1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006 |
- //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- /// \file
- ///
- /// This file provides internal interfaces used to implement the InstCombine.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
- #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/TargetFolder.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstVisitor.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include <cassert>
- #include <cstdint>
- #define DEBUG_TYPE "instcombine"
- using namespace llvm::PatternMatch;
- namespace llvm {
- class APInt;
- class AssumptionCache;
- class BlockFrequencyInfo;
- class DataLayout;
- class DominatorTree;
- class GEPOperator;
- class GlobalVariable;
- class LoopInfo;
- class OptimizationRemarkEmitter;
- class ProfileSummaryInfo;
- class TargetLibraryInfo;
- class User;
- /// Assign a complexity or rank value to LLVM Values. This is used to reduce
- /// the amount of pattern matching needed for compares and commutative
- /// instructions. For example, if we have:
- /// icmp ugt X, Constant
- /// or
- /// xor (add X, Constant), cast Z
- ///
- /// We do not have to consider the commuted variants of these patterns because
- /// canonicalization based on complexity guarantees the above ordering.
- ///
- /// This routine maps IR values to various complexity ranks:
- /// 0 -> undef
- /// 1 -> Constants
- /// 2 -> Other non-instructions
- /// 3 -> Arguments
- /// 4 -> Cast and (f)neg/not instructions
- /// 5 -> Other instructions
- static inline unsigned getComplexity(Value *V) {
- if (isa<Instruction>(V)) {
- if (isa<CastInst>(V) || match(V, m_Neg(m_Value())) ||
- match(V, m_Not(m_Value())) || match(V, m_FNeg(m_Value())))
- return 4;
- return 5;
- }
- if (isa<Argument>(V))
- return 3;
- return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
- }
- /// Predicate canonicalization reduces the number of patterns that need to be
- /// matched by other transforms. For example, we may swap the operands of a
- /// conditional branch or select to create a compare with a canonical (inverted)
- /// predicate which is then more likely to be matched with other values.
- static inline bool isCanonicalPredicate(CmpInst::Predicate Pred) {
- switch (Pred) {
- case CmpInst::ICMP_NE:
- case CmpInst::ICMP_ULE:
- case CmpInst::ICMP_SLE:
- case CmpInst::ICMP_UGE:
- case CmpInst::ICMP_SGE:
- // TODO: There are 16 FCMP predicates. Should others be (not) canonical?
- case CmpInst::FCMP_ONE:
- case CmpInst::FCMP_OLE:
- case CmpInst::FCMP_OGE:
- return false;
- default:
- return true;
- }
- }
- /// Given an exploded icmp instruction, return true if the comparison only
- /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
- /// result of the comparison is true when the input value is signed.
- inline bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
- bool &TrueIfSigned) {
- switch (Pred) {
- case ICmpInst::ICMP_SLT: // True if LHS s< 0
- TrueIfSigned = true;
- return RHS.isNullValue();
- case ICmpInst::ICMP_SLE: // True if LHS s<= -1
- TrueIfSigned = true;
- return RHS.isAllOnesValue();
- case ICmpInst::ICMP_SGT: // True if LHS s> -1
- TrueIfSigned = false;
- return RHS.isAllOnesValue();
- case ICmpInst::ICMP_SGE: // True if LHS s>= 0
- TrueIfSigned = false;
- return RHS.isNullValue();
- case ICmpInst::ICMP_UGT:
- // True if LHS u> RHS and RHS == sign-bit-mask - 1
- TrueIfSigned = true;
- return RHS.isMaxSignedValue();
- case ICmpInst::ICMP_UGE:
- // True if LHS u>= RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
- TrueIfSigned = true;
- return RHS.isMinSignedValue();
- case ICmpInst::ICMP_ULT:
- // True if LHS u< RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
- TrueIfSigned = false;
- return RHS.isMinSignedValue();
- case ICmpInst::ICMP_ULE:
- // True if LHS u<= RHS and RHS == sign-bit-mask - 1
- TrueIfSigned = false;
- return RHS.isMaxSignedValue();
- default:
- return false;
- }
- }
- llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
- getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, Constant *C);
- /// Return the source operand of a potentially bitcasted value while optionally
- /// checking if it has one use. If there is no bitcast or the one use check is
- /// not met, return the input value itself.
