123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605 |
- //===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass moves instructions into successor blocks when possible, so that
- // they aren't executed on paths where their results aren't needed.
- //
- // This pass is not intended to be a replacement or a complete alternative
- // for an LLVM-IR-level sinking pass. It is only designed to sink simple
- // constructs that are not exposed before lowering and instruction selection.
- //
- //===----------------------------------------------------------------------===//
- #define DEBUG_TYPE "machine-sink"
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/MachineDominators.h"
- #include "llvm/CodeGen/MachineLoopInfo.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Target/TargetRegisterInfo.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- static cl::opt<bool>
- SplitEdges("machine-sink-split",
- cl::desc("Split critical edges during machine sinking"),
- cl::init(true), cl::Hidden);
- STATISTIC(NumSunk, "Number of machine instructions sunk");
- STATISTIC(NumSplit, "Number of critical edges split");
- STATISTIC(NumCoalesces, "Number of copies coalesced");
- namespace {
- class MachineSinking : public MachineFunctionPass {
- const TargetInstrInfo *TII;
- const TargetRegisterInfo *TRI;
- MachineRegisterInfo *MRI; // Machine register information
- MachineDominatorTree *DT; // Machine dominator tree
- MachineLoopInfo *LI;
- AliasAnalysis *AA;
- BitVector AllocatableSet; // Which physregs are allocatable?
- // Remember which edges have been considered for breaking.
- SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
- CEBCandidates;
- public:
- static char ID; // Pass identification
- MachineSinking() : MachineFunctionPass(ID) {}
- virtual bool runOnMachineFunction(MachineFunction &MF);
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- MachineFunctionPass::getAnalysisUsage(AU);
- AU.addRequired<AliasAnalysis>();
- AU.addRequired<MachineDominatorTree>();
- AU.addRequired<MachineLoopInfo>();
- AU.addPreserved<MachineDominatorTree>();
- AU.addPreserved<MachineLoopInfo>();
- }
- virtual void releaseMemory() {
- CEBCandidates.clear();
- }
- private:
- bool ProcessBlock(MachineBasicBlock &MBB);
- bool isWorthBreakingCriticalEdge(MachineInstr *MI,
- MachineBasicBlock *From,
- MachineBasicBlock *To);
- MachineBasicBlock *SplitCriticalEdge(MachineInstr *MI,
- MachineBasicBlock *From,
- MachineBasicBlock *To,
- bool BreakPHIEdge);
- bool SinkInstruction(MachineInstr *MI, bool &SawStore);
- bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
- MachineBasicBlock *DefMBB,
- bool &BreakPHIEdge, bool &LocalUse) const;
- bool PerformTrivialForwardCoalescing(MachineInstr *MI,
- MachineBasicBlock *MBB);
- };
- } // end anonymous namespace
- char MachineSinking::ID = 0;
- INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
- "Machine code sinking", false, false)
- INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
- INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
- INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
- INITIALIZE_PASS_END(MachineSinking, "machine-sink",
- "Machine code sinking", false, false)
- FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
- bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
- MachineBasicBlock *MBB) {
- if (!MI->isCopy())
- return false;
- unsigned SrcReg = MI->getOperand(1).getReg();
- unsigned DstReg = MI->getOperand(0).getReg();
- if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
- !TargetRegisterInfo::isVirtualRegister(DstReg) ||
- !MRI->hasOneNonDBGUse(SrcReg))
- return false;
- const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
- const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
- if (SRC != DRC)
- return false;
- MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
- if (DefMI->isCopyLike())
- return false;
- DEBUG(dbgs() << "Coalescing: " << *DefMI);
- DEBUG(dbgs() << "*** to: " << *MI);
- MRI->replaceRegWith(DstReg, SrcReg);
- MI->eraseFromParent();
- ++NumCoalesces;
- return true;
- }
- /// AllUsesDominatedByBlock - Return true if all uses of the specified register
- /// occur in blocks dominated by the specified block. If any use is in the
- /// definition block, then return false since it is never legal to move def
- /// after uses.
- bool
- MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
- MachineBasicBlock *MBB,
- MachineBasicBlock *DefMBB,
- bool &BreakPHIEdge,
- bool &LocalUse) const {
- assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
- "Only makes sense for vregs");
- if (MRI->use_nodbg_empty(Reg))
- return true;
- // Ignoring debug uses is necessary so debug info doesn't affect the code.
