Analysis.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730
  1. //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // This file defines several CodeGen-specific LLVM IR analysis utilities.
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #include "llvm/CodeGen/Analysis.h"
  14. #include "llvm/Analysis/ValueTracking.h"
  15. #include "llvm/CodeGen/MachineFunction.h"
  16. #include "llvm/CodeGen/MachineModuleInfo.h"
  17. #include "llvm/CodeGen/SelectionDAG.h"
  18. #include "llvm/IR/DataLayout.h"
  19. #include "llvm/IR/DerivedTypes.h"
  20. #include "llvm/IR/Function.h"
  21. #include "llvm/IR/Instructions.h"
  22. #include "llvm/IR/IntrinsicInst.h"
  23. #include "llvm/IR/LLVMContext.h"
  24. #include "llvm/IR/Module.h"
  25. #include "llvm/Support/ErrorHandling.h"
  26. #include "llvm/Support/MathExtras.h"
  27. #include "llvm/Target/TargetLowering.h"
  28. #include "llvm/Target/TargetInstrInfo.h"
  29. #include "llvm/Target/TargetSubtargetInfo.h"
  30. #include "llvm/Transforms/Utils/GlobalStatus.h"
  31. using namespace llvm;
  32. /// Compute the linearized index of a member in a nested aggregate/struct/array
  33. /// by recursing and accumulating CurIndex as long as there are indices in the
  34. /// index list.
  35. unsigned llvm::ComputeLinearIndex(Type *Ty,
  36. const unsigned *Indices,
  37. const unsigned *IndicesEnd,
  38. unsigned CurIndex) {
  39. // Base case: We're done.
  40. if (Indices && Indices == IndicesEnd)
  41. return CurIndex;
  42. // Given a struct type, recursively traverse the elements.
  43. if (StructType *STy = dyn_cast<StructType>(Ty)) {
  44. for (StructType::element_iterator EB = STy->element_begin(),
  45. EI = EB,
  46. EE = STy->element_end();
  47. EI != EE; ++EI) {
  48. if (Indices && *Indices == unsigned(EI - EB))
  49. return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
  50. CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
  51. }
  52. assert(!Indices && "Unexpected out of bound");
  53. return CurIndex;
  54. }
  55. // Given an array type, recursively traverse the elements.
  56. else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
  57. Type *EltTy = ATy->getElementType();
  58. unsigned NumElts = ATy->getNumElements();
  59. // Compute the Linear offset when jumping one element of the array
  60. unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
  61. if (Indices) {
  62. assert(*Indices < NumElts && "Unexpected out of bound");
  63. // If the indice is inside the array, compute the index to the requested
  64. // elt and recurse inside the element with the end of the indices list
  65. CurIndex += EltLinearOffset* *Indices;
  66. return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
  67. }
  68. CurIndex += EltLinearOffset*NumElts;
  69. return CurIndex;
  70. }
  71. // We haven't found the type we're looking for, so keep searching.
  72. return CurIndex + 1;
  73. }
  74. /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
  75. /// EVTs that represent all the individual underlying
  76. /// non-aggregate types that comprise it.
  77. ///
  78. /// If Offsets is non-null, it points to a vector to be filled in
  79. /// with the in-memory offsets of each of the individual values.
  80. ///
  81. void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
  82. Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
  83. SmallVectorImpl<uint64_t> *Offsets,
  84. uint64_t StartingOffset) {
  85. // Given a struct type, recursively traverse the elements.
  86. if (StructType *STy = dyn_cast<StructType>(Ty)) {
  87. const StructLayout *SL = DL.getStructLayout(STy);
  88. for (StructType::element_iterator EB = STy->element_begin(),
  89. EI = EB,
  90. EE = STy->element_end();
  91. EI != EE; ++EI)
  92. ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets,
  93. StartingOffset + SL->getElementOffset(EI - EB));
  94. return;
  95. }
  96. // Given an array type, recursively traverse the elements.
