123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533 |
- //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass performs various transformations related to eliminating memcpy
- // calls, or transforming sets of stores into memset's.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/MemoryDependenceAnalysis.h"
- #include "llvm/Analysis/MemoryLocation.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <utility>
- using namespace llvm;
- #define DEBUG_TYPE "memcpyopt"
- STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
- STATISTIC(NumMemSetInfer, "Number of memsets inferred");
- STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
- STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
- static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
- bool &VariableIdxFound,
- const DataLayout &DL) {
- // Skip over the first indices.
- gep_type_iterator GTI = gep_type_begin(GEP);
- for (unsigned i = 1; i != Idx; ++i, ++GTI)
- /*skip along*/;
- // Compute the offset implied by the rest of the indices.
- int64_t Offset = 0;
- for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
- ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
- if (!OpC)
- return VariableIdxFound = true;
- if (OpC->isZero()) continue; // No offset.
- // Handle struct indices, which add their field offset to the pointer.
- if (StructType *STy = GTI.getStructTypeOrNull()) {
- Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
- continue;
- }
- // Otherwise, we have a sequential type like an array or vector. Multiply
- // the index by the ElementSize.
- uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
- Offset += Size*OpC->getSExtValue();
- }
- return Offset;
- }
- /// Return true if Ptr1 is provably equal to Ptr2 plus a constant offset, and
- /// return that constant offset. For example, Ptr1 might be &A[42], and Ptr2
- /// might be &A[40]. In this case offset would be -8.
- static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
- const DataLayout &DL) {
- Ptr1 = Ptr1->stripPointerCasts();
- Ptr2 = Ptr2->stripPointerCasts();
- // Handle the trivial case first.
- if (Ptr1 == Ptr2) {
- Offset = 0;
- return true;
- }
- GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
- GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
- bool VariableIdxFound = false;
- // If one pointer is a GEP and the other isn't, then see if the GEP is a
- // constant offset from the base, as in "P" and "gep P, 1".
- if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
- Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL);
- return !VariableIdxFound;
- }
- if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
- Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL);
- return !VariableIdxFound;
- }
- // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
- // base. After that base, they may have some number of common (and
- // potentially variable) indices. After that they handle some constant
- // offset, which determines their offset from each other. At this point, we
- // handle no other case.
- if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
- return false;
- // Skip any common indices and track the GEP types.
- unsigned Idx = 1;
- for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
- if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
- break;
- int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL);
- int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL);
- if (VariableIdxFound) return false;
- Offset = Offset2-Offset1;
- return true;
- }
- namespace {
- /// Represents a range of memset'd bytes with the ByteVal value.
- /// This allows us to analyze stores like:
- /// store 0 -> P+1
- /// store 0 -> P+0
- /// store 0 -> P+3
- /// store 0 -> P+2
- /// which sometimes happens with stores to arrays of structs etc. When we see
- /// the first store, we make a range [1, 2). The second store extends the range
- /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
- /// two ranges into [0, 3) which is memset'able.
- struct MemsetRange {
- // Start/End - A semi range that describes the span that this range covers.
- // The range is closed at the start and open at the end: [Start, End).
- int64_t Start, End;
- /// StartPtr - The getelementptr instruction that points to the start of the
- /// range.
- Value *StartPtr;
- /// Alignment - The known alignment of the first store.
- unsigned Alignment;
- /// TheStores - The actual stores that make up this range.
- SmallVector<Instruction*, 16> TheStores;
- bool isProfitableToUseMemset(const DataLayout &DL) const;
- };
- } // end anonymous namespace
- bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
- // If we found more than 4 stores to merge or 16 bytes, use memset.
- if (TheStores.size() >= 4 || End-Start >= 16) return true;
- // If there is nothing to merge, don't do anything.
- if (TheStores.size() < 2) return false;
- // If any of the stores are a memset, then it is always good to extend the
- // memset.
- for (Instruction *SI : TheStores)
- if (!isa<StoreInst>(SI))
- return true;
- // Assume that the code generator is capable of merging pairs of stores
- // together if it wants to.
- if (TheStores.size() == 2) return false;
- // If we have fewer than 8 stores, it can still be worthwhile to do this.
- // For example, merging 4 i8 stores into an i32 store is useful almost always.
- // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
- // memset will be split into 2 32-bit stores anyway) and doing so can
- // pessimize the llvm optimizer.
- //
- // Since we don't have perfect knowledge here, make some assumptions: assume
- // the maximum GPR width is the same size as the largest legal integer
- // size. If so, check to see whether we will end up actually reducing the
- // number of stores used.
- unsigned Bytes = unsigned(End-Start);
- unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
- if (MaxIntSize == 0)
- MaxIntSize = 1;
- unsigned NumPointerStores = Bytes / MaxIntSize;
- // Assume the remaining bytes if any are done a byte at a time.
- unsigned NumByteStores = Bytes % MaxIntSize;
- // If we will reduce the # stores (according to this heuristic), do the
- // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
- // etc.
- return TheStores.size() > NumPointerStores+NumByteStores;
- }
- namespace {
- class MemsetRanges {
- using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
- /// A sorted list of the memset ranges.
