1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675 |
- //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// Replaces repeated sequences of instructions with function calls.
- ///
- /// This works by placing every instruction from every basic block in a
- /// suffix tree, and repeatedly querying that tree for repeated sequences of
- /// instructions. If a sequence of instructions appears often, then it ought
- /// to be beneficial to pull out into a function.
- ///
- /// The MachineOutliner communicates with a given target using hooks defined in
- /// TargetInstrInfo.h. The target supplies the outliner with information on how
- /// a specific sequence of instructions should be outlined. This information
- /// is used to deduce the number of instructions necessary to
- ///
- /// * Create an outlined function
- /// * Call that outlined function
- ///
- /// Targets must implement
- /// * getOutliningCandidateInfo
- /// * buildOutlinedFrame
- /// * insertOutlinedCall
- /// * isFunctionSafeToOutlineFrom
- ///
- /// in order to make use of the MachineOutliner.
- ///
- /// This was originally presented at the 2016 LLVM Developers' Meeting in the
- /// talk "Reducing Code Size Using Outlining". For a high-level overview of
- /// how this pass works, the talk is available on YouTube at
- ///
- /// https://www.youtube.com/watch?v=yorld-WSOeU
- ///
- /// The slides for the talk are available at
- ///
- /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
- ///
- /// The talk provides an overview of how the outliner finds candidates and
- /// ultimately outlines them. It describes how the main data structure for this
- /// pass, the suffix tree, is queried and purged for candidates. It also gives
- /// a simplified suffix tree construction algorithm for suffix trees based off
- /// of the algorithm actually used here, Ukkonen's algorithm.
- ///
- /// For the original RFC for this pass, please see
- ///
- /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
- ///
- /// For more information on the suffix tree data structure, please see
- /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
- ///
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/MachineOutliner.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineModuleInfo.h"
- #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/IR/DIBuilder.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Mangler.h"
- #include "llvm/Support/Allocator.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include <functional>
- #include <map>
- #include <sstream>
- #include <tuple>
- #include <vector>
- #define DEBUG_TYPE "machine-outliner"
- using namespace llvm;
- using namespace ore;
- using namespace outliner;
- STATISTIC(NumOutlined, "Number of candidates outlined");
- STATISTIC(FunctionsCreated, "Number of functions created");
- // Set to true if the user wants the outliner to run on linkonceodr linkage
- // functions. This is false by default because the linker can dedupe linkonceodr
- // functions. Since the outliner is confined to a single module (modulo LTO),
- // this is off by default. It should, however, be the default behaviour in
- // LTO.
- static cl::opt<bool> EnableLinkOnceODROutlining(
- "enable-linkonceodr-outlining",
- cl::Hidden,
- cl::desc("Enable the machine outliner on linkonceodr functions"),
- cl::init(false));
- namespace {
- /// Represents an undefined index in the suffix tree.
- const unsigned EmptyIdx = -1;
- /// A node in a suffix tree which represents a substring or suffix.
- ///
- /// Each node has either no children or at least two children, with the root
- /// being a exception in the empty tree.
- ///
- /// Children are represented as a map between unsigned integers and nodes. If
- /// a node N has a child M on unsigned integer k, then the mapping represented
- /// by N is a proper prefix of the mapping represented by M. Note that this,
- /// although similar to a trie is somewhat different: each node stores a full
- /// substring of the full mapping rather than a single character state.
- ///
- /// Each internal node contains a pointer to the internal node representing
- /// the same string, but with the first character chopped off. This is stored
- /// in \p Link. Each leaf node stores the start index of its respective
- /// suffix in \p SuffixIdx.
- struct SuffixTreeNode {
- /// The children of this node.
- ///
- /// A child existing on an unsigned integer implies that from the mapping
- /// represented by the current node, there is a way to reach another
- /// mapping by tacking that character on the end of the current string.
- DenseMap<unsigned, SuffixTreeNode *> Children;
- /// The start index of this node's substring in the main string.
- unsigned StartIdx = EmptyIdx;
- /// The end index of this node's substring in the main string.
- ///
- /// Every leaf node must have its \p EndIdx incremented at the end of every
- /// step in the construction algorithm. To avoid having to update O(N)
- /// nodes individually at the end of every step, the end index is stored
- /// as a pointer.
- unsigned *EndIdx = nullptr;
- /// For leaves, the start index of the suffix represented by this node.
- ///
- /// For all other nodes, this is ignored.
- unsigned SuffixIdx = EmptyIdx;
- /// For internal nodes, a pointer to the internal node representing
- /// the same sequence with the first character chopped off.
- ///
- /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
- /// Ukkonen's algorithm does to achieve linear-time construction is
- /// keep track of which node the next insert should be at. This makes each
- /// insert O(1), and there are a total of O(N) inserts. The suffix link
- /// helps with inserting children of internal nodes.
- ///
- /// Say we add a child to an internal node with associated mapping S. The
- /// next insertion must be at the node representing S - its first character.
- /// This is given by the way that we iteratively build the tree in Ukkonen's
- /// algorithm. The main idea is to look at the suffixes of each prefix in the
- /// string, starting with the longest suffix of the prefix, and ending with
- /// the shortest. Therefore, if we keep pointers between such nodes, we can
- /// move to the next insertion point in O(1) time. If we don't, then we'd
- /// have to query from the root, which takes O(N) time. This would make the
- /// construction algorithm O(N^2) rather than O(N).
- SuffixTreeNode *Link = nullptr;
- /// The length of the string formed by concatenating the edge labels from the
- /// root to this node.
- unsigned ConcatLen = 0;
- /// Returns true if this node is a leaf.
- bool isLeaf() const { return SuffixIdx != EmptyIdx; }
- /// Returns true if this node is the root of its owning \p SuffixTree.
- bool isRoot() const { return StartIdx == EmptyIdx; }
- /// Return the number of elements in the substring associated with this node.
- size_t size() const {
- // Is it the root? If so, it's the empty string so return 0.
- if (isRoot())
- return 0;
- assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
- // Size = the number of elements in the string.
- // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
- return *EndIdx - StartIdx + 1;
- }
- SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link)
- : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {}
- SuffixTreeNode() {}
- };
- /// A data structure for fast substring queries.
- ///
- /// Suffix trees represent the suffixes of their input strings in their leaves.
- /// A suffix tree is a type of compressed trie structure where each node
- /// represents an entire substring rather than a single character. Each leaf
- /// of the tree is a suffix.
- ///
- /// A suffix tree can be seen as a type of state machine where each state is a
- /// substring of the full string. The tree is structured so that, for a string
- /// of length N, there are exactly N leaves in the tree. This structure allows
- /// us to quickly find repeated substrings of the input string.