  97. if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
  98. Type *EltTy = ATy->getElementType();
  99. uint64_t EltSize = DL.getTypeAllocSize(EltTy);
  100. for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
  101. ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets,
  102. StartingOffset + i * EltSize);
  103. return;
  104. }
  105. // Interpret void as zero return values.
  106. if (Ty->isVoidTy())
  107. return;
  108. // Base case: we can get an EVT for this LLVM IR type.
  109. ValueVTs.push_back(TLI.getValueType(DL, Ty));
  110. if (Offsets)
  111. Offsets->push_back(StartingOffset);
  112. }
  113. /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
  114. GlobalValue *llvm::ExtractTypeInfo(Value *V) {
  115. V = V->stripPointerCasts();
  116. GlobalValue *GV = dyn_cast<GlobalValue>(V);
  117. GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
  118. if (Var && Var->getName() == "llvm.eh.catch.all.value") {
  119. assert(Var->hasInitializer() &&
  120. "The EH catch-all value must have an initializer");
  121. Value *Init = Var->getInitializer();
  122. GV = dyn_cast<GlobalValue>(Init);
  123. if (!GV) V = cast<ConstantPointerNull>(Init);
  124. }
  125. assert((GV || isa<ConstantPointerNull>(V)) &&
  126. "TypeInfo must be a global variable or NULL");
  127. return GV;
  128. }
  129. /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
  130. /// processed uses a memory 'm' constraint.
  131. bool
  132. llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
  133. const TargetLowering &TLI) {
  134. for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
  135. InlineAsm::ConstraintInfo &CI = CInfos[i];
  136. for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
  137. TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
  138. if (CType == TargetLowering::C_Memory)
  139. return true;
  140. }
  141. // Indirect operand accesses access memory.
  142. if (CI.isIndirect)
  143. return true;
  144. }
  145. return false;
  146. }
  147. /// getFCmpCondCode - Return the ISD condition code corresponding to
  148. /// the given LLVM IR floating-point condition code. This includes
  149. /// consideration of global floating-point math flags.
  150. ///
  151. ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
  152. switch (Pred) {
  153. case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
  154. case FCmpInst::FCMP_OEQ: return ISD::SETOEQ;
  155. case FCmpInst::FCMP_OGT: return ISD::SETOGT;
  156. case FCmpInst::FCMP_OGE: return ISD::SETOGE;
  157. case FCmpInst::FCMP_OLT: return ISD::SETOLT;
  158. case FCmpInst::FCMP_OLE: return ISD::SETOLE;
  159. case FCmpInst::FCMP_ONE: return ISD::SETONE;
  160. case FCmpInst::FCMP_ORD: return ISD::SETO;
  161. case FCmpInst::FCMP_UNO: return ISD::SETUO;
  162. case FCmpInst::FCMP_UEQ: return ISD::SETUEQ;
  163. case FCmpInst::FCMP_UGT: return ISD::SETUGT;
  164. case FCmpInst::FCMP_UGE: return ISD::SETUGE;
  165. case FCmpInst::FCMP_ULT: return ISD::SETULT;
  166. case FCmpInst::FCMP_ULE: return ISD::SETULE;
  167. case FCmpInst::FCMP_UNE: return ISD::SETUNE;
  168. case FCmpInst::FCMP_TRUE: return ISD::SETTRUE;
  169. default: llvm_unreachable("Invalid FCmp predicate opcode!");
  170. }
  171. }
  172. ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
  173. switch (CC) {
  174. case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
  175. case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
  176. case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
  177. case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
  178. case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
  179. case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
  180. default: return CC;
  181. }
  182. }
  183. /// getICmpCondCode - Return the ISD condition code corresponding to
  184. /// the given LLVM IR integer condition code.
