123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- //===-- examples/HowToUseJIT/HowToUseJIT.cpp - An example use of the JIT --===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file was developed by Valery A. Khamenya and is distributed under the
- // University of Illinois Open Source License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This small program provides an example of how to quickly build a small
- // module with two functions and execute it with the JIT.
- //
- // Goal:
- // The goal of this snippet is to create in the memory
- // the LLVM module consisting of two functions as follow:
- //
- // int add1(int x) {
- // return x+1;
- // }
- //
- // int foo() {
- // return add1(10);
- // }
- //
- // then compile the module via JIT, then execute the `foo'
- // function and return result to a driver, i.e. to a "host program".
- //
- // Some remarks and questions:
- //
- // - could we invoke some code using noname functions too?
- // e.g. evaluate "foo()+foo()" without fears to introduce
- // conflict of temporary function name with some real
- // existing function name?
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Module.h"
- #include "llvm/Constants.h"
- #include "llvm/Type.h"
- #include "llvm/Instructions.h"
- #include "llvm/ModuleProvider.h"
- #include "llvm/ExecutionEngine/ExecutionEngine.h"
- #include "llvm/ExecutionEngine/GenericValue.h"
- #include <iostream>
- using namespace llvm;
- int main() {
- // Create some module to put our function into it.
- Module *M = new Module("test");
- // Create the add1 function entry and insert this entry into module M. The
- // function will have a return type of "int" and take an argument of "int".
- // The '0' terminates the list of argument types.
- Function *Add1F = M->getOrInsertFunction("add1", Type::IntTy, Type::IntTy, 0);
- // Add a basic block to the function. As before, it automatically inserts
- // because of the last argument.
- BasicBlock *BB = new BasicBlock("EntryBlock", Add1F);
- // Get pointers to the constant `1'.
- Value *One = ConstantSInt::get(Type::IntTy, 1);
- // Get pointers to the integer argument of the add1 function...
- assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg
- Argument *ArgX = Add1F->arg_begin(); // Get the arg
- ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
- // Create the add instruction, inserting it into the end of BB.
- Instruction *Add = BinaryOperator::createAdd(One, ArgX, "addresult", BB);
- // Create the return instruction and add it to the basic block
- new ReturnInst(Add, BB);
- // Now, function add1 is ready.
- // Now we going to create function `foo', which returns an int and takes no
- // arguments.
- Function *FooF = M->getOrInsertFunction("foo", Type::IntTy, 0);
- // Add a basic block to the FooF function.
- BB = new BasicBlock("EntryBlock", FooF);
- // Get pointers to the constant `10'.
- Value *Ten = ConstantSInt::get(Type::IntTy, 10);
- // Pass Ten to the call call:
- std::vector<Value*> Params;
- Params.push_back(Ten);
- CallInst *Add1CallRes = new CallInst(Add1F, Params, "add1", BB);
- Add1CallRes->setTailCall(true);
- // Create the return instruction and add it to the basic block.
- new ReturnInst(Add1CallRes, BB);
- // Now we create the JIT.
- ExistingModuleProvider* MP = new ExistingModuleProvider(M);
- ExecutionEngine* EE = ExecutionEngine::create(MP, false);
- std::cout << "We just constructed this LLVM module:\n\n" << *M;
- std::cout << "\n\nRunning foo: " << std::flush;
- // Call the `foo' function with no arguments:
- std::vector<GenericValue> noargs;
- GenericValue gv = EE->runFunction(FooF, noargs);
- // Import result of execution:
- std::cout << "Result: " << gv.IntVal << "\n";
- return 0;
- }
|