- SmallVector<MemsetRange, 8> Ranges;
- const DataLayout &DL;
- public:
- MemsetRanges(const DataLayout &DL) : DL(DL) {}
- using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
- const_iterator begin() const { return Ranges.begin(); }
- const_iterator end() const { return Ranges.end(); }
- bool empty() const { return Ranges.empty(); }
- void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
- addStore(OffsetFromFirst, SI);
- else
- addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
- }
- void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
- int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
- addRange(OffsetFromFirst, StoreSize,
- SI->getPointerOperand(), SI->getAlignment(), SI);
- }
- void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
- int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
- addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
- }
- void addRange(int64_t Start, int64_t Size, Value *Ptr,
- unsigned Alignment, Instruction *Inst);
- };
- } // end anonymous namespace
- /// Add a new store to the MemsetRanges data structure. This adds a
- /// new range for the specified store at the specified offset, merging into
- /// existing ranges as appropriate.
- void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
- unsigned Alignment, Instruction *Inst) {
- int64_t End = Start+Size;
- range_iterator I = std::lower_bound(Ranges.begin(), Ranges.end(), Start,
- [](const MemsetRange &LHS, int64_t RHS) { return LHS.End < RHS; });
- // We now know that I == E, in which case we didn't find anything to merge
- // with, or that Start <= I->End. If End < I->Start or I == E, then we need
- // to insert a new range. Handle this now.
- if (I == Ranges.end() || End < I->Start) {
- MemsetRange &R = *Ranges.insert(I, MemsetRange());
- R.Start = Start;
- R.End = End;
- R.StartPtr = Ptr;
- R.Alignment = Alignment;
- R.TheStores.push_back(Inst);
- return;
- }
- // This store overlaps with I, add it.
- I->TheStores.push_back(Inst);
- // At this point, we may have an interval that completely contains our store.
- // If so, just add it to the interval and return.
- if (I->Start <= Start && I->End >= End)
- return;
- // Now we know that Start <= I->End and End >= I->Start so the range overlaps
- // but is not entirely contained within the range.
- // See if the range extends the start of the range. In this case, it couldn't
- // possibly cause it to join the prior range, because otherwise we would have
- // stopped on *it*.
- if (Start < I->Start) {
- I->Start = Start;
- I->StartPtr = Ptr;
- I->Alignment = Alignment;
- }
- // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
- // is in or right at the end of I), and that End >= I->Start. Extend I out to
- // End.
- if (End > I->End) {
- I->End = End;
- range_iterator NextI = I;
- while (++NextI != Ranges.end() && End >= NextI->Start) {
- // Merge the range in.
- I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
- if (NextI->End > I->End)
- I->End = NextI->End;
- Ranges.erase(NextI);
- NextI = I;
- }
- }
- }
- //===----------------------------------------------------------------------===//
- // MemCpyOptLegacyPass Pass
- //===----------------------------------------------------------------------===//
- namespace {
- class MemCpyOptLegacyPass : public FunctionPass {
- MemCpyOptPass Impl;
- public:
- static char ID; // Pass identification, replacement for typeid
- MemCpyOptLegacyPass() : FunctionPass(ID) {
- initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override;
- private:
- // This transformation requires dominator postdominator info
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<MemoryDependenceWrapperPass>();
- AU.addRequired<AAResultsWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.addPreserved<MemoryDependenceWrapperPass>();
- }
- };
- } // end anonymous namespace
- char MemCpyOptLegacyPass::ID = 0;
- /// The public interface to this file...
- FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
- INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
- false, false)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
- INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
- false, false)
- /// When scanning forward over instructions, we look for some other patterns to
- /// fold away. In particular, this looks for stores to neighboring locations of
- /// memory. If it sees enough consecutive ones, it attempts to merge them
- /// together into a memcpy/memset.
- Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
- Value *StartPtr,
- Value *ByteVal) {
- const DataLayout &DL = StartInst->getModule()->getDataLayout();
- // Okay, so we now have a single store that can be splatable. Scan to find
- // all subsequent stores of the same value to offset from the same pointer.
- // Join these together into ranges, so we can decide whether contiguous blocks
- // are stored.
- MemsetRanges Ranges(DL);
- BasicBlock::iterator BI(StartInst);
- for (++BI; !BI->isTerminator(); ++BI) {
- if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
- // If the instruction is readnone, ignore it, otherwise bail out. We
- // don't even allow readonly here because we don't want something like:
- // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
- if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
- break;
- continue;
- }
- if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
- // If this is a store, see if we can merge it in.
- if (!NextStore->isSimple()) break;
- // Check to see if this stored value is of the same byte-splattable value.
- Value *StoredByte = isBytewiseValue(NextStore->getOperand(0));
- if (isa<UndefValue>(ByteVal) && StoredByte)
- ByteVal = StoredByte;
- if (ByteVal != StoredByte)
- break;
- // Check to see if this store is to a constant offset from the start ptr.
- int64_t Offset;
- if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset,
- DL))
- break;
- Ranges.addStore(Offset, NextStore);
- } else {
- MemSetInst *MSI = cast<MemSetInst>(BI);
- if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
- !isa<ConstantInt>(MSI->getLength()))
- break;
- // Check to see if this store is to a constant offset from the start ptr.
- int64_t Offset;
- if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL))
- break;
- Ranges.addMemSet(Offset, MSI);
- }
- }
- // If we have no ranges, then we just had a single store with nothing that
- // could be merged in. This is a very common case of course.
- if (Ranges.empty())
- return nullptr;
- // If we had at least one store that could be merged in, add the starting
- // store as well. We try to avoid this unless there is at least something
- // interesting as a small compile-time optimization.