- ///
- /// In this implementation, a "string" is a vector of unsigned integers.
- /// These integers may result from hashing some data type. A suffix tree can
- /// contain 1 or many strings, which can then be queried as one large string.
- ///
- /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
- /// suffix tree construction. Ukkonen's algorithm is explained in more detail
- /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
- /// paper is available at
- ///
- /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
- class SuffixTree {
- public:
- /// Each element is an integer representing an instruction in the module.
- ArrayRef<unsigned> Str;
- /// A repeated substring in the tree.
- struct RepeatedSubstring {
- /// The length of the string.
- unsigned Length;
- /// The start indices of each occurrence.
- std::vector<unsigned> StartIndices;
- };
- private:
- /// Maintains each node in the tree.
- SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
- /// The root of the suffix tree.
- ///
- /// The root represents the empty string. It is maintained by the
- /// \p NodeAllocator like every other node in the tree.
- SuffixTreeNode *Root = nullptr;
- /// Maintains the end indices of the internal nodes in the tree.
- ///
- /// Each internal node is guaranteed to never have its end index change
- /// during the construction algorithm; however, leaves must be updated at
- /// every step. Therefore, we need to store leaf end indices by reference
- /// to avoid updating O(N) leaves at every step of construction. Thus,
- /// every internal node must be allocated its own end index.
- BumpPtrAllocator InternalEndIdxAllocator;
- /// The end index of each leaf in the tree.
- unsigned LeafEndIdx = -1;
- /// Helper struct which keeps track of the next insertion point in
- /// Ukkonen's algorithm.
- struct ActiveState {
- /// The next node to insert at.
- SuffixTreeNode *Node;
- /// The index of the first character in the substring currently being added.
- unsigned Idx = EmptyIdx;
- /// The length of the substring we have to add at the current step.
- unsigned Len = 0;
- };
- /// The point the next insertion will take place at in the
- /// construction algorithm.
- ActiveState Active;
- /// Allocate a leaf node and add it to the tree.
- ///
- /// \param Parent The parent of this node.
- /// \param StartIdx The start index of this node's associated string.
- /// \param Edge The label on the edge leaving \p Parent to this node.
- ///
- /// \returns A pointer to the allocated leaf node.
- SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
- unsigned Edge) {
- assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
- SuffixTreeNode *N = new (NodeAllocator.Allocate())
- SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr);
- Parent.Children[Edge] = N;
- return N;
- }
- /// Allocate an internal node and add it to the tree.
- ///
- /// \param Parent The parent of this node. Only null when allocating the root.
- /// \param StartIdx The start index of this node's associated string.
- /// \param EndIdx The end index of this node's associated string.
- /// \param Edge The label on the edge leaving \p Parent to this node.
- ///
- /// \returns A pointer to the allocated internal node.
- SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
- unsigned EndIdx, unsigned Edge) {
- assert(StartIdx <= EndIdx && "String can't start after it ends!");
- assert(!(!Parent && StartIdx != EmptyIdx) &&
- "Non-root internal nodes must have parents!");
- unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
- SuffixTreeNode *N = new (NodeAllocator.Allocate())
- SuffixTreeNode(StartIdx, E, Root);
- if (Parent)
- Parent->Children[Edge] = N;
- return N;
- }
- /// Set the suffix indices of the leaves to the start indices of their
- /// respective suffixes.
- ///
- /// \param[in] CurrNode The node currently being visited.
- /// \param CurrNodeLen The concatenation of all node sizes from the root to
- /// this node. Used to produce suffix indices.
- void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrNodeLen) {
- bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
- // Store the concatenation of lengths down from the root.
- CurrNode.ConcatLen = CurrNodeLen;
- // Traverse the tree depth-first.
- for (auto &ChildPair : CurrNode.Children) {
- assert(ChildPair.second && "Node had a null child!");
- setSuffixIndices(*ChildPair.second,
- CurrNodeLen + ChildPair.second->size());
- }
- // Is this node a leaf? If it is, give it a suffix index.
- if (IsLeaf)
- CurrNode.SuffixIdx = Str.size() - CurrNodeLen;
- }
- /// Construct the suffix tree for the prefix of the input ending at
- /// \p EndIdx.
- ///
- /// Used to construct the full suffix tree iteratively. At the end of each
- /// step, the constructed suffix tree is either a valid suffix tree, or a
- /// suffix tree with implicit suffixes. At the end of the final step, the
- /// suffix tree is a valid tree.
- ///
- /// \param EndIdx The end index of the current prefix in the main string.
- /// \param SuffixesToAdd The number of suffixes that must be added
- /// to complete the suffix tree at the current phase.
- ///
- /// \returns The number of suffixes that have not been added at the end of
- /// this step.
- unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
- SuffixTreeNode *NeedsLink = nullptr;
- while (SuffixesToAdd > 0) {
- // Are we waiting to add anything other than just the last character?
- if (Active.Len == 0) {
- // If not, then say the active index is the end index.
- Active.Idx = EndIdx;
- }
- assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
- // The first character in the current substring we're looking at.
- unsigned FirstChar = Str[Active.Idx];
- // Have we inserted anything starting with FirstChar at the current node?
- if (Active.Node->Children.count(FirstChar) == 0) {
- // If not, then we can just insert a leaf and move too the next step.
- insertLeaf(*Active.Node, EndIdx, FirstChar);
- // The active node is an internal node, and we visited it, so it must
- // need a link if it doesn't have one.
- if (NeedsLink) {
- NeedsLink->Link = Active.Node;
- NeedsLink = nullptr;
- }
- } else {
- // There's a match with FirstChar, so look for the point in the tree to
- // insert a new node.
- SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
- unsigned SubstringLen = NextNode->size();
- // Is the current suffix we're trying to insert longer than the size of
- // the child we want to move to?
- if (Active.Len >= SubstringLen) {
- // If yes, then consume the characters we've seen and move to the next
- // node.
- Active.Idx += SubstringLen;
- Active.Len -= SubstringLen;
- Active.Node = NextNode;
- continue;
- }
- // Otherwise, the suffix we're trying to insert must be contained in the
- // next node we want to move to.
- unsigned LastChar = Str[EndIdx];
- // Is the string we're trying to insert a substring of the next node?
- if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
- // If yes, then we're done for this step. Remember our insertion point
- // and move to the next end index. At this point, we have an implicit
- // suffix tree.
- if (NeedsLink && !Active.Node->isRoot()) {
- NeedsLink->Link = Active.Node;
- NeedsLink = nullptr;
- }
- Active.Len++;
- break;
- }
- // The string we're trying to insert isn't a substring of the next node,
- // but matches up to a point. Split the node.
