1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164 |
- //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
- // stores that can be put together into vector-stores. Next, it attempts to
- // construct vectorizable tree using the use-def chains. If a profitable tree
- // was found, the SLP vectorizer performs vectorization on the tree.
- //
- // The pass is inspired by the work described in the paper:
- // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/CodeMetrics.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/LoopAccessAnalysis.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/NoFolder.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/Verifier.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/GraphWriter.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Vectorize.h"
- #include <algorithm>
- #include <memory>
- using namespace llvm;
- using namespace slpvectorizer;
- #define SV_NAME "slp-vectorizer"
- #define DEBUG_TYPE "SLP"
- STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
- static cl::opt<int>
- SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
- cl::desc("Only vectorize if you gain more than this "
- "number "));
- static cl::opt<bool>
- ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
- cl::desc("Attempt to vectorize horizontal reductions"));
- static cl::opt<bool> ShouldStartVectorizeHorAtStore(
- "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
- cl::desc(
- "Attempt to vectorize horizontal reductions feeding into a store"));
- static cl::opt<int>
- MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
- cl::desc("Attempt to vectorize for this register size in bits"));
- /// Limits the size of scheduling regions in a block.
- /// It avoid long compile times for _very_ large blocks where vector
- /// instructions are spread over a wide range.
- /// This limit is way higher than needed by real-world functions.
- static cl::opt<int>
- ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
- cl::desc("Limit the size of the SLP scheduling region per block"));
- static cl::opt<int> MinVectorRegSizeOption(
- "slp-min-reg-size", cl::init(128), cl::Hidden,
- cl::desc("Attempt to vectorize for this register size in bits"));
- static cl::opt<unsigned> RecursionMaxDepth(
- "slp-recursion-max-depth", cl::init(12), cl::Hidden,
- cl::desc("Limit the recursion depth when building a vectorizable tree"));
- static cl::opt<unsigned> MinTreeSize(
- "slp-min-tree-size", cl::init(3), cl::Hidden,
- cl::desc("Only vectorize small trees if they are fully vectorizable"));
- static cl::opt<bool>
- ViewSLPTree("view-slp-tree", cl::Hidden,
- cl::desc("Display the SLP trees with Graphviz"));
- // Limit the number of alias checks. The limit is chosen so that
- // it has no negative effect on the llvm benchmarks.
- static const unsigned AliasedCheckLimit = 10;
- // Another limit for the alias checks: The maximum distance between load/store
- // instructions where alias checks are done.
- // This limit is useful for very large basic blocks.
- static const unsigned MaxMemDepDistance = 160;
- /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
- /// regions to be handled.
- static const int MinScheduleRegionSize = 16;
- /// \brief Predicate for the element types that the SLP vectorizer supports.
- ///
- /// The most important thing to filter here are types which are invalid in LLVM
- /// vectors. We also filter target specific types which have absolutely no
- /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
- /// avoids spending time checking the cost model and realizing that they will
- /// be inevitably scalarized.
- static bool isValidElementType(Type *Ty) {
- return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
- !Ty->isPPC_FP128Ty();
- }
- /// \returns true if all of the instructions in \p VL are in the same block or
- /// false otherwise.
- static bool allSameBlock(ArrayRef<Value *> VL) {
- Instruction *I0 = dyn_cast<Instruction>(VL[0]);
- if (!I0)
- return false;
- BasicBlock *BB = I0->getParent();
- for (int i = 1, e = VL.size(); i < e; i++) {
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- if (!I)
- return false;
- if (BB != I->getParent())
- return false;
- }
- return true;
- }
- /// \returns True if all of the values in \p VL are constants.
- static bool allConstant(ArrayRef<Value *> VL) {
- for (Value *i : VL)
- if (!isa<Constant>(i))
- return false;
- return true;
- }
- /// \returns True if all of the values in \p VL are identical.
- static bool isSplat(ArrayRef<Value *> VL) {
- for (unsigned i = 1, e = VL.size(); i < e; ++i)
- if (VL[i] != VL[0])
- return false;
- return true;
- }
- ///\returns Opcode that can be clubbed with \p Op to create an alternate
- /// sequence which can later be merged as a ShuffleVector instruction.
- static unsigned getAltOpcode(unsigned Op) {
- switch (Op) {
- case Instruction::FAdd:
- return Instruction::FSub;
- case Instruction::FSub:
- return Instruction::FAdd;
- case Instruction::Add:
- return Instruction::Sub;
- case Instruction::Sub:
- return Instruction::Add;
- default:
- return 0;
- }
- }
- /// true if the \p Value is odd, false otherwise.
- static bool isOdd(unsigned Value) {
- return Value & 1;
- }
- ///\returns bool representing if Opcode \p Op can be part
- /// of an alternate sequence which can later be merged as
- /// a ShuffleVector instruction.
- static bool canCombineAsAltInst(unsigned Op) {
- return Op == Instruction::FAdd || Op == Instruction::FSub ||
- Op == Instruction::Sub || Op == Instruction::Add;
- }
- /// \returns ShuffleVector instruction if instructions in \p VL have
- /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence.
- /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...)
- static unsigned isAltInst(ArrayRef<Value *> VL) {
- Instruction *I0 = dyn_cast<Instruction>(VL[0]);
- unsigned Opcode = I0->getOpcode();
- unsigned AltOpcode = getAltOpcode(Opcode);
- for (int i = 1, e = VL.size(); i < e; i++) {
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- if (!I || I->getOpcode() != (isOdd(i) ? AltOpcode : Opcode))
- return 0;
- }
- return Instruction::ShuffleVector;
- }
- /// \returns The opcode if all of the Instructions in \p VL have the same
- /// opcode, or zero.
- static unsigned getSameOpcode(ArrayRef<Value *> VL) {
- Instruction *I0 = dyn_cast<Instruction>(VL[0]);
- if (!I0)
- return 0;
- unsigned Opcode = I0->getOpcode();
- for (int i = 1, e = VL.size(); i < e; i++) {
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- if (!I || Opcode != I->getOpcode()) {
- if (canCombineAsAltInst(Opcode) && i == 1)
- return isAltInst(VL);
- return 0;
- }
- }
- return Opcode;
- }
- /// \returns true if all of the values in \p VL have the same type or false
- /// otherwise.
- static bool allSameType(ArrayRef<Value *> VL) {
- Type *Ty = VL[0]->getType();
- for (int i = 1, e = VL.size(); i < e; i++)
- if (VL[i]->getType() != Ty)
- return false;
- return true;
- }
- /// \returns True if Extract{Value,Element} instruction extracts element Idx.
- static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) {
- assert(Opcode == Instruction::ExtractElement ||
- Opcode == Instruction::ExtractValue);
- if (Opcode == Instruction::ExtractElement) {
- ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
- return CI && CI->getZExtValue() == Idx;
- } else {
- ExtractValueInst *EI = cast<ExtractValueInst>(E);
- return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx;
- }
- }
- /// \returns True if in-tree use also needs extract. This refers to
- /// possible scalar operand in vectorized instruction.
- static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
- TargetLibraryInfo *TLI) {
- unsigned Opcode = UserInst->getOpcode();
- switch (Opcode) {
- case Instruction::Load: {
- LoadInst *LI = cast<LoadInst>(UserInst);
- return (LI->getPointerOperand() == Scalar);
- }
- case Instruction::Store: {
- StoreInst *SI = cast<StoreInst>(UserInst);
- return (SI->getPointerOperand() == Scalar);
- }
- case Instruction::Call: {
- CallInst *CI = cast<CallInst>(UserInst);
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- if (hasVectorInstrinsicScalarOpd(ID, 1)) {
- return (CI->getArgOperand(1) == Scalar);
- }
- LLVM_FALLTHROUGH;
- }
- default:
- return false;
- }
- }
- /// \returns the AA location that is being access by the instruction.
- static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return MemoryLocation::get(SI);
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return MemoryLocation::get(LI);
- return MemoryLocation();
- }
- /// \returns True if the instruction is not a volatile or atomic load/store.
- static bool isSimple(Instruction *I) {
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return LI->isSimple();
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return SI->isSimple();
- if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
- return !MI->isVolatile();
- return true;
- }
- namespace llvm {
- namespace slpvectorizer {
- /// Bottom Up SLP Vectorizer.
- class BoUpSLP {
- public:
- typedef SmallVector<Value *, 8> ValueList;
- typedef SmallVector<Instruction *, 16> InstrList;
- typedef SmallPtrSet<Value *, 16> ValueSet;
- typedef SmallVector<StoreInst *, 8> StoreList;
- typedef MapVector<Value *, SmallVector<Instruction *, 2>>
- ExtraValueToDebugLocsMap;
- BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
- TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
- DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
- const DataLayout *DL, OptimizationRemarkEmitter *ORE)
- : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func),
- SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB),
- DL(DL), ORE(ORE), Builder(Se->getContext()) {
- CodeMetrics::collectEphemeralValues(F, AC, EphValues);
- // Use the vector register size specified by the target unless overridden
- // by a command-line option.
- // TODO: It would be better to limit the vectorization factor based on
- // data type rather than just register size. For example, x86 AVX has
- // 256-bit registers, but it does not support integer operations
- // at that width (that requires AVX2).
- if (MaxVectorRegSizeOption.getNumOccurrences())
- MaxVecRegSize = MaxVectorRegSizeOption;
- else
- MaxVecRegSize = TTI->getRegisterBitWidth(true);
- if (MinVectorRegSizeOption.getNumOccurrences())
- MinVecRegSize = MinVectorRegSizeOption;
- else
- MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
- }
- /// \brief Vectorize the tree that starts with the elements in \p VL.
- /// Returns the vectorized root.
- Value *vectorizeTree();
- /// Vectorize the tree but with the list of externally used values \p
- /// ExternallyUsedValues. Values in this MapVector can be replaced but the
- /// generated extractvalue instructions.
- Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
- /// \returns the cost incurred by unwanted spills and fills, caused by
- /// holding live values over call sites.
- int getSpillCost();
- /// \returns the vectorization cost of the subtree that starts at \p VL.
- /// A negative number means that this is profitable.
- int getTreeCost();
- /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
- /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
- void buildTree(ArrayRef<Value *> Roots,
- ArrayRef<Value *> UserIgnoreLst = None);
- /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
- /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
- /// into account (anf updating it, if required) list of externally used
- /// values stored in \p ExternallyUsedValues.