- static inline Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) {
- if (auto *BitCast = dyn_cast<BitCastInst>(V))
- if (!OneUseOnly || BitCast->hasOneUse())
- return BitCast->getOperand(0);
- // V is not a bitcast or V has more than one use and OneUseOnly is true.
- return V;
- }
- /// Add one to a Constant
- static inline Constant *AddOne(Constant *C) {
- return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
- }
- /// Subtract one from a Constant
- static inline Constant *SubOne(Constant *C) {
- return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
- }
- /// Return true if the specified value is free to invert (apply ~ to).
- /// This happens in cases where the ~ can be eliminated. If WillInvertAllUses
- /// is true, work under the assumption that the caller intends to remove all
- /// uses of V and only keep uses of ~V.
- ///
- /// See also: canFreelyInvertAllUsersOf()
- static inline bool isFreeToInvert(Value *V, bool WillInvertAllUses) {
- // ~(~(X)) -> X.
- if (match(V, m_Not(m_Value())))
- return true;
- // Constants can be considered to be not'ed values.
- if (match(V, m_AnyIntegralConstant()))
- return true;
- // Compares can be inverted if all of their uses are being modified to use the
- // ~V.
- if (isa<CmpInst>(V))
- return WillInvertAllUses;
- // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
- // - Constant) - A` if we are willing to invert all of the uses.
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
- if (BO->getOpcode() == Instruction::Add ||
- BO->getOpcode() == Instruction::Sub)
- if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
- return WillInvertAllUses;
- // Selects with invertible operands are freely invertible
- if (match(V, m_Select(m_Value(), m_Not(m_Value()), m_Not(m_Value()))))
- return WillInvertAllUses;
- return false;
- }
- /// Given i1 V, can every user of V be freely adapted if V is changed to !V ?
- ///
- /// See also: isFreeToInvert()
- static inline bool canFreelyInvertAllUsersOf(Value *V, Value *IgnoredUser) {
- // Look at every user of V.
- for (User *U : V->users()) {
- if (U == IgnoredUser)
- continue; // Don't consider this user.
- auto *I = cast<Instruction>(U);
- switch (I->getOpcode()) {
- case Instruction::Select:
- case Instruction::Br:
- break; // Free to invert by swapping true/false values/destinations.
- case Instruction::Xor: // Can invert 'xor' if it's a 'not', by ignoring it.
- if (!match(I, m_Not(m_Value())))
- return false; // Not a 'not'.
- break;
- default:
- return false; // Don't know, likely not freely invertible.
- }
- // So far all users were free to invert...
- }
- return true; // Can freely invert all users!
- }
- /// Some binary operators require special handling to avoid poison and undefined
- /// behavior. If a constant vector has undef elements, replace those undefs with
- /// identity constants if possible because those are always safe to execute.
- /// If no identity constant exists, replace undef with some other safe constant.
- static inline Constant *getSafeVectorConstantForBinop(
- BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant) {
- assert(In->getType()->isVectorTy() && "Not expecting scalars here");
- Type *EltTy = In->getType()->getVectorElementType();
- auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant);
- if (!SafeC) {
- // TODO: Should this be available as a constant utility function? It is
- // similar to getBinOpAbsorber().