- //
- // For example, say we ended our search at a node n and we're trying to
- // insert ABD. Then we'll create a new node s for AB, reduce n to just
- // representing C, and insert a new leaf node l to represent d. This
- // allows us to ensure that if n was a leaf, it remains a leaf.
- //
- // | ABC ---split---> | AB
- // n s
- // C / \ D
- // n l
- // The node s from the diagram
- SuffixTreeNode *SplitNode =
- insertInternalNode(Active.Node, NextNode->StartIdx,
- NextNode->StartIdx + Active.Len - 1, FirstChar);
- // Insert the new node representing the new substring into the tree as
- // a child of the split node. This is the node l from the diagram.
- insertLeaf(*SplitNode, EndIdx, LastChar);
- // Make the old node a child of the split node and update its start
- // index. This is the node n from the diagram.
- NextNode->StartIdx += Active.Len;
- SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
- // SplitNode is an internal node, update the suffix link.
- if (NeedsLink)
- NeedsLink->Link = SplitNode;
- NeedsLink = SplitNode;
- }
- // We've added something new to the tree, so there's one less suffix to
- // add.
- SuffixesToAdd--;
- if (Active.Node->isRoot()) {
- if (Active.Len > 0) {
- Active.Len--;
- Active.Idx = EndIdx - SuffixesToAdd + 1;
- }
- } else {
- // Start the next phase at the next smallest suffix.
- Active.Node = Active.Node->Link;
- }
- }
- return SuffixesToAdd;
- }
- public:
- /// Construct a suffix tree from a sequence of unsigned integers.
- ///
- /// \param Str The string to construct the suffix tree for.
- SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
- Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
- Active.Node = Root;
- // Keep track of the number of suffixes we have to add of the current
- // prefix.
- unsigned SuffixesToAdd = 0;
- Active.Node = Root;
- // Construct the suffix tree iteratively on each prefix of the string.
- // PfxEndIdx is the end index of the current prefix.
- // End is one past the last element in the string.
- for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
- PfxEndIdx++) {
- SuffixesToAdd++;
- LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
- SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
- }
- // Set the suffix indices of each leaf.
- assert(Root && "Root node can't be nullptr!");
- setSuffixIndices(*Root, 0);
- }
- /// Iterator for finding all repeated substrings in the suffix tree.
- struct RepeatedSubstringIterator {
- private:
- /// The current node we're visiting.
- SuffixTreeNode *N = nullptr;
- /// The repeated substring associated with this node.
- RepeatedSubstring RS;
- /// The nodes left to visit.
- std::vector<SuffixTreeNode *> ToVisit;
- /// The minimum length of a repeated substring to find.
- /// Since we're outlining, we want at least two instructions in the range.
- /// FIXME: This may not be true for targets like X86 which support many
- /// instruction lengths.
- const unsigned MinLength = 2;
- /// Move the iterator to the next repeated substring.
- void advance() {
- // Clear the current state. If we're at the end of the range, then this
- // is the state we want to be in.
- RS = RepeatedSubstring();
- N = nullptr;
- // Continue visiting nodes until we find one which repeats more than once.
- while (!ToVisit.empty()) {
- SuffixTreeNode *Curr = ToVisit.back();
- ToVisit.pop_back();
- // Keep track of the length of the string associated with the node. If
- // it's too short, we'll quit.
- unsigned Length = Curr->ConcatLen;
- // Each leaf node represents a repeat of a string.
- std::vector<SuffixTreeNode *> LeafChildren;
- // Iterate over each child, saving internal nodes for visiting, and
- // leaf nodes in LeafChildren. Internal nodes represent individual
- // strings, which may repeat.
- for (auto &ChildPair : Curr->Children) {
- // Save all of this node's children for processing.
- if (!ChildPair.second->isLeaf())
- ToVisit.push_back(ChildPair.second);
- // It's not an internal node, so it must be a leaf. If we have a
- // long enough string, then save the leaf children.
- else if (Length >= MinLength)
- LeafChildren.push_back(ChildPair.second);
- }
- // The root never represents a repeated substring. If we're looking at
- // that, then skip it.
- if (Curr->isRoot())
- continue;
- // Do we have any repeated substrings?
- if (LeafChildren.size() >= 2) {
- // Yes. Update the state to reflect this, and then bail out.
- N = Curr;
- RS.Length = Length;
- for (SuffixTreeNode *Leaf : LeafChildren)
- RS.StartIndices.push_back(Leaf->SuffixIdx);
- break;
- }
- }
- // At this point, either NewRS is an empty RepeatedSubstring, or it was
- // set in the above loop. Similarly, N is either nullptr, or the node
- // associated with NewRS.
- }
- public:
- /// Return the current repeated substring.
- RepeatedSubstring &operator*() { return RS; }
- RepeatedSubstringIterator &operator++() {
- advance();
- return *this;
- }
- RepeatedSubstringIterator operator++(int I) {
- RepeatedSubstringIterator It(*this);
- advance();
- return It;
- }
- bool operator==(const RepeatedSubstringIterator &Other) {
- return N == Other.N;
- }
- bool operator!=(const RepeatedSubstringIterator &Other) {
- return !(*this == Other);
- }
- RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) {
- // Do we have a non-null node?
- if (N) {
- // Yes. At the first step, we need to visit all of N's children.
- // Note: This means that we visit N last.
- ToVisit.push_back(N);
- advance();
- }
- }
- };
- typedef RepeatedSubstringIterator iterator;
- iterator begin() { return iterator(Root); }
- iterator end() { return iterator(nullptr); }
- };
- /// Maps \p MachineInstrs to unsigned integers and stores the mappings.
- struct InstructionMapper {
- /// The next available integer to assign to a \p MachineInstr that
- /// cannot be outlined.
- ///
- /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
- unsigned IllegalInstrNumber = -3;
- /// The next available integer to assign to a \p MachineInstr that can
- /// be outlined.
- unsigned LegalInstrNumber = 0;
- /// Correspondence from \p MachineInstrs to unsigned integers.
- DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
- InstructionIntegerMap;
- /// Corresponcence from unsigned integers to \p MachineInstrs.
- /// Inverse of \p InstructionIntegerMap.
- DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
- /// The vector of unsigned integers that the module is mapped to.
- std::vector<unsigned> UnsignedVec;
- /// Stores the location of the instruction associated with the integer
- /// at index i in \p UnsignedVec for each index i.
- std::vector<MachineBasicBlock::iterator> InstrList;
- // Set if we added an illegal number in the previous step.
- // Since each illegal number is unique, we only need one of them between
- // each range of legal numbers. This lets us make sure we don't add more
- // than one illegal number per range.
- bool AddedIllegalLastTime = false;
- /// Maps \p *It to a legal integer.
