param.
  1222. // Emit type/value pairs for varargs params.
  1223. if (FTy->isVarArg()) {
  1224. for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
  1225. i != e; ++i)
  1226. PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
  1227. }
  1228. break;
  1229. }
  1230. case Instruction::Resume:
  1231. Code = bitc::FUNC_CODE_INST_RESUME;
  1232. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1233. break;
  1234. case Instruction::Unreachable:
  1235. Code = bitc::FUNC_CODE_INST_UNREACHABLE;
  1236. AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
  1237. break;
  1238. case Instruction::PHI: {
  1239. const PHINode &PN = cast<PHINode>(I);
  1240. Code = bitc::FUNC_CODE_INST_PHI;
  1241. // With the newer instruction encoding, forward references could give
  1242. // negative valued IDs. This is most common for PHIs, so we use
  1243. // signed VBRs.
  1244. SmallVector<uint64_t, 128> Vals64;
  1245. Vals64.push_back(VE.getTypeID(PN.getType()));
  1246. for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
  1247. pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
  1248. Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
  1249. }
  1250. // Emit a Vals64 vector and exit.
  1251. Stream.EmitRecord(Code, Vals64, AbbrevToUse);
  1252. Vals64.clear();
  1253. return;
  1254. }
  1255. case Instruction::LandingPad: {
  1256. const LandingPadInst &LP = cast<LandingPadInst>(I);
  1257. Code = bitc::FUNC_CODE_INST_LANDINGPAD;
  1258. Vals.push_back(VE.getTypeID(LP.getType()));
  1259. PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
  1260. Vals.push_back(LP.isCleanup());
  1261. Vals.push_back(LP.getNumClauses());
  1262. for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
  1263. if (LP.isCatch(I))
  1264. Vals.push_back(LandingPadInst::Catch);
  1265. else
  1266. Vals.push_back(LandingPadInst::Filter);
  1267. PushValueAndType(LP.getClause(I), InstID, Vals, VE);
  1268. }
  1269. break;
  1270. }
  1271. case Instruction::Alloca:
  1272. Code = bitc::FUNC_CODE_INST_ALLOCA;
  1273. Vals.push_back(VE.getTypeID(I.getType()));
  1274. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
  1275. Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
  1276. Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
  1277. break;
  1278. case Instruction::Load:
  1279. if (cast<LoadInst>(I).isAtomic()) {
  1280. Code = bitc::FUNC_CODE_INST_LOADATOMIC;
  1281. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1282. } else {
  1283. Code = bitc::FUNC_CODE_INST_LOAD;
  1284. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
  1285. AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
  1286. }
  1287. Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
  1288. Vals.push_back(cast<LoadInst>(I).isVolatile());
  1289. if (cast<LoadInst>(I).isAtomic()) {
  1290. Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
  1291. Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
  1292. }
  1293. break;
  1294. case Instruction::Store:
  1295. if (cast<StoreInst>(I).isAtomic())
  1296. Code = bitc::FUNC_CODE_INST_STOREATOMIC;
  1297. else
  1298. Code = bitc::FUNC_CODE_INST_STORE;
  1299. PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
  1300. pushValue(I.getOperand(0), InstID, Vals, VE); // val.
  1301. Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
  1302. Vals.push_back(cast<StoreInst>(I).isVolatile());
  1303. if (cast<StoreInst>(I).isAtomic()) {
  1304. Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
  1305. Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
  1306. }
  1307. break;
  1308. case Instruction::AtomicCmpXchg:
  1309. Code = bitc::FUNC_CODE_INST_CMPXCHG;
  1310. PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
  1311. pushValue(I.getOperand(1), InstID, Vals, VE); // cmp.
  1312. pushValue(I.getOperand(2), InstID, Vals, VE); // newval.
  1313. Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
  1314. Vals.push_back(GetEncodedOrdering(
  1315. cast<AtomicCmpXchgInst>(I).getOrdering()));
  1316. Vals.push_back(GetEncodedSynchScope(
  1317. cast<AtomicCmpXchgInst>(I).getSynchScope()));
  1318. break;
  1319. case Instruction::AtomicRMW:
  1320. Code = bitc::FUNC_CODE_INST_ATOMICRMW;
  1321. PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
  1322. pushValue(I.getOperand(1), InstID, Vals, VE); // val.