  185. ///
  186. ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
  187. switch (Pred) {
  188. case ICmpInst::ICMP_EQ: return ISD::SETEQ;
  189. case ICmpInst::ICMP_NE: return ISD::SETNE;
  190. case ICmpInst::ICMP_SLE: return ISD::SETLE;
  191. case ICmpInst::ICMP_ULE: return ISD::SETULE;
  192. case ICmpInst::ICMP_SGE: return ISD::SETGE;
  193. case ICmpInst::ICMP_UGE: return ISD::SETUGE;
  194. case ICmpInst::ICMP_SLT: return ISD::SETLT;
  195. case ICmpInst::ICMP_ULT: return ISD::SETULT;
  196. case ICmpInst::ICMP_SGT: return ISD::SETGT;
  197. case ICmpInst::ICMP_UGT: return ISD::SETUGT;
  198. default:
  199. llvm_unreachable("Invalid ICmp predicate opcode!");
  200. }
  201. }
  202. static bool isNoopBitcast(Type *T1, Type *T2,
  203. const TargetLoweringBase& TLI) {
  204. return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
  205. (isa<VectorType>(T1) && isa<VectorType>(T2) &&
  206. TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
  207. }
  208. /// Look through operations that will be free to find the earliest source of
  209. /// this value.
  210. ///
  211. /// @param ValLoc If V has aggegate type, we will be interested in a particular
  212. /// scalar component. This records its address; the reverse of this list gives a
  213. /// sequence of indices appropriate for an extractvalue to locate the important
  214. /// value. This value is updated during the function and on exit will indicate
  215. /// similar information for the Value returned.
  216. ///
  217. /// @param DataBits If this function looks through truncate instructions, this
  218. /// will record the smallest size attained.
  219. static const Value *getNoopInput(const Value *V,
  220. SmallVectorImpl<unsigned> &ValLoc,
  221. unsigned &DataBits,
  222. const TargetLoweringBase &TLI,
  223. const DataLayout &DL) {
  224. while (true) {
  225. // Try to look through V1; if V1 is not an instruction, it can't be looked
  226. // through.
  227. const Instruction *I = dyn_cast<Instruction>(V);
  228. if (!I || I->getNumOperands() == 0) return V;
  229. const Value *NoopInput = nullptr;
  230. Value *Op = I->getOperand(0);
  231. if (isa<BitCastInst>(I)) {
  232. // Look through truly no-op bitcasts.
  233. if (isNoopBitcast(Op->getType(), I->getType(), TLI))
  234. NoopInput = Op;
  235. } else if (isa<GetElementPtrInst>(I)) {
  236. // Look through getelementptr
  237. if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
  238. NoopInput = Op;
  239. } else if (isa<IntToPtrInst>(I)) {
  240. // Look through inttoptr.
  241. // Make sure this isn't a truncating or extending cast. We could
  242. // support this eventually, but don't bother for now.
  243. if (!isa<VectorType>(I->getType()) &&
  244. DL.getPointerSizeInBits() ==
  245. cast<IntegerType>(Op->getType())->getBitWidth())
  246. NoopInput = Op;
  247. } else if (isa<PtrToIntInst>(I)) {
  248. // Look through ptrtoint.
  249. // Make sure this isn't a truncating or extending cast. We could
  250. // support this eventually, but don't bother for now.
  251. if (!isa<VectorType>(I->getType()) &&
  252. DL.getPointerSizeInBits() ==
  253. cast<IntegerType>(I->getType())->getBitWidth())
  254. NoopInput = Op;
  255. } else if (isa<TruncInst>(I) &&
  256. TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
  257. DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
  258. NoopInput = Op;
  259. } else if (isa<CallInst>(I)) {
  260. // Look through call (skipping callee)
  261. for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1;
  262. i != e; ++i) {
  263. unsigned attrInd = i - I->op_begin() + 1;
  264. if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
  265. isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
  266. NoopInput = *i;
  267. break;
  268. }
  269. }
  270. } else if (isa<InvokeInst>(I)) {
  271. // Look through invoke (skipping BB, BB, Callee)
  272. for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3;
  273. i != e; ++i) {
  274. unsigned attrInd = i - I->op_begin() + 1;
  275. if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
  276. isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
  277. NoopInput = *i;
  278. break;
  279. }
  280. }
  281. } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
  282. // Value may come from either the aggregate or the scalar
  283. ArrayRef<unsigned> InsertLoc = IVI->getIndices();
  284. if (ValLoc.size() >= InsertLoc.size() &&
  285. std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
  286. // The type being inserted is a nested sub-type of the aggregate; we
  287. // have to remove those initial indices to get the location we're
  288. // interested in for the operand.