- Ranges.addInst(0, StartInst);
- // If we create any memsets, we put it right before the first instruction that
- // isn't part of the memset block. This ensure that the memset is dominated
- // by any addressing instruction needed by the start of the block.
- IRBuilder<> Builder(&*BI);
- // Now that we have full information about ranges, loop over the ranges and
- // emit memset's for anything big enough to be worthwhile.
- Instruction *AMemSet = nullptr;
- for (const MemsetRange &Range : Ranges) {
- if (Range.TheStores.size() == 1) continue;
- // If it is profitable to lower this range to memset, do so now.
- if (!Range.isProfitableToUseMemset(DL))
- continue;
- // Otherwise, we do want to transform this! Create a new memset.
- // Get the starting pointer of the block.
- StartPtr = Range.StartPtr;
- // Determine alignment
- unsigned Alignment = Range.Alignment;
- if (Alignment == 0) {
- Type *EltType =
- cast<PointerType>(StartPtr->getType())->getElementType();
- Alignment = DL.getABITypeAlignment(EltType);
- }
- AMemSet =
- Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
- LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
- : Range.TheStores) dbgs()
- << *SI << '\n';
- dbgs() << "With: " << *AMemSet << '\n');
- if (!Range.TheStores.empty())
- AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
- // Zap all the stores.
- for (Instruction *SI : Range.TheStores) {
- MD->removeInstruction(SI);
- SI->eraseFromParent();
- }
- ++NumMemSetInfer;
- }
- return AMemSet;
- }
- static unsigned findStoreAlignment(const DataLayout &DL, const StoreInst *SI) {
- unsigned StoreAlign = SI->getAlignment();
- if (!StoreAlign)
- StoreAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
- return StoreAlign;
- }
- static unsigned findLoadAlignment(const DataLayout &DL, const LoadInst *LI) {
- unsigned LoadAlign = LI->getAlignment();
- if (!LoadAlign)
- LoadAlign = DL.getABITypeAlignment(LI->getType());
- return LoadAlign;
- }
- static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI,
- const LoadInst *LI) {
- unsigned StoreAlign = findStoreAlignment(DL, SI);
- unsigned LoadAlign = findLoadAlignment(DL, LI);
- return MinAlign(StoreAlign, LoadAlign);
- }
- // This method try to lift a store instruction before position P.
- // It will lift the store and its argument + that anything that
- // may alias with these.
- // The method returns true if it was successful.
- static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P,
- const LoadInst *LI) {
- // If the store alias this position, early bail out.
- MemoryLocation StoreLoc = MemoryLocation::get(SI);
- if (isModOrRefSet(AA.getModRefInfo(P, StoreLoc)))
- return false;
- // Keep track of the arguments of all instruction we plan to lift
- // so we can make sure to lift them as well if appropriate.
- DenseSet<Instruction*> Args;
- if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
- if (Ptr->getParent() == SI->getParent())
- Args.insert(Ptr);
- // Instruction to lift before P.
- SmallVector<Instruction*, 8> ToLift;
- // Memory locations of lifted instructions.
- SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
- // Lifted callsites.
- SmallVector<ImmutableCallSite, 8> CallSites;
- const MemoryLocation LoadLoc = MemoryLocation::get(LI);
- for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
- auto *C = &*I;
- bool MayAlias = isModOrRefSet(AA.getModRefInfo(C, None));
- bool NeedLift = false;
- if (Args.erase(C))
- NeedLift = true;
- else if (MayAlias) {
- NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) {
- return isModOrRefSet(AA.getModRefInfo(C, ML));
- });
- if (!NeedLift)
- NeedLift =
- llvm::any_of(CallSites, [C, &AA](const ImmutableCallSite &CS) {
- return isModOrRefSet(AA.getModRefInfo(C, CS));
- });
- }
- if (!NeedLift)
- continue;
- if (MayAlias) {
- // Since LI is implicitly moved downwards past the lifted instructions,
- // none of them may modify its source.
- if (isModSet(AA.getModRefInfo(C, LoadLoc)))
- return false;
- else if (auto CS = ImmutableCallSite(C)) {
- // If we can't lift this before P, it's game over.
- if (isModOrRefSet(AA.getModRefInfo(P, CS)))
- return false;
- CallSites.push_back(CS);
- } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
- // If we can't lift this before P, it's game over.
- auto ML = MemoryLocation::get(C);
- if (isModOrRefSet(AA.getModRefInfo(P, ML)))
- return false;
- MemLocs.push_back(ML);
- } else
- // We don't know how to lift this instruction.
- return false;
- }
- ToLift.push_back(C);
- for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
- if (auto *A = dyn_cast<Instruction>(C->getOperand(k)))
- if (A->getParent() == SI->getParent())
- Args.insert(A);
- }
- // We made it, we need to lift
- for (auto *I : llvm::reverse(ToLift)) {
- LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
- I->moveBefore(P);
- }
- return true;
- }
- bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
- if (!SI->isSimple()) return false;
- // Avoid merging nontemporal stores since the resulting
- // memcpy/memset would not be able to preserve the nontemporal hint.
- // In theory we could teach how to propagate the !nontemporal metadata to
- // memset calls. However, that change would force the backend to
- // conservatively expand !nontemporal memset calls back to sequences of
- // store instructions (effectively undoing the merging).
- if (SI->getMetadata(LLVMContext::MD_nontemporal))
- return false;
- const DataLayout &DL = SI->getModule()->getDataLayout();
- // Load to store forwarding can be interpreted as memcpy.