- // This may leave a referencing dbg_value in the original block, before
- // the definition of the vreg. Dwarf generator handles this although the
- // user might not get the right info at runtime.
- // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
- // into and they are all PHI nodes. In this case, machine-sink must break
- // the critical edge first. e.g.
- //
- // BB#1: derived from LLVM BB %bb4.preheader
- // Predecessors according to CFG: BB#0
- // ...
- // %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
- // ...
- // JE_4 <BB#37>, %EFLAGS<imp-use>
- // Successors according to CFG: BB#37 BB#2
- //
- // BB#2: derived from LLVM BB %bb.nph
- // Predecessors according to CFG: BB#0 BB#1
- // %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
- BreakPHIEdge = true;
- for (MachineRegisterInfo::use_nodbg_iterator
- I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
- I != E; ++I) {
- MachineInstr *UseInst = &*I;
- MachineBasicBlock *UseBlock = UseInst->getParent();
- if (!(UseBlock == MBB && UseInst->isPHI() &&
- UseInst->getOperand(I.getOperandNo()+1).getMBB() == DefMBB)) {
- BreakPHIEdge = false;
- break;
- }
- }
- if (BreakPHIEdge)
- return true;
- for (MachineRegisterInfo::use_nodbg_iterator
- I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
- I != E; ++I) {
- // Determine the block of the use.
- MachineInstr *UseInst = &*I;
- MachineBasicBlock *UseBlock = UseInst->getParent();
- if (UseInst->isPHI()) {
- // PHI nodes use the operand in the predecessor block, not the block with
- // the PHI.
- UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
- } else if (UseBlock == DefMBB) {
- LocalUse = true;
- return false;
- }
- // Check that it dominates.
- if (!DT->dominates(MBB, UseBlock))
- return false;
- }
- return true;
- }
- bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
- DEBUG(dbgs() << "******** Machine Sinking ********\n");
- const TargetMachine &TM = MF.getTarget();
- TII = TM.getInstrInfo();
- TRI = TM.getRegisterInfo();
- MRI = &MF.getRegInfo();
- DT = &getAnalysis<MachineDominatorTree>();
- LI = &getAnalysis<MachineLoopInfo>();
- AA = &getAnalysis<AliasAnalysis>();
- AllocatableSet = TRI->getAllocatableSet(MF);
- bool EverMadeChange = false;
- while (1) {
- bool MadeChange = false;
- // Process all basic blocks.
- CEBCandidates.clear();
- for (MachineFunction::iterator I = MF.begin(), E = MF.end();
- I != E; ++I)
- MadeChange |= ProcessBlock(*I);
- // If this iteration over the code changed anything, keep iterating.
- if (!MadeChange) break;
- EverMadeChange = true;
- }
- return EverMadeChange;
- }
- bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
- // Can't sink anything out of a block that has less than two successors.
- if (MBB.succ_size() <= 1 || MBB.empty()) return false;
- // Don't bother sinking code out of unreachable blocks. In addition to being
- // unprofitable, it can also lead to infinite looping, because in an
- // unreachable loop there may be nowhere to stop.
- if (!DT->isReachableFromEntry(&MBB)) return false;
- bool MadeChange = false;
- // Walk the basic block bottom-up. Remember if we saw a store.
- MachineBasicBlock::iterator I = MBB.end();
- --I;
- bool ProcessedBegin, SawStore = false;
- do {
- MachineInstr *MI = I; // The instruction to sink.
- // Predecrement I (if it's not begin) so that it isn't invalidated by
- // sinking.
- ProcessedBegin = I == MBB.begin();
- if (!ProcessedBegin)
- --I;
- if (MI->isDebugValue())
- continue;
- if (PerformTrivialForwardCoalescing(MI, &MBB))
- continue;
- if (SinkInstruction(MI, SawStore))
- ++NumSunk, MadeChange = true;
- // If we just processed the first instruction in the block, we're done.
- } while (!ProcessedBegin);
- return MadeChange;
- }
- bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
- MachineBasicBlock *From,
- MachineBasicBlock *To) {
- // FIXME: Need much better heuristics.
- // If the pass has already considered breaking this edge (during this pass
- // through the function), then let's go ahead and break it. This means
- // sinking multiple "cheap" instructions into the same block.
- if (!CEBCandidates.insert(std::make_pair(From, To)))
- return true;
- if (!MI->isCopy() && !MI->getDesc().isAsCheapAsAMove())
- return true;
- // MI is cheap, we probably don't want to break the critical edge for it.