- ///
- /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB,
- /// \p UnsignedVecForMBB, \p InstructionIntegerMap, \p IntegerInstructionMap,
- /// and \p LegalInstrNumber.
- ///
- /// \returns The integer that \p *It was mapped to.
- unsigned mapToLegalUnsigned(
- MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr,
- bool &HaveLegalRange, unsigned &NumLegalInBlock,
- std::vector<unsigned> &UnsignedVecForMBB,
- std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
- // We added something legal, so we should unset the AddedLegalLastTime
- // flag.
- AddedIllegalLastTime = false;
- // If we have at least two adjacent legal instructions (which may have
- // invisible instructions in between), remember that.
- if (CanOutlineWithPrevInstr)
- HaveLegalRange = true;
- CanOutlineWithPrevInstr = true;
- // Keep track of the number of legal instructions we insert.
- NumLegalInBlock++;
- // Get the integer for this instruction or give it the current
- // LegalInstrNumber.
- InstrListForMBB.push_back(It);
- MachineInstr &MI = *It;
- bool WasInserted;
- DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
- ResultIt;
- std::tie(ResultIt, WasInserted) =
- InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
- unsigned MINumber = ResultIt->second;
- // There was an insertion.
- if (WasInserted) {
- LegalInstrNumber++;
- IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
- }
- UnsignedVecForMBB.push_back(MINumber);
- // Make sure we don't overflow or use any integers reserved by the DenseMap.
- if (LegalInstrNumber >= IllegalInstrNumber)
- report_fatal_error("Instruction mapping overflow!");
- assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
- "Tried to assign DenseMap tombstone or empty key to instruction.");
- assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
- "Tried to assign DenseMap tombstone or empty key to instruction.");
- return MINumber;
- }
- /// Maps \p *It to an illegal integer.
- ///
- /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p
- /// IllegalInstrNumber.
- ///
- /// \returns The integer that \p *It was mapped to.
- unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It,
- bool &CanOutlineWithPrevInstr, std::vector<unsigned> &UnsignedVecForMBB,
- std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
- // Can't outline an illegal instruction. Set the flag.
- CanOutlineWithPrevInstr = false;
- // Only add one illegal number per range of legal numbers.
- if (AddedIllegalLastTime)
- return IllegalInstrNumber;
- // Remember that we added an illegal number last time.
- AddedIllegalLastTime = true;
- unsigned MINumber = IllegalInstrNumber;
- InstrListForMBB.push_back(It);
- UnsignedVecForMBB.push_back(IllegalInstrNumber);
- IllegalInstrNumber--;
- assert(LegalInstrNumber < IllegalInstrNumber &&
- "Instruction mapping overflow!");
- assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
- "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
- assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
- "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
- return MINumber;
- }
- /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
- /// and appends it to \p UnsignedVec and \p InstrList.
- ///
- /// Two instructions are assigned the same integer if they are identical.
- /// If an instruction is deemed unsafe to outline, then it will be assigned an
- /// unique integer. The resulting mapping is placed into a suffix tree and
- /// queried for candidates.
- ///
- /// \param MBB The \p MachineBasicBlock to be translated into integers.
- /// \param TII \p TargetInstrInfo for the function.
- void convertToUnsignedVec(MachineBasicBlock &MBB,
- const TargetInstrInfo &TII) {
- unsigned Flags = TII.getMachineOutlinerMBBFlags(MBB);
- MachineBasicBlock::iterator It = MBB.begin();
- // The number of instructions in this block that will be considered for
- // outlining.
- unsigned NumLegalInBlock = 0;
- // True if we have at least two legal instructions which aren't separated
- // by an illegal instruction.
- bool HaveLegalRange = false;
- // True if we can perform outlining given the last mapped (non-invisible)
- // instruction. This lets us know if we have a legal range.
- bool CanOutlineWithPrevInstr = false;
- // FIXME: Should this all just be handled in the target, rather than using
- // repeated calls to getOutliningType?
- std::vector<unsigned> UnsignedVecForMBB;
- std::vector<MachineBasicBlock::iterator> InstrListForMBB;
- for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; It++) {
- // Keep track of where this instruction is in the module.
- switch (TII.getOutliningType(It, Flags)) {
- case InstrType::Illegal:
- mapToIllegalUnsigned(It, CanOutlineWithPrevInstr,
- UnsignedVecForMBB, InstrListForMBB);
- break;
- case InstrType::Legal:
- mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
- NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
- break;
- case InstrType::LegalTerminator:
- mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
- NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
- // The instruction also acts as a terminator, so we have to record that
- // in the string.
- mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
- InstrListForMBB);
- break;
- case InstrType::Invisible:
- // Normally this is set by mapTo(Blah)Unsigned, but we just want to
- // skip this instruction. So, unset the flag here.
- AddedIllegalLastTime = false;
- break;
- }
- }
- // Are there enough legal instructions in the block for outlining to be
- // possible?
- if (HaveLegalRange) {
- // After we're done every insertion, uniquely terminate this part of the
- // "string". This makes sure we won't match across basic block or function
- // boundaries since the "end" is encoded uniquely and thus appears in no
- // repeated substring.
- mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
- InstrListForMBB);
- InstrList.insert(InstrList.end(), InstrListForMBB.begin(),
- InstrListForMBB.end());
- UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(),
- UnsignedVecForMBB.end());
- }
- }
- InstructionMapper() {
- // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
- // changed.
- assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
- "DenseMapInfo<unsigned>'s empty key isn't -1!");
- assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
- "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
- }
- };
- /// An interprocedural pass which finds repeated sequences of
- /// instructions and replaces them with calls to functions.
- ///
- /// Each instruction is mapped to an unsigned integer and placed in a string.
- /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
- /// is then repeatedly queried for repeated sequences of instructions. Each
- /// non-overlapping repeated sequence is then placed in its own
- /// \p MachineFunction and each instance is then replaced with a call to that
- /// function.
- struct MachineOutliner : public ModulePass {
- static char ID;
- /// Set to true if the outliner should consider functions with
- /// linkonceodr linkage.
- bool OutlineFromLinkOnceODRs = false;
- /// Set to true if the outliner should run on all functions in the module
- /// considered safe for outlining.
- /// Set to true by default for compatibility with llc's -run-pass option.
- /// Set when the pass is constructed in TargetPassConfig.
- bool RunOnAllFunctions = true;
- StringRef getPassName() const override { return "Machine Outliner"; }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<MachineModuleInfo>();
- AU.addPreserved<MachineModuleInfo>();
- AU.setPreservesAll();
- ModulePass::getAnalysisUsage(AU);
- }
- MachineOutliner() : ModulePass(ID) {
- initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
- }
- /// Remark output explaining that not outlining a set of candidates would be
- /// better than outlining that set.