- if (IsRHSConstant) {
- switch (Opcode) {
- case Instruction::SRem: // X % 1 = 0
- case Instruction::URem: // X %u 1 = 0
- SafeC = ConstantInt::get(EltTy, 1);
- break;
- case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe)
- SafeC = ConstantFP::get(EltTy, 1.0);
- break;
- default:
- llvm_unreachable("Only rem opcodes have no identity constant for RHS");
- }
- } else {
- switch (Opcode) {
- case Instruction::Shl: // 0 << X = 0
- case Instruction::LShr: // 0 >>u X = 0
- case Instruction::AShr: // 0 >> X = 0
- case Instruction::SDiv: // 0 / X = 0
- case Instruction::UDiv: // 0 /u X = 0
- case Instruction::SRem: // 0 % X = 0
- case Instruction::URem: // 0 %u X = 0
- case Instruction::Sub: // 0 - X (doesn't simplify, but it is safe)
- case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe)
- case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe)
- case Instruction::FRem: // 0.0 % X = 0
- SafeC = Constant::getNullValue(EltTy);
- break;
- default:
- llvm_unreachable("Expected to find identity constant for opcode");
- }
- }
- }
- assert(SafeC && "Must have safe constant for binop");
- unsigned NumElts = In->getType()->getVectorNumElements();
- SmallVector<Constant *, 16> Out(NumElts);
- for (unsigned i = 0; i != NumElts; ++i) {
- Constant *C = In->getAggregateElement(i);
- Out[i] = isa<UndefValue>(C) ? SafeC : C;
- }
- return ConstantVector::get(Out);
- }
- /// The core instruction combiner logic.
- ///
- /// This class provides both the logic to recursively visit instructions and
- /// combine them.
- class LLVM_LIBRARY_VISIBILITY InstCombiner
- : public InstVisitor<InstCombiner, Instruction *> {
- // FIXME: These members shouldn't be public.
- public:
- /// A worklist of the instructions that need to be simplified.
- InstCombineWorklist &Worklist;
- /// An IRBuilder that automatically inserts new instructions into the
- /// worklist.
- using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
- BuilderTy &Builder;
- private:
- // Mode in which we are running the combiner.
- const bool MinimizeSize;
- /// Enable combines that trigger rarely but are costly in compiletime.
- const bool ExpensiveCombines;
- AliasAnalysis *AA;
- // Required analyses.
- AssumptionCache &AC;
- TargetLibraryInfo &TLI;
- DominatorTree &DT;
- const DataLayout &DL;
- const SimplifyQuery SQ;
- OptimizationRemarkEmitter &ORE;
- BlockFrequencyInfo *BFI;
- ProfileSummaryInfo *PSI;
- // Optional analyses. When non-null, these can both be used to do better
- // combining and will be updated to reflect any changes.
- LoopInfo *LI;
- bool MadeIRChange = false;
- public:
- InstCombiner(InstCombineWorklist &Worklist, BuilderTy &Builder,
- bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA,
- AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
- OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
- ProfileSummaryInfo *PSI, const DataLayout &DL, LoopInfo *LI)
- : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
- ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT),
- DL(DL), SQ(DL, &TLI, &DT, &AC), ORE(ORE), BFI(BFI), PSI(PSI), LI(LI) {}
- /// Run the combiner over the entire worklist until it is empty.
- ///
- /// \returns true if the IR is changed.