  1323. Vals.push_back(GetEncodedRMWOperation(
  1324. cast<AtomicRMWInst>(I).getOperation()));
  1325. Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
  1326. Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
  1327. Vals.push_back(GetEncodedSynchScope(
  1328. cast<AtomicRMWInst>(I).getSynchScope()));
  1329. break;
  1330. case Instruction::Fence:
  1331. Code = bitc::FUNC_CODE_INST_FENCE;
  1332. Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
  1333. Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
  1334. break;
  1335. case Instruction::Call: {
  1336. const CallInst &CI = cast<CallInst>(I);
  1337. PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
  1338. FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
  1339. Code = bitc::FUNC_CODE_INST_CALL;
  1340. Vals.push_back(VE.getAttributeID(CI.getAttributes()));
  1341. Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
  1342. PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
  1343. // Emit value #'s for the fixed parameters.
  1344. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
  1345. // Check for labels (can happen with asm labels).
  1346. if (FTy->getParamType(i)->isLabelTy())
  1347. Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
  1348. else
  1349. pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param.
  1350. }
  1351. // Emit type/value pairs for varargs params.
  1352. if (FTy->isVarArg()) {
  1353. for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
  1354. i != e; ++i)
  1355. PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
  1356. }
  1357. break;
  1358. }
  1359. case Instruction::VAArg:
  1360. Code = bitc::FUNC_CODE_INST_VAARG;
  1361. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
  1362. pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
  1363. Vals.push_back(VE.getTypeID(I.getType())); // restype.
  1364. break;
  1365. }
  1366. Stream.EmitRecord(Code, Vals, AbbrevToUse);
  1367. Vals.clear();
  1368. }
  1369. // Emit names for globals/functions etc.
  1370. static void WriteValueSymbolTable(const ValueSymbolTable &VST,
  1371. const ValueEnumerator &VE,
  1372. BitstreamWriter &Stream) {
  1373. if (VST.empty()) return;
  1374. Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
  1375. // FIXME: Set up the abbrev, we know how many values there are!
  1376. // FIXME: We know if the type names can use 7-bit ascii.
  1377. SmallVector<unsigned, 64> NameVals;
  1378. for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
  1379. SI != SE; ++SI) {
  1380. const ValueName &Name = *SI;
  1381. // Figure out the encoding to use for the name.
  1382. bool is7Bit = true;
  1383. bool isChar6 = true;
  1384. for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
  1385. C != E; ++C) {
  1386. if (isChar6)
  1387. isChar6 = BitCodeAbbrevOp::isChar6(*C);
  1388. if ((unsigned char)*C & 128) {
  1389. is7Bit = false;
  1390. break; // don't bother scanning the rest.
  1391. }
  1392. }
  1393. unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
  1394. // VST_ENTRY: [valueid, namechar x N]
  1395. // VST_BBENTRY: [bbid, namechar x N]
  1396. unsigned Code;
  1397. if (isa<BasicBlock>(SI->getValue())) {
  1398. Code = bitc::VST_CODE_BBENTRY;
  1399. if (isChar6)
  1400. AbbrevToUse = VST_BBENTRY_6_ABBREV;
  1401. } else {
  1402. Code = bitc::VST_CODE_ENTRY;
  1403. if (isChar6)
  1404. AbbrevToUse = VST_ENTRY_6_ABBREV;
  1405. else if (is7Bit)
  1406. AbbrevToUse = VST_ENTRY_7_ABBREV;
  1407. }
  1408. NameVals.push_back(VE.getValueID(SI->getValue()));
  1409. for (const char *P = Name.getKeyData(),
  1410. *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
  1411. NameVals.push_back((unsigned char)*P);
  1412. // Emit the finished record.
  1413. Stream.EmitRecord(Code, NameVals, AbbrevToUse);
  1414. NameVals.clear();
  1415. }
  1416. Stream.ExitBlock();
  1417. }
  1418. /// WriteFunction - Emit a function body to the module stream.