  289. ValLoc.resize(ValLoc.size() - InsertLoc.size());
  290. NoopInput = IVI->getInsertedValueOperand();
  291. } else {
  292. // The struct we're inserting into has the value we're interested in, no
  293. // change of address.
  294. NoopInput = Op;
  295. }
  296. } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
  297. // The part we're interested in will inevitably be some sub-section of the
  298. // previous aggregate. Combine the two paths to obtain the true address of
  299. // our element.
  300. ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
  301. ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
  302. NoopInput = Op;
  303. }
  304. // Terminate if we couldn't find anything to look through.
  305. if (!NoopInput)
  306. return V;
  307. V = NoopInput;
  308. }
  309. }
  310. /// Return true if this scalar return value only has bits discarded on its path
  311. /// from the "tail call" to the "ret". This includes the obvious noop
  312. /// instructions handled by getNoopInput above as well as free truncations (or
  313. /// extensions prior to the call).
  314. static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
  315. SmallVectorImpl<unsigned> &RetIndices,
  316. SmallVectorImpl<unsigned> &CallIndices,
  317. bool AllowDifferingSizes,
  318. const TargetLoweringBase &TLI,
  319. const DataLayout &DL) {
  320. // Trace the sub-value needed by the return value as far back up the graph as
  321. // possible, in the hope that it will intersect with the value produced by the
  322. // call. In the simple case with no "returned" attribute, the hope is actually
  323. // that we end up back at the tail call instruction itself.
  324. unsigned BitsRequired = UINT_MAX;
  325. RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
  326. // If this slot in the value returned is undef, it doesn't matter what the
  327. // call puts there, it'll be fine.
  328. if (isa<UndefValue>(RetVal))
  329. return true;
  330. // Now do a similar search up through the graph to find where the value
  331. // actually returned by the "tail call" comes from. In the simple case without
  332. // a "returned" attribute, the search will be blocked immediately and the loop
  333. // a Noop.
  334. unsigned BitsProvided = UINT_MAX;
  335. CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
  336. // There's no hope if we can't actually trace them to (the same part of!) the
  337. // same value.
  338. if (CallVal != RetVal || CallIndices != RetIndices)
  339. return false;
  340. // However, intervening truncates may have made the call non-tail. Make sure
  341. // all the bits that are needed by the "ret" have been provided by the "tail
  342. // call". FIXME: with sufficiently cunning bit-tracking, we could look through
  343. // extensions too.
  344. if (BitsProvided < BitsRequired ||
  345. (!AllowDifferingSizes && BitsProvided != BitsRequired))
  346. return false;
  347. return true;
  348. }
  349. /// For an aggregate type, determine whether a given index is within bounds or
  350. /// not.
  351. static bool indexReallyValid(CompositeType *T, unsigned Idx) {
  352. if (ArrayType *AT = dyn_cast<ArrayType>(T))
  353. return Idx < AT->getNumElements();
  354. return Idx < cast<StructType>(T)->getNumElements();
  355. }
  356. /// Move the given iterators to the next leaf type in depth first traversal.
  357. ///
  358. /// Performs a depth-first traversal of the type as specified by its arguments,
  359. /// stopping at the next leaf node (which may be a legitimate scalar type or an
  360. /// empty struct or array).
  361. ///
  362. /// @param SubTypes List of the partial components making up the type from
  363. /// outermost to innermost non-empty aggregate. The element currently
  364. /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
  365. ///
  366. /// @param Path Set of extractvalue indices leading from the outermost type
  367. /// (SubTypes[0]) to the leaf node currently represented.