- void buildTree(ArrayRef<Value *> Roots,
- ExtraValueToDebugLocsMap &ExternallyUsedValues,
- ArrayRef<Value *> UserIgnoreLst = None);
- /// Clear the internal data structures that are created by 'buildTree'.
- void deleteTree() {
- VectorizableTree.clear();
- ScalarToTreeEntry.clear();
- MustGather.clear();
- ExternalUses.clear();
- NumLoadsWantToKeepOrder = 0;
- NumLoadsWantToChangeOrder = 0;
- for (auto &Iter : BlocksSchedules) {
- BlockScheduling *BS = Iter.second.get();
- BS->clear();
- }
- MinBWs.clear();
- }
- unsigned getTreeSize() const { return VectorizableTree.size(); }
- /// \brief Perform LICM and CSE on the newly generated gather sequences.
- void optimizeGatherSequence();
- /// \returns true if it is beneficial to reverse the vector order.
- bool shouldReorder() const {
- return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
- }
- /// \return The vector element size in bits to use when vectorizing the
- /// expression tree ending at \p V. If V is a store, the size is the width of
- /// the stored value. Otherwise, the size is the width of the largest loaded
- /// value reaching V. This method is used by the vectorizer to calculate
- /// vectorization factors.
- unsigned getVectorElementSize(Value *V);
- /// Compute the minimum type sizes required to represent the entries in a
- /// vectorizable tree.
- void computeMinimumValueSizes();
- // \returns maximum vector register size as set by TTI or overridden by cl::opt.
- unsigned getMaxVecRegSize() const {
- return MaxVecRegSize;
- }
- // \returns minimum vector register size as set by cl::opt.
- unsigned getMinVecRegSize() const {
- return MinVecRegSize;
- }
- /// \brief Check if ArrayType or StructType is isomorphic to some VectorType.
- ///
- /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
- unsigned canMapToVector(Type *T, const DataLayout &DL) const;
- /// \returns True if the VectorizableTree is both tiny and not fully
- /// vectorizable. We do not vectorize such trees.
- bool isTreeTinyAndNotFullyVectorizable();
- OptimizationRemarkEmitter *getORE() { return ORE; }
- private:
- struct TreeEntry;
- /// Checks if all users of \p I are the part of the vectorization tree.
- bool areAllUsersVectorized(Instruction *I) const;
- /// \returns the cost of the vectorizable entry.
- int getEntryCost(TreeEntry *E);
- /// This is the recursive part of buildTree.
- void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int);
- /// \returns True if the ExtractElement/ExtractValue instructions in VL can
- /// be vectorized to use the original vector (or aggregate "bitcast" to a vector).
- bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const;
- /// Vectorize a single entry in the tree.
- Value *vectorizeTree(TreeEntry *E);
- /// Vectorize a single entry in the tree, starting in \p VL.
- Value *vectorizeTree(ArrayRef<Value *> VL);
- /// \returns the pointer to the vectorized value if \p VL is already
- /// vectorized, or NULL. They may happen in cycles.
- Value *alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const;
- /// \returns the scalarization cost for this type. Scalarization in this
- /// context means the creation of vectors from a group of scalars.
- int getGatherCost(Type *Ty);
- /// \returns the scalarization cost for this list of values. Assuming that
- /// this subtree gets vectorized, we may need to extract the values from the
- /// roots. This method calculates the cost of extracting the values.
- int getGatherCost(ArrayRef<Value *> VL);
- /// \brief Set the Builder insert point to one after the last instruction in
- /// the bundle
- void setInsertPointAfterBundle(ArrayRef<Value *> VL);
- /// \returns a vector from a collection of scalars in \p VL.
- Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
- /// \returns whether the VectorizableTree is fully vectorizable and will
- /// be beneficial even the tree height is tiny.
- bool isFullyVectorizableTinyTree();
- /// \reorder commutative operands in alt shuffle if they result in
- /// vectorized code.
- void reorderAltShuffleOperands(ArrayRef<Value *> VL,
- SmallVectorImpl<Value *> &Left,
- SmallVectorImpl<Value *> &Right);
- /// \reorder commutative operands to get better probability of
- /// generating vectorized code.
- void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
- SmallVectorImpl<Value *> &Left,
- SmallVectorImpl<Value *> &Right);
- struct TreeEntry {
- TreeEntry(std::vector<TreeEntry> &Container)
- : Scalars(), VectorizedValue(nullptr), NeedToGather(0),
- Container(Container) {}
- /// \returns true if the scalars in VL are equal to this entry.
- bool isSame(ArrayRef<Value *> VL) const {
- assert(VL.size() == Scalars.size() && "Invalid size");
- return std::equal(VL.begin(), VL.end(), Scalars.begin());
- }
- /// A vector of scalars.
- ValueList Scalars;
- /// The Scalars are vectorized into this value. It is initialized to Null.
- Value *VectorizedValue;
- /// Do we need to gather this sequence ?
- bool NeedToGather;
- /// Points back to the VectorizableTree.
- ///
- /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
- /// to be a pointer and needs to be able to initialize the child iterator.
- /// Thus we need a reference back to the container to translate the indices
- /// to entries.
- std::vector<TreeEntry> &Container;
- /// The TreeEntry index containing the user of this entry. We can actually
- /// have multiple users so the data structure is not truly a tree.
- SmallVector<int, 1> UserTreeIndices;
- };
- /// Create a new VectorizableTree entry.
- TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized,
- int &UserTreeIdx) {
- VectorizableTree.emplace_back(VectorizableTree);
- int idx = VectorizableTree.size() - 1;
- TreeEntry *Last = &VectorizableTree[idx];
- Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
- Last->NeedToGather = !Vectorized;
- if (Vectorized) {
- for (int i = 0, e = VL.size(); i != e; ++i) {
- assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
- ScalarToTreeEntry[VL[i]] = idx;
- }
- } else {
- MustGather.insert(VL.begin(), VL.end());
- }
- if (UserTreeIdx >= 0)
- Last->UserTreeIndices.push_back(UserTreeIdx);
- UserTreeIdx = idx;
- return Last;
- }
- /// -- Vectorization State --
- /// Holds all of the tree entries.
- std::vector<TreeEntry> VectorizableTree;
- TreeEntry *getTreeEntry(Value *V) {
- auto I = ScalarToTreeEntry.find(V);
- if (I != ScalarToTreeEntry.end())
- return &VectorizableTree[I->second];
- return nullptr;
- }
- const TreeEntry *getTreeEntry(Value *V) const {
- auto I = ScalarToTreeEntry.find(V);
- if (I != ScalarToTreeEntry.end())
- return &VectorizableTree[I->second];
- return nullptr;
- }
- /// Maps a specific scalar to its tree entry.
- SmallDenseMap<Value*, int> ScalarToTreeEntry;
- /// A list of scalars that we found that we need to keep as scalars.
- ValueSet MustGather;
- /// This POD struct describes one external user in the vectorized tree.
- struct ExternalUser {
- ExternalUser (Value *S, llvm::User *U, int L) :
- Scalar(S), User(U), Lane(L){}
- // Which scalar in our function.
- Value *Scalar;
- // Which user that uses the scalar.
- llvm::User *User;
- // Which lane does the scalar belong to.
- int Lane;
- };
- typedef SmallVector<ExternalUser, 16> UserList;
- /// Checks if two instructions may access the same memory.
- ///
- /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
- /// is invariant in the calling loop.
- bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
- Instruction *Inst2) {
- // First check if the result is already in the cache.
- AliasCacheKey key = std::make_pair(Inst1, Inst2);
- Optional<bool> &result = AliasCache[key];
- if (result.hasValue()) {
- return result.getValue();
- }
- MemoryLocation Loc2 = getLocation(Inst2, AA);
- bool aliased = true;
- if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
- // Do the alias check.
- aliased = AA->alias(Loc1, Loc2);
- }
- // Store the result in the cache.
- result = aliased;
- return aliased;
- }
- typedef std::pair<Instruction *, Instruction *> AliasCacheKey;
- /// Cache for alias results.
- /// TODO: consider moving this to the AliasAnalysis itself.
- DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
- /// Removes an instruction from its block and eventually deletes it.
- /// It's like Instruction::eraseFromParent() except that the actual deletion
- /// is delayed until BoUpSLP is destructed.
- /// This is required to ensure that there are no incorrect collisions in the
- /// AliasCache, which can happen if a new instruction is allocated at the
- /// same address as a previously deleted instruction.
- void eraseInstruction(Instruction *I) {
- I->removeFromParent();
- I->dropAllReferences();
- DeletedInstructions.emplace_back(I);
- }
- /// Temporary store for deleted instructions. Instructions will be deleted
- /// eventually when the BoUpSLP is destructed.
- SmallVector<unique_value, 8> DeletedInstructions;
- /// A list of values that need to extracted out of the tree.
- /// This list holds pairs of (Internal Scalar : External User). External User
- /// can be nullptr, it means that this Internal Scalar will be used later,
- /// after vectorization.
- UserList ExternalUses;
- /// Values used only by @llvm.assume calls.
- SmallPtrSet<const Value *, 32> EphValues;
- /// Holds all of the instructions that we gathered.
- SetVector<Instruction *> GatherSeq;
- /// A list of blocks that we are going to CSE.
- SetVector<BasicBlock *> CSEBlocks;
- /// Contains all scheduling relevant data for an instruction.
- /// A ScheduleData either represents a single instruction or a member of an
- /// instruction bundle (= a group of instructions which is combined into a
- /// vector instruction).
- struct ScheduleData {
- // The initial value for the dependency counters. It means that the
- // dependencies are not calculated yet.
- enum { InvalidDeps = -1 };
- ScheduleData()
- : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr),
- NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0),
- Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps),
- UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {}
- void init(int BlockSchedulingRegionID) {
- FirstInBundle = this;
- NextInBundle = nullptr;
- NextLoadStore = nullptr;
- IsScheduled = false;
- SchedulingRegionID = BlockSchedulingRegionID;
- UnscheduledDepsInBundle = UnscheduledDeps;
- clearDependencies();
- }
- /// Returns true if the dependency information has been calculated.
- bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
- /// Returns true for single instructions and for bundle representatives
- /// (= the head of a bundle).
- bool isSchedulingEntity() const { return FirstInBundle == this; }
- /// Returns true if it represents an instruction bundle and not only a
- /// single instruction.
- bool isPartOfBundle() const {
- return NextInBundle != nullptr || FirstInBundle != this;
- }
- /// Returns true if it is ready for scheduling, i.e. it has no more
- /// unscheduled depending instructions/bundles.
- bool isReady() const {
- assert(isSchedulingEntity() &&
- "can't consider non-scheduling entity for ready list");
- return UnscheduledDepsInBundle == 0 && !IsScheduled;
- }
- /// Modifies the number of unscheduled dependencies, also updating it for
- /// the whole bundle.
- int incrementUnscheduledDeps(int Incr) {
- UnscheduledDeps += Incr;
- return FirstInBundle->UnscheduledDepsInBundle += Incr;
- }
- /// Sets the number of unscheduled dependencies to the number of
- /// dependencies.
- void resetUnscheduledDeps() {
- incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
- }
- /// Clears all dependency information.
- void clearDependencies() {
- Dependencies = InvalidDeps;
- resetUnscheduledDeps();
- MemoryDependencies.clear();
- }
- void dump(raw_ostream &os) const {
- if (!isSchedulingEntity()) {
- os << "/ " << *Inst;
- } else if (NextInBundle) {
- os << '[' << *Inst;
- ScheduleData *SD = NextInBundle;
- while (SD) {
- os << ';' << *SD->Inst;
- SD = SD->NextInBundle;
- }
- os << ']';
- } else {
- os << *Inst;
- }
- }
- Instruction *Inst;
- /// Points to the head in an instruction bundle (and always to this for
- /// single instructions).
- ScheduleData *FirstInBundle;
- /// Single linked list of all instructions in a bundle. Null if it is a
- /// single instruction.
- ScheduleData *NextInBundle;
- /// Single linked list of all memory instructions (e.g. load, store, call)
- /// in the block - until the end of the scheduling region.
- ScheduleData *NextLoadStore;
- /// The dependent memory instructions.
- /// This list is derived on demand in calculateDependencies().
- SmallVector<ScheduleData *, 4> MemoryDependencies;
- /// This ScheduleData is in the current scheduling region if this matches
- /// the current SchedulingRegionID of BlockScheduling.
- int SchedulingRegionID;
- /// Used for getting a "good" final ordering of instructions.
- int SchedulingPriority;
- /// The number of dependencies. Constitutes of the number of users of the
- /// instruction plus the number of dependent memory instructions (if any).
- /// This value is calculated on demand.
- /// If InvalidDeps, the number of dependencies is not calculated yet.
- ///
- int Dependencies;
- /// The number of dependencies minus the number of dependencies of scheduled
- /// instructions. As soon as this is zero, the instruction/bundle gets ready
- /// for scheduling.
- /// Note that this is negative as long as Dependencies is not calculated.
- int UnscheduledDeps;
- /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
- /// single instructions.
- int UnscheduledDepsInBundle;
- /// True if this instruction is scheduled (or considered as scheduled in the
- /// dry-run).
- bool IsScheduled;
- };
- #ifndef NDEBUG
- friend inline raw_ostream &operator<<(raw_ostream &os,
- const BoUpSLP::ScheduleData &SD) {
- SD.dump(os);
- return os;
- }
- #endif
- friend struct GraphTraits<BoUpSLP *>;
- friend struct DOTGraphTraits<BoUpSLP *>;
- /// Contains all scheduling data for a basic block.
- ///
- struct BlockScheduling {
- BlockScheduling(BasicBlock *BB)
- : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize),
- ScheduleStart(nullptr), ScheduleEnd(nullptr),
- FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr),
- ScheduleRegionSize(0),
- ScheduleRegionSizeLimit(ScheduleRegionSizeBudget),
- // Make sure that the initial SchedulingRegionID is greater than the
- // initial SchedulingRegionID in ScheduleData (which is 0).
- SchedulingRegionID(1) {}
- void clear() {
- ReadyInsts.clear();
- ScheduleStart = nullptr;
- ScheduleEnd = nullptr;
- FirstLoadStoreInRegion = nullptr;
- LastLoadStoreInRegion = nullptr;
- // Reduce the maximum schedule region size by the size of the
- // previous scheduling run.
- ScheduleRegionSizeLimit -= ScheduleRegionSize;
- if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
- ScheduleRegionSizeLimit = MinScheduleRegionSize;
- ScheduleRegionSize = 0;
- // Make a new scheduling region, i.e. all existing ScheduleData is not
- // in the new region yet.
- ++SchedulingRegionID;
- }
- ScheduleData *getScheduleData(Value *V) {
- ScheduleData *SD = ScheduleDataMap[V];
- if (SD && SD->SchedulingRegionID == SchedulingRegionID)
- return SD;
- return nullptr;
- }
- bool isInSchedulingRegion(ScheduleData *SD) {
- return SD->SchedulingRegionID == SchedulingRegionID;
- }
- /// Marks an instruction as scheduled and puts all dependent ready
- /// instructions into the ready-list.
- template <typename ReadyListType>
- void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
- SD->IsScheduled = true;
- DEBUG(dbgs() << "SLP: schedule " << *SD << "\n");
- ScheduleData *BundleMember = SD;
- while (BundleMember) {
- // Handle the def-use chain dependencies.
- for (Use &U : BundleMember->Inst->operands()) {
- ScheduleData *OpDef = getScheduleData(U.get());
- if (OpDef && OpDef->hasValidDependencies() &&
- OpDef->incrementUnscheduledDeps(-1) == 0) {
- // There are no more unscheduled dependencies after decrementing,
- // so we can put the dependent instruction into the ready list.
- ScheduleData *DepBundle = OpDef->FirstInBundle;
- assert(!DepBundle->IsScheduled &&
- "already scheduled bundle gets ready");
- ReadyList.insert(DepBundle);
- DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n");
- }
- }
- // Handle the memory dependencies.
- for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
- if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
- // There are no more unscheduled dependencies after decrementing,
- // so we can put the dependent instruction into the ready list.
- ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
- assert(!DepBundle->IsScheduled &&
- "already scheduled bundle gets ready");
- ReadyList.insert(DepBundle);
- DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n");
- }
- }
- BundleMember = BundleMember->NextInBundle;
- }
- }
- /// Put all instructions into the ReadyList which are ready for scheduling.
- template <typename ReadyListType>
- void initialFillReadyList(ReadyListType &ReadyList) {
- for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
- ScheduleData *SD = getScheduleData(I);
- if (SD->isSchedulingEntity() && SD->isReady()) {
- ReadyList.insert(SD);
- DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n");
- }
- }
- }
- /// Checks if a bundle of instructions can be scheduled, i.e. has no
- /// cyclic dependencies. This is only a dry-run, no instructions are
- /// actually moved at this stage.
- bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, Value *OpValue);
- /// Un-bundles a group of instructions.
- void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
- /// Extends the scheduling region so that V is inside the region.
- /// \returns true if the region size is within the limit.
- bool extendSchedulingRegion(Value *V);
- /// Initialize the ScheduleData structures for new instructions in the
- /// scheduling region.
- void initScheduleData(Instruction *FromI, Instruction *ToI,
- ScheduleData *PrevLoadStore,
- ScheduleData *NextLoadStore);
- /// Updates the dependency information of a bundle and of all instructions/
- /// bundles which depend on the original bundle.
- void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
- BoUpSLP *SLP);
- /// Sets all instruction in the scheduling region to un-scheduled.
- void resetSchedule();
- BasicBlock *BB;
- /// Simple memory allocation for ScheduleData.
- std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
- /// The size of a ScheduleData array in ScheduleDataChunks.
- int ChunkSize;
- /// The allocator position in the current chunk, which is the last entry
- /// of ScheduleDataChunks.
- int ChunkPos;
- /// Attaches ScheduleData to Instruction.
- /// Note that the mapping survives during all vectorization iterations, i.e.
- /// ScheduleData structures are recycled.
- DenseMap<Value *, ScheduleData *> ScheduleDataMap;
- struct ReadyList : SmallVector<ScheduleData *, 8> {
- void insert(ScheduleData *SD) { push_back(SD); }
- };
- /// The ready-list for scheduling (only used for the dry-run).
- ReadyList ReadyInsts;
- /// The first instruction of the scheduling region.
- Instruction *ScheduleStart;
- /// The first instruction _after_ the scheduling region.
- Instruction *ScheduleEnd;
- /// The first memory accessing instruction in the scheduling region
- /// (can be null).
- ScheduleData *FirstLoadStoreInRegion;
- /// The last memory accessing instruction in the scheduling region
- /// (can be null).
- ScheduleData *LastLoadStoreInRegion;
- /// The current size of the scheduling region.
- int ScheduleRegionSize;
- /// The maximum size allowed for the scheduling region.
- int ScheduleRegionSizeLimit;
- /// The ID of the scheduling region. For a new vectorization iteration this
- /// is incremented which "removes" all ScheduleData from the region.
- int SchedulingRegionID;
- };
- /// Attaches the BlockScheduling structures to basic blocks.
- MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
- /// Performs the "real" scheduling. Done before vectorization is actually
- /// performed in a basic block.
- void scheduleBlock(BlockScheduling *BS);
- /// List of users to ignore during scheduling and that don't need extracting.
- ArrayRef<Value *> UserIgnoreList;
- // Number of load bundles that contain consecutive loads.
- int NumLoadsWantToKeepOrder;
- // Number of load bundles that contain consecutive loads in reversed order.
- int NumLoadsWantToChangeOrder;
- // Analysis and block reference.
- Function *F;
- ScalarEvolution *SE;
- TargetTransformInfo *TTI;
- TargetLibraryInfo *TLI;
- AliasAnalysis *AA;
- LoopInfo *LI;
- DominatorTree *DT;
- AssumptionCache *AC;
- DemandedBits *DB;
- const DataLayout *DL;
- OptimizationRemarkEmitter *ORE;
- unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
- unsigned MinVecRegSize; // Set by cl::opt (default: 128).
- /// Instruction builder to construct the vectorized tree.