  1419. static void WriteFunction(const Function &F, ValueEnumerator &VE,
  1420. BitstreamWriter &Stream) {
  1421. Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
  1422. VE.incorporateFunction(F);
  1423. SmallVector<unsigned, 64> Vals;
  1424. // Emit the number of basic blocks, so the reader can create them ahead of
  1425. // time.
  1426. Vals.push_back(VE.getBasicBlocks().size());
  1427. Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
  1428. Vals.clear();
  1429. // If there are function-local constants, emit them now.
  1430. unsigned CstStart, CstEnd;
  1431. VE.getFunctionConstantRange(CstStart, CstEnd);
  1432. WriteConstants(CstStart, CstEnd, VE, Stream, false);
  1433. // If there is function-local metadata, emit it now.
  1434. WriteFunctionLocalMetadata(F, VE, Stream);
  1435. // Keep a running idea of what the instruction ID is.
  1436. unsigned InstID = CstEnd;
  1437. bool NeedsMetadataAttachment = false;
  1438. DebugLoc LastDL;
  1439. // Finally, emit all the instructions, in order.
  1440. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
  1441. for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
  1442. I != E; ++I) {
  1443. WriteInstruction(*I, InstID, VE, Stream, Vals);
  1444. if (!I->getType()->isVoidTy())
  1445. ++InstID;
  1446. // If the instruction has metadata, write a metadata attachment later.
  1447. NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
  1448. // If the instruction has a debug location, emit it.
  1449. DebugLoc DL = I->getDebugLoc();
  1450. if (DL.isUnknown()) {
  1451. // nothing todo.
  1452. } else if (DL == LastDL) {
  1453. // Just repeat the same debug loc as last time.
  1454. Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
  1455. } else {
  1456. MDNode *Scope, *IA;
  1457. DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
  1458. Vals.push_back(DL.getLine());
  1459. Vals.push_back(DL.getCol());
  1460. Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
  1461. Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
  1462. Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
  1463. Vals.clear();
  1464. LastDL = DL;
  1465. }
  1466. }
  1467. // Emit names for all the instructions etc.
  1468. WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
  1469. if (NeedsMetadataAttachment)
  1470. WriteMetadataAttachment(F, VE, Stream);
  1471. VE.purgeFunction();
  1472. Stream.ExitBlock();
  1473. }
  1474. // Emit blockinfo, which defines the standard abbreviations etc.
  1475. static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  1476. // We only want to emit block info records for blocks that have multiple
  1477. // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
  1478. // Other blocks can define their abbrevs inline.
  1479. Stream.EnterBlockInfoBlock(2);
  1480. { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
  1481. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1482. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
  1483. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1484. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1485. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  1486. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1487. Abbv) != VST_ENTRY_8_ABBREV)
  1488. llvm_unreachable("Unexpected abbrev ordering!");
  1489. }
  1490. { // 7-bit fixed width VST_ENTRY strings.
  1491. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1492. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
  1493. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1494. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1495. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
  1496. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1497. Abbv) != VST_ENTRY_7_ABBREV)
  1498. llvm_unreachable("Unexpected abbrev ordering!");
  1499. }
  1500. { // 6-bit char6 VST_ENTRY strings.
  1501. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1502. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
  1503. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1504. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1505. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  1506. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1507. Abbv) != VST_ENTRY_6_ABBREV)
  1508. llvm_unreachable("Unexpected abbrev ordering!");
  1509. }
  1510. { // 6-bit char6 VST_BBENTRY strings.
  1511. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1512. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
  1513. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1514. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1515. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  1516. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1517. Abbv) != VST_BBENTRY_6_ABBREV)
  1518. llvm_unreachable("Unexpected abbrev ordering!");
  1519. }
  1520. { // SETTYPE abbrev for CONSTANTS_BLOCK.
  1521. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1522. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
  1523. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  1524. Log2_32_Ceil(VE.getTypes().size()+1)));
  1525. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1526. Abbv) != CONSTANTS_SETTYPE_ABBREV)
  1527. llvm_unreachable("Unexpected abbrev ordering!");
  1528. }
  1529. { // INTEGER abbrev for CONSTANTS_BLOCK.