- bool run();
- AssumptionCache &getAssumptionCache() const { return AC; }
- const DataLayout &getDataLayout() const { return DL; }
- DominatorTree &getDominatorTree() const { return DT; }
- LoopInfo *getLoopInfo() const { return LI; }
- TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; }
- // Visitation implementation - Implement instruction combining for different
- // instruction types. The semantics are as follows:
- // Return Value:
- // null - No change was made
- // I - Change was made, I is still valid, I may be dead though
- // otherwise - Change was made, replace I with returned instruction
- //
- Instruction *visitFNeg(UnaryOperator &I);
- Instruction *visitAdd(BinaryOperator &I);
- Instruction *visitFAdd(BinaryOperator &I);
- Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
- Instruction *visitSub(BinaryOperator &I);
- Instruction *visitFSub(BinaryOperator &I);
- Instruction *visitMul(BinaryOperator &I);
- Instruction *visitFMul(BinaryOperator &I);
- Instruction *visitURem(BinaryOperator &I);
- Instruction *visitSRem(BinaryOperator &I);
- Instruction *visitFRem(BinaryOperator &I);
- bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
- Instruction *commonRemTransforms(BinaryOperator &I);
- Instruction *commonIRemTransforms(BinaryOperator &I);
- Instruction *commonDivTransforms(BinaryOperator &I);
- Instruction *commonIDivTransforms(BinaryOperator &I);
- Instruction *visitUDiv(BinaryOperator &I);
- Instruction *visitSDiv(BinaryOperator &I);
- Instruction *visitFDiv(BinaryOperator &I);
- Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
- Instruction *visitAnd(BinaryOperator &I);
- Instruction *visitOr(BinaryOperator &I);
- Instruction *visitXor(BinaryOperator &I);
- Instruction *visitShl(BinaryOperator &I);
- Value *reassociateShiftAmtsOfTwoSameDirectionShifts(
- BinaryOperator *Sh0, const SimplifyQuery &SQ,
- bool AnalyzeForSignBitExtraction = false);
- Instruction *canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
- BinaryOperator &I);
- Instruction *foldVariableSignZeroExtensionOfVariableHighBitExtract(
- BinaryOperator &OldAShr);
- Instruction *visitAShr(BinaryOperator &I);
- Instruction *visitLShr(BinaryOperator &I);
- Instruction *commonShiftTransforms(BinaryOperator &I);
- Instruction *visitFCmpInst(FCmpInst &I);
- Instruction *visitICmpInst(ICmpInst &I);
- Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
- BinaryOperator &I);
- Instruction *commonCastTransforms(CastInst &CI);
- Instruction *commonPointerCastTransforms(CastInst &CI);
- Instruction *visitTrunc(TruncInst &CI);
- Instruction *visitZExt(ZExtInst &CI);
- Instruction *visitSExt(SExtInst &CI);
- Instruction *visitFPTrunc(FPTruncInst &CI);
- Instruction *visitFPExt(CastInst &CI);
- Instruction *visitFPToUI(FPToUIInst &FI);
- Instruction *visitFPToSI(FPToSIInst &FI);
- Instruction *visitUIToFP(CastInst &CI);
- Instruction *visitSIToFP(CastInst &CI);
- Instruction *visitPtrToInt(PtrToIntInst &CI);
- Instruction *visitIntToPtr(IntToPtrInst &CI);
- Instruction *visitBitCast(BitCastInst &CI);
- Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
- Instruction *FoldItoFPtoI(Instruction &FI);
- Instruction *visitSelectInst(SelectInst &SI);
- Instruction *visitCallInst(CallInst &CI);
- Instruction *visitInvokeInst(InvokeInst &II);
- Instruction *visitCallBrInst(CallBrInst &CBI);
- Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
- Instruction *visitPHINode(PHINode &PN);
- Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
- Instruction *visitAllocaInst(AllocaInst &AI);
- Instruction *visitAllocSite(Instruction &FI);
- Instruction *visitFree(CallInst &FI);
- Instruction *visitLoadInst(LoadInst &LI);
- Instruction *visitStoreInst(StoreInst &SI);
- Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
- Instruction *visitBranchInst(BranchInst &BI);
- Instruction *visitFenceInst(FenceInst &FI);
- Instruction *visitSwitchInst(SwitchInst &SI);
- Instruction *visitReturnInst(ReturnInst &RI);
- Instruction *visitInsertValueInst(InsertValueInst &IV);
- Instruction *visitInsertElementInst(InsertElementInst &IE);
- Instruction *visitExtractElementInst(ExtractElementInst &EI);
- Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
- Instruction *visitExtractValueInst(ExtractValueInst &EV);
- Instruction *visitLandingPadInst(LandingPadInst &LI);
- Instruction *visitVAStartInst(VAStartInst &I);
- Instruction *visitVACopyInst(VACopyInst &I);
- /// Specify what to return for unhandled instructions.
- Instruction *visitInstruction(Instruction &I) { return nullptr; }
- /// True when DB dominates all uses of DI except UI.
