Analysis.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723
  1. //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // This file defines several CodeGen-specific LLVM IR analysis utilities.
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #include "llvm/CodeGen/Analysis.h"
  14. #include "llvm/Analysis/ValueTracking.h"
  15. #include "llvm/CodeGen/MachineFunction.h"
  16. #include "llvm/CodeGen/TargetInstrInfo.h"
  17. #include "llvm/CodeGen/TargetLowering.h"
  18. #include "llvm/CodeGen/TargetSubtargetInfo.h"
  19. #include "llvm/IR/DataLayout.h"
  20. #include "llvm/IR/DerivedTypes.h"
  21. #include "llvm/IR/Function.h"
  22. #include "llvm/IR/Instructions.h"
  23. #include "llvm/IR/IntrinsicInst.h"
  24. #include "llvm/IR/LLVMContext.h"
  25. #include "llvm/IR/Module.h"
  26. #include "llvm/Support/ErrorHandling.h"
  27. #include "llvm/Support/MathExtras.h"
  28. #include "llvm/Transforms/Utils/GlobalStatus.h"
  29. using namespace llvm;
  30. /// Compute the linearized index of a member in a nested aggregate/struct/array
  31. /// by recursing and accumulating CurIndex as long as there are indices in the
  32. /// index list.
  33. unsigned llvm::ComputeLinearIndex(Type *Ty,
  34. const unsigned *Indices,
  35. const unsigned *IndicesEnd,
  36. unsigned CurIndex) {
  37. // Base case: We're done.
  38. if (Indices && Indices == IndicesEnd)
  39. return CurIndex;
  40. // Given a struct type, recursively traverse the elements.
  41. if (StructType *STy = dyn_cast<StructType>(Ty)) {
  42. for (StructType::element_iterator EB = STy->element_begin(),
  43. EI = EB,
  44. EE = STy->element_end();
  45. EI != EE; ++EI) {
  46. if (Indices && *Indices == unsigned(EI - EB))
  47. return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
  48. CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
  49. }
  50. assert(!Indices && "Unexpected out of bound");
  51. return CurIndex;
  52. }
  53. // Given an array type, recursively traverse the elements.
  54. else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
  55. Type *EltTy = ATy->getElementType();
  56. unsigned NumElts = ATy->getNumElements();
  57. // Compute the Linear offset when jumping one element of the array
  58. unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
  59. if (Indices) {
  60. assert(*Indices < NumElts && "Unexpected out of bound");
  61. // If the indice is inside the array, compute the index to the requested
  62. // elt and recurse inside the element with the end of the indices list
  63. CurIndex += EltLinearOffset* *Indices;
  64. return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
  65. }
  66. CurIndex += EltLinearOffset*NumElts;
  67. return CurIndex;
  68. }
  69. // We haven't found the type we're looking for, so keep searching.
  70. return CurIndex + 1;
  71. }
  72. /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
  73. /// EVTs that represent all the individual underlying
  74. /// non-aggregate types that comprise it.
  75. ///
  76. /// If Offsets is non-null, it points to a vector to be filled in
  77. /// with the in-memory offsets of each of the individual values.
  78. ///
  79. void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
  80. Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
  81. SmallVectorImpl<uint64_t> *Offsets,
  82. uint64_t StartingOffset) {
  83. // Given a struct type, recursively traverse the elements.
  84. if (StructType *STy = dyn_cast<StructType>(Ty)) {
  85. const StructLayout *SL = DL.getStructLayout(STy);
  86. for (StructType::element_iterator EB = STy->element_begin(),
  87. EI = EB,
  88. EE = STy->element_end();
  89. EI != EE; ++EI)
  90. ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets,
  91. StartingOffset + SL->getElementOffset(EI - EB));
  92. return;
  93. }
  94. // Given an array type, recursively traverse the elements.
  95. if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
  96. Type *EltTy = ATy->getElementType();
  97. uint64_t EltSize = DL.getTypeAllocSize(EltTy);
  98. for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
  99. ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets,
  100. StartingOffset + i * EltSize);
  101. return;
  102. }
  103. // Interpret void as zero return values.