  368. ///
  369. /// @returns true if a new type was found, false otherwise. Calling this
  370. /// function again on a finished iterator will repeatedly return
  371. /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
  372. /// aggregate or a non-aggregate
  373. static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
  374. SmallVectorImpl<unsigned> &Path) {
  375. // First march back up the tree until we can successfully increment one of the
  376. // coordinates in Path.
  377. while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
  378. Path.pop_back();
  379. SubTypes.pop_back();
  380. }
  381. // If we reached the top, then the iterator is done.
  382. if (Path.empty())
  383. return false;
  384. // We know there's *some* valid leaf now, so march back down the tree picking
  385. // out the left-most element at each node.
  386. ++Path.back();
  387. Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
  388. while (DeeperType->isAggregateType()) {
  389. CompositeType *CT = cast<CompositeType>(DeeperType);
  390. if (!indexReallyValid(CT, 0))
  391. return true;
  392. SubTypes.push_back(CT);
  393. Path.push_back(0);
  394. DeeperType = CT->getTypeAtIndex(0U);
  395. }
  396. return true;
  397. }
  398. /// Find the first non-empty, scalar-like type in Next and setup the iterator
  399. /// components.
  400. ///
  401. /// Assuming Next is an aggregate of some kind, this function will traverse the
  402. /// tree from left to right (i.e. depth-first) looking for the first
  403. /// non-aggregate type which will play a role in function return.
  404. ///
  405. /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
  406. /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
  407. /// i32 in that type.
  408. static bool firstRealType(Type *Next,
  409. SmallVectorImpl<CompositeType *> &SubTypes,
  410. SmallVectorImpl<unsigned> &Path) {
  411. // First initialise the iterator components to the first "leaf" node
  412. // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
  413. // despite nominally being an aggregate).
  414. while (Next->isAggregateType() &&
  415. indexReallyValid(cast<CompositeType>(Next), 0)) {
  416. SubTypes.push_back(cast<CompositeType>(Next));
  417. Path.push_back(0);
  418. Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
  419. }
  420. // If there's no Path now, Next was originally scalar already (or empty
  421. // leaf). We're done.
  422. if (Path.empty())
  423. return true;
  424. // Otherwise, use normal iteration to keep looking through the tree until we
  425. // find a non-aggregate type.
  426. while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
  427. if (!advanceToNextLeafType(SubTypes, Path))
  428. return false;
  429. }
  430. return true;
  431. }
  432. /// Set the iterator data-structures to the next non-empty, non-aggregate
  433. /// subtype.
  434. static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
  435. SmallVectorImpl<unsigned> &Path) {
  436. do {
  437. if (!advanceToNextLeafType(SubTypes, Path))
  438. return false;
  439. assert(!Path.empty() && "found a leaf but didn't set the path?");
  440. } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
  441. return true;
  442. }
  443. /// Test if the given instruction is in a position to be optimized
  444. /// with a tail-call. This roughly means that it's in a block with
  445. /// a return and there's nothing that needs to be scheduled
  446. /// between it and the return.
  447. ///
  448. /// This function only tests target-independent requirements.
  449. bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
  450. const Instruction *I = CS.getInstruction();
  451. const BasicBlock *ExitBB = I->getParent();
  452. const TerminatorInst *Term = ExitBB->getTerminator();
  453. const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
  454. // The block must end in a return statement or unreachable.
  455. //
  456. // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
  457. // an unreachable, for now. The way tailcall optimization is currently
  458. // implemented means it will add an epilogue followed by a jump. That is
  459. // not profitable. Also, if the callee is a special function (e.g.
  460. // longjmp on x86), it can end up causing miscompilation that has not
  461. // been fully understood.
  462. if (!Ret &&
  463. (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term)))
  464. return false;
  465. // If I will have a chain, make sure no other instruction that will have a
  466. // chain interposes between I and the return.
  467. if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
  468. !isSafeToSpeculativelyExecute(I))
  469. for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
  470. if (&*BBI == I)
  471. break;
  472. // Debug info intrinsics do not get in the way of tail call optimization.