  1530. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1531. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
  1532. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1533. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1534. Abbv) != CONSTANTS_INTEGER_ABBREV)
  1535. llvm_unreachable("Unexpected abbrev ordering!");
  1536. }
  1537. { // CE_CAST abbrev for CONSTANTS_BLOCK.
  1538. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1539. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
  1540. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
  1541. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
  1542. Log2_32_Ceil(VE.getTypes().size()+1)));
  1543. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
  1544. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1545. Abbv) != CONSTANTS_CE_CAST_Abbrev)
  1546. llvm_unreachable("Unexpected abbrev ordering!");
  1547. }
  1548. { // NULL abbrev for CONSTANTS_BLOCK.
  1549. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1550. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
  1551. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1552. Abbv) != CONSTANTS_NULL_Abbrev)
  1553. llvm_unreachable("Unexpected abbrev ordering!");
  1554. }
  1555. // FIXME: This should only use space for first class types!
  1556. { // INST_LOAD abbrev for FUNCTION_BLOCK.
  1557. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1558. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
  1559. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
  1560. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
  1561. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
  1562. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1563. Abbv) != FUNCTION_INST_LOAD_ABBREV)
  1564. llvm_unreachable("Unexpected abbrev ordering!");
  1565. }
  1566. { // INST_BINOP abbrev for FUNCTION_BLOCK.
  1567. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1568. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
  1569. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
  1570. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
  1571. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  1572. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1573. Abbv) != FUNCTION_INST_BINOP_ABBREV)
  1574. llvm_unreachable("Unexpected abbrev ordering!");
  1575. }
  1576. { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
  1577. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1578. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
  1579. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
  1580. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
  1581. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  1582. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
  1583. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1584. Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
  1585. llvm_unreachable("Unexpected abbrev ordering!");
  1586. }
  1587. { // INST_CAST abbrev for FUNCTION_BLOCK.
  1588. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1589. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
  1590. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
  1591. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
  1592. Log2_32_Ceil(VE.getTypes().size()+1)));
  1593. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  1594. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1595. Abbv) != FUNCTION_INST_CAST_ABBREV)
  1596. llvm_unreachable("Unexpected abbrev ordering!");
  1597. }
  1598. { // INST_RET abbrev for FUNCTION_BLOCK.
  1599. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1600. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
  1601. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1602. Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
  1603. llvm_unreachable("Unexpected abbrev ordering!");
  1604. }
  1605. { // INST_RET abbrev for FUNCTION_BLOCK.
  1606. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1607. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
  1608. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
  1609. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1610. Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
  1611. llvm_unreachable("Unexpected abbrev ordering!");
  1612. }
  1613. { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
  1614. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1615. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
  1616. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1617. Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
  1618. llvm_unreachable("Unexpected abbrev ordering!");
  1619. }
  1620. Stream.ExitBlock();
  1621. }
  1622. // Sort the Users based on the order in which the reader parses the bitcode
  1623. // file.
  1624. static bool bitcodereader_order(const User *lhs, const User *rhs) {
  1625. // TODO: Implement.
  1626. return true;
  1627. }
  1628. static void WriteUseList(const Value *V, const ValueEnumerator &VE,
  1629. BitstreamWriter &Stream) {
  1630. // One or zero uses can't get out of order.
  1631. if (V->use_empty() || V->hasNUses(1))
  1632. return;
  1633. // Make a copy of the in-memory use-list for sorting.
  1634. unsigned UseListSize = std::distance(V->use_begin(), V->use_end());
  1635. SmallVector<const User*, 8> UseList;
  1636. UseList.reserve(UseListSize);
  1637. for (Value::const_use_iterator I = V->use_begin(), E = V->use_end();
  1638. I != E; ++I) {
  1639. const User *U = *I;
  1640. UseList.push_back(U);
  1641. }
  1642. // Sort the copy based on the order read by the BitcodeReader.
  1643. std::sort(UseList.begin(), UseList.end(), bitcodereader_order);
  1644. // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the
  1645. // sorted list (i.e., the expected BitcodeReader in-memory use-list).
  1646. // TODO: Emit the USELIST_CODE_ENTRYs.