  104. if (Ty->isVoidTy())
  105. return;
  106. // Base case: we can get an EVT for this LLVM IR type.
  107. ValueVTs.push_back(TLI.getValueType(DL, Ty));
  108. if (Offsets)
  109. Offsets->push_back(StartingOffset);
  110. }
  111. /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
  112. GlobalValue *llvm::ExtractTypeInfo(Value *V) {
  113. V = V->stripPointerCasts();
  114. GlobalValue *GV = dyn_cast<GlobalValue>(V);
  115. GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
  116. if (Var && Var->getName() == "llvm.eh.catch.all.value") {
  117. assert(Var->hasInitializer() &&
  118. "The EH catch-all value must have an initializer");
  119. Value *Init = Var->getInitializer();
  120. GV = dyn_cast<GlobalValue>(Init);
  121. if (!GV) V = cast<ConstantPointerNull>(Init);
  122. }
  123. assert((GV || isa<ConstantPointerNull>(V)) &&
  124. "TypeInfo must be a global variable or NULL");
  125. return GV;
  126. }
  127. /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
  128. /// processed uses a memory 'm' constraint.
  129. bool
  130. llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
  131. const TargetLowering &TLI) {
  132. for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
  133. InlineAsm::ConstraintInfo &CI = CInfos[i];
  134. for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
  135. TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
  136. if (CType == TargetLowering::C_Memory)
  137. return true;
  138. }
  139. // Indirect operand accesses access memory.
  140. if (CI.isIndirect)
  141. return true;
  142. }
  143. return false;
  144. }
  145. /// getFCmpCondCode - Return the ISD condition code corresponding to
  146. /// the given LLVM IR floating-point condition code. This includes
  147. /// consideration of global floating-point math flags.
  148. ///
  149. ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
  150. switch (Pred) {
  151. case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
  152. case FCmpInst::FCMP_OEQ: return ISD::SETOEQ;
  153. case FCmpInst::FCMP_OGT: return ISD::SETOGT;
  154. case FCmpInst::FCMP_OGE: return ISD::SETOGE;
  155. case FCmpInst::FCMP_OLT: return ISD::SETOLT;
  156. case FCmpInst::FCMP_OLE: return ISD::SETOLE;
  157. case FCmpInst::FCMP_ONE: return ISD::SETONE;
  158. case FCmpInst::FCMP_ORD: return ISD::SETO;
  159. case FCmpInst::FCMP_UNO: return ISD::SETUO;
  160. case FCmpInst::FCMP_UEQ: return ISD::SETUEQ;
  161. case FCmpInst::FCMP_UGT: return ISD::SETUGT;
  162. case FCmpInst::FCMP_UGE: return ISD::SETUGE;
  163. case FCmpInst::FCMP_ULT: return ISD::SETULT;
  164. case FCmpInst::FCMP_ULE: return ISD::SETULE;
  165. case FCmpInst::FCMP_UNE: return ISD::SETUNE;
  166. case FCmpInst::FCMP_TRUE: return ISD::SETTRUE;
  167. default: llvm_unreachable("Invalid FCmp predicate opcode!");
  168. }
  169. }
  170. ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
  171. switch (CC) {
  172. case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
  173. case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
  174. case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
  175. case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
  176. case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
  177. case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
  178. default: return CC;
  179. }
  180. }
  181. /// getICmpCondCode - Return the ISD condition code corresponding to
  182. /// the given LLVM IR integer condition code.