  473. if (isa<DbgInfoIntrinsic>(BBI))
  474. continue;
  475. if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
  476. !isSafeToSpeculativelyExecute(BBI))
  477. return false;
  478. }
  479. const Function *F = ExitBB->getParent();
  480. return returnTypeIsEligibleForTailCall(
  481. F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
  482. }
  483. bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
  484. const Instruction *I,
  485. const ReturnInst *Ret,
  486. const TargetLoweringBase &TLI) {
  487. // If the block ends with a void return or unreachable, it doesn't matter
  488. // what the call's return type is.
  489. if (!Ret || Ret->getNumOperands() == 0) return true;
  490. // If the return value is undef, it doesn't matter what the call's
  491. // return type is.
  492. if (isa<UndefValue>(Ret->getOperand(0))) return true;
  493. // Make sure the attributes attached to each return are compatible.
  494. AttrBuilder CallerAttrs(F->getAttributes(),
  495. AttributeSet::ReturnIndex);
  496. AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
  497. AttributeSet::ReturnIndex);
  498. // Noalias is completely benign as far as calling convention goes, it
  499. // shouldn't affect whether the call is a tail call.
  500. CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias);
  501. CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias);
  502. bool AllowDifferingSizes = true;
  503. if (CallerAttrs.contains(Attribute::ZExt)) {
  504. if (!CalleeAttrs.contains(Attribute::ZExt))
  505. return false;
  506. AllowDifferingSizes = false;
  507. CallerAttrs.removeAttribute(Attribute::ZExt);
  508. CalleeAttrs.removeAttribute(Attribute::ZExt);
  509. } else if (CallerAttrs.contains(Attribute::SExt)) {
  510. if (!CalleeAttrs.contains(Attribute::SExt))
  511. return false;
  512. AllowDifferingSizes = false;
  513. CallerAttrs.removeAttribute(Attribute::SExt);
  514. CalleeAttrs.removeAttribute(Attribute::SExt);
  515. }
  516. // If they're still different, there's some facet we don't understand
  517. // (currently only "inreg", but in future who knows). It may be OK but the
  518. // only safe option is to reject the tail call.
  519. if (CallerAttrs != CalleeAttrs)
  520. return false;
  521. const Value *RetVal = Ret->getOperand(0), *CallVal = I;
  522. SmallVector<unsigned, 4> RetPath, CallPath;
  523. SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
  524. bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
  525. bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
  526. // Nothing's actually returned, it doesn't matter what the callee put there
  527. // it's a valid tail call.
  528. if (RetEmpty)
  529. return true;
  530. // Iterate pairwise through each of the value types making up the tail call
  531. // and the corresponding return. For each one we want to know whether it's
  532. // essentially going directly from the tail call to the ret, via operations
  533. // that end up not generating any code.
  534. //
  535. // We allow a certain amount of covariance here. For example it's permitted
  536. // for the tail call to define more bits than the ret actually cares about
  537. // (e.g. via a truncate).
  538. do {
  539. if (CallEmpty) {
  540. // We've exhausted the values produced by the tail call instruction, the
  541. // rest are essentially undef. The type doesn't really matter, but we need
  542. // *something*.
  543. Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
  544. CallVal = UndefValue::get(SlotType);
  545. }
  546. // The manipulations performed when we're looking through an insertvalue or
  547. // an extractvalue would happen at the front of the RetPath list, so since
  548. // we have to copy it anyway it's more efficient to create a reversed copy.
  549. SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
  550. SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
  551. // Finally, we can check whether the value produced by the tail call at this
  552. // index is compatible with the value we return.
  553. if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
  554. AllowDifferingSizes, TLI,
  555. F->getParent()->getDataLayout()))
  556. return false;
  557. CallEmpty = !nextRealType(CallSubTypes, CallPath);
  558. } while(nextRealType(RetSubTypes, RetPath));
  559. return true;
  560. }
  561. bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) {
  562. if (!GV->hasLinkOnceODRLinkage())
  563. return false;
  564. if (GV->hasUnnamedAddr())
  565. return true;
  566. // If it is a non constant variable, it needs to be uniqued across shared
  567. // objects.