- // However, if this would allow some definitions of its source operands
- // to be sunk then it's probably worth it.
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg()) continue;
- unsigned Reg = MO.getReg();
- if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg))
- continue;
- if (MRI->hasOneNonDBGUse(Reg))
- return true;
- }
- return false;
- }
- MachineBasicBlock *MachineSinking::SplitCriticalEdge(MachineInstr *MI,
- MachineBasicBlock *FromBB,
- MachineBasicBlock *ToBB,
- bool BreakPHIEdge) {
- if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
- return 0;
- // Avoid breaking back edge. From == To means backedge for single BB loop.
- if (!SplitEdges || FromBB == ToBB)
- return 0;
- // Check for backedges of more "complex" loops.
- if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
- LI->isLoopHeader(ToBB))
- return 0;
- // It's not always legal to break critical edges and sink the computation
- // to the edge.
- //
- // BB#1:
- // v1024
- // Beq BB#3
- // <fallthrough>
- // BB#2:
- // ... no uses of v1024
- // <fallthrough>
- // BB#3:
- // ...
- // = v1024
- //
- // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
- //
- // BB#1:
- // ...
- // Bne BB#2
- // BB#4:
- // v1024 =
- // B BB#3
- // BB#2:
- // ... no uses of v1024
- // <fallthrough>
- // BB#3:
- // ...
- // = v1024
- //
- // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
- // flow. We need to ensure the new basic block where the computation is
- // sunk to dominates all the uses.
- // It's only legal to break critical edge and sink the computation to the
- // new block if all the predecessors of "To", except for "From", are
- // not dominated by "From". Given SSA property, this means these
- // predecessors are dominated by "To".
- //
- // There is no need to do this check if all the uses are PHI nodes. PHI
- // sources are only defined on the specific predecessor edges.
- if (!BreakPHIEdge) {
- for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
- E = ToBB->pred_end(); PI != E; ++PI) {
- if (*PI == FromBB)
- continue;
- if (!DT->dominates(ToBB, *PI))
- return 0;
- }
- }
- return FromBB->SplitCriticalEdge(ToBB, this);
- }
- static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
- return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence();
- }
- /// SinkInstruction - Determine whether it is safe to sink the specified machine
- /// instruction out of its current block into a successor.
- bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
- // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
- // be close to the source to make it easier to coalesce.
- if (AvoidsSinking(MI, MRI))
- return false;
- // Check if it's safe to move the instruction.
- if (!MI->isSafeToMove(TII, AA, SawStore))
- return false;
- // FIXME: This should include support for sinking instructions within the
- // block they are currently in to shorten the live ranges. We often get
- // instructions sunk into the top of a large block, but it would be better to
- // also sink them down before their first use in the block. This xform has to
- // be careful not to *increase* register pressure though, e.g. sinking
- // "x = y + z" down if it kills y and z would increase the live ranges of y
- // and z and only shrink the live range of x.
- // Loop over all the operands of the specified instruction. If there is
- // anything we can't handle, bail out.
- MachineBasicBlock *ParentBlock = MI->getParent();
- // SuccToSinkTo - This is the successor to sink this instruction to, once we
- // decide.
- MachineBasicBlock *SuccToSinkTo = 0;
- bool BreakPHIEdge = false;
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg()) continue; // Ignore non-register operands.
- unsigned Reg = MO.getReg();
- if (Reg == 0) continue;
- if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
- if (MO.isUse()) {
- // If the physreg has no defs anywhere, it's just an ambient register
- // and we can freely move its uses. Alternatively, if it's allocatable,
- // it could get allocated to something with a def during allocation.
- if (!MRI->def_empty(Reg))
- return false;
- if (AllocatableSet.test(Reg))
- return false;
- // Check for a def among the register's aliases too.
- for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
- unsigned AliasReg = *Alias;
- if (!MRI->def_empty(AliasReg))
- return false;
- if (AllocatableSet.test(AliasReg))
- return false;
- }
- } else if (!MO.isDead()) {
- // A def that isn't dead. We can't move it.
- return false;
- }
- } else {
- // Virtual register uses are always safe to sink.
- if (MO.isUse()) continue;
- // If it's not safe to move defs of the register class, then abort.