  1647. }
  1648. static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE,
  1649. BitstreamWriter &Stream) {
  1650. VE.incorporateFunction(*F);
  1651. for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
  1652. AI != AE; ++AI)
  1653. WriteUseList(AI, VE, Stream);
  1654. for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE;
  1655. ++BB) {
  1656. WriteUseList(BB, VE, Stream);
  1657. for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
  1658. ++II) {
  1659. WriteUseList(II, VE, Stream);
  1660. for (User::const_op_iterator OI = II->op_begin(), E = II->op_end();
  1661. OI != E; ++OI) {
  1662. if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
  1663. isa<InlineAsm>(*OI))
  1664. WriteUseList(*OI, VE, Stream);
  1665. }
  1666. }
  1667. }
  1668. VE.purgeFunction();
  1669. }
  1670. // Emit use-lists.
  1671. static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE,
  1672. BitstreamWriter &Stream) {
  1673. Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
  1674. // XXX: this modifies the module, but in a way that should never change the
  1675. // behavior of any pass or codegen in LLVM. The problem is that GVs may
  1676. // contain entries in the use_list that do not exist in the Module and are
  1677. // not stored in the .bc file.
  1678. for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
  1679. I != E; ++I)
  1680. I->removeDeadConstantUsers();
  1681. // Write the global variables.
  1682. for (Module::const_global_iterator GI = M->global_begin(),
  1683. GE = M->global_end(); GI != GE; ++GI) {
  1684. WriteUseList(GI, VE, Stream);
  1685. // Write the global variable initializers.
  1686. if (GI->hasInitializer())
  1687. WriteUseList(GI->getInitializer(), VE, Stream);
  1688. }
  1689. // Write the functions.
  1690. for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
  1691. WriteUseList(FI, VE, Stream);
  1692. if (!FI->isDeclaration())
  1693. WriteFunctionUseList(FI, VE, Stream);
  1694. if (FI->hasPrefixData())
  1695. WriteUseList(FI->getPrefixData(), VE, Stream);
  1696. }
  1697. // Write the aliases.
  1698. for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end();
  1699. AI != AE; ++AI) {
  1700. WriteUseList(AI, VE, Stream);
  1701. WriteUseList(AI->getAliasee(), VE, Stream);
  1702. }
  1703. Stream.ExitBlock();
  1704. }
  1705. /// WriteModule - Emit the specified module to the bitstream.
  1706. static void WriteModule(const Module *M, BitstreamWriter &Stream) {
  1707. Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
  1708. SmallVector<unsigned, 1> Vals;
  1709. unsigned CurVersion = 1;
  1710. Vals.push_back(CurVersion);
  1711. Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
  1712. // Analyze the module, enumerating globals, functions, etc.
  1713. ValueEnumerator VE(M);
  1714. // Emit blockinfo, which defines the standard abbreviations etc.
  1715. WriteBlockInfo(VE, Stream);
  1716. // Emit information about attribute groups.
  1717. WriteAttributeGroupTable(VE, Stream);
  1718. // Emit information about parameter attributes.
  1719. WriteAttributeTable(VE, Stream);
  1720. // Emit information describing all of the types in the module.
  1721. WriteTypeTable(VE, Stream);
  1722. // Emit top-level description of module, including target triple, inline asm,
  1723. // descriptors for global variables, and function prototype info.
  1724. WriteModuleInfo(M, VE, Stream);
  1725. // Emit constants.
  1726. WriteModuleConstants(VE, Stream);
  1727. // Emit metadata.
  1728. WriteModuleMetadata(M, VE, Stream);
  1729. // Emit metadata.
  1730. WriteModuleMetadataStore(M, Stream);
  1731. // Emit names for globals/functions etc.
  1732. WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
  1733. // Emit use-lists.
  1734. if (EnablePreserveUseListOrdering)
  1735. WriteModuleUseLists(M, VE, Stream);
  1736. // Emit function bodies.
  1737. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
  1738. if (!F->isDeclaration())
  1739. WriteFunction(*F, VE, Stream);
  1740. Stream.ExitBlock();
  1741. }
  1742. /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
  1743. /// header and trailer to make it compatible with the system archiver. To do
  1744. /// this we emit the following header, and then emit a trailer that pads the
  1745. /// file out to be a multiple of 16 bytes.
