InterferenceCache.cpp 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196
  1. //===-- InterferenceCache.cpp - Caching per-block interference ---------*--===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // InterferenceCache remembers per-block interference in LiveIntervalUnions.
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #define DEBUG_TYPE "regalloc"
  14. #include "InterferenceCache.h"
  15. #include "llvm/Target/TargetRegisterInfo.h"
  16. #include "llvm/Support/ErrorHandling.h"
  17. #include "llvm/CodeGen/LiveIntervalAnalysis.h"
  18. using namespace llvm;
  19. // Static member used for null interference cursors.
  20. InterferenceCache::BlockInterference InterferenceCache::Cursor::NoInterference;
  21. void InterferenceCache::init(MachineFunction *mf,
  22. LiveIntervalUnion *liuarray,
  23. SlotIndexes *indexes,
  24. LiveIntervals *lis,
  25. const TargetRegisterInfo *tri) {
  26. MF = mf;
  27. LIUArray = liuarray;
  28. TRI = tri;
  29. PhysRegEntries.assign(TRI->getNumRegs(), 0);
  30. for (unsigned i = 0; i != CacheEntries; ++i)
  31. Entries[i].clear(mf, indexes, lis);
  32. }
  33. InterferenceCache::Entry *InterferenceCache::get(unsigned PhysReg) {
  34. unsigned E = PhysRegEntries[PhysReg];
  35. if (E < CacheEntries && Entries[E].getPhysReg() == PhysReg) {
  36. if (!Entries[E].valid(LIUArray, TRI))
  37. Entries[E].revalidate();
  38. return &Entries[E];
  39. }
  40. // No valid entry exists, pick the next round-robin entry.
  41. E = RoundRobin;
  42. if (++RoundRobin == CacheEntries)
  43. RoundRobin = 0;
  44. for (unsigned i = 0; i != CacheEntries; ++i) {
  45. // Skip entries that are in use.
  46. if (Entries[E].hasRefs()) {
  47. if (++E == CacheEntries)
  48. E = 0;
  49. continue;
  50. }
  51. Entries[E].reset(PhysReg, LIUArray, TRI, MF);
  52. PhysRegEntries[PhysReg] = E;
  53. return &Entries[E];
  54. }
  55. llvm_unreachable("Ran out of interference cache entries.");
  56. }
  57. /// revalidate - LIU contents have changed, update tags.
  58. void InterferenceCache::Entry::revalidate() {
  59. // Invalidate all block entries.
  60. ++Tag;
  61. // Invalidate all iterators.
  62. PrevPos = SlotIndex();
  63. for (unsigned i = 0, e = Aliases.size(); i != e; ++i)
  64. Aliases[i].second = Aliases[i].first->getTag();
  65. }
  66. void InterferenceCache::Entry::reset(unsigned physReg,
  67. LiveIntervalUnion *LIUArray,
  68. const TargetRegisterInfo *TRI,
  69. const MachineFunction *MF) {
  70. assert(!hasRefs() && "Cannot reset cache entry with references");
  71. // LIU's changed, invalidate cache.
  72. ++Tag;
  73. PhysReg = physReg;
  74. Blocks.resize(MF->getNumBlockIDs());
  75. Aliases.clear();
  76. for (MCRegAliasIterator AI(PhysReg, TRI, true); AI.isValid(); ++AI) {
  77. LiveIntervalUnion *LIU = LIUArray + *AI;
  78. Aliases.push_back(std::make_pair(LIU, LIU->getTag()));
  79. }
  80. // Reset iterators.
  81. PrevPos = SlotIndex();
  82. unsigned e = Aliases.size();
  83. Iters.resize(e);
  84. for (unsigned i = 0; i != e; ++i)
  85. Iters[i].setMap(Aliases[i].first->getMap());
  86. }
  87. bool InterferenceCache::Entry::valid(LiveIntervalUnion *LIUArray,
  88. const TargetRegisterInfo *TRI) {
  89. unsigned i = 0, e = Aliases.size();
  90. for (MCRegAliasIterator AI(PhysReg, TRI, true); AI.isValid(); ++AI, ++i) {
  91. LiveIntervalUnion *LIU = LIUArray + *AI;
  92. if (i == e || Aliases[i].first != LIU)
  93. return false;
  94. if (LIU->changedSince(Aliases[i].second))
  95. return false;
  96. }
  97. return i == e;
  98. }
  99. void InterferenceCache::Entry::update(unsigned MBBNum) {
  100. SlotIndex Start, Stop;
  101. tie(Start, Stop) = Indexes->getMBBRange(MBBNum);
  102. // Use advanceTo only when possible.