- /// UI must be in the same block as DI.
- /// The routine checks that the DI parent and DB are different.
- bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
- const BasicBlock *DB) const;
- /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
- bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
- const unsigned SIOpd);
- /// Try to replace instruction \p I with value \p V which are pointers
- /// in different address space.
- /// \return true if successful.
- bool replacePointer(Instruction &I, Value *V);
- private:
- bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
- bool shouldChangeType(Type *From, Type *To) const;
- Value *dyn_castNegVal(Value *V) const;
- Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
- SmallVectorImpl<Value *> &NewIndices);
- /// Classify whether a cast is worth optimizing.
- ///
- /// This is a helper to decide whether the simplification of
- /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
- ///
- /// \param CI The cast we are interested in.
- ///
- /// \return true if this cast actually results in any code being generated and
- /// if it cannot already be eliminated by some other transformation.
- bool shouldOptimizeCast(CastInst *CI);
- /// Try to optimize a sequence of instructions checking if an operation
- /// on LHS and RHS overflows.
- ///
- /// If this overflow check is done via one of the overflow check intrinsics,
- /// then CtxI has to be the call instruction calling that intrinsic. If this
- /// overflow check is done by arithmetic followed by a compare, then CtxI has
- /// to be the arithmetic instruction.
- ///
- /// If a simplification is possible, stores the simplified result of the
- /// operation in OperationResult and result of the overflow check in
- /// OverflowResult, and return true. If no simplification is possible,
- /// returns false.
- bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned,
- Value *LHS, Value *RHS,
- Instruction &CtxI, Value *&OperationResult,
- Constant *&OverflowResult);
- Instruction *visitCallBase(CallBase &Call);
- Instruction *tryOptimizeCall(CallInst *CI);
- bool transformConstExprCastCall(CallBase &Call);
- Instruction *transformCallThroughTrampoline(CallBase &Call,
- IntrinsicInst &Tramp);
- Value *simplifyMaskedLoad(IntrinsicInst &II);
- Instruction *simplifyMaskedStore(IntrinsicInst &II);
- Instruction *simplifyMaskedGather(IntrinsicInst &II);
- Instruction *simplifyMaskedScatter(IntrinsicInst &II);
-
- /// Transform (zext icmp) to bitwise / integer operations in order to
- /// eliminate it.
- ///
- /// \param ICI The icmp of the (zext icmp) pair we are interested in.
- /// \parem CI The zext of the (zext icmp) pair we are interested in.
- /// \param DoTransform Pass false to just test whether the given (zext icmp)
- /// would be transformed. Pass true to actually perform the transformation.
- ///
- /// \return null if the transformation cannot be performed. If the
- /// transformation can be performed the new instruction that replaces the
- /// (zext icmp) pair will be returned (if \p DoTransform is false the
- /// unmodified \p ICI will be returned in this case).
- Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
- bool DoTransform = true);
- Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
- bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
- const Instruction &CxtI) const {
- return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
- OverflowResult::NeverOverflows;
- }
- bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
- const Instruction &CxtI) const {
- return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
- OverflowResult::NeverOverflows;
- }
- bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
- const Instruction &CxtI, bool IsSigned) const {
- return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
- : willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
- }
- bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
- const Instruction &CxtI) const {
- return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
- OverflowResult::NeverOverflows;
- }
- bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
- const Instruction &CxtI) const {
- return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
- OverflowResult::NeverOverflows;
- }
- bool willNotOverflowSub(const Value *LHS, const Value *RHS,
- const Instruction &CxtI, bool IsSigned) const {
- return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
- : willNotOverflowUnsignedSub(LHS, RHS, CxtI);
- }
- bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
- const Instruction &CxtI) const {
- return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
- OverflowResult::NeverOverflows;
- }
- bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
- const Instruction &CxtI) const {
- return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
- OverflowResult::NeverOverflows;
- }
- bool willNotOverflowMul(const Value *LHS, const Value *RHS,
- const Instruction &CxtI, bool IsSigned) const {
- return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
- : willNotOverflowUnsignedMul(LHS, RHS, CxtI);
- }
- bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
- const Value *RHS, const Instruction &CxtI,
- bool IsSigned) const {
- switch (Opcode) {
- case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
- case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
- case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
- default: llvm_unreachable("Unexpected opcode for overflow query");
- }
- }
- Value *EmitGEPOffset(User *GEP);
- Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
- Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
- Instruction *narrowBinOp(TruncInst &Trunc);
- Instruction *narrowMaskedBinOp(BinaryOperator &And);
- Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
- Instruction *narrowRotate(TruncInst &Trunc);
- Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
- Instruction *matchSAddSubSat(SelectInst &MinMax1);
- /// Determine if a pair of casts can be replaced by a single cast.