  183. ///
  184. ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
  185. switch (Pred) {
  186. case ICmpInst::ICMP_EQ: return ISD::SETEQ;
  187. case ICmpInst::ICMP_NE: return ISD::SETNE;
  188. case ICmpInst::ICMP_SLE: return ISD::SETLE;
  189. case ICmpInst::ICMP_ULE: return ISD::SETULE;
  190. case ICmpInst::ICMP_SGE: return ISD::SETGE;
  191. case ICmpInst::ICMP_UGE: return ISD::SETUGE;
  192. case ICmpInst::ICMP_SLT: return ISD::SETLT;
  193. case ICmpInst::ICMP_ULT: return ISD::SETULT;
  194. case ICmpInst::ICMP_SGT: return ISD::SETGT;
  195. case ICmpInst::ICMP_UGT: return ISD::SETUGT;
  196. default:
  197. llvm_unreachable("Invalid ICmp predicate opcode!");
  198. }
  199. }
  200. static bool isNoopBitcast(Type *T1, Type *T2,
  201. const TargetLoweringBase& TLI) {
  202. return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
  203. (isa<VectorType>(T1) && isa<VectorType>(T2) &&
  204. TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
  205. }
  206. /// Look through operations that will be free to find the earliest source of
  207. /// this value.
  208. ///
  209. /// @param ValLoc If V has aggegate type, we will be interested in a particular
  210. /// scalar component. This records its address; the reverse of this list gives a
  211. /// sequence of indices appropriate for an extractvalue to locate the important
  212. /// value. This value is updated during the function and on exit will indicate
  213. /// similar information for the Value returned.
  214. ///
  215. /// @param DataBits If this function looks through truncate instructions, this
  216. /// will record the smallest size attained.
  217. static const Value *getNoopInput(const Value *V,
  218. SmallVectorImpl<unsigned> &ValLoc,
  219. unsigned &DataBits,
  220. const TargetLoweringBase &TLI,
  221. const DataLayout &DL) {
  222. while (true) {
  223. // Try to look through V1; if V1 is not an instruction, it can't be looked
  224. // through.
  225. const Instruction *I = dyn_cast<Instruction>(V);
  226. if (!I || I->getNumOperands() == 0) return V;
  227. const Value *NoopInput = nullptr;
  228. Value *Op = I->getOperand(0);
  229. if (isa<BitCastInst>(I)) {
  230. // Look through truly no-op bitcasts.
  231. if (isNoopBitcast(Op->getType(), I->getType(), TLI))
  232. NoopInput = Op;
  233. } else if (isa<GetElementPtrInst>(I)) {
  234. // Look through getelementptr
  235. if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
  236. NoopInput = Op;
  237. } else if (isa<IntToPtrInst>(I)) {
  238. // Look through inttoptr.
  239. // Make sure this isn't a truncating or extending cast. We could
  240. // support this eventually, but don't bother for now.
  241. if (!isa<VectorType>(I->getType()) &&
  242. DL.getPointerSizeInBits() ==
  243. cast<IntegerType>(Op->getType())->getBitWidth())
  244. NoopInput = Op;
  245. } else if (isa<PtrToIntInst>(I)) {
  246. // Look through ptrtoint.
  247. // Make sure this isn't a truncating or extending cast. We could
  248. // support this eventually, but don't bother for now.
  249. if (!isa<VectorType>(I->getType()) &&
  250. DL.getPointerSizeInBits() ==
  251. cast<IntegerType>(I->getType())->getBitWidth())
  252. NoopInput = Op;
  253. } else if (isa<TruncInst>(I) &&
  254. TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
  255. DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
  256. NoopInput = Op;
  257. } else if (auto CS = ImmutableCallSite(I)) {
  258. const Value *ReturnedOp = CS.getReturnedArgOperand();
  259. if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI))
  260. NoopInput = ReturnedOp;
  261. } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
  262. // Value may come from either the aggregate or the scalar
  263. ArrayRef<unsigned> InsertLoc = IVI->getIndices();
  264. if (ValLoc.size() >= InsertLoc.size() &&
  265. std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
  266. // The type being inserted is a nested sub-type of the aggregate; we
  267. // have to remove those initial indices to get the location we're
  268. // interested in for the operand.