  568. if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) {
  569. if (!Var->isConstant())
  570. return false;
  571. }
  572. // An alias can point to a variable. We could try to resolve the alias to
  573. // decide, but for now just don't hide them.
  574. if (isa<GlobalAlias>(GV))
  575. return false;
  576. GlobalStatus GS;
  577. if (GlobalStatus::analyzeGlobal(GV, GS))
  578. return false;
  579. return !GS.IsCompared;
  580. }
  581. static void collectFuncletMembers(
  582. DenseMap<const MachineBasicBlock *, int> &FuncletMembership, int Funclet,
  583. const MachineBasicBlock *MBB) {
  584. // Don't revisit blocks.
  585. if (FuncletMembership.count(MBB) > 0) {
  586. if (FuncletMembership[MBB] != Funclet) {
  587. assert(false && "MBB is part of two funclets!");
  588. report_fatal_error("MBB is part of two funclets!");
  589. }
  590. return;
  591. }
  592. // Add this MBB to our funclet.
  593. FuncletMembership[MBB] = Funclet;
  594. bool IsReturn = false;
  595. int NumTerminators = 0;
  596. for (const MachineInstr &MI : MBB->terminators()) {
  597. IsReturn |= MI.isReturn();
  598. ++NumTerminators;
  599. }
  600. assert((!IsReturn || NumTerminators == 1) &&
  601. "Expected only one terminator when a return is present!");
  602. // Returns are boundaries where funclet transfer can occur, don't follow
  603. // successors.
  604. if (IsReturn)
  605. return;
  606. for (const MachineBasicBlock *SMBB : MBB->successors())
  607. if (!SMBB->isEHPad())
  608. collectFuncletMembers(FuncletMembership, Funclet, SMBB);
  609. }
  610. DenseMap<const MachineBasicBlock *, int>
  611. llvm::getFuncletMembership(const MachineFunction &MF) {
  612. DenseMap<const MachineBasicBlock *, int> FuncletMembership;
  613. // We don't have anything to do if there aren't any EH pads.
  614. if (!MF.getMMI().hasEHFunclets())
  615. return FuncletMembership;
  616. bool IsSEH = isAsynchronousEHPersonality(
  617. classifyEHPersonality(MF.getFunction()->getPersonalityFn()));
  618. const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
  619. SmallVector<const MachineBasicBlock *, 16> FuncletBlocks;
  620. SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
  621. for (const MachineBasicBlock &MBB : MF) {
  622. if (MBB.isEHFuncletEntry())
  623. FuncletBlocks.push_back(&MBB);
  624. MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
  625. // CatchPads are not funclets for SEH so do not consider CatchRet to
  626. // transfer control to another funclet.
  627. if (IsSEH || MBBI->getOpcode() != TII->getCatchReturnOpcode())
  628. continue;
  629. const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
  630. const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
  631. CatchRetSuccessors.push_back({Successor, SuccessorColor->getNumber()});
  632. }
  633. // We don't have anything to do if there aren't any EH pads.
  634. if (FuncletBlocks.empty())
  635. return FuncletMembership;
  636. // Identify all the basic blocks reachable from the function entry.
  637. collectFuncletMembers(FuncletMembership, MF.front().getNumber(), MF.begin());
  638. // Next, identify all the blocks inside the funclets.
  639. for (const MachineBasicBlock *MBB : FuncletBlocks)
  640. collectFuncletMembers(FuncletMembership, MBB->getNumber(), MBB);
  641. // Finally, identify all the targets of a catchret.
  642. for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
  643. CatchRetSuccessors)
  644. collectFuncletMembers(FuncletMembership, CatchRetPair.second,
  645. CatchRetPair.first);
  646. // All blocks not part of a funclet are in the parent function.
  647. for (const MachineBasicBlock &MBB : MF)
  648. FuncletMembership.insert({&MBB, MF.front().getNumber()});
  649. return FuncletMembership;
  650. }