- IRBuilder<> Builder;
- /// A map of scalar integer values to the smallest bit width with which they
- /// can legally be represented. The values map to (width, signed) pairs,
- /// where "width" indicates the minimum bit width and "signed" is True if the
- /// value must be signed-extended, rather than zero-extended, back to its
- /// original width.
- MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
- };
- } // end namespace slpvectorizer
- template <> struct GraphTraits<BoUpSLP *> {
- typedef BoUpSLP::TreeEntry TreeEntry;
- /// NodeRef has to be a pointer per the GraphWriter.
- typedef TreeEntry *NodeRef;
- /// \brief Add the VectorizableTree to the index iterator to be able to return
- /// TreeEntry pointers.
- struct ChildIteratorType
- : public iterator_adaptor_base<ChildIteratorType,
- SmallVector<int, 1>::iterator> {
- std::vector<TreeEntry> &VectorizableTree;
- ChildIteratorType(SmallVector<int, 1>::iterator W,
- std::vector<TreeEntry> &VT)
- : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
- NodeRef operator*() { return &VectorizableTree[*I]; }
- };
- static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; }
- static ChildIteratorType child_begin(NodeRef N) {
- return {N->UserTreeIndices.begin(), N->Container};
- }
- static ChildIteratorType child_end(NodeRef N) {
- return {N->UserTreeIndices.end(), N->Container};
- }
- /// For the node iterator we just need to turn the TreeEntry iterator into a
- /// TreeEntry* iterator so that it dereferences to NodeRef.
- typedef pointer_iterator<std::vector<TreeEntry>::iterator> nodes_iterator;
- static nodes_iterator nodes_begin(BoUpSLP *R) {
- return nodes_iterator(R->VectorizableTree.begin());
- }
- static nodes_iterator nodes_end(BoUpSLP *R) {
- return nodes_iterator(R->VectorizableTree.end());
- }
- static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
- };
- template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
- typedef BoUpSLP::TreeEntry TreeEntry;
- DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
- std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
- std::string Str;
- raw_string_ostream OS(Str);
- if (isSplat(Entry->Scalars)) {
- OS << "<splat> " << *Entry->Scalars[0];
- return Str;
- }
- for (auto V : Entry->Scalars) {
- OS << *V;
- if (std::any_of(
- R->ExternalUses.begin(), R->ExternalUses.end(),
- [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
- OS << " <extract>";
- OS << "\n";
- }
- return Str;
- }
- static std::string getNodeAttributes(const TreeEntry *Entry,
- const BoUpSLP *) {
- if (Entry->NeedToGather)
- return "color=red";
- return "";
- }
- };
- } // end namespace llvm
- void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
- ArrayRef<Value *> UserIgnoreLst) {
- ExtraValueToDebugLocsMap ExternallyUsedValues;
- buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
- }
- void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
- ExtraValueToDebugLocsMap &ExternallyUsedValues,
- ArrayRef<Value *> UserIgnoreLst) {
- deleteTree();
- UserIgnoreList = UserIgnoreLst;
- if (!allSameType(Roots))
- return;
- buildTree_rec(Roots, 0, -1);
- // Collect the values that we need to extract from the tree.
- for (TreeEntry &EIdx : VectorizableTree) {
- TreeEntry *Entry = &EIdx;
- // No need to handle users of gathered values.
- if (Entry->NeedToGather)
- continue;
- // For each lane:
- for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
- Value *Scalar = Entry->Scalars[Lane];
- // Check if the scalar is externally used as an extra arg.
- auto ExtI = ExternallyUsedValues.find(Scalar);
- if (ExtI != ExternallyUsedValues.end()) {
- DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " <<
- Lane << " from " << *Scalar << ".\n");
- ExternalUses.emplace_back(Scalar, nullptr, Lane);
- continue;
- }
- for (User *U : Scalar->users()) {
- DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
- Instruction *UserInst = dyn_cast<Instruction>(U);
- if (!UserInst)
- continue;
- // Skip in-tree scalars that become vectors
- if (TreeEntry *UseEntry = getTreeEntry(U)) {
- Value *UseScalar = UseEntry->Scalars[0];
- // Some in-tree scalars will remain as scalar in vectorized
- // instructions. If that is the case, the one in Lane 0 will
- // be used.
- if (UseScalar != U ||
- !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
- DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
- << ".\n");
- assert(!UseEntry->NeedToGather && "Bad state");
- continue;
- }
- }
- // Ignore users in the user ignore list.
- if (is_contained(UserIgnoreList, UserInst))
- continue;
- DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
- Lane << " from " << *Scalar << ".\n");
- ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
- }
- }
- }
- }
- void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
- int UserTreeIdx) {
- bool isAltShuffle = false;
- assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
- if (Depth == RecursionMaxDepth) {
- DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- // Don't handle vectors.
- if (VL[0]->getType()->isVectorTy()) {
- DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- if (SI->getValueOperand()->getType()->isVectorTy()) {
- DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- unsigned Opcode = getSameOpcode(VL);
- // Check that this shuffle vector refers to the alternate
- // sequence of opcodes.
- if (Opcode == Instruction::ShuffleVector) {
- Instruction *I0 = dyn_cast<Instruction>(VL[0]);
- unsigned Op = I0->getOpcode();
- if (Op != Instruction::ShuffleVector)
- isAltShuffle = true;
- }
- // If all of the operands are identical or constant we have a simple solution.
- if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !Opcode) {
- DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- // We now know that this is a vector of instructions of the same type from
- // the same block.
- // Don't vectorize ephemeral values.
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- if (EphValues.count(VL[i])) {
- DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
- ") is ephemeral.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- }
- // Check if this is a duplicate of another entry.
- if (TreeEntry *E = getTreeEntry(VL[0])) {
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
- if (E->Scalars[i] != VL[i]) {
- DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- }
- // Record the reuse of the tree node. FIXME, currently this is only used to
- // properly draw the graph rather than for the actual vectorization.
- E->UserTreeIndices.push_back(UserTreeIdx);
- DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
- return;
- }
- // Check that none of the instructions in the bundle are already in the tree.
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- if (ScalarToTreeEntry.count(VL[i])) {
- DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
- ") is already in tree.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- }
- // If any of the scalars is marked as a value that needs to stay scalar then
- // we need to gather the scalars.
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- if (MustGather.count(VL[i])) {
- DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- }
- // Check that all of the users of the scalars that we want to vectorize are
- // schedulable.
- Instruction *VL0 = cast<Instruction>(VL[0]);
- BasicBlock *BB = VL0->getParent();
- if (!DT->isReachableFromEntry(BB)) {
- // Don't go into unreachable blocks. They may contain instructions with
- // dependency cycles which confuse the final scheduling.
- DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- // Check that every instructions appears once in this bundle.
- for (unsigned i = 0, e = VL.size(); i < e; ++i)
- for (unsigned j = i+1; j < e; ++j)
- if (VL[i] == VL[j]) {
- DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- auto &BSRef = BlocksSchedules[BB];
- if (!BSRef) {
- BSRef = llvm::make_unique<BlockScheduling>(BB);
- }
- BlockScheduling &BS = *BSRef.get();
- if (!BS.tryScheduleBundle(VL, this, VL0)) {
- DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
- assert((!BS.getScheduleData(VL[0]) ||
- !BS.getScheduleData(VL[0])->isPartOfBundle()) &&
- "tryScheduleBundle should cancelScheduling on failure");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
- switch (Opcode) {
- case Instruction::PHI: {
- PHINode *PH = dyn_cast<PHINode>(VL0);
- // Check for terminator values (e.g. invoke).
- for (unsigned j = 0; j < VL.size(); ++j)
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- TerminatorInst *Term = dyn_cast<TerminatorInst>(
- cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
- if (Term) {
- DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- }
- newTreeEntry(VL, true, UserTreeIdx);
- DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
- PH->getIncomingBlock(i)));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
- }
- return;
- }
- case Instruction::ExtractValue:
- case Instruction::ExtractElement: {
- bool Reuse = canReuseExtract(VL, VL0);
- if (Reuse) {
- DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
- } else {
- BS.cancelScheduling(VL, VL0);
- }
- newTreeEntry(VL, Reuse, UserTreeIdx);
- return;
- }
- case Instruction::Load: {
- // Check that a vectorized load would load the same memory as a scalar
- // load.
- // For example we don't want vectorize loads that are smaller than 8 bit.
- // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats
- // loading/storing it as an i8 struct. If we vectorize loads/stores from
- // such a struct we read/write packed bits disagreeing with the
- // unvectorized version.
- Type *ScalarTy = VL0->getType();
- if (DL->getTypeSizeInBits(ScalarTy) !=
- DL->getTypeAllocSizeInBits(ScalarTy)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
- DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
- return;
- }
- // Make sure all loads in the bundle are simple - we can't vectorize
- // atomic or volatile loads.
- for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
- LoadInst *L = cast<LoadInst>(VL[i]);
- if (!L->isSimple()) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
- DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
- return;
- }
- }
- // Check if the loads are consecutive, reversed, or neither.
- // TODO: What we really want is to sort the loads, but for now, check
- // the two likely directions.
- bool Consecutive = true;
- bool ReverseConsecutive = true;
- for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
- if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
- Consecutive = false;
- break;
- } else {
- ReverseConsecutive = false;
- }
- }
- if (Consecutive) {
- ++NumLoadsWantToKeepOrder;
- newTreeEntry(VL, true, UserTreeIdx);
- DEBUG(dbgs() << "SLP: added a vector of loads.\n");
- return;
- }
- // If none of the load pairs were consecutive when checked in order,
- // check the reverse order.
- if (ReverseConsecutive)
- for (unsigned i = VL.size() - 1; i > 0; --i)
- if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) {
- ReverseConsecutive = false;
- break;
- }
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
- if (ReverseConsecutive) {
- ++NumLoadsWantToChangeOrder;
- DEBUG(dbgs() << "SLP: Gathering reversed loads.\n");
- } else {
- DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
- }
- return;
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- Type *SrcTy = VL0->getOperand(0)->getType();
- for (unsigned i = 0; i < VL.size(); ++i) {
- Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
- if (Ty != SrcTy || !isValidElementType(Ty)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
- DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
- return;
- }
- }
- newTreeEntry(VL, true, UserTreeIdx);
- DEBUG(dbgs() << "SLP: added a vector of casts.\n");
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(i));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
- }
- return;
- }
- case Instruction::ICmp:
- case Instruction::FCmp: {
- // Check that all of the compares have the same predicate.
- CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
- Type *ComparedTy = VL0->getOperand(0)->getType();
- for (unsigned i = 1, e = VL.size(); i < e; ++i) {
- CmpInst *Cmp = cast<CmpInst>(VL[i]);
- if (Cmp->getPredicate() != P0 ||
- Cmp->getOperand(0)->getType() != ComparedTy) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
- DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
- return;
- }
- }
- newTreeEntry(VL, true, UserTreeIdx);
- DEBUG(dbgs() << "SLP: added a vector of compares.\n");
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(i));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
- }
- return;
- }
- case Instruction::Select:
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- newTreeEntry(VL, true, UserTreeIdx);
- DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
- // Sort operands of the instructions so that each side is more likely to
- // have the same opcode.
- if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
- ValueList Left, Right;
- reorderInputsAccordingToOpcode(VL, Left, Right);
- buildTree_rec(Left, Depth + 1, UserTreeIdx);
- buildTree_rec(Right, Depth + 1, UserTreeIdx);
- return;
- }
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(i));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
- }
- return;
- }
- case Instruction::GetElementPtr: {
- // We don't combine GEPs with complicated (nested) indexing.
- for (unsigned j = 0; j < VL.size(); ++j) {
- if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
- DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- }
- // We can't combine several GEPs into one vector if they operate on
- // different types.
- Type *Ty0 = VL0->getOperand(0)->getType();
- for (unsigned j = 0; j < VL.size(); ++j) {
- Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
- if (Ty0 != CurTy) {
- DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- }
- // We don't combine GEPs with non-constant indexes.
- for (unsigned j = 0; j < VL.size(); ++j) {
- auto Op = cast<Instruction>(VL[j])->getOperand(1);
- if (!isa<ConstantInt>(Op)) {
- DEBUG(
- dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- }
- newTreeEntry(VL, true, UserTreeIdx);
- DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
- for (unsigned i = 0, e = 2; i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(i));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
- }
- return;
- }
- case Instruction::Store: {
- // Check if the stores are consecutive or of we need to swizzle them.
- for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
- if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
- DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
- return;
- }
- newTreeEntry(VL, true, UserTreeIdx);
- DEBUG(dbgs() << "SLP: added a vector of stores.\n");
- ValueList Operands;
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(0));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
- return;
- }
- case Instruction::Call: {
- // Check if the calls are all to the same vectorizable intrinsic.
- CallInst *CI = cast<CallInst>(VL0);
- // Check if this is an Intrinsic call or something that can be
- // represented by an intrinsic call
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- if (!isTriviallyVectorizable(ID)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
- DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
- return;
- }
- Function *Int = CI->getCalledFunction();
- Value *A1I = nullptr;
- if (hasVectorInstrinsicScalarOpd(ID, 1))
- A1I = CI->getArgOperand(1);
- for (unsigned i = 1, e = VL.size(); i != e; ++i) {
- CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
- if (!CI2 || CI2->getCalledFunction() != Int ||
- getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
- !CI->hasIdenticalOperandBundleSchema(*CI2)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
- DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
- << "\n");
- return;
- }
- // ctlz,cttz and powi are special intrinsics whose second argument
- // should be same in order for them to be vectorized.
- if (hasVectorInstrinsicScalarOpd(ID, 1)) {
- Value *A1J = CI2->getArgOperand(1);
- if (A1I != A1J) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
- DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
- << " argument "<< A1I<<"!=" << A1J
- << "\n");
- return;
- }
- }
- // Verify that the bundle operands are identical between the two calls.
- if (CI->hasOperandBundles() &&
- !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
- CI->op_begin() + CI->getBundleOperandsEndIndex(),
- CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
- DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!="
- << *VL[i] << '\n');
- return;
- }
- }
- newTreeEntry(VL, true, UserTreeIdx);
- for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL) {
- CallInst *CI2 = dyn_cast<CallInst>(j);
- Operands.push_back(CI2->getArgOperand(i));
- }
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
- }
- return;
- }
- case Instruction::ShuffleVector: {
- // If this is not an alternate sequence of opcode like add-sub
- // then do not vectorize this instruction.
- if (!isAltShuffle) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
- DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
- return;
- }
- newTreeEntry(VL, true, UserTreeIdx);
- DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
- // Reorder operands if reordering would enable vectorization.
- if (isa<BinaryOperator>(VL0)) {
- ValueList Left, Right;
- reorderAltShuffleOperands(VL, Left, Right);
- buildTree_rec(Left, Depth + 1, UserTreeIdx);
- buildTree_rec(Right, Depth + 1, UserTreeIdx);
- return;
- }
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(i));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
- }
- return;
- }
- default:
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx);
- DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
- return;
- }
- }
- unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
- unsigned N;
- Type *EltTy;
- auto *ST = dyn_cast<StructType>(T);
- if (ST) {
- N = ST->getNumElements();
- EltTy = *ST->element_begin();
- } else {
- N = cast<ArrayType>(T)->getNumElements();
- EltTy = cast<ArrayType>(T)->getElementType();
- }
- if (!isValidElementType(EltTy))
- return 0;
- uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
- if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
- return 0;
- if (ST) {
- // Check that struct is homogeneous.
- for (const auto *Ty : ST->elements())
- if (Ty != EltTy)
- return 0;
- }
- return N;
- }
- bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const {
- Instruction *E0 = cast<Instruction>(OpValue);
- assert(E0->getOpcode() == Instruction::ExtractElement ||
- E0->getOpcode() == Instruction::ExtractValue);
- assert(E0->getOpcode() == getSameOpcode(VL) && "Invalid opcode");
- // Check if all of the extracts come from the same vector and from the
- // correct offset.
- Value *Vec = E0->getOperand(0);
- // We have to extract from a vector/aggregate with the same number of elements.
- unsigned NElts;
- if (E0->getOpcode() == Instruction::ExtractValue) {
- const DataLayout &DL = E0->getModule()->getDataLayout();
- NElts = canMapToVector(Vec->getType(), DL);
- if (!NElts)
- return false;
- // Check if load can be rewritten as load of vector.
- LoadInst *LI = dyn_cast<LoadInst>(Vec);
- if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
- return false;
- } else {
- NElts = Vec->getType()->getVectorNumElements();
- }
- if (NElts != VL.size())
- return false;
- // Check that all of the indices extract from the correct offset.
- for (unsigned I = 0, E = VL.size(); I < E; ++I) {
- Instruction *Inst = cast<Instruction>(VL[I]);
- if (!matchExtractIndex(Inst, I, Inst->getOpcode()))
- return false;
- if (Inst->getOperand(0) != Vec)
- return false;
- }
- return true;
- }
- bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
- return I->hasOneUse() ||
- std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
- return ScalarToTreeEntry.count(U) > 0;
- });
- }
- int BoUpSLP::getEntryCost(TreeEntry *E) {
- ArrayRef<Value*> VL = E->Scalars;
- Type *ScalarTy = VL[0]->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- ScalarTy = SI->getValueOperand()->getType();
- else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
- ScalarTy = CI->getOperand(0)->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- // If we have computed a smaller type for the expression, update VecTy so
- // that the costs will be accurate.
- if (MinBWs.count(VL[0]))
- VecTy = VectorType::get(
- IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
- if (E->NeedToGather) {
- if (allConstant(VL))
- return 0;
- if (isSplat(VL)) {
- return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
- }
- return getGatherCost(E->Scalars);
- }
- unsigned Opcode = getSameOpcode(VL);
- assert(Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
- Instruction *VL0 = cast<Instruction>(VL[0]);
- switch (Opcode) {
- case Instruction::PHI: {
- return 0;
- }
- case Instruction::ExtractValue:
- case Instruction::ExtractElement: {
- if (canReuseExtract(VL, VL0)) {
- int DeadCost = 0;
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- Instruction *E = cast<Instruction>(VL[i]);
- // If all users are going to be vectorized, instruction can be
- // considered as dead.
- // The same, if have only one user, it will be vectorized for sure.
- if (areAllUsersVectorized(E))
- // Take credit for instruction that will become dead.
- DeadCost +=
- TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
- }
- return -DeadCost;
- }
- return getGatherCost(VecTy);
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- Type *SrcTy = VL0->getOperand(0)->getType();
- // Calculate the cost of this instruction.
- int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
- VL0->getType(), SrcTy, VL0);
- VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
- int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0);
- return VecCost - ScalarCost;
- }
- case Instruction::FCmp:
- case Instruction::ICmp:
- case Instruction::Select: {
- // Calculate the cost of this instruction.
- VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
- int ScalarCost = VecTy->getNumElements() *
- TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty(), VL0);
- int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy, VL0);
- return VecCost - ScalarCost;
- }
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // Certain instructions can be cheaper to vectorize if they have a
- // constant second vector operand.
- TargetTransformInfo::OperandValueKind Op1VK =
- TargetTransformInfo::OK_AnyValue;
- TargetTransformInfo::OperandValueKind Op2VK =
- TargetTransformInfo::OK_UniformConstantValue;
- TargetTransformInfo::OperandValueProperties Op1VP =
- TargetTransformInfo::OP_None;
- TargetTransformInfo::OperandValueProperties Op2VP =
- TargetTransformInfo::OP_None;
- // If all operands are exactly the same ConstantInt then set the
- // operand kind to OK_UniformConstantValue.
- // If instead not all operands are constants, then set the operand kind
- // to OK_AnyValue. If all operands are constants but not the same,
- // then set the operand kind to OK_NonUniformConstantValue.
- ConstantInt *CInt = nullptr;
- for (unsigned i = 0; i < VL.size(); ++i) {
- const Instruction *I = cast<Instruction>(VL[i]);
- if (!isa<ConstantInt>(I->getOperand(1))) {
- Op2VK = TargetTransformInfo::OK_AnyValue;
- break;
- }
- if (i == 0) {
- CInt = cast<ConstantInt>(I->getOperand(1));
- continue;
- }
- if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
- CInt != cast<ConstantInt>(I->getOperand(1)))
- Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
- }
- // FIXME: Currently cost of model modification for division by power of
- // 2 is handled for X86 and AArch64. Add support for other targets.