- if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
- if (LI->isSimple() && LI->hasOneUse() &&
- LI->getParent() == SI->getParent()) {
- auto *T = LI->getType();
- if (T->isAggregateType()) {
- AliasAnalysis &AA = LookupAliasAnalysis();
- MemoryLocation LoadLoc = MemoryLocation::get(LI);
- // We use alias analysis to check if an instruction may store to
- // the memory we load from in between the load and the store. If
- // such an instruction is found, we try to promote there instead
- // of at the store position.
- Instruction *P = SI;
- for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
- if (isModSet(AA.getModRefInfo(&I, LoadLoc))) {
- P = &I;
- break;
- }
- }
- // We found an instruction that may write to the loaded memory.
- // We can try to promote at this position instead of the store
- // position if nothing alias the store memory after this and the store
- // destination is not in the range.
- if (P && P != SI) {
- if (!moveUp(AA, SI, P, LI))
- P = nullptr;
- }
- // If a valid insertion position is found, then we can promote
- // the load/store pair to a memcpy.
- if (P) {
- // If we load from memory that may alias the memory we store to,
- // memmove must be used to preserve semantic. If not, memcpy can
- // be used.
- bool UseMemMove = false;
- if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc))
- UseMemMove = true;
- uint64_t Size = DL.getTypeStoreSize(T);
- IRBuilder<> Builder(P);
- Instruction *M;
- if (UseMemMove)
- M = Builder.CreateMemMove(
- SI->getPointerOperand(), findStoreAlignment(DL, SI),
- LI->getPointerOperand(), findLoadAlignment(DL, LI), Size,
- SI->isVolatile());
- else
- M = Builder.CreateMemCpy(
- SI->getPointerOperand(), findStoreAlignment(DL, SI),
- LI->getPointerOperand(), findLoadAlignment(DL, LI), Size,
- SI->isVolatile());
- LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
- << *M << "\n");
- MD->removeInstruction(SI);
- SI->eraseFromParent();
- MD->removeInstruction(LI);
- LI->eraseFromParent();
- ++NumMemCpyInstr;
- // Make sure we do not invalidate the iterator.
- BBI = M->getIterator();
- return true;
- }
- }
- // Detect cases where we're performing call slot forwarding, but
- // happen to be using a load-store pair to implement it, rather than
- // a memcpy.
- MemDepResult ldep = MD->getDependency(LI);
- CallInst *C = nullptr;
- if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
- C = dyn_cast<CallInst>(ldep.getInst());
- if (C) {
- // Check that nothing touches the dest of the "copy" between
- // the call and the store.
- Value *CpyDest = SI->getPointerOperand()->stripPointerCasts();
- bool CpyDestIsLocal = isa<AllocaInst>(CpyDest);
- AliasAnalysis &AA = LookupAliasAnalysis();
- MemoryLocation StoreLoc = MemoryLocation::get(SI);
- for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
- I != E; --I) {
- if (isModOrRefSet(AA.getModRefInfo(&*I, StoreLoc))) {
- C = nullptr;
- break;
- }
- // The store to dest may never happen if an exception can be thrown
- // between the load and the store.
- if (I->mayThrow() && !CpyDestIsLocal) {
- C = nullptr;
- break;
- }
- }
- }
- if (C) {
- bool changed = performCallSlotOptzn(
- LI, SI->getPointerOperand()->stripPointerCasts(),
- LI->getPointerOperand()->stripPointerCasts(),
- DL.getTypeStoreSize(SI->getOperand(0)->getType()),
- findCommonAlignment(DL, SI, LI), C);
- if (changed) {
- MD->removeInstruction(SI);
- SI->eraseFromParent();
- MD->removeInstruction(LI);
- LI->eraseFromParent();
- ++NumMemCpyInstr;
- return true;
- }
- }
- }
- }
- // There are two cases that are interesting for this code to handle: memcpy
- // and memset. Right now we only handle memset.
- // Ensure that the value being stored is something that can be memset'able a
- // byte at a time like "0" or "-1" or any width, as well as things like
- // 0xA0A0A0A0 and 0.0.
- auto *V = SI->getOperand(0);
- if (Value *ByteVal = isBytewiseValue(V)) {
- if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
- ByteVal)) {
- BBI = I->getIterator(); // Don't invalidate iterator.
- return true;
- }
- // If we have an aggregate, we try to promote it to memset regardless
- // of opportunity for merging as it can expose optimization opportunities
- // in subsequent passes.
- auto *T = V->getType();
- if (T->isAggregateType()) {
- uint64_t Size = DL.getTypeStoreSize(T);
- unsigned Align = SI->getAlignment();
- if (!Align)
- Align = DL.getABITypeAlignment(T);
- IRBuilder<> Builder(SI);
- auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal,
- Size, Align, SI->isVolatile());
- LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
- MD->removeInstruction(SI);
- SI->eraseFromParent();
- NumMemSetInfer++;
- // Make sure we do not invalidate the iterator.
- BBI = M->getIterator();
- return true;
- }
- }
- return false;
- }
- bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
- // See if there is another memset or store neighboring this memset which
- // allows us to widen out the memset to do a single larger store.
- if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
- if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
- MSI->getValue())) {
- BBI = I->getIterator(); // Don't invalidate iterator.
- return true;
- }
- return false;
- }
- /// Takes a memcpy and a call that it depends on,
- /// and checks for the possibility of a call slot optimization by having
- /// the call write its result directly into the destination of the memcpy.
- bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest,
- Value *cpySrc, uint64_t cpyLen,
- unsigned cpyAlign, CallInst *C) {
- // The general transformation to keep in mind is
- //
- // call @func(..., src, ...)
- // memcpy(dest, src, ...)
- //
- // ->
- //
- // memcpy(dest, src, ...)
- // call @func(..., dest, ...)
- //
- // Since moving the memcpy is technically awkward, we additionally check that
- // src only holds uninitialized values at the moment of the call, meaning that
- // the memcpy can be discarded rather than moved.
- // Lifetime marks shouldn't be operated on.
- if (Function *F = C->getCalledFunction())
- if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
- return false;
- // Deliberately get the source and destination with bitcasts stripped away,
- // because we'll need to do type comparisons based on the underlying type.
- CallSite CS(C);
- // Require that src be an alloca. This simplifies the reasoning considerably.
- AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
- if (!srcAlloca)
- return false;
- ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
- if (!srcArraySize)
- return false;
- const DataLayout &DL = cpy->getModule()->getDataLayout();
- uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
- srcArraySize->getZExtValue();
- if (cpyLen < srcSize)
- return false;
- // Check that accessing the first srcSize bytes of dest will not cause a
- // trap. Otherwise the transform is invalid since it might cause a trap
- // to occur earlier than it otherwise would.
- if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
- // The destination is an alloca. Check it is larger than srcSize.
- ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
- if (!destArraySize)
- return false;
- uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
- destArraySize->getZExtValue();
- if (destSize < srcSize)
- return false;
- } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
- // The store to dest may never happen if the call can throw.
- if (C->mayThrow())
- return false;
- if (A->getDereferenceableBytes() < srcSize) {
- // If the destination is an sret parameter then only accesses that are
- // outside of the returned struct type can trap.
- if (!A->hasStructRetAttr())
- return false;
- Type *StructTy = cast<PointerType>(A->getType())->getElementType();
- if (!StructTy->isSized()) {
- // The call may never return and hence the copy-instruction may never
- // be executed, and therefore it's not safe to say "the destination
- // has at least <cpyLen> bytes, as implied by the copy-instruction",
- return false;
- }
- uint64_t destSize = DL.getTypeAllocSize(StructTy);
- if (destSize < srcSize)
- return false;
- }
- } else {
- return false;
- }
- // Check that dest points to memory that is at least as aligned as src.
- unsigned srcAlign = srcAlloca->getAlignment();
- if (!srcAlign)
- srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
- bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
- // If dest is not aligned enough and we can't increase its alignment then
- // bail out.
- if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
- return false;
- // Check that src is not accessed except via the call and the memcpy. This
- // guarantees that it holds only undefined values when passed in (so the final
- // memcpy can be dropped), that it is not read or written between the call and
- // the memcpy, and that writing beyond the end of it is undefined.
- SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
- srcAlloca->user_end());
- while (!srcUseList.empty()) {
- User *U = srcUseList.pop_back_val();
- if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
- for (User *UU : U->users())
- srcUseList.push_back(UU);
- continue;
- }
- if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
- if (!G->hasAllZeroIndices())
- return false;
- for (User *UU : U->users())
- srcUseList.push_back(UU);
- continue;
- }
- if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
- if (IT->getIntrinsicID() == Intrinsic::lifetime_start ||
- IT->getIntrinsicID() == Intrinsic::lifetime_end)
- continue;
- if (U != C && U != cpy)
- return false;
- }
- // Check that src isn't captured by the called function since the
- // transformation can cause aliasing issues in that case.
- for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
- if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
- return false;
- // Since we're changing the parameter to the callsite, we need to make sure
- // that what would be the new parameter dominates the callsite.
- DominatorTree &DT = LookupDomTree();
- if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
- if (!DT.dominates(cpyDestInst, C))
- return false;
- // In addition to knowing that the call does not access src in some
- // unexpected manner, for example via a global, which we deduce from
- // the use analysis, we also need to know that it does not sneakily
- // access dest. We rely on AA to figure this out for us.
- AliasAnalysis &AA = LookupAliasAnalysis();
- ModRefInfo MR = AA.getModRefInfo(C, cpyDest, srcSize);
- // If necessary, perform additional analysis.
- if (isModOrRefSet(MR))
- MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
- if (isModOrRefSet(MR))
- return false;
- // We can't create address space casts here because we don't know if they're
- // safe for the target.
- if (cpySrc->getType()->getPointerAddressSpace() !=
- cpyDest->getType()->getPointerAddressSpace())
- return false;
- for (unsigned i = 0; i < CS.arg_size(); ++i)
- if (CS.getArgument(i)->stripPointerCasts() == cpySrc &&
- cpySrc->getType()->getPointerAddressSpace() !=
- CS.getArgument(i)->getType()->getPointerAddressSpace())
- return false;
- // All the checks have passed, so do the transformation.
- bool changedArgument = false;
- for (unsigned i = 0; i < CS.arg_size(); ++i)
- if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
- Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest
- : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
- cpyDest->getName(), C);
- changedArgument = true;
- if (CS.getArgument(i)->getType() == Dest->getType())
- CS.setArgument(i, Dest);
- else
- CS.setArgument(i, CastInst::CreatePointerCast(Dest,
- CS.getArgument(i)->getType(), Dest->getName(), C));
- }
- if (!changedArgument)
- return false;
- // If the destination wasn't sufficiently aligned then increase its alignment.