  103. if (PrevPos != Start) {
  104. if (!PrevPos.isValid() || Start < PrevPos)
  105. for (unsigned i = 0, e = Iters.size(); i != e; ++i)
  106. Iters[i].find(Start);
  107. else
  108. for (unsigned i = 0, e = Iters.size(); i != e; ++i)
  109. Iters[i].advanceTo(Start);
  110. PrevPos = Start;
  111. }
  112. MachineFunction::const_iterator MFI = MF->getBlockNumbered(MBBNum);
  113. BlockInterference *BI = &Blocks[MBBNum];
  114. ArrayRef<SlotIndex> RegMaskSlots;
  115. ArrayRef<const uint32_t*> RegMaskBits;
  116. for (;;) {
  117. BI->Tag = Tag;
  118. BI->First = BI->Last = SlotIndex();
  119. // Check for first interference.
  120. for (unsigned i = 0, e = Iters.size(); i != e; ++i) {
  121. Iter &I = Iters[i];
  122. if (!I.valid())
  123. continue;
  124. SlotIndex StartI = I.start();
  125. if (StartI >= Stop)
  126. continue;
  127. if (!BI->First.isValid() || StartI < BI->First)
  128. BI->First = StartI;
  129. }
  130. // Also check for register mask interference.
  131. RegMaskSlots = LIS->getRegMaskSlotsInBlock(MBBNum);
  132. RegMaskBits = LIS->getRegMaskBitsInBlock(MBBNum);
  133. SlotIndex Limit = BI->First.isValid() ? BI->First : Stop;
  134. for (unsigned i = 0, e = RegMaskSlots.size();
  135. i != e && RegMaskSlots[i] < Limit; ++i)
  136. if (MachineOperand::clobbersPhysReg(RegMaskBits[i], PhysReg)) {
  137. // Register mask i clobbers PhysReg before the LIU interference.
  138. BI->First = RegMaskSlots[i];
  139. break;
  140. }
  141. PrevPos = Stop;
  142. if (BI->First.isValid())
  143. break;
  144. // No interference in this block? Go ahead and precompute the next block.
  145. if (++MFI == MF->end())
  146. return;
  147. MBBNum = MFI->getNumber();
  148. BI = &Blocks[MBBNum];
  149. if (BI->Tag == Tag)
  150. return;
  151. tie(Start, Stop) = Indexes->getMBBRange(MBBNum);
  152. }
  153. // Check for last interference in block.
  154. for (unsigned i = 0, e = Iters.size(); i != e; ++i) {
  155. Iter &I = Iters[i];
  156. if (!I.valid() || I.start() >= Stop)
  157. continue;
  158. I.advanceTo(Stop);
  159. bool Backup = !I.valid() || I.start() >= Stop;
  160. if (Backup)
  161. --I;
  162. SlotIndex StopI = I.stop();
  163. if (!BI->Last.isValid() || StopI > BI->Last)
  164. BI->Last = StopI;
  165. if (Backup)
  166. ++I;
  167. }
  168. // Also check for register mask interference.
  169. SlotIndex Limit = BI->Last.isValid() ? BI->Last : Start;
  170. for (unsigned i = RegMaskSlots.size();
  171. i && RegMaskSlots[i-1].getDeadSlot() > Limit; --i)
  172. if (MachineOperand::clobbersPhysReg(RegMaskBits[i-1], PhysReg)) {
  173. // Register mask i-1 clobbers PhysReg after the LIU interference.
  174. // Model the regmask clobber as a dead def.
  175. BI->Last = RegMaskSlots[i-1].getDeadSlot();
  176. break;
  177. }
  178. }