- if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
- CInt->getValue().isPowerOf2())
- Op2VP = TargetTransformInfo::OP_PowerOf2;
- SmallVector<const Value *, 4> Operands(VL0->operand_values());
- int ScalarCost =
- VecTy->getNumElements() *
- TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK, Op1VP,
- Op2VP, Operands);
- int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK,
- Op1VP, Op2VP, Operands);
- return VecCost - ScalarCost;
- }
- case Instruction::GetElementPtr: {
- TargetTransformInfo::OperandValueKind Op1VK =
- TargetTransformInfo::OK_AnyValue;
- TargetTransformInfo::OperandValueKind Op2VK =
- TargetTransformInfo::OK_UniformConstantValue;
- int ScalarCost =
- VecTy->getNumElements() *
- TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
- int VecCost =
- TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
- return VecCost - ScalarCost;
- }
- case Instruction::Load: {
- // Cost of wide load - cost of scalar loads.
- unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment();
- int ScalarLdCost = VecTy->getNumElements() *
- TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
- int VecLdCost = TTI->getMemoryOpCost(Instruction::Load,
- VecTy, alignment, 0, VL0);
- return VecLdCost - ScalarLdCost;
- }
- case Instruction::Store: {
- // We know that we can merge the stores. Calculate the cost.
- unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment();
- int ScalarStCost = VecTy->getNumElements() *
- TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0);
- int VecStCost = TTI->getMemoryOpCost(Instruction::Store,
- VecTy, alignment, 0, VL0);
- return VecStCost - ScalarStCost;
- }
- case Instruction::Call: {
- CallInst *CI = cast<CallInst>(VL0);
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- // Calculate the cost of the scalar and vector calls.
- SmallVector<Type*, 4> ScalarTys;
- for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op)
- ScalarTys.push_back(CI->getArgOperand(op)->getType());
- FastMathFlags FMF;
- if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
- FMF = FPMO->getFastMathFlags();
- int ScalarCallCost = VecTy->getNumElements() *
- TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
- SmallVector<Value *, 4> Args(CI->arg_operands());
- int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
- VecTy->getNumElements());
- DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
- << " (" << VecCallCost << "-" << ScalarCallCost << ")"
- << " for " << *CI << "\n");
- return VecCallCost - ScalarCallCost;
- }
- case Instruction::ShuffleVector: {
- TargetTransformInfo::OperandValueKind Op1VK =
- TargetTransformInfo::OK_AnyValue;
- TargetTransformInfo::OperandValueKind Op2VK =
- TargetTransformInfo::OK_AnyValue;
- int ScalarCost = 0;
- int VecCost = 0;
- for (Value *i : VL) {
- Instruction *I = cast<Instruction>(i);
- if (!I)
- break;
- ScalarCost +=
- TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
- }
- // VecCost is equal to sum of the cost of creating 2 vectors
- // and the cost of creating shuffle.
- Instruction *I0 = cast<Instruction>(VL[0]);
- VecCost =
- TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
- Instruction *I1 = cast<Instruction>(VL[1]);
- VecCost +=
- TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
- VecCost +=
- TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
- return VecCost - ScalarCost;
- }
- default:
- llvm_unreachable("Unknown instruction");
- }
- }
- bool BoUpSLP::isFullyVectorizableTinyTree() {
- DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
- VectorizableTree.size() << " is fully vectorizable .\n");
- // We only handle trees of heights 1 and 2.
- if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather)
- return true;
- if (VectorizableTree.size() != 2)
- return false;
- // Handle splat and all-constants stores.
- if (!VectorizableTree[0].NeedToGather &&
- (allConstant(VectorizableTree[1].Scalars) ||
- isSplat(VectorizableTree[1].Scalars)))
- return true;
- // Gathering cost would be too much for tiny trees.
- if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
- return false;
- return true;
- }
- bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() {
- // We can vectorize the tree if its size is greater than or equal to the
- // minimum size specified by the MinTreeSize command line option.
- if (VectorizableTree.size() >= MinTreeSize)
- return false;
- // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
- // can vectorize it if we can prove it fully vectorizable.
- if (isFullyVectorizableTinyTree())
- return false;
- assert(VectorizableTree.empty()
- ? ExternalUses.empty()
- : true && "We shouldn't have any external users");
- // Otherwise, we can't vectorize the tree. It is both tiny and not fully
- // vectorizable.
- return true;
- }
- int BoUpSLP::getSpillCost() {
- // Walk from the bottom of the tree to the top, tracking which values are
- // live. When we see a call instruction that is not part of our tree,
- // query TTI to see if there is a cost to keeping values live over it
- // (for example, if spills and fills are required).
- unsigned BundleWidth = VectorizableTree.front().Scalars.size();
- int Cost = 0;
- SmallPtrSet<Instruction*, 4> LiveValues;
- Instruction *PrevInst = nullptr;
- for (const auto &N : VectorizableTree) {
- Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]);
- if (!Inst)
- continue;
- if (!PrevInst) {
- PrevInst = Inst;
- continue;
- }
- // Update LiveValues.
- LiveValues.erase(PrevInst);
- for (auto &J : PrevInst->operands()) {
- if (isa<Instruction>(&*J) && getTreeEntry(&*J))
- LiveValues.insert(cast<Instruction>(&*J));
- }
- DEBUG(
- dbgs() << "SLP: #LV: " << LiveValues.size();
- for (auto *X : LiveValues)
- dbgs() << " " << X->getName();
- dbgs() << ", Looking at ";
- Inst->dump();
- );
- // Now find the sequence of instructions between PrevInst and Inst.
- BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
- PrevInstIt =
- PrevInst->getIterator().getReverse();
- while (InstIt != PrevInstIt) {
- if (PrevInstIt == PrevInst->getParent()->rend()) {
- PrevInstIt = Inst->getParent()->rbegin();
- continue;
- }
- if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
- SmallVector<Type*, 4> V;
- for (auto *II : LiveValues)
- V.push_back(VectorType::get(II->getType(), BundleWidth));
- Cost += TTI->getCostOfKeepingLiveOverCall(V);
- }
- ++PrevInstIt;
- }
- PrevInst = Inst;
- }
- return Cost;
- }
- int BoUpSLP::getTreeCost() {
- int Cost = 0;
- DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
- VectorizableTree.size() << ".\n");
- unsigned BundleWidth = VectorizableTree[0].Scalars.size();
- for (TreeEntry &TE : VectorizableTree) {
- int C = getEntryCost(&TE);
- DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
- << *TE.Scalars[0] << ".\n");
- Cost += C;
- }
- SmallSet<Value *, 16> ExtractCostCalculated;
- int ExtractCost = 0;
- for (ExternalUser &EU : ExternalUses) {
- // We only add extract cost once for the same scalar.
- if (!ExtractCostCalculated.insert(EU.Scalar).second)
- continue;
- // Uses by ephemeral values are free (because the ephemeral value will be
- // removed prior to code generation, and so the extraction will be
- // removed as well).
- if (EphValues.count(EU.User))
- continue;
- // If we plan to rewrite the tree in a smaller type, we will need to sign
- // extend the extracted value back to the original type. Here, we account
- // for the extract and the added cost of the sign extend if needed.
- auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
- auto *ScalarRoot = VectorizableTree[0].Scalars[0];
- if (MinBWs.count(ScalarRoot)) {
- auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
- auto Extend =
- MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
- VecTy = VectorType::get(MinTy, BundleWidth);
- ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
- VecTy, EU.Lane);
- } else {
- ExtractCost +=
- TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
- }
- }
- int SpillCost = getSpillCost();
- Cost += SpillCost + ExtractCost;
- std::string Str;
- {
- raw_string_ostream OS(Str);
- OS << "SLP: Spill Cost = " << SpillCost << ".\n"
- << "SLP: Extract Cost = " << ExtractCost << ".\n"
- << "SLP: Total Cost = " << Cost << ".\n";
- }
- DEBUG(dbgs() << Str);
- if (ViewSLPTree)
- ViewGraph(this, "SLP" + F->getName(), false, Str);
- return Cost;
- }
- int BoUpSLP::getGatherCost(Type *Ty) {
- int Cost = 0;
- for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
- Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
- return Cost;
- }
- int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
- // Find the type of the operands in VL.
- Type *ScalarTy = VL[0]->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- // Find the cost of inserting/extracting values from the vector.
- return getGatherCost(VecTy);
- }
- // Reorder commutative operations in alternate shuffle if the resulting vectors
- // are consecutive loads. This would allow us to vectorize the tree.
- // If we have something like-
- // load a[0] - load b[0]
- // load b[1] + load a[1]
- // load a[2] - load b[2]
- // load a[3] + load b[3]
- // Reordering the second load b[1] load a[1] would allow us to vectorize this
- // code.
- void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL,
- SmallVectorImpl<Value *> &Left,
- SmallVectorImpl<Value *> &Right) {
- // Push left and right operands of binary operation into Left and Right
- for (Value *i : VL) {
- Left.push_back(cast<Instruction>(i)->getOperand(0));
- Right.push_back(cast<Instruction>(i)->getOperand(1));
- }
- // Reorder if we have a commutative operation and consecutive access
- // are on either side of the alternate instructions.
- for (unsigned j = 0; j < VL.size() - 1; ++j) {
- if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
- if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
- Instruction *VL1 = cast<Instruction>(VL[j]);
- Instruction *VL2 = cast<Instruction>(VL[j + 1]);
- if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
- std::swap(Left[j], Right[j]);
- continue;
- } else if (VL2->isCommutative() &&
- isConsecutiveAccess(L, L1, *DL, *SE)) {
- std::swap(Left[j + 1], Right[j + 1]);
- continue;
- }
- // else unchanged
- }
- }
- if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
- if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
- Instruction *VL1 = cast<Instruction>(VL[j]);
- Instruction *VL2 = cast<Instruction>(VL[j + 1]);
- if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
- std::swap(Left[j], Right[j]);
- continue;
- } else if (VL2->isCommutative() &&
- isConsecutiveAccess(L, L1, *DL, *SE)) {
- std::swap(Left[j + 1], Right[j + 1]);
- continue;
- }
- // else unchanged
- }
- }
- }
- }
- // Return true if I should be commuted before adding it's left and right
- // operands to the arrays Left and Right.