  269. ValLoc.resize(ValLoc.size() - InsertLoc.size());
  270. NoopInput = IVI->getInsertedValueOperand();
  271. } else {
  272. // The struct we're inserting into has the value we're interested in, no
  273. // change of address.
  274. NoopInput = Op;
  275. }
  276. } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
  277. // The part we're interested in will inevitably be some sub-section of the
  278. // previous aggregate. Combine the two paths to obtain the true address of
  279. // our element.
  280. ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
  281. ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
  282. NoopInput = Op;
  283. }
  284. // Terminate if we couldn't find anything to look through.
  285. if (!NoopInput)
  286. return V;
  287. V = NoopInput;
  288. }
  289. }
  290. /// Return true if this scalar return value only has bits discarded on its path
  291. /// from the "tail call" to the "ret". This includes the obvious noop
  292. /// instructions handled by getNoopInput above as well as free truncations (or
  293. /// extensions prior to the call).
  294. static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
  295. SmallVectorImpl<unsigned> &RetIndices,
  296. SmallVectorImpl<unsigned> &CallIndices,
  297. bool AllowDifferingSizes,
  298. const TargetLoweringBase &TLI,
  299. const DataLayout &DL) {
  300. // Trace the sub-value needed by the return value as far back up the graph as
  301. // possible, in the hope that it will intersect with the value produced by the
  302. // call. In the simple case with no "returned" attribute, the hope is actually
  303. // that we end up back at the tail call instruction itself.
  304. unsigned BitsRequired = UINT_MAX;
  305. RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
  306. // If this slot in the value returned is undef, it doesn't matter what the
  307. // call puts there, it'll be fine.
  308. if (isa<UndefValue>(RetVal))
  309. return true;
  310. // Now do a similar search up through the graph to find where the value
  311. // actually returned by the "tail call" comes from. In the simple case without
  312. // a "returned" attribute, the search will be blocked immediately and the loop
  313. // a Noop.
  314. unsigned BitsProvided = UINT_MAX;
  315. CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
  316. // There's no hope if we can't actually trace them to (the same part of!) the
  317. // same value.
  318. if (CallVal != RetVal || CallIndices != RetIndices)
  319. return false;
  320. // However, intervening truncates may have made the call non-tail. Make sure
  321. // all the bits that are needed by the "ret" have been provided by the "tail
  322. // call". FIXME: with sufficiently cunning bit-tracking, we could look through
  323. // extensions too.
  324. if (BitsProvided < BitsRequired ||
  325. (!AllowDifferingSizes && BitsProvided != BitsRequired))
  326. return false;
  327. return true;
  328. }
  329. /// For an aggregate type, determine whether a given index is within bounds or
  330. /// not.
  331. static bool indexReallyValid(CompositeType *T, unsigned Idx) {
  332. if (ArrayType *AT = dyn_cast<ArrayType>(T))
  333. return Idx < AT->getNumElements();
  334. return Idx < cast<StructType>(T)->getNumElements();
  335. }
  336. /// Move the given iterators to the next leaf type in depth first traversal.
  337. ///
  338. /// Performs a depth-first traversal of the type as specified by its arguments,
  339. /// stopping at the next leaf node (which may be a legitimate scalar type or an
  340. /// empty struct or array).
  341. ///
  342. /// @param SubTypes List of the partial components making up the type from
  343. /// outermost to innermost non-empty aggregate. The element currently
  344. /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
  345. ///
  346. /// @param Path Set of extractvalue indices leading from the outermost type
  347. /// (SubTypes[0]) to the leaf node currently represented.
  348. ///
  349. /// @returns true if a new type was found, false otherwise. Calling this
  350. /// function again on a finished iterator will repeatedly return
  351. /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
  352. /// aggregate or a non-aggregate
  353. static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
  354. SmallVectorImpl<unsigned> &Path) {
  355. // First march back up the tree until we can successfully increment one of the
  356. // coordinates in Path.
  357. while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
  358. Path.pop_back();
  359. SubTypes.pop_back();
  360. }
  361. // If we reached the top, then the iterator is done.