- ///
- /// \param CI1 The first of a pair of casts.
- /// \param CI2 The second of a pair of casts.
- ///
- /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
- /// Instruction::CastOps value for a cast that can replace the pair, casting
- /// CI1->getSrcTy() to CI2->getDstTy().
- ///
- /// \see CastInst::isEliminableCastPair
- Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
- const CastInst *CI2);
- Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
- Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
- Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &I);
- /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
- /// NOTE: Unlike most of instcombine, this returns a Value which should
- /// already be inserted into the function.
- Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd);
- Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
- bool JoinedByAnd, Instruction &CxtI);
- Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D);
- Value *getSelectCondition(Value *A, Value *B);
- Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);
- public:
- /// Inserts an instruction \p New before instruction \p Old
- ///
- /// Also adds the new instruction to the worklist and returns \p New so that
- /// it is suitable for use as the return from the visitation patterns.
- Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
- assert(New && !New->getParent() &&
- "New instruction already inserted into a basic block!");
- BasicBlock *BB = Old.getParent();
- BB->getInstList().insert(Old.getIterator(), New); // Insert inst
- Worklist.Add(New);
- return New;
- }
- /// Same as InsertNewInstBefore, but also sets the debug loc.
- Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
- New->setDebugLoc(Old.getDebugLoc());
- return InsertNewInstBefore(New, Old);
- }
- /// A combiner-aware RAUW-like routine.
- ///
- /// This method is to be used when an instruction is found to be dead,
- /// replaceable with another preexisting expression. Here we add all uses of
- /// I to the worklist, replace all uses of I with the new value, then return
- /// I, so that the inst combiner will know that I was modified.
- Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
- // If there are no uses to replace, then we return nullptr to indicate that
- // no changes were made to the program.
- if (I.use_empty()) return nullptr;
- Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
- // If we are replacing the instruction with itself, this must be in a
- // segment of unreachable code, so just clobber the instruction.
- if (&I == V)
- V = UndefValue::get(I.getType());
- LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
- << " with " << *V << '\n');
- I.replaceAllUsesWith(V);
- return &I;
- }
- /// Creates a result tuple for an overflow intrinsic \p II with a given
- /// \p Result and a constant \p Overflow value.
- Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
- Constant *Overflow) {
- Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
- StructType *ST = cast<StructType>(II->getType());
- Constant *Struct = ConstantStruct::get(ST, V);
- return InsertValueInst::Create(Struct, Result, 0);
- }
- /// Create and insert the idiom we use to indicate a block is unreachable
- /// without having to rewrite the CFG from within InstCombine.
- void CreateNonTerminatorUnreachable(Instruction *InsertAt) {
- auto &Ctx = InsertAt->getContext();
- new StoreInst(ConstantInt::getTrue(Ctx),
- UndefValue::get(Type::getInt1PtrTy(Ctx)),
- InsertAt);
- }
- /// Combiner aware instruction erasure.
- ///
- /// When dealing with an instruction that has side effects or produces a void
- /// value, we can't rely on DCE to delete the instruction. Instead, visit
- /// methods should return the value returned by this function.