- //
- // The vectorizer is trying to either have all elements one side being
- // instruction with the same opcode to enable further vectorization, or having
- // a splat to lower the vectorizing cost.
- static bool shouldReorderOperands(int i, Instruction &I,
- SmallVectorImpl<Value *> &Left,
- SmallVectorImpl<Value *> &Right,
- bool AllSameOpcodeLeft,
- bool AllSameOpcodeRight, bool SplatLeft,
- bool SplatRight) {
- Value *VLeft = I.getOperand(0);
- Value *VRight = I.getOperand(1);
- // If we have "SplatRight", try to see if commuting is needed to preserve it.
- if (SplatRight) {
- if (VRight == Right[i - 1])
- // Preserve SplatRight
- return false;
- if (VLeft == Right[i - 1]) {
- // Commuting would preserve SplatRight, but we don't want to break
- // SplatLeft either, i.e. preserve the original order if possible.
- // (FIXME: why do we care?)
- if (SplatLeft && VLeft == Left[i - 1])
- return false;
- return true;
- }
- }
- // Symmetrically handle Right side.
- if (SplatLeft) {
- if (VLeft == Left[i - 1])
- // Preserve SplatLeft
- return false;
- if (VRight == Left[i - 1])
- return true;
- }
- Instruction *ILeft = dyn_cast<Instruction>(VLeft);
- Instruction *IRight = dyn_cast<Instruction>(VRight);
- // If we have "AllSameOpcodeRight", try to see if the left operands preserves
- // it and not the right, in this case we want to commute.
- if (AllSameOpcodeRight) {
- unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode();
- if (IRight && RightPrevOpcode == IRight->getOpcode())
- // Do not commute, a match on the right preserves AllSameOpcodeRight
- return false;
- if (ILeft && RightPrevOpcode == ILeft->getOpcode()) {
- // We have a match and may want to commute, but first check if there is
- // not also a match on the existing operands on the Left to preserve
- // AllSameOpcodeLeft, i.e. preserve the original order if possible.
- // (FIXME: why do we care?)
- if (AllSameOpcodeLeft && ILeft &&
- cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode())
- return false;
- return true;
- }
- }
- // Symmetrically handle Left side.
- if (AllSameOpcodeLeft) {
- unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode();
- if (ILeft && LeftPrevOpcode == ILeft->getOpcode())
- return false;
- if (IRight && LeftPrevOpcode == IRight->getOpcode())
- return true;
- }
- return false;
- }
- void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
- SmallVectorImpl<Value *> &Left,
- SmallVectorImpl<Value *> &Right) {
- if (VL.size()) {
- // Peel the first iteration out of the loop since there's nothing
- // interesting to do anyway and it simplifies the checks in the loop.
- auto VLeft = cast<Instruction>(VL[0])->getOperand(0);
- auto VRight = cast<Instruction>(VL[0])->getOperand(1);
- if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft))
- // Favor having instruction to the right. FIXME: why?
- std::swap(VLeft, VRight);
- Left.push_back(VLeft);
- Right.push_back(VRight);
- }
- // Keep track if we have instructions with all the same opcode on one side.
- bool AllSameOpcodeLeft = isa<Instruction>(Left[0]);
- bool AllSameOpcodeRight = isa<Instruction>(Right[0]);
- // Keep track if we have one side with all the same value (broadcast).
- bool SplatLeft = true;
- bool SplatRight = true;
- for (unsigned i = 1, e = VL.size(); i != e; ++i) {
- Instruction *I = cast<Instruction>(VL[i]);
- assert(I->isCommutative() && "Can only process commutative instruction");
- // Commute to favor either a splat or maximizing having the same opcodes on
- // one side.
- if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft,
- AllSameOpcodeRight, SplatLeft, SplatRight)) {
- Left.push_back(I->getOperand(1));
- Right.push_back(I->getOperand(0));
- } else {
- Left.push_back(I->getOperand(0));
- Right.push_back(I->getOperand(1));
- }
- // Update Splat* and AllSameOpcode* after the insertion.
- SplatRight = SplatRight && (Right[i - 1] == Right[i]);
- SplatLeft = SplatLeft && (Left[i - 1] == Left[i]);
- AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) &&
- (cast<Instruction>(Left[i - 1])->getOpcode() ==
- cast<Instruction>(Left[i])->getOpcode());
- AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) &&
- (cast<Instruction>(Right[i - 1])->getOpcode() ==
- cast<Instruction>(Right[i])->getOpcode());
- }
- // If one operand end up being broadcast, return this operand order.
- if (SplatRight || SplatLeft)
- return;
- // Finally check if we can get longer vectorizable chain by reordering
- // without breaking the good operand order detected above.
- // E.g. If we have something like-
- // load a[0] load b[0]
- // load b[1] load a[1]
- // load a[2] load b[2]
- // load a[3] load b[3]
- // Reordering the second load b[1] load a[1] would allow us to vectorize
- // this code and we still retain AllSameOpcode property.
- // FIXME: This load reordering might break AllSameOpcode in some rare cases
- // such as-
- // add a[0],c[0] load b[0]
- // add a[1],c[2] load b[1]
- // b[2] load b[2]
- // add a[3],c[3] load b[3]
- for (unsigned j = 0; j < VL.size() - 1; ++j) {
- if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
- if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
- if (isConsecutiveAccess(L, L1, *DL, *SE)) {
- std::swap(Left[j + 1], Right[j + 1]);
- continue;
- }
- }
- }
- if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
- if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
- if (isConsecutiveAccess(L, L1, *DL, *SE)) {
- std::swap(Left[j + 1], Right[j + 1]);
- continue;
- }
- }
- }
- // else unchanged
- }
- }
- void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
- // Get the basic block this bundle is in. All instructions in the bundle
- // should be in this block.
- auto *Front = cast<Instruction>(VL.front());
- auto *BB = Front->getParent();
- assert(all_of(make_range(VL.begin(), VL.end()), [&](Value *V) -> bool {
- return cast<Instruction>(V)->getParent() == BB;
- }));
- // The last instruction in the bundle in program order.
- Instruction *LastInst = nullptr;
- // Find the last instruction. The common case should be that BB has been
- // scheduled, and the last instruction is VL.back(). So we start with
- // VL.back() and iterate over schedule data until we reach the end of the
- // bundle. The end of the bundle is marked by null ScheduleData.
- if (BlocksSchedules.count(BB)) {
- auto *Bundle = BlocksSchedules[BB]->getScheduleData(VL.back());
- if (Bundle && Bundle->isPartOfBundle())
- for (; Bundle; Bundle = Bundle->NextInBundle)
- LastInst = Bundle->Inst;
- }
- // LastInst can still be null at this point if there's either not an entry
- // for BB in BlocksSchedules or there's no ScheduleData available for
- // VL.back(). This can be the case if buildTree_rec aborts for various
- // reasons (e.g., the maximum recursion depth is reached, the maximum region
- // size is reached, etc.). ScheduleData is initialized in the scheduling
- // "dry-run".
- //
- // If this happens, we can still find the last instruction by brute force. We
- // iterate forwards from Front (inclusive) until we either see all
- // instructions in the bundle or reach the end of the block. If Front is the
- // last instruction in program order, LastInst will be set to Front, and we
- // will visit all the remaining instructions in the block.
- //
- // One of the reasons we exit early from buildTree_rec is to place an upper
- // bound on compile-time. Thus, taking an additional compile-time hit here is
- // not ideal. However, this should be exceedingly rare since it requires that
- // we both exit early from buildTree_rec and that the bundle be out-of-order
- // (causing us to iterate all the way to the end of the block).
- if (!LastInst) {
- SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end());
- for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
- if (Bundle.erase(&I))
- LastInst = &I;
- if (Bundle.empty())
- break;
- }
- }
- // Set the insertion point after the last instruction in the bundle. Set the
- // debug location to Front.
- Builder.SetInsertPoint(BB, ++LastInst->getIterator());
- Builder.SetCurrentDebugLocation(Front->getDebugLoc());
- }
- Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
- Value *Vec = UndefValue::get(Ty);
- // Generate the 'InsertElement' instruction.
- for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
- Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
- if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
- GatherSeq.insert(Insrt);
- CSEBlocks.insert(Insrt->getParent());
- // Add to our 'need-to-extract' list.
- if (TreeEntry *E = getTreeEntry(VL[i])) {
- // Find which lane we need to extract.
- int FoundLane = -1;
- for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
- // Is this the lane of the scalar that we are looking for ?
- if (E->Scalars[Lane] == VL[i]) {
- FoundLane = Lane;
- break;
- }
- }
- assert(FoundLane >= 0 && "Could not find the correct lane");
- ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
- }
- }
- }
- return Vec;
- }
- Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const {
- if (const TreeEntry *En = getTreeEntry(OpValue)) {
- if (En->isSame(VL) && En->VectorizedValue)
- return En->VectorizedValue;
- }
- return nullptr;
- }
- Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
- if (TreeEntry *E = getTreeEntry(VL[0]))
- if (E->isSame(VL))
- return vectorizeTree(E);
- Type *ScalarTy = VL[0]->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- return Gather(VL, VecTy);
- }
- Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
- IRBuilder<>::InsertPointGuard Guard(Builder);
- if (E->VectorizedValue) {
- DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
- return E->VectorizedValue;
- }
- Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
- Type *ScalarTy = VL0->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
- if (E->NeedToGather) {
- setInsertPointAfterBundle(E->Scalars);
- auto *V = Gather(E->Scalars, VecTy);
- E->VectorizedValue = V;
- return V;
- }
- unsigned Opcode = getSameOpcode(E->Scalars);
- switch (Opcode) {
- case Instruction::PHI: {
- PHINode *PH = dyn_cast<PHINode>(VL0);
- Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
- Builder.SetCurrentDebugLocation(PH->getDebugLoc());
- PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
- E->VectorizedValue = NewPhi;
- // PHINodes may have multiple entries from the same block. We want to
- // visit every block once.
- SmallSet<BasicBlock*, 4> VisitedBBs;
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- ValueList Operands;
- BasicBlock *IBB = PH->getIncomingBlock(i);
- if (!VisitedBBs.insert(IBB).second) {
- NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
- continue;
- }
- // Prepare the operand vector.