  362. if (Path.empty())
  363. return false;
  364. // We know there's *some* valid leaf now, so march back down the tree picking
  365. // out the left-most element at each node.
  366. ++Path.back();
  367. Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
  368. while (DeeperType->isAggregateType()) {
  369. CompositeType *CT = cast<CompositeType>(DeeperType);
  370. if (!indexReallyValid(CT, 0))
  371. return true;
  372. SubTypes.push_back(CT);
  373. Path.push_back(0);
  374. DeeperType = CT->getTypeAtIndex(0U);
  375. }
  376. return true;
  377. }
  378. /// Find the first non-empty, scalar-like type in Next and setup the iterator
  379. /// components.
  380. ///
  381. /// Assuming Next is an aggregate of some kind, this function will traverse the
  382. /// tree from left to right (i.e. depth-first) looking for the first
  383. /// non-aggregate type which will play a role in function return.
  384. ///
  385. /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
  386. /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
  387. /// i32 in that type.
  388. static bool firstRealType(Type *Next,
  389. SmallVectorImpl<CompositeType *> &SubTypes,
  390. SmallVectorImpl<unsigned> &Path) {
  391. // First initialise the iterator components to the first "leaf" node
  392. // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
  393. // despite nominally being an aggregate).
  394. while (Next->isAggregateType() &&
  395. indexReallyValid(cast<CompositeType>(Next), 0)) {
  396. SubTypes.push_back(cast<CompositeType>(Next));
  397. Path.push_back(0);
  398. Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
  399. }
  400. // If there's no Path now, Next was originally scalar already (or empty
  401. // leaf). We're done.
  402. if (Path.empty())
  403. return true;
  404. // Otherwise, use normal iteration to keep looking through the tree until we
  405. // find a non-aggregate type.
  406. while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
  407. if (!advanceToNextLeafType(SubTypes, Path))
  408. return false;
  409. }
  410. return true;
  411. }
  412. /// Set the iterator data-structures to the next non-empty, non-aggregate
  413. /// subtype.
  414. static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
  415. SmallVectorImpl<unsigned> &Path) {
  416. do {
  417. if (!advanceToNextLeafType(SubTypes, Path))
  418. return false;
  419. assert(!Path.empty() && "found a leaf but didn't set the path?");
  420. } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
  421. return true;
  422. }
  423. /// Test if the given instruction is in a position to be optimized
  424. /// with a tail-call. This roughly means that it's in a block with
  425. /// a return and there's nothing that needs to be scheduled
  426. /// between it and the return.
  427. ///
  428. /// This function only tests target-independent requirements.
  429. bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
  430. const Instruction *I = CS.getInstruction();
  431. const BasicBlock *ExitBB = I->getParent();
  432. const TerminatorInst *Term = ExitBB->getTerminator();
  433. const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
  434. // The block must end in a return statement or unreachable.
  435. //
  436. // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
  437. // an unreachable, for now. The way tailcall optimization is currently
  438. // implemented means it will add an epilogue followed by a jump. That is
  439. // not profitable. Also, if the callee is a special function (e.g.
  440. // longjmp on x86), it can end up causing miscompilation that has not
  441. // been fully understood.
  442. if (!Ret &&
  443. (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term)))
  444. return false;
  445. // If I will have a chain, make sure no other instruction that will have a
  446. // chain interposes between I and the return.
  447. if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
  448. !isSafeToSpeculativelyExecute(I))
  449. for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
  450. if (&*BBI == I)
  451. break;
  452. // Debug info intrinsics do not get in the way of tail call optimization.
  453. if (isa<DbgInfoIntrinsic>(BBI))
  454. continue;
  455. if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
  456. !isSafeToSpeculativelyExecute(&*BBI))
  457. return false;
  458. }
  459. const Function *F = ExitBB->getParent();
  460. return returnTypeIsEligibleForTailCall(
  461. F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
  462. }
  463. bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I,
  464. const ReturnInst *Ret,
  465. const TargetLoweringBase &TLI,
  466. bool *AllowDifferingSizes) {
  467. // ADS may be null, so don't write to it directly.