- if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
- return false;
- // FIXME: This picks a successor to sink into based on having one
- // successor that dominates all the uses. However, there are cases where
- // sinking can happen but where the sink point isn't a successor. For
- // example:
- //
- // x = computation
- // if () {} else {}
- // use x
- //
- // the instruction could be sunk over the whole diamond for the
- // if/then/else (or loop, etc), allowing it to be sunk into other blocks
- // after that.
- // Virtual register defs can only be sunk if all their uses are in blocks
- // dominated by one of the successors.
- if (SuccToSinkTo) {
- // If a previous operand picked a block to sink to, then this operand
- // must be sinkable to the same block.
- bool LocalUse = false;
- if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, ParentBlock,
- BreakPHIEdge, LocalUse))
- return false;
- continue;
- }
- // Otherwise, we should look at all the successors and decide which one
- // we should sink to.
- for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
- E = ParentBlock->succ_end(); SI != E; ++SI) {
- bool LocalUse = false;
- if (AllUsesDominatedByBlock(Reg, *SI, ParentBlock,
- BreakPHIEdge, LocalUse)) {
- SuccToSinkTo = *SI;
- break;
- }
- if (LocalUse)
- // Def is used locally, it's never safe to move this def.
- return false;
- }
- // If we couldn't find a block to sink to, ignore this instruction.
- if (SuccToSinkTo == 0)
- return false;
- }
- }
- // If there are no outputs, it must have side-effects.
- if (SuccToSinkTo == 0)
- return false;
- // It's not safe to sink instructions to EH landing pad. Control flow into
- // landing pad is implicitly defined.
- if (SuccToSinkTo->isLandingPad())
- return false;
- // It is not possible to sink an instruction into its own block. This can
- // happen with loops.
- if (MI->getParent() == SuccToSinkTo)
- return false;
- // If the instruction to move defines a dead physical register which is live
- // when leaving the basic block, don't move it because it could turn into a
- // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
- for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
- const MachineOperand &MO = MI->getOperand(I);
- if (!MO.isReg()) continue;
- unsigned Reg = MO.getReg();
- if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
- if (SuccToSinkTo->isLiveIn(Reg))
- return false;
- }
- DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
- // If the block has multiple predecessors, this would introduce computation on
- // a path that it doesn't already exist. We could split the critical edge,
- // but for now we just punt.
- if (SuccToSinkTo->pred_size() > 1) {
- // We cannot sink a load across a critical edge - there may be stores in
- // other code paths.
- bool TryBreak = false;
- bool store = true;
- if (!MI->isSafeToMove(TII, AA, store)) {
- DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
- TryBreak = true;
- }
- // We don't want to sink across a critical edge if we don't dominate the
- // successor. We could be introducing calculations to new code paths.
- if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
- DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
- TryBreak = true;
- }
- // Don't sink instructions into a loop.
- if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
- DEBUG(dbgs() << " *** NOTE: Loop header found\n");
- TryBreak = true;
- }
- // Otherwise we are OK with sinking along a critical edge.
- if (!TryBreak)
- DEBUG(dbgs() << "Sinking along critical edge.\n");
- else {
- MachineBasicBlock *NewSucc =
- SplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
- if (!NewSucc) {
- DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
- "break critical edge\n");
- return false;
- } else {
- DEBUG(dbgs() << " *** Splitting critical edge:"
- " BB#" << ParentBlock->getNumber()
- << " -- BB#" << NewSucc->getNumber()
- << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
- SuccToSinkTo = NewSucc;
- ++NumSplit;
- BreakPHIEdge = false;
- }
- }
- }
- if (BreakPHIEdge) {
- // BreakPHIEdge is true if all the uses are in the successor MBB being
- // sunken into and they are all PHI nodes. In this case, machine-sink must
- // break the critical edge first.
- MachineBasicBlock *NewSucc = SplitCriticalEdge(MI, ParentBlock,
- SuccToSinkTo, BreakPHIEdge);
- if (!NewSucc) {
- DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
- "break critical edge\n");
- return false;
- }
- DEBUG(dbgs() << " *** Splitting critical edge:"
- " BB#" << ParentBlock->getNumber()
- << " -- BB#" << NewSucc->getNumber()
- << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
- SuccToSinkTo = NewSucc;
- ++NumSplit;
- }
- // Determine where to insert into. Skip phi nodes.
- MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
- while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
- ++InsertPos;
- // Move the instruction.
- SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
- ++MachineBasicBlock::iterator(MI));
- // Conservatively, clear any kill flags, since it's possible that they are no
- // longer correct.
- MI->clearKillInfo();
- return true;
- }
|