- Instruction *eraseInstFromFunction(Instruction &I) {
- LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
- assert(I.use_empty() && "Cannot erase instruction that is used!");
- salvageDebugInfo(I);
- // Make sure that we reprocess all operands now that we reduced their
- // use counts.
- if (I.getNumOperands() < 8) {
- for (Use &Operand : I.operands())
- if (auto *Inst = dyn_cast<Instruction>(Operand))
- Worklist.Add(Inst);
- }
- Worklist.Remove(&I);
- I.eraseFromParent();
- MadeIRChange = true;
- return nullptr; // Don't do anything with FI
- }
- void computeKnownBits(const Value *V, KnownBits &Known,
- unsigned Depth, const Instruction *CxtI) const {
- llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
- }
- KnownBits computeKnownBits(const Value *V, unsigned Depth,
- const Instruction *CxtI) const {
- return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
- }
- bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
- unsigned Depth = 0,
- const Instruction *CxtI = nullptr) {
- return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
- }
- bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
- const Instruction *CxtI = nullptr) const {
- return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
- }
- unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
- const Instruction *CxtI = nullptr) const {
- return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
- }
- OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
- const Value *RHS,
- const Instruction *CxtI) const {
- return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
- }
- OverflowResult computeOverflowForSignedMul(const Value *LHS,
- const Value *RHS,
- const Instruction *CxtI) const {
- return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
- }
- OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
- const Value *RHS,
- const Instruction *CxtI) const {
- return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
- }
- OverflowResult computeOverflowForSignedAdd(const Value *LHS,
- const Value *RHS,
- const Instruction *CxtI) const {
- return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
- }
- OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
- const Value *RHS,
- const Instruction *CxtI) const {
- return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
- }
- OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
- const Instruction *CxtI) const {
- return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
- }
- OverflowResult computeOverflow(
- Instruction::BinaryOps BinaryOp, bool IsSigned,
- Value *LHS, Value *RHS, Instruction *CxtI) const;
- /// Maximum size of array considered when transforming.
- uint64_t MaxArraySizeForCombine = 0;
- private:
- /// Performs a few simplifications for operators which are associative
- /// or commutative.
- bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
- /// Tries to simplify binary operations which some other binary
- /// operation distributes over.
- ///
- /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
- /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
- /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
- /// value, or null if it didn't simplify.
- Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
- /// Tries to simplify add operations using the definition of remainder.
- ///
- /// The definition of remainder is X % C = X - (X / C ) * C. The add
- /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
- /// X % (C0 * C1)
- Value *SimplifyAddWithRemainder(BinaryOperator &I);
- // Binary Op helper for select operations where the expression can be
- // efficiently reorganized.
- Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
- Value *RHS);
- /// This tries to simplify binary operations by factorizing out common terms
- /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
- Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
- Value *, Value *, Value *);
- /// Match a select chain which produces one of three values based on whether
- /// the LHS is less than, equal to, or greater than RHS respectively.
- /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
- /// Equal and Greater values are saved in the matching process and returned to
- /// the caller.
- bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
- ConstantInt *&Less, ConstantInt *&Equal,
- ConstantInt *&Greater);
- /// Attempts to replace V with a simpler value based on the demanded
- /// bits.
- Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
- unsigned Depth, Instruction *CxtI);
- bool SimplifyDemandedBits(Instruction *I, unsigned Op,
- const APInt &DemandedMask, KnownBits &Known,
- unsigned Depth = 0);
- /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
- /// bits. It also tries to handle simplifications that can be done based on
- /// DemandedMask, but without modifying the Instruction.
- Value *SimplifyMultipleUseDemandedBits(Instruction *I,
- const APInt &DemandedMask,
- KnownBits &Known,
- unsigned Depth, Instruction *CxtI);
- /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
- /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
- Value *simplifyShrShlDemandedBits(
- Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
- const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
- /// Tries to simplify operands to an integer instruction based on its
- /// demanded bits.
