BasicBlockTest.cpp 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131
  1. //===- llvm/unittest/IR/BasicBlockTest.cpp - BasicBlock unit tests --------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. #include "llvm/IR/BasicBlock.h"
  10. #include "llvm/ADT/STLExtras.h"
  11. #include "llvm/IR/Function.h"
  12. #include "llvm/IR/IRBuilder.h"
  13. #include "llvm/IR/LLVMContext.h"
  14. #include "llvm/IR/Module.h"
  15. #include "llvm/IR/NoFolder.h"
  16. #include "gmock/gmock-matchers.h"
  17. #include "gtest/gtest.h"
  18. #include <memory>
  19. namespace llvm {
  20. namespace {
  21. TEST(BasicBlockTest, PhiRange) {
  22. LLVMContext Context;
  23. // Create the main block.
  24. std::unique_ptr<BasicBlock> BB(BasicBlock::Create(Context));
  25. // Create some predecessors of it.
  26. std::unique_ptr<BasicBlock> BB1(BasicBlock::Create(Context));
  27. BranchInst::Create(BB.get(), BB1.get());
  28. std::unique_ptr<BasicBlock> BB2(BasicBlock::Create(Context));
  29. BranchInst::Create(BB.get(), BB2.get());
  30. // Make sure this doesn't crash if there are no phis.
  31. for (auto &PN : BB->phis()) {
  32. (void)PN;
  33. EXPECT_TRUE(false) << "empty block should have no phis";
  34. }
  35. // Make it a cycle.
  36. auto *BI = BranchInst::Create(BB.get(), BB.get());
  37. // Now insert some PHI nodes.
  38. auto *Int32Ty = Type::getInt32Ty(Context);
  39. auto *P1 = PHINode::Create(Int32Ty, /*NumReservedValues*/ 3, "phi.1", BI);
  40. auto *P2 = PHINode::Create(Int32Ty, /*NumReservedValues*/ 3, "phi.2", BI);
  41. auto *P3 = PHINode::Create(Int32Ty, /*NumReservedValues*/ 3, "phi.3", BI);
  42. // Some non-PHI nodes.
  43. auto *Sum = BinaryOperator::CreateAdd(P1, P2, "sum", BI);
  44. // Now wire up the incoming values that are interesting.
  45. P1->addIncoming(P2, BB.get());
  46. P2->addIncoming(P1, BB.get());
  47. P3->addIncoming(Sum, BB.get());
  48. // Finally, let's iterate them, which is the thing we're trying to test.
  49. // We'll use this to wire up the rest of the incoming values.
  50. for (auto &PN : BB->phis()) {
  51. PN.addIncoming(UndefValue::get(Int32Ty), BB1.get());
  52. PN.addIncoming(UndefValue::get(Int32Ty), BB2.get());
  53. }
  54. // Test that we can use const iterators and generally that the iterators
  55. // behave like iterators.
  56. BasicBlock::const_phi_iterator CI;
  57. CI = BB->phis().begin();
  58. EXPECT_NE(CI, BB->phis().end());
  59. // Test that filtering iterators work with basic blocks.
  60. auto isPhi = [](Instruction &I) { return isa<PHINode>(&I); };
  61. auto Phis = make_filter_range(*BB, isPhi);
  62. auto ReversedPhis = reverse(make_filter_range(*BB, isPhi));
  63. EXPECT_EQ(distance(Phis), 3);
  64. EXPECT_EQ(&*Phis.begin(), P1);
  65. EXPECT_EQ(distance(ReversedPhis), 3);
  66. EXPECT_EQ(&*ReversedPhis.begin(), P3);
  67. // And iterate a const range.
  68. for (const auto &PN : const_cast<const BasicBlock *>(BB.get())->phis()) {
  69. EXPECT_EQ(BB.get(), PN.getIncomingBlock(0));
  70. EXPECT_EQ(BB1.get(), PN.getIncomingBlock(1));
  71. EXPECT_EQ(BB2.get(), PN.getIncomingBlock(2));
  72. }
  73. }
  74. #define CHECK_ITERATORS(Range1, Range2) \
  75. EXPECT_EQ(distance(Range1), distance(Range2)); \
  76. for (auto Pair : zip(Range1, Range2)) \
  77. EXPECT_EQ(&std::get<0>(Pair), std::get<1>(Pair));
  78. TEST(BasicBlockTest, TestInstructionsWithoutDebug) {
  79. LLVMContext Ctx;
  80. Module *M = new Module("MyModule", Ctx);
  81. Type *ArgTy1[] = {Type::getInt32PtrTy(Ctx)};
  82. FunctionType *FT = FunctionType::get(Type::getVoidTy(Ctx), ArgTy1, false);
  83. Argument *V = new Argument(Type::getInt32Ty(Ctx));
  84. Function *F = Function::Create(FT, Function::ExternalLinkage, "", M);
  85. Value *DbgAddr = Intrinsic::getDeclaration(M, Intrinsic::dbg_addr);
  86. Value *DbgDeclare =
  87. Intrinsic::getDeclaration(M, Intrinsic::dbg_declare);
  88. Value *DbgValue = Intrinsic::getDeclaration(M, Intrinsic::dbg_value);
  89. Value *DIV = MetadataAsValue::get(Ctx, (Metadata *)nullptr);
  90. SmallVector<Value *, 3> Args = {DIV, DIV, DIV};
  91. BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F);
  92. const BasicBlock *BBConst = BB1;
  93. IRBuilder<> Builder1(BB1);
  94. AllocaInst *Var = Builder1.CreateAlloca(Builder1.getInt8Ty());
  95. Builder1.CreateCall(DbgValue, Args);
  96. Instruction *AddInst = cast<Instruction>(Builder1.CreateAdd(V, V));
  97. Instruction *MulInst = cast<Instruction>(Builder1.CreateMul(AddInst, V));
  98. Builder1.CreateCall(DbgDeclare, Args);
  99. Instruction *SubInst = cast<Instruction>(Builder1.CreateSub(MulInst, V));
  100. Builder1.CreateCall(DbgAddr, Args);
  101. SmallVector<Instruction *, 4> Exp = {Var, AddInst, MulInst, SubInst};
  102. CHECK_ITERATORS(BB1->instructionsWithoutDebug(), Exp);
  103. CHECK_ITERATORS(BBConst->instructionsWithoutDebug(), Exp);
  104. delete M;
  105. delete V;
  106. }
  107. } // End anonymous namespace.
  108. } // End llvm namespace.