- void emitNotOutliningCheaperRemark(
- unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
- OutlinedFunction &OF);
- /// Remark output explaining that a function was outlined.
- void emitOutlinedFunctionRemark(OutlinedFunction &OF);
- /// Find all repeated substrings that satisfy the outlining cost model.
- ///
- /// If a substring appears at least twice, then it must be represented by
- /// an internal node which appears in at least two suffixes. Each suffix
- /// is represented by a leaf node. To do this, we visit each internal node
- /// in the tree, using the leaf children of each internal node. If an
- /// internal node represents a beneficial substring, then we use each of
- /// its leaf children to find the locations of its substring.
- ///
- /// \param ST A suffix tree to query.
- /// \param Mapper Contains outlining mapping information.
- /// \param[out] CandidateList Filled with candidates representing each
- /// beneficial substring.
- /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions
- /// each type of candidate.
- ///
- /// \returns The length of the longest candidate found.
- unsigned
- findCandidates(SuffixTree &ST,
- InstructionMapper &Mapper,
- std::vector<std::shared_ptr<Candidate>> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList);
- /// Replace the sequences of instructions represented by the
- /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
- /// described in \p FunctionList.
- ///
- /// \param M The module we are outlining from.
- /// \param CandidateList A list of candidates to be outlined.
- /// \param FunctionList A list of functions to be inserted into the module.
- /// \param Mapper Contains the instruction mappings for the module.
- bool outline(Module &M,
- const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- InstructionMapper &Mapper);
- /// Creates a function for \p OF and inserts it into the module.
- MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
- InstructionMapper &Mapper,
- unsigned Name);
- /// Find potential outlining candidates and store them in \p CandidateList.
- ///
- /// For each type of potential candidate, also build an \p OutlinedFunction
- /// struct containing the information to build the function for that
- /// candidate.
- ///
- /// \param[out] CandidateList Filled with outlining candidates for the module.
- /// \param[out] FunctionList Filled with functions corresponding to each type
- /// of \p Candidate.
- /// \param ST The suffix tree for the module.
- ///
- /// \returns The length of the longest candidate found. 0 if there are none.
- unsigned
- buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- InstructionMapper &Mapper);
- /// Helper function for pruneOverlaps.
- /// Removes \p C from the candidate list, and updates its \p OutlinedFunction.
- void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList);
- /// Remove any overlapping candidates that weren't handled by the
- /// suffix tree's pruning method.
- ///
- /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
- /// If a short candidate is chosen for outlining, then a longer candidate
- /// which has that short candidate as a suffix is chosen, the tree's pruning
- /// method will not find it. Thus, we need to prune before outlining as well.
- ///
- /// \param[in,out] CandidateList A list of outlining candidates.
- /// \param[in,out] FunctionList A list of functions to be outlined.
- /// \param Mapper Contains instruction mapping info for outlining.
- /// \param MaxCandidateLen The length of the longest candidate.
- void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- InstructionMapper &Mapper, unsigned MaxCandidateLen);
- /// Construct a suffix tree on the instructions in \p M and outline repeated
- /// strings from that tree.
- bool runOnModule(Module &M) override;
- /// Return a DISubprogram for OF if one exists, and null otherwise. Helper
- /// function for remark emission.
- DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) {
- DISubprogram *SP;
- for (const std::shared_ptr<Candidate> &C : OF.Candidates)
- if (C && C->getMF() && (SP = C->getMF()->getFunction().getSubprogram()))
- return SP;
- return nullptr;
- }
- /// Populate and \p InstructionMapper with instruction-to-integer mappings.
- /// These are used to construct a suffix tree.
- void populateMapper(InstructionMapper &Mapper, Module &M,
- MachineModuleInfo &MMI);
- /// Initialize information necessary to output a size remark.
- /// FIXME: This should be handled by the pass manager, not the outliner.
- /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy
- /// pass manager.
- void initSizeRemarkInfo(
- const Module &M, const MachineModuleInfo &MMI,
- StringMap<unsigned> &FunctionToInstrCount);
- /// Emit the remark.
- // FIXME: This should be handled by the pass manager, not the outliner.
- void emitInstrCountChangedRemark(
- const Module &M, const MachineModuleInfo &MMI,
- const StringMap<unsigned> &FunctionToInstrCount);
- };
- } // Anonymous namespace.
- char MachineOutliner::ID = 0;
- namespace llvm {
- ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) {
- MachineOutliner *OL = new MachineOutliner();
- OL->RunOnAllFunctions = RunOnAllFunctions;
- return OL;
- }
- } // namespace llvm
- INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
- false)
- void MachineOutliner::emitNotOutliningCheaperRemark(
- unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
- OutlinedFunction &OF) {
- // FIXME: Right now, we arbitrarily choose some Candidate from the
- // OutlinedFunction. This isn't necessarily fixed, nor does it have to be.
- // We should probably sort these by function name or something to make sure
- // the remarks are stable.
- Candidate &C = CandidatesForRepeatedSeq.front();
- MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr);
- MORE.emit([&]() {
- MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
- C.front()->getDebugLoc(), C.getMBB());
- R << "Did not outline " << NV("Length", StringLen) << " instructions"
- << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size())
- << " locations."
- << " Bytes from outlining all occurrences ("
- << NV("OutliningCost", OF.getOutliningCost()) << ")"
- << " >= Unoutlined instruction bytes ("
- << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")"
- << " (Also found at: ";
- // Tell the user the other places the candidate was found.
- for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) {
- R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
- CandidatesForRepeatedSeq[i].front()->getDebugLoc());
- if (i != e - 1)
- R << ", ";
- }
- R << ")";
- return R;
- });
- }
- void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) {
- MachineBasicBlock *MBB = &*OF.MF->begin();
- MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
- MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
- MBB->findDebugLoc(MBB->begin()), MBB);
- R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by "
- << "outlining " << NV("Length", OF.Sequence.size()) << " instructions "
- << "from " << NV("NumOccurrences", OF.getOccurrenceCount())
- << " locations. "
- << "(Found at: ";
- // Tell the user the other places the candidate was found.
- for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {
- // Skip over things that were pruned.
- if (!OF.Candidates[i]->InCandidateList)
- continue;
- R << NV((Twine("StartLoc") + Twine(i)).str(),
- OF.Candidates[i]->front()->getDebugLoc());
- if (i != e - 1)
- R << ", ";
- }
- R << ")";
- MORE.emit(R);
- }
- unsigned MachineOutliner::findCandidates(
- SuffixTree &ST, InstructionMapper &Mapper,
- std::vector<std::shared_ptr<Candidate>> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList) {
- CandidateList.clear();
- FunctionList.clear();
- unsigned MaxLen = 0;
- // First, find dall of the repeated substrings in the tree of minimum length
- // 2.