- if (!isDestSufficientlyAligned) {
- assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
- cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
- }
- // Drop any cached information about the call, because we may have changed
- // its dependence information by changing its parameter.
- MD->removeInstruction(C);
- // Update AA metadata
- // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
- // handled here, but combineMetadata doesn't support them yet
- unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
- LLVMContext::MD_noalias,
- LLVMContext::MD_invariant_group,
- LLVMContext::MD_access_group};
- combineMetadata(C, cpy, KnownIDs, true);
- // Remove the memcpy.
- MD->removeInstruction(cpy);
- ++NumMemCpyInstr;
- return true;
- }
- /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
- /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
- bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
- MemCpyInst *MDep) {
- // We can only transforms memcpy's where the dest of one is the source of the
- // other.
- if (M->getSource() != MDep->getDest() || MDep->isVolatile())
- return false;
- // If dep instruction is reading from our current input, then it is a noop
- // transfer and substituting the input won't change this instruction. Just
- // ignore the input and let someone else zap MDep. This handles cases like:
- // memcpy(a <- a)
- // memcpy(b <- a)
- if (M->getSource() == MDep->getSource())
- return false;
- // Second, the length of the memcpy's must be the same, or the preceding one
- // must be larger than the following one.
- ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
- ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
- if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
- return false;
- AliasAnalysis &AA = LookupAliasAnalysis();
- // Verify that the copied-from memory doesn't change in between the two
- // transfers. For example, in:
- // memcpy(a <- b)
- // *b = 42;
- // memcpy(c <- a)
- // It would be invalid to transform the second memcpy into memcpy(c <- b).
- //
- // TODO: If the code between M and MDep is transparent to the destination "c",
- // then we could still perform the xform by moving M up to the first memcpy.
- //
- // NOTE: This is conservative, it will stop on any read from the source loc,
- // not just the defining memcpy.
- MemDepResult SourceDep =
- MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
- M->getIterator(), M->getParent());
- if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
- return false;
- // If the dest of the second might alias the source of the first, then the
- // source and dest might overlap. We still want to eliminate the intermediate
- // value, but we have to generate a memmove instead of memcpy.
- bool UseMemMove = false;
- if (!AA.isNoAlias(MemoryLocation::getForDest(M),
- MemoryLocation::getForSource(MDep)))
- UseMemMove = true;
- // If all checks passed, then we can transform M.
- // TODO: Is this worth it if we're creating a less aligned memcpy? For
- // example we could be moving from movaps -> movq on x86.
- IRBuilder<> Builder(M);
- if (UseMemMove)
- Builder.CreateMemMove(M->getRawDest(), M->getDestAlignment(),
- MDep->getRawSource(), MDep->getSourceAlignment(),
- M->getLength(), M->isVolatile());
- else
- Builder.CreateMemCpy(M->getRawDest(), M->getDestAlignment(),
- MDep->getRawSource(), MDep->getSourceAlignment(),
- M->getLength(), M->isVolatile());
- // Remove the instruction we're replacing.
- MD->removeInstruction(M);
- M->eraseFromParent();
- ++NumMemCpyInstr;
- return true;
- }
- /// We've found that the (upward scanning) memory dependence of \p MemCpy is
- /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that
- /// weren't copied over by \p MemCpy.
- ///
- /// In other words, transform:
- /// \code
- /// memset(dst, c, dst_size);
- /// memcpy(dst, src, src_size);
- /// \endcode
- /// into:
- /// \code
- /// memcpy(dst, src, src_size);
- /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
- /// \endcode
- bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
- MemSetInst *MemSet) {
- // We can only transform memset/memcpy with the same destination.
- if (MemSet->getDest() != MemCpy->getDest())
- return false;
- // Check that there are no other dependencies on the memset destination.
- MemDepResult DstDepInfo =
- MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
- MemCpy->getIterator(), MemCpy->getParent());
- if (DstDepInfo.getInst() != MemSet)
- return false;
- // Use the same i8* dest as the memcpy, killing the memset dest if different.
- Value *Dest = MemCpy->getRawDest();
- Value *DestSize = MemSet->getLength();
- Value *SrcSize = MemCpy->getLength();
- // By default, create an unaligned memset.
- unsigned Align = 1;
- // If Dest is aligned, and SrcSize is constant, use the minimum alignment
- // of the sum.
- const unsigned DestAlign =
- std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
- if (DestAlign > 1)
- if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
- Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
- IRBuilder<> Builder(MemCpy);
- // If the sizes have different types, zext the smaller one.
- if (DestSize->getType() != SrcSize->getType()) {
- if (DestSize->getType()->getIntegerBitWidth() >
- SrcSize->getType()->getIntegerBitWidth())
- SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
- else
- DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
- }
- Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
- Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
- Value *MemsetLen = Builder.CreateSelect(
- Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
- Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1),
- MemsetLen, Align);
- MD->removeInstruction(MemSet);
- MemSet->eraseFromParent();
- return true;
- }
- /// Determine whether the instruction has undefined content for the given Size,
- /// either because it was freshly alloca'd or started its lifetime.
- static bool hasUndefContents(Instruction *I, ConstantInt *Size) {
- if (isa<AllocaInst>(I))
- return true;
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
- if (II->getIntrinsicID() == Intrinsic::lifetime_start)
- if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
- if (LTSize->getZExtValue() >= Size->getZExtValue())
- return true;
- return false;
- }
- /// Transform memcpy to memset when its source was just memset.