  468. bool DummyADS;
  469. bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS;
  470. ADS = true;
  471. AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex);
  472. AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
  473. AttributeList::ReturnIndex);
  474. // Noalias is completely benign as far as calling convention goes, it
  475. // shouldn't affect whether the call is a tail call.
  476. CallerAttrs.removeAttribute(Attribute::NoAlias);
  477. CalleeAttrs.removeAttribute(Attribute::NoAlias);
  478. if (CallerAttrs.contains(Attribute::ZExt)) {
  479. if (!CalleeAttrs.contains(Attribute::ZExt))
  480. return false;
  481. ADS = false;
  482. CallerAttrs.removeAttribute(Attribute::ZExt);
  483. CalleeAttrs.removeAttribute(Attribute::ZExt);
  484. } else if (CallerAttrs.contains(Attribute::SExt)) {
  485. if (!CalleeAttrs.contains(Attribute::SExt))
  486. return false;
  487. ADS = false;
  488. CallerAttrs.removeAttribute(Attribute::SExt);
  489. CalleeAttrs.removeAttribute(Attribute::SExt);
  490. }
  491. // If they're still different, there's some facet we don't understand
  492. // (currently only "inreg", but in future who knows). It may be OK but the
  493. // only safe option is to reject the tail call.
  494. return CallerAttrs == CalleeAttrs;
  495. }
  496. bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
  497. const Instruction *I,
  498. const ReturnInst *Ret,
  499. const TargetLoweringBase &TLI) {
  500. // If the block ends with a void return or unreachable, it doesn't matter
  501. // what the call's return type is.
  502. if (!Ret || Ret->getNumOperands() == 0) return true;
  503. // If the return value is undef, it doesn't matter what the call's
  504. // return type is.
  505. if (isa<UndefValue>(Ret->getOperand(0))) return true;
  506. // Make sure the attributes attached to each return are compatible.
  507. bool AllowDifferingSizes;
  508. if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes))
  509. return false;
  510. const Value *RetVal = Ret->getOperand(0), *CallVal = I;
  511. // Intrinsic like llvm.memcpy has no return value, but the expanded
  512. // libcall may or may not have return value. On most platforms, it
  513. // will be expanded as memcpy in libc, which returns the first
  514. // argument. On other platforms like arm-none-eabi, memcpy may be
  515. // expanded as library call without return value, like __aeabi_memcpy.
  516. const CallInst *Call = cast<CallInst>(I);
  517. if (Function *F = Call->getCalledFunction()) {
  518. Intrinsic::ID IID = F->getIntrinsicID();
  519. if (((IID == Intrinsic::memcpy &&
  520. TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) ||
  521. (IID == Intrinsic::memmove &&
  522. TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) ||
  523. (IID == Intrinsic::memset &&
  524. TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) &&
  525. RetVal == Call->getArgOperand(0))
  526. return true;
  527. }
  528. SmallVector<unsigned, 4> RetPath, CallPath;
  529. SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
  530. bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
  531. bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
  532. // Nothing's actually returned, it doesn't matter what the callee put there
  533. // it's a valid tail call.
  534. if (RetEmpty)
  535. return true;
  536. // Iterate pairwise through each of the value types making up the tail call
  537. // and the corresponding return. For each one we want to know whether it's
  538. // essentially going directly from the tail call to the ret, via operations
  539. // that end up not generating any code.
  540. //
  541. // We allow a certain amount of covariance here. For example it's permitted
  542. // for the tail call to define more bits than the ret actually cares about
  543. // (e.g. via a truncate).
  544. do {
  545. if (CallEmpty) {
  546. // We've exhausted the values produced by the tail call instruction, the
  547. // rest are essentially undef. The type doesn't really matter, but we need
  548. // *something*.