- for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) {
- SuffixTree::RepeatedSubstring RS = *It;
- std::vector<Candidate> CandidatesForRepeatedSeq;
- unsigned StringLen = RS.Length;
- for (const unsigned &StartIdx : RS.StartIndices) {
- unsigned EndIdx = StartIdx + StringLen - 1;
- // Trick: Discard some candidates that would be incompatible with the
- // ones we've already found for this sequence. This will save us some
- // work in candidate selection.
- //
- // If two candidates overlap, then we can't outline them both. This
- // happens when we have candidates that look like, say
- //
- // AA (where each "A" is an instruction).
- //
- // We might have some portion of the module that looks like this:
- // AAAAAA (6 A's)
- //
- // In this case, there are 5 different copies of "AA" in this range, but
- // at most 3 can be outlined. If only outlining 3 of these is going to
- // be unbeneficial, then we ought to not bother.
- //
- // Note that two things DON'T overlap when they look like this:
- // start1...end1 .... start2...end2
- // That is, one must either
- // * End before the other starts
- // * Start after the other ends
- if (std::all_of(
- CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(),
- [&StartIdx, &EndIdx](const Candidate &C) {
- return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx());
- })) {
- // It doesn't overlap with anything, so we can outline it.
- // Each sequence is over [StartIt, EndIt].
- // Save the candidate and its location.
- MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx];
- MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
- CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt,
- EndIt, StartIt->getParent(),
- FunctionList.size());
- }
- }
- // We've found something we might want to outline.
- // Create an OutlinedFunction to store it and check if it'd be beneficial
- // to outline.
- if (CandidatesForRepeatedSeq.empty())
- continue;
- // Arbitrarily choose a TII from the first candidate.
- // FIXME: Should getOutliningCandidateInfo move to TargetMachine?
- const TargetInstrInfo *TII =
- CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo();
- OutlinedFunction OF =
- TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq);
- // If we deleted every candidate, then there's nothing to outline.
- if (OF.Candidates.empty())
- continue;
- std::vector<unsigned> Seq;
- unsigned StartIdx = RS.StartIndices[0]; // Grab any start index.
- for (unsigned i = StartIdx; i < StartIdx + StringLen; i++)
- Seq.push_back(ST.Str[i]);
- OF.Sequence = Seq;
- // Is it better to outline this candidate than not?
- if (OF.getBenefit() < 1) {
- emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF);
- continue;
- }
- if (StringLen > MaxLen)
- MaxLen = StringLen;
- // The function is beneficial. Save its candidates to the candidate list
- // for pruning.
- for (std::shared_ptr<Candidate> &C : OF.Candidates)
- CandidateList.push_back(C);
- FunctionList.push_back(OF);
- }
- return MaxLen;
- }
- // Remove C from the candidate space, and update its OutlinedFunction.
- void MachineOutliner::prune(Candidate &C,
- std::vector<OutlinedFunction> &FunctionList) {
- // Get the OutlinedFunction associated with this Candidate.
- OutlinedFunction &F = FunctionList[C.FunctionIdx];
- // Update C's associated function's occurrence count.
- F.decrement();
- // Remove C from the CandidateList.
- C.InCandidateList = false;
- LLVM_DEBUG(dbgs() << "- Removed a Candidate \n";
- dbgs() << "--- Num fns left for candidate: "
- << F.getOccurrenceCount() << "\n";
- dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit()
- << "\n";);
- }
- void MachineOutliner::pruneOverlaps(
- std::vector<std::shared_ptr<Candidate>> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper,
- unsigned MaxCandidateLen) {
- // Return true if this candidate became unbeneficial for outlining in a
- // previous step.
- auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) {
- // Check if the candidate was removed in a previous step.
- if (!C.InCandidateList)
- return true;
- // C must be alive. Check if we should remove it.
- if (FunctionList[C.FunctionIdx].getBenefit() < 1) {
- prune(C, FunctionList);
- return true;
- }
- // C is in the list, and F is still beneficial.
- return false;
- };
- // TODO: Experiment with interval trees or other interval-checking structures
- // to lower the time complexity of this function.
- // TODO: Can we do better than the simple greedy choice?
- // Check for overlaps in the range.
- // This is O(MaxCandidateLen * CandidateList.size()).
- for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
- It++) {
- Candidate &C1 = **It;
- // If C1 was already pruned, or its function is no longer beneficial for
- // outlining, move to the next candidate.
- if (ShouldSkipCandidate(C1))
- continue;
- // The minimum start index of any candidate that could overlap with this
- // one.
- unsigned FarthestPossibleIdx = 0;
- // Either the index is 0, or it's at most MaxCandidateLen indices away.
- if (C1.getStartIdx() > MaxCandidateLen)
- FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen;
- MachineBasicBlock *C1MBB = C1.getMBB();
- // Compare against the candidates in the list that start at most
- // FarthestPossibleIdx indices away from C1. There are at most
- // MaxCandidateLen of these.
- for (auto Sit = It + 1; Sit != Et; Sit++) {
- Candidate &C2 = **Sit;
- // If the two candidates don't belong to the same MBB, then we're done.
- // Because we sorted the candidates, there's no way that we'd find a
- // candidate in C1MBB after this point.
- if (C2.getMBB() != C1MBB)
- break;
- // Is this candidate too far away to overlap?
- if (C2.getStartIdx() < FarthestPossibleIdx)
- break;
- // If C2 was already pruned, or its function is no longer beneficial for
- // outlining, move to the next candidate.
- if (ShouldSkipCandidate(C2))
- continue;
- // Do C1 and C2 overlap?
- //
- // Not overlapping:
- // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
- //
- // We sorted our candidate list so C2Start <= C1Start. We know that
- // C2End > C2Start since each candidate has length >= 2. Therefore, all we
- // have to check is C2End < C2Start to see if we overlap.
- if (C2.getEndIdx() < C1.getStartIdx())
- continue;
- // C1 and C2 overlap.
- // We need to choose the better of the two.
- //
- // Approximate this by picking the one which would have saved us the
- // most instructions before any pruning.
- // Is C2 a better candidate?
- if (C2.Benefit > C1.Benefit) {
- // Yes, so prune C1. Since C1 is dead, we don't have to compare it
- // against anything anymore, so break.
- prune(C1, FunctionList);
- break;
- }
- // Prune C2 and move on to the next candidate.
- prune(C2, FunctionList);
- }
- }
- }
- unsigned MachineOutliner::buildCandidateList(
- std::vector<std::shared_ptr<Candidate>> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- InstructionMapper &Mapper) {
- // Construct a suffix tree and use it to find candidates.