- /// In other words, turn:
- /// \code
- /// memset(dst1, c, dst1_size);
- /// memcpy(dst2, dst1, dst2_size);
- /// \endcode
- /// into:
- /// \code
- /// memset(dst1, c, dst1_size);
- /// memset(dst2, c, dst2_size);
- /// \endcode
- /// When dst2_size <= dst1_size.
- ///
- /// The \p MemCpy must have a Constant length.
- bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
- MemSetInst *MemSet) {
- AliasAnalysis &AA = LookupAliasAnalysis();
- // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
- // memcpying from the same address. Otherwise it is hard to reason about.
- if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
- return false;
- // A known memset size is required.
- ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
- if (!MemSetSize)
- return false;
- // Make sure the memcpy doesn't read any more than what the memset wrote.
- // Don't worry about sizes larger than i64.
- ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
- if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) {
- // If the memcpy is larger than the memset, but the memory was undef prior
- // to the memset, we can just ignore the tail. Technically we're only
- // interested in the bytes from MemSetSize..CopySize here, but as we can't
- // easily represent this location, we use the full 0..CopySize range.
- MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
- MemDepResult DepInfo = MD->getPointerDependencyFrom(
- MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent());
- if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
- CopySize = MemSetSize;
- else
- return false;
- }
- IRBuilder<> Builder(MemCpy);
- Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
- CopySize, MemCpy->getDestAlignment());
- return true;
- }
- /// Perform simplification of memcpy's. If we have memcpy A
- /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
- /// B to be a memcpy from X to Z (or potentially a memmove, depending on
- /// circumstances). This allows later passes to remove the first memcpy
- /// altogether.
- bool MemCpyOptPass::processMemCpy(MemCpyInst *M) {
- // We can only optimize non-volatile memcpy's.
- if (M->isVolatile()) return false;
- // If the source and destination of the memcpy are the same, then zap it.
- if (M->getSource() == M->getDest()) {
- MD->removeInstruction(M);
- M->eraseFromParent();
- return false;
- }
- // If copying from a constant, try to turn the memcpy into a memset.
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
- if (GV->isConstant() && GV->hasDefinitiveInitializer())
- if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
- IRBuilder<> Builder(M);
- Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
- M->getDestAlignment(), false);
- MD->removeInstruction(M);
- M->eraseFromParent();
- ++NumCpyToSet;
- return true;
- }
- MemDepResult DepInfo = MD->getDependency(M);
- // Try to turn a partially redundant memset + memcpy into
- // memcpy + smaller memset. We don't need the memcpy size for this.
- if (DepInfo.isClobber())
- if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
- if (processMemSetMemCpyDependence(M, MDep))
- return true;
- // The optimizations after this point require the memcpy size.
- ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
- if (!CopySize) return false;
- // There are four possible optimizations we can do for memcpy:
- // a) memcpy-memcpy xform which exposes redundance for DSE.
- // b) call-memcpy xform for return slot optimization.
- // c) memcpy from freshly alloca'd space or space that has just started its
- // lifetime copies undefined data, and we can therefore eliminate the
- // memcpy in favor of the data that was already at the destination.
- // d) memcpy from a just-memset'd source can be turned into memset.
- if (DepInfo.isClobber()) {
- if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
- // FIXME: Can we pass in either of dest/src alignment here instead
- // of conservatively taking the minimum?
- unsigned Align = MinAlign(M->getDestAlignment(), M->getSourceAlignment());
- if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
- CopySize->getZExtValue(), Align,
- C)) {
- MD->removeInstruction(M);
- M->eraseFromParent();
- return true;
- }
- }
- }
- MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
- MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
- SrcLoc, true, M->getIterator(), M->getParent());
- if (SrcDepInfo.isClobber()) {
- if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
- return processMemCpyMemCpyDependence(M, MDep);
- } else if (SrcDepInfo.isDef()) {
- if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) {
- MD->removeInstruction(M);
- M->eraseFromParent();
- ++NumMemCpyInstr;
- return true;
- }
- }
- if (SrcDepInfo.isClobber())
- if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
- if (performMemCpyToMemSetOptzn(M, MDep)) {
- MD->removeInstruction(M);
- M->eraseFromParent();
- ++NumCpyToSet;
- return true;
- }
- return false;
- }
- /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
- /// not to alias.
- bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
- AliasAnalysis &AA = LookupAliasAnalysis();
- if (!TLI->has(LibFunc_memmove))
- return false;
- // See if the pointers alias.
- if (!AA.isNoAlias(MemoryLocation::getForDest(M),
- MemoryLocation::getForSource(M)))
- return false;
- LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
- << "\n");
- // If not, then we know we can transform this.
- Type *ArgTys[3] = { M->getRawDest()->getType(),
- M->getRawSource()->getType(),
- M->getLength()->getType() };
- M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
- Intrinsic::memcpy, ArgTys));
- // MemDep may have over conservative information about this instruction, just
- // conservatively flush it from the cache.
- MD->removeInstruction(M);
- ++NumMoveToCpy;
- return true;
- }
- /// This is called on every byval argument in call sites.
- bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) {
- const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
- // Find out what feeds this byval argument.
- Value *ByValArg = CS.getArgument(ArgNo);
- Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
- uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
- MemDepResult DepInfo = MD->getPointerDependencyFrom(
- MemoryLocation(ByValArg, ByValSize), true,
- CS.getInstruction()->getIterator(), CS.getInstruction()->getParent());
- if (!DepInfo.isClobber())
- return false;
- // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
- // a memcpy, see if we can byval from the source of the memcpy instead of the
- // result.
- MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
- if (!MDep || MDep->isVolatile() ||
- ByValArg->stripPointerCasts() != MDep->getDest())
- return false;
- // The length of the memcpy must be larger or equal to the size of the byval.
- ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
- if (!C1 || C1->getValue().getZExtValue() < ByValSize)
- return false;
- // Get the alignment of the byval. If the call doesn't specify the alignment,
- // then it is some target specific value that we can't know.
- unsigned ByValAlign = CS.getParamAlignment(ArgNo);
- if (ByValAlign == 0) return false;
- // If it is greater than the memcpy, then we check to see if we can force the
- // source of the memcpy to the alignment we need. If we fail, we bail out.
- AssumptionCache &AC = LookupAssumptionCache();
- DominatorTree &DT = LookupDomTree();
- if (MDep->getSourceAlignment() < ByValAlign &&
- getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
- CS.getInstruction(), &AC, &DT) < ByValAlign)
- return false;
- // The address space of the memcpy source must match the byval argument
- if (MDep->getSource()->getType()->getPointerAddressSpace() !=
- ByValArg->getType()->getPointerAddressSpace())
- return false;
- // Verify that the copied-from memory doesn't change in between the memcpy and
- // the byval call.
- // memcpy(a <- b)
- // *b = 42;
- // foo(*a)
- // It would be invalid to transform the second memcpy into foo(*b).
- //
- // NOTE: This is conservative, it will stop on any read from the source loc,
- // not just the defining memcpy.
- MemDepResult SourceDep = MD->getPointerDependencyFrom(
- MemoryLocation::getForSource(MDep), false,
- CS.getInstruction()->getIterator(), MDep->getParent());
- if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
- return false;
- Value *TmpCast = MDep->getSource();
- if (MDep->getSource()->getType() != ByValArg->getType())
- TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
- "tmpcast", CS.getInstruction());
- LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
- << " " << *MDep << "\n"
- << " " << *CS.getInstruction() << "\n");
- // Otherwise we're good! Update the byval argument.
- CS.setArgument(ArgNo, TmpCast);
- ++NumMemCpyInstr;
- return true;
- }
- /// Executes one iteration of MemCpyOptPass.
- bool MemCpyOptPass::iterateOnFunction(Function &F) {
- bool MadeChange = false;
- DominatorTree &DT = LookupDomTree();
- // Walk all instruction in the function.
- for (BasicBlock &BB : F) {
- // Skip unreachable blocks. For example processStore assumes that an
- // instruction in a BB can't be dominated by a later instruction in the
- // same BB (which is a scenario that can happen for an unreachable BB that
- // has itself as a predecessor).
- if (!DT.isReachableFromEntry(&BB))
- continue;
- for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
- // Avoid invalidating the iterator.
- Instruction *I = &*BI++;
- bool RepeatInstruction = false;
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- MadeChange |= processStore(SI, BI);
- else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
- RepeatInstruction = processMemSet(M, BI);
- else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
- RepeatInstruction = processMemCpy(M);
- else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
- RepeatInstruction = processMemMove(M);
- else if (auto CS = CallSite(I)) {
- for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
- if (CS.isByValArgument(i))
- MadeChange |= processByValArgument(CS, i);
- }
- // Reprocess the instruction if desired.
- if (RepeatInstruction) {
- if (BI != BB.begin())
- --BI;
- MadeChange = true;
- }
- }
- }
- return MadeChange;
- }
- PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
- auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
- auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
- auto LookupAliasAnalysis = [&]() -> AliasAnalysis & {
- return AM.getResult<AAManager>(F);
- };
- auto LookupAssumptionCache = [&]() -> AssumptionCache & {
- return AM.getResult<AssumptionAnalysis>(F);
- };
- auto LookupDomTree = [&]() -> DominatorTree & {
- return AM.getResult<DominatorTreeAnalysis>(F);
- };
- bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis,
- LookupAssumptionCache, LookupDomTree);
- if (!MadeChange)
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- PA.preserve<GlobalsAA>();
- PA.preserve<MemoryDependenceAnalysis>();
- return PA;
- }
- bool MemCpyOptPass::runImpl(
- Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_,
- std::function<AliasAnalysis &()> LookupAliasAnalysis_,
- std::function<AssumptionCache &()> LookupAssumptionCache_,
- std::function<DominatorTree &()> LookupDomTree_) {
- bool MadeChange = false;
- MD = MD_;
- TLI = TLI_;
- LookupAliasAnalysis = std::move(LookupAliasAnalysis_);
- LookupAssumptionCache = std::move(LookupAssumptionCache_);
- LookupDomTree = std::move(LookupDomTree_);
- // If we don't have at least memset and memcpy, there is little point of doing
- // anything here. These are required by a freestanding implementation, so if
- // even they are disabled, there is no point in trying hard.
- if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
- return false;
- while (true) {
- if (!iterateOnFunction(F))
- break;
- MadeChange = true;
- }
- MD = nullptr;
- return MadeChange;
- }
- /// This is the main transformation entry point for a function.
- bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
- if (skipFunction(F))
- return false;
- auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
- auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- auto LookupAliasAnalysis = [this]() -> AliasAnalysis & {
- return getAnalysis<AAResultsWrapperPass>().getAAResults();
- };
- auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & {
- return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- };
- auto LookupDomTree = [this]() -> DominatorTree & {
- return getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- };
- return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache,
- LookupDomTree);
- }
|