- bool SimplifyDemandedInstructionBits(Instruction &Inst);
- Value *simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
- APInt DemandedElts,
- int DmaskIdx = -1);
- Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
- APInt &UndefElts, unsigned Depth = 0,
- bool AllowMultipleUsers = false);
- /// Canonicalize the position of binops relative to shufflevector.
- Instruction *foldVectorBinop(BinaryOperator &Inst);
- /// Given a binary operator, cast instruction, or select which has a PHI node
- /// as operand #0, see if we can fold the instruction into the PHI (which is
- /// only possible if all operands to the PHI are constants).
- Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
- /// Given an instruction with a select as one operand and a constant as the
- /// other operand, try to fold the binary operator into the select arguments.
- /// This also works for Cast instructions, which obviously do not have a
- /// second operand.
- Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
- /// This is a convenience wrapper function for the above two functions.
- Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
- Instruction *foldAddWithConstant(BinaryOperator &Add);
- /// Try to rotate an operation below a PHI node, using PHI nodes for
- /// its operands.
- Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
- Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
- Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
- Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
- Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN);
- /// If an integer typed PHI has only one use which is an IntToPtr operation,
- /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
- /// insert a new pointer typed PHI and replace the original one.
- Instruction *FoldIntegerTypedPHI(PHINode &PN);
- /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
- /// folded operation.
- void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
- Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
- ICmpInst::Predicate Cond, Instruction &I);
- Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
- const Value *Other);
- Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
- GlobalVariable *GV, CmpInst &ICI,
- ConstantInt *AndCst = nullptr);
- Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
- Constant *RHSC);
- Instruction *foldICmpAddOpConst(Value *X, const APInt &C,
- ICmpInst::Predicate Pred);
- Instruction *foldICmpWithCastOp(ICmpInst &ICI);
- Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
- Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp);
- Instruction *foldICmpWithConstant(ICmpInst &Cmp);
- Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
- Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
- Instruction *foldICmpBinOp(ICmpInst &Cmp, const SimplifyQuery &SQ);
- Instruction *foldICmpEquality(ICmpInst &Cmp);
- Instruction *foldIRemByPowerOfTwoToBitTest(ICmpInst &I);
- Instruction *foldSignBitTest(ICmpInst &I);
- Instruction *foldICmpWithZero(ICmpInst &Cmp);
- Value *foldUnsignedMultiplicationOverflowCheck(ICmpInst &Cmp);
- Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
- ConstantInt *C);
- Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
- const APInt &C);
- Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
- const APInt &C);
- Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
- const APInt &C);
- Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
- const APInt &C);
- Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
- const APInt &C);
- Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
- const APInt &C);
- Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
- const APInt &C);
- Instruction *foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
- const APInt &C);
- Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
- const APInt &C);
- Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
- const APInt &C);
- Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
- const APInt &C);
- Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
- const APInt &C);
- Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
- const APInt &C1);
- Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
- const APInt &C1, const APInt &C2);
- Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
- const APInt &C2);
- Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
- const APInt &C2);
- Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
- BinaryOperator *BO,
- const APInt &C);
- Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
- const APInt &C);
- Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
- const APInt &C);
- // Helpers of visitSelectInst().
- Instruction *foldSelectExtConst(SelectInst &Sel);
- Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
- Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
- Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
- Value *A, Value *B, Instruction &Outer,
- SelectPatternFlavor SPF2, Value *C);
- Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
- Instruction *OptAndOp(BinaryOperator *Op, ConstantInt *OpRHS,
- ConstantInt *AndRHS, BinaryOperator &TheAnd);
- Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
- bool isSigned, bool Inside);
- Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
- bool mergeStoreIntoSuccessor(StoreInst &SI);
- /// Given an 'or' instruction, check to see if it is part of a bswap idiom.
- /// If so, return the equivalent bswap intrinsic.
- Instruction *matchBSwap(BinaryOperator &Or);
- Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
- Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
- Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
- /// Returns a value X such that Val = X * Scale, or null if none.
- ///
- /// If the multiplication is known not to overflow then NoSignedWrap is set.
- Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
- };
- } // end namespace llvm
- #undef DEBUG_TYPE
- #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
|