- SuffixTree ST(Mapper.UnsignedVec);
- std::vector<unsigned> CandidateSequence; // Current outlining candidate.
- unsigned MaxCandidateLen = 0; // Length of the longest candidate.
- MaxCandidateLen =
- findCandidates(ST, Mapper, CandidateList, FunctionList);
- // Sort the candidates in decending order. This will simplify the outlining
- // process when we have to remove the candidates from the mapping by
- // allowing us to cut them out without keeping track of an offset.
- std::stable_sort(
- CandidateList.begin(), CandidateList.end(),
- [](const std::shared_ptr<Candidate> &LHS,
- const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; });
- return MaxCandidateLen;
- }
- MachineFunction *
- MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
- InstructionMapper &Mapper,
- unsigned Name) {
- // Create the function name. This should be unique. For now, just hash the
- // module name and include it in the function name plus the number of this
- // function.
- std::ostringstream NameStream;
- // FIXME: We should have a better naming scheme. This should be stable,
- // regardless of changes to the outliner's cost model/traversal order.
- NameStream << "OUTLINED_FUNCTION_" << Name;
- // Create the function using an IR-level function.
- LLVMContext &C = M.getContext();
- Function *F = dyn_cast<Function>(
- M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C)));
- assert(F && "Function was null!");
- // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
- // which gives us better results when we outline from linkonceodr functions.
- F->setLinkage(GlobalValue::InternalLinkage);
- F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
- // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's
- // necessary.
- // Set optsize/minsize, so we don't insert padding between outlined
- // functions.
- F->addFnAttr(Attribute::OptimizeForSize);
- F->addFnAttr(Attribute::MinSize);
- // Include target features from an arbitrary candidate for the outlined
- // function. This makes sure the outlined function knows what kinds of
- // instructions are going into it. This is fine, since all parent functions
- // must necessarily support the instructions that are in the outlined region.
- const Function &ParentFn = OF.Candidates.front()->getMF()->getFunction();
- if (ParentFn.hasFnAttribute("target-features"))
- F->addFnAttr(ParentFn.getFnAttribute("target-features"));
- BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
- IRBuilder<> Builder(EntryBB);
- Builder.CreateRetVoid();
- MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
- MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
- MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
- const TargetSubtargetInfo &STI = MF.getSubtarget();
- const TargetInstrInfo &TII = *STI.getInstrInfo();
- // Insert the new function into the module.
- MF.insert(MF.begin(), &MBB);
- // Copy over the instructions for the function using the integer mappings in
- // its sequence.
- for (unsigned Str : OF.Sequence) {
- MachineInstr *NewMI =
- MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
- NewMI->dropMemRefs(MF);
- // Don't keep debug information for outlined instructions.
- NewMI->setDebugLoc(DebugLoc());
- MBB.insert(MBB.end(), NewMI);
- }
- TII.buildOutlinedFrame(MBB, MF, OF);
- // Outlined functions shouldn't preserve liveness.
- MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness);
- MF.getRegInfo().freezeReservedRegs(MF);
- // If there's a DISubprogram associated with this outlined function, then
- // emit debug info for the outlined function.
- if (DISubprogram *SP = getSubprogramOrNull(OF)) {
- // We have a DISubprogram. Get its DICompileUnit.
- DICompileUnit *CU = SP->getUnit();
- DIBuilder DB(M, true, CU);
- DIFile *Unit = SP->getFile();
- Mangler Mg;
- // Get the mangled name of the function for the linkage name.
- std::string Dummy;
- llvm::raw_string_ostream MangledNameStream(Dummy);
- Mg.getNameWithPrefix(MangledNameStream, F, false);
- DISubprogram *OutlinedSP = DB.createFunction(
- Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()),
- Unit /* File */,
- 0 /* Line 0 is reserved for compiler-generated code. */,
- DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
- false, true, 0, /* Line 0 is reserved for compiler-generated code. */
- DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
- true /* Outlined code is optimized code by definition. */);
- // Don't add any new variables to the subprogram.
- DB.finalizeSubprogram(OutlinedSP);
- // Attach subprogram to the function.
- F->setSubprogram(OutlinedSP);
- // We're done with the DIBuilder.
- DB.finalize();
- }
- return &MF;
- }
- bool MachineOutliner::outline(
- Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) {
- bool OutlinedSomething = false;
- // Number to append to the current outlined function.
- unsigned OutlinedFunctionNum = 0;
- // Replace the candidates with calls to their respective outlined functions.
- for (const std::shared_ptr<Candidate> &Cptr : CandidateList) {
- Candidate &C = *Cptr;
- // Was the candidate removed during pruneOverlaps?
- if (!C.InCandidateList)
- continue;
- // If not, then look at its OutlinedFunction.
- OutlinedFunction &OF = FunctionList[C.FunctionIdx];
- // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
- if (OF.getBenefit() < 1)
- continue;
- // Does this candidate have a function yet?
- if (!OF.MF) {
- OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum);
- emitOutlinedFunctionRemark(OF);
- FunctionsCreated++;
- OutlinedFunctionNum++; // Created a function, move to the next name.
- }
- MachineFunction *MF = OF.MF;
- MachineBasicBlock &MBB = *C.getMBB();
- MachineBasicBlock::iterator StartIt = C.front();
- MachineBasicBlock::iterator EndIt = C.back();
- assert(StartIt != C.getMBB()->end() && "StartIt out of bounds!");
- assert(EndIt != C.getMBB()->end() && "EndIt out of bounds!");
- const TargetSubtargetInfo &STI = MF->getSubtarget();
- const TargetInstrInfo &TII = *STI.getInstrInfo();
- // Insert a call to the new function and erase the old sequence.
- auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *OF.MF, C);
- // If the caller tracks liveness, then we need to make sure that anything
- // we outline doesn't break liveness assumptions.
- // The outlined functions themselves currently don't track liveness, but
- // we should make sure that the ranges we yank things out of aren't
- // wrong.
- if (MBB.getParent()->getProperties().hasProperty(
- MachineFunctionProperties::Property::TracksLiveness)) {
- // Helper lambda for adding implicit def operands to the call instruction.
- auto CopyDefs = [&CallInst](MachineInstr &MI) {
- for (MachineOperand &MOP : MI.operands()) {
- // Skip over anything that isn't a register.
- if (!MOP.isReg())
- continue;
- // If it's a def, add it to the call instruction.
- if (MOP.isDef())
- CallInst->addOperand(
- MachineOperand::CreateReg(MOP.getReg(), true, /* isDef = true */
- true /* isImp = true */));
- }
- };
- // Copy over the defs in the outlined range.