  1746. ///
  1747. /// struct bc_header {
  1748. /// uint32_t Magic; // 0x0B17C0DE
  1749. /// uint32_t Version; // Version, currently always 0.
  1750. /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
  1751. /// uint32_t BitcodeSize; // Size of traditional bitcode file.
  1752. /// uint32_t CPUType; // CPU specifier.
  1753. /// ... potentially more later ...
  1754. /// };
  1755. enum {
  1756. DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
  1757. DarwinBCHeaderSize = 5*4
  1758. };
  1759. static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
  1760. uint32_t &Position) {
  1761. Buffer[Position + 0] = (unsigned char) (Value >> 0);
  1762. Buffer[Position + 1] = (unsigned char) (Value >> 8);
  1763. Buffer[Position + 2] = (unsigned char) (Value >> 16);
  1764. Buffer[Position + 3] = (unsigned char) (Value >> 24);
  1765. Position += 4;
  1766. }
  1767. static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
  1768. const Triple &TT) {
  1769. unsigned CPUType = ~0U;
  1770. // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
  1771. // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
  1772. // number from /usr/include/mach/machine.h. It is ok to reproduce the
  1773. // specific constants here because they are implicitly part of the Darwin ABI.
  1774. enum {
  1775. DARWIN_CPU_ARCH_ABI64 = 0x01000000,
  1776. DARWIN_CPU_TYPE_X86 = 7,
  1777. DARWIN_CPU_TYPE_ARM = 12,
  1778. DARWIN_CPU_TYPE_POWERPC = 18
  1779. };
  1780. Triple::ArchType Arch = TT.getArch();
  1781. if (Arch == Triple::x86_64)
  1782. CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
  1783. else if (Arch == Triple::x86)
  1784. CPUType = DARWIN_CPU_TYPE_X86;
  1785. else if (Arch == Triple::ppc)
  1786. CPUType = DARWIN_CPU_TYPE_POWERPC;
  1787. else if (Arch == Triple::ppc64)
  1788. CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
  1789. else if (Arch == Triple::arm || Arch == Triple::thumb)
  1790. CPUType = DARWIN_CPU_TYPE_ARM;
  1791. // Traditional Bitcode starts after header.
  1792. assert(Buffer.size() >= DarwinBCHeaderSize &&
  1793. "Expected header size to be reserved");
  1794. unsigned BCOffset = DarwinBCHeaderSize;
  1795. unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
  1796. // Write the magic and version.
  1797. unsigned Position = 0;
  1798. WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
  1799. WriteInt32ToBuffer(0 , Buffer, Position); // Version.
  1800. WriteInt32ToBuffer(BCOffset , Buffer, Position);
  1801. WriteInt32ToBuffer(BCSize , Buffer, Position);
  1802. WriteInt32ToBuffer(CPUType , Buffer, Position);
  1803. // If the file is not a multiple of 16 bytes, insert dummy padding.
  1804. while (Buffer.size() & 15)
  1805. Buffer.push_back(0);
  1806. }
  1807. /// WriteBitcodeToFile - Write the specified module to the specified output
  1808. /// stream.
  1809. void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
  1810. SmallVector<char, 0> Buffer;
  1811. Buffer.reserve(256*1024);
  1812. // If this is darwin or another generic macho target, reserve space for the
  1813. // header.
  1814. Triple TT(M->getTargetTriple());
  1815. if (TT.isOSDarwin())
  1816. Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
  1817. // Emit the module into the buffer.
  1818. {
  1819. BitstreamWriter Stream(Buffer);
  1820. // Emit the file header.
  1821. Stream.Emit((unsigned)'B', 8);
  1822. Stream.Emit((unsigned)'C', 8);
  1823. Stream.Emit(0x0, 4);
  1824. Stream.Emit(0xC, 4);
  1825. Stream.Emit(0xE, 4);
  1826. Stream.Emit(0xD, 4);
  1827. // Emit the module.
  1828. WriteModule(M, Stream);
  1829. }
  1830. if (TT.isOSDarwin())
  1831. EmitDarwinBCHeaderAndTrailer(Buffer, TT);
  1832. // Write the generated bitstream to "Out".
  1833. Out.write((char*)&Buffer.front(), Buffer.size());
  1834. }