  549. Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
  550. CallVal = UndefValue::get(SlotType);
  551. }
  552. // The manipulations performed when we're looking through an insertvalue or
  553. // an extractvalue would happen at the front of the RetPath list, so since
  554. // we have to copy it anyway it's more efficient to create a reversed copy.
  555. SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
  556. SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
  557. // Finally, we can check whether the value produced by the tail call at this
  558. // index is compatible with the value we return.
  559. if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
  560. AllowDifferingSizes, TLI,
  561. F->getParent()->getDataLayout()))
  562. return false;
  563. CallEmpty = !nextRealType(CallSubTypes, CallPath);
  564. } while(nextRealType(RetSubTypes, RetPath));
  565. return true;
  566. }
  567. static void collectEHScopeMembers(
  568. DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope,
  569. const MachineBasicBlock *MBB) {
  570. SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
  571. while (!Worklist.empty()) {
  572. const MachineBasicBlock *Visiting = Worklist.pop_back_val();
  573. // Don't follow blocks which start new scopes.
  574. if (Visiting->isEHPad() && Visiting != MBB)
  575. continue;
  576. // Add this MBB to our scope.
  577. auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope));
  578. // Don't revisit blocks.
  579. if (!P.second) {
  580. assert(P.first->second == EHScope && "MBB is part of two scopes!");
  581. continue;
  582. }
  583. // Returns are boundaries where scope transfer can occur, don't follow
  584. // successors.
  585. if (Visiting->isEHScopeReturnBlock())
  586. continue;
  587. for (const MachineBasicBlock *Succ : Visiting->successors())
  588. Worklist.push_back(Succ);
  589. }
  590. }
  591. DenseMap<const MachineBasicBlock *, int>
  592. llvm::getEHScopeMembership(const MachineFunction &MF) {
  593. DenseMap<const MachineBasicBlock *, int> EHScopeMembership;
  594. // We don't have anything to do if there aren't any EH pads.
  595. if (!MF.hasEHScopes())
  596. return EHScopeMembership;
  597. int EntryBBNumber = MF.front().getNumber();
  598. bool IsSEH = isAsynchronousEHPersonality(
  599. classifyEHPersonality(MF.getFunction().getPersonalityFn()));
  600. const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
  601. SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks;
  602. SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
  603. SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
  604. SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
  605. for (const MachineBasicBlock &MBB : MF) {
  606. if (MBB.isEHScopeEntry()) {
  607. EHScopeBlocks.push_back(&MBB);
  608. } else if (IsSEH && MBB.isEHPad()) {
  609. SEHCatchPads.push_back(&MBB);
  610. } else if (MBB.pred_empty()) {
  611. UnreachableBlocks.push_back(&MBB);
  612. }
  613. MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
  614. // CatchPads are not scopes for SEH so do not consider CatchRet to
  615. // transfer control to another scope.
  616. if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode())
  617. continue;
  618. // FIXME: SEH CatchPads are not necessarily in the parent function:
  619. // they could be inside a finally block.
  620. const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
  621. const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
  622. CatchRetSuccessors.push_back(
  623. {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
  624. }
  625. // We don't have anything to do if there aren't any EH pads.
  626. if (EHScopeBlocks.empty())
  627. return EHScopeMembership;
  628. // Identify all the basic blocks reachable from the function entry.
  629. collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front());
  630. // All blocks not part of a scope are in the parent function.
  631. for (const MachineBasicBlock *MBB : UnreachableBlocks)
  632. collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
  633. // Next, identify all the blocks inside the scopes.
  634. for (const MachineBasicBlock *MBB : EHScopeBlocks)
  635. collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB);
  636. // SEH CatchPads aren't really scopes, handle them separately.
  637. for (const MachineBasicBlock *MBB : SEHCatchPads)
  638. collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
  639. // Finally, identify all the targets of a catchret.
  640. for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
  641. CatchRetSuccessors)
  642. collectEHScopeMembers(EHScopeMembership, CatchRetPair.second,
  643. CatchRetPair.first);
  644. return EHScopeMembership;
  645. }