- // First inst in outlined range <-- Anything that's defined in this
- // ... .. range has to be added as an implicit
- // Last inst in outlined range <-- def to the call instruction.
- std::for_each(CallInst, std::next(EndIt), CopyDefs);
- }
- // Erase from the point after where the call was inserted up to, and
- // including, the final instruction in the sequence.
- // Erase needs one past the end, so we need std::next there too.
- MBB.erase(std::next(StartIt), std::next(EndIt));
- OutlinedSomething = true;
- // Statistics.
- NumOutlined++;
- }
- LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
- return OutlinedSomething;
- }
- void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M,
- MachineModuleInfo &MMI) {
- // Build instruction mappings for each function in the module. Start by
- // iterating over each Function in M.
- for (Function &F : M) {
- // If there's nothing in F, then there's no reason to try and outline from
- // it.
- if (F.empty())
- continue;
- // There's something in F. Check if it has a MachineFunction associated with
- // it.
- MachineFunction *MF = MMI.getMachineFunction(F);
- // If it doesn't, then there's nothing to outline from. Move to the next
- // Function.
- if (!MF)
- continue;
- const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
- if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF))
- continue;
- // We have a MachineFunction. Ask the target if it's suitable for outlining.
- // If it isn't, then move on to the next Function in the module.
- if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs))
- continue;
- // We have a function suitable for outlining. Iterate over every
- // MachineBasicBlock in MF and try to map its instructions to a list of
- // unsigned integers.
- for (MachineBasicBlock &MBB : *MF) {
- // If there isn't anything in MBB, then there's no point in outlining from
- // it.
- // If there are fewer than 2 instructions in the MBB, then it can't ever
- // contain something worth outlining.
- // FIXME: This should be based off of the maximum size in B of an outlined
- // call versus the size in B of the MBB.
- if (MBB.empty() || MBB.size() < 2)
- continue;
- // Check if MBB could be the target of an indirect branch. If it is, then
- // we don't want to outline from it.
- if (MBB.hasAddressTaken())
- continue;
- // MBB is suitable for outlining. Map it to a list of unsigneds.
- Mapper.convertToUnsignedVec(MBB, *TII);
- }
- }
- }
- void MachineOutliner::initSizeRemarkInfo(
- const Module &M, const MachineModuleInfo &MMI,
- StringMap<unsigned> &FunctionToInstrCount) {
- // Collect instruction counts for every function. We'll use this to emit
- // per-function size remarks later.
- for (const Function &F : M) {
- MachineFunction *MF = MMI.getMachineFunction(F);
- // We only care about MI counts here. If there's no MachineFunction at this
- // point, then there won't be after the outliner runs, so let's move on.
- if (!MF)
- continue;
- FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount();
- }
- }
- void MachineOutliner::emitInstrCountChangedRemark(
- const Module &M, const MachineModuleInfo &MMI,
- const StringMap<unsigned> &FunctionToInstrCount) {
- // Iterate over each function in the module and emit remarks.
- // Note that we won't miss anything by doing this, because the outliner never
- // deletes functions.
- for (const Function &F : M) {
- MachineFunction *MF = MMI.getMachineFunction(F);
- // The outliner never deletes functions. If we don't have a MF here, then we
- // didn't have one prior to outlining either.
- if (!MF)
- continue;
- std::string Fname = F.getName();
- unsigned FnCountAfter = MF->getInstructionCount();
- unsigned FnCountBefore = 0;
- // Check if the function was recorded before.
- auto It = FunctionToInstrCount.find(Fname);
- // Did we have a previously-recorded size? If yes, then set FnCountBefore
- // to that.
- if (It != FunctionToInstrCount.end())
- FnCountBefore = It->second;
- // Compute the delta and emit a remark if there was a change.
- int64_t FnDelta = static_cast<int64_t>(FnCountAfter) -
- static_cast<int64_t>(FnCountBefore);
- if (FnDelta == 0)
- continue;
- MachineOptimizationRemarkEmitter MORE(*MF, nullptr);
- MORE.emit([&]() {
- MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange",
- DiagnosticLocation(),
- &MF->front());
- R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner")
- << ": Function: "
- << DiagnosticInfoOptimizationBase::Argument("Function", F.getName())
- << ": MI instruction count changed from "
- << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore",
- FnCountBefore)
- << " to "
- << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter",
- FnCountAfter)
- << "; Delta: "
- << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta);
- return R;
- });
- }
- }
- bool MachineOutliner::runOnModule(Module &M) {
- // Check if there's anything in the module. If it's empty, then there's
- // nothing to outline.
- if (M.empty())
- return false;
- MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
- // If the user passed -enable-machine-outliner=always or
- // -enable-machine-outliner, the pass will run on all functions in the module.
- // Otherwise, if the target supports default outlining, it will run on all
- // functions deemed by the target to be worth outlining from by default. Tell
- // the user how the outliner is running.
- LLVM_DEBUG(
- dbgs() << "Machine Outliner: Running on ";
- if (RunOnAllFunctions)
- dbgs() << "all functions";
- else
- dbgs() << "target-default functions";
- dbgs() << "\n"
- );
- // If the user specifies that they want to outline from linkonceodrs, set
- // it here.
- OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining;
- InstructionMapper Mapper;
- // Prepare instruction mappings for the suffix tree.
- populateMapper(Mapper, M, MMI);
- std::vector<std::shared_ptr<Candidate>> CandidateList;
- std::vector<OutlinedFunction> FunctionList;
- // Find all of the outlining candidates.
- unsigned MaxCandidateLen =
- buildCandidateList(CandidateList, FunctionList, Mapper);
- // Remove candidates that overlap with other candidates.
- pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen);
- // If we've requested size remarks, then collect the MI counts of every
- // function before outlining, and the MI counts after outlining.
- // FIXME: This shouldn't be in the outliner at all; it should ultimately be
- // the pass manager's responsibility.
- // This could pretty easily be placed in outline instead, but because we
- // really ultimately *don't* want this here, it's done like this for now
- // instead.
- // Check if we want size remarks.
- bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark();
- StringMap<unsigned> FunctionToInstrCount;
- if (ShouldEmitSizeRemarks)
- initSizeRemarkInfo(M, MMI, FunctionToInstrCount);
- // Outline each of the candidates and return true if something was outlined.
- bool OutlinedSomething = outline(M, CandidateList, FunctionList, Mapper);
- // If we outlined something, we definitely changed the MI count of the
- // module. If we've asked for size remarks, then output them.
- // FIXME: This should be in the pass manager.
- if (ShouldEmitSizeRemarks && OutlinedSomething)
- emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount);
- return OutlinedSomething;
- }
|