- for (Value *V : E->Scalars)
- Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
- Builder.SetInsertPoint(IBB->getTerminator());
- Builder.SetCurrentDebugLocation(PH->getDebugLoc());
- Value *Vec = vectorizeTree(Operands);
- NewPhi->addIncoming(Vec, IBB);
- }
- assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
- "Invalid number of incoming values");
- return NewPhi;
- }
- case Instruction::ExtractElement: {
- if (canReuseExtract(E->Scalars, VL0)) {
- Value *V = VL0->getOperand(0);
- E->VectorizedValue = V;
- return V;
- }
- setInsertPointAfterBundle(E->Scalars);
- auto *V = Gather(E->Scalars, VecTy);
- E->VectorizedValue = V;
- return V;
- }
- case Instruction::ExtractValue: {
- if (canReuseExtract(E->Scalars, VL0)) {
- LoadInst *LI = cast<LoadInst>(VL0->getOperand(0));
- Builder.SetInsertPoint(LI);
- PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
- Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
- LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment());
- E->VectorizedValue = V;
- return propagateMetadata(V, E->Scalars);
- }
- setInsertPointAfterBundle(E->Scalars);
- auto *V = Gather(E->Scalars, VecTy);
- E->VectorizedValue = V;
- return V;
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- ValueList INVL;
- for (Value *V : E->Scalars)
- INVL.push_back(cast<Instruction>(V)->getOperand(0));
- setInsertPointAfterBundle(E->Scalars);
- Value *InVec = vectorizeTree(INVL);
- if (Value *V = alreadyVectorized(E->Scalars, VL0))
- return V;
- CastInst *CI = dyn_cast<CastInst>(VL0);
- Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::FCmp:
- case Instruction::ICmp: {
- ValueList LHSV, RHSV;
- for (Value *V : E->Scalars) {
- LHSV.push_back(cast<Instruction>(V)->getOperand(0));
- RHSV.push_back(cast<Instruction>(V)->getOperand(1));
- }
- setInsertPointAfterBundle(E->Scalars);
- Value *L = vectorizeTree(LHSV);
- Value *R = vectorizeTree(RHSV);
- if (Value *V = alreadyVectorized(E->Scalars, VL0))
- return V;
- CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
- Value *V;
- if (Opcode == Instruction::FCmp)
- V = Builder.CreateFCmp(P0, L, R);
- else
- V = Builder.CreateICmp(P0, L, R);
- E->VectorizedValue = V;
- propagateIRFlags(E->VectorizedValue, E->Scalars);
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::Select: {
- ValueList TrueVec, FalseVec, CondVec;
- for (Value *V : E->Scalars) {
- CondVec.push_back(cast<Instruction>(V)->getOperand(0));
- TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
- FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
- }
- setInsertPointAfterBundle(E->Scalars);
- Value *Cond = vectorizeTree(CondVec);
- Value *True = vectorizeTree(TrueVec);
- Value *False = vectorizeTree(FalseVec);
- if (Value *V = alreadyVectorized(E->Scalars, VL0))
- return V;
- Value *V = Builder.CreateSelect(Cond, True, False);
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- ValueList LHSVL, RHSVL;
- if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
- reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
- else
- for (Value *V : E->Scalars) {
- LHSVL.push_back(cast<Instruction>(V)->getOperand(0));
- RHSVL.push_back(cast<Instruction>(V)->getOperand(1));
- }
- setInsertPointAfterBundle(E->Scalars);
- Value *LHS = vectorizeTree(LHSVL);
- Value *RHS = vectorizeTree(RHSVL);
- if (Value *V = alreadyVectorized(E->Scalars, VL0))
- return V;
- BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
- Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
- E->VectorizedValue = V;
- propagateIRFlags(E->VectorizedValue, E->Scalars);
- ++NumVectorInstructions;
- if (Instruction *I = dyn_cast<Instruction>(V))
- return propagateMetadata(I, E->Scalars);
- return V;
- }
- case Instruction::Load: {
- // Loads are inserted at the head of the tree because we don't want to
- // sink them all the way down past store instructions.
- setInsertPointAfterBundle(E->Scalars);
- LoadInst *LI = cast<LoadInst>(VL0);
- Type *ScalarLoadTy = LI->getType();
- unsigned AS = LI->getPointerAddressSpace();
- Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
- VecTy->getPointerTo(AS));
- // The pointer operand uses an in-tree scalar so we add the new BitCast to
- // ExternalUses list to make sure that an extract will be generated in the
- // future.
- Value *PO = LI->getPointerOperand();
- if (getTreeEntry(PO))
- ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
- unsigned Alignment = LI->getAlignment();
- LI = Builder.CreateLoad(VecPtr);
- if (!Alignment) {
- Alignment = DL->getABITypeAlignment(ScalarLoadTy);
- }
- LI->setAlignment(Alignment);
- E->VectorizedValue = LI;
- ++NumVectorInstructions;
- return propagateMetadata(LI, E->Scalars);
- }
- case Instruction::Store: {
- StoreInst *SI = cast<StoreInst>(VL0);
- unsigned Alignment = SI->getAlignment();
- unsigned AS = SI->getPointerAddressSpace();
- ValueList ValueOp;
- for (Value *V : E->Scalars)
- ValueOp.push_back(cast<StoreInst>(V)->getValueOperand());
- setInsertPointAfterBundle(E->Scalars);
- Value *VecValue = vectorizeTree(ValueOp);
- Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
- VecTy->getPointerTo(AS));
- StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
- // The pointer operand uses an in-tree scalar so we add the new BitCast to
- // ExternalUses list to make sure that an extract will be generated in the
- // future.
- Value *PO = SI->getPointerOperand();
- if (getTreeEntry(PO))
- ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
- if (!Alignment) {
- Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
- }
- S->setAlignment(Alignment);
- E->VectorizedValue = S;
- ++NumVectorInstructions;
- return propagateMetadata(S, E->Scalars);
- }
- case Instruction::GetElementPtr: {
- setInsertPointAfterBundle(E->Scalars);
- ValueList Op0VL;
- for (Value *V : E->Scalars)
- Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
- Value *Op0 = vectorizeTree(Op0VL);
- std::vector<Value *> OpVecs;
- for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
- ++j) {
- ValueList OpVL;
- for (Value *V : E->Scalars)
- OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
- Value *OpVec = vectorizeTree(OpVL);
- OpVecs.push_back(OpVec);
- }
- Value *V = Builder.CreateGEP(
- cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- if (Instruction *I = dyn_cast<Instruction>(V))
- return propagateMetadata(I, E->Scalars);
- return V;
- }
- case Instruction::Call: {
- CallInst *CI = cast<CallInst>(VL0);
- setInsertPointAfterBundle(VL0);
- Function *FI;
- Intrinsic::ID IID = Intrinsic::not_intrinsic;
- Value *ScalarArg = nullptr;
- if (CI && (FI = CI->getCalledFunction())) {
- IID = FI->getIntrinsicID();
- }
- std::vector<Value *> OpVecs;
- for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
- ValueList OpVL;
- // ctlz,cttz and powi are special intrinsics whose second argument is
- // a scalar. This argument should not be vectorized.
- if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
- CallInst *CEI = cast<CallInst>(E->Scalars[0]);
- ScalarArg = CEI->getArgOperand(j);
- OpVecs.push_back(CEI->getArgOperand(j));
- continue;
- }
- for (Value *V : E->Scalars) {
- CallInst *CEI = cast<CallInst>(V);
- OpVL.push_back(CEI->getArgOperand(j));
- }
- Value *OpVec = vectorizeTree(OpVL);
- DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
- OpVecs.push_back(OpVec);
- }
- Module *M = F->getParent();
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
- Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
- SmallVector<OperandBundleDef, 1> OpBundles;
- CI->getOperandBundlesAsDefs(OpBundles);
- Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
- // The scalar argument uses an in-tree scalar so we add the new vectorized
- // call to ExternalUses list to make sure that an extract will be
- // generated in the future.
- if (ScalarArg && getTreeEntry(ScalarArg))
- ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
- E->VectorizedValue = V;
- propagateIRFlags(E->VectorizedValue, E->Scalars);
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::ShuffleVector: {
- ValueList LHSVL, RHSVL;
- assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand");
- reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL);
- setInsertPointAfterBundle(E->Scalars);
- Value *LHS = vectorizeTree(LHSVL);
- Value *RHS = vectorizeTree(RHSVL);
- if (Value *V = alreadyVectorized(E->Scalars, VL0))
- return V;
- // Create a vector of LHS op1 RHS
- BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0);
- Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS);
- // Create a vector of LHS op2 RHS
- Instruction *VL1 = cast<Instruction>(E->Scalars[1]);
- BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
- Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
- // Create shuffle to take alternate operations from the vector.
- // Also, gather up odd and even scalar ops to propagate IR flags to
- // each vector operation.
- ValueList OddScalars, EvenScalars;
- unsigned e = E->Scalars.size();
- SmallVector<Constant *, 8> Mask(e);
- for (unsigned i = 0; i < e; ++i) {
- if (isOdd(i)) {
- Mask[i] = Builder.getInt32(e + i);
- OddScalars.push_back(E->Scalars[i]);
- } else {
- Mask[i] = Builder.getInt32(i);
- EvenScalars.push_back(E->Scalars[i]);
- }
- }
- Value *ShuffleMask = ConstantVector::get(Mask);
- propagateIRFlags(V0, EvenScalars);
- propagateIRFlags(V1, OddScalars);
- Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- if (Instruction *I = dyn_cast<Instruction>(V))
- return propagateMetadata(I, E->Scalars);
- return V;
- }
- default:
- llvm_unreachable("unknown inst");
- }
- return nullptr;
- }
- Value *BoUpSLP::vectorizeTree() {
- ExtraValueToDebugLocsMap ExternallyUsedValues;
- return vectorizeTree(ExternallyUsedValues);
- }
- Value *
- BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
- // All blocks must be scheduled before any instructions are inserted.
- for (auto &BSIter : BlocksSchedules) {
- scheduleBlock(BSIter.second.get());
- }
- Builder.SetInsertPoint(&F->getEntryBlock().front());
- auto *VectorRoot = vectorizeTree(&VectorizableTree[0]);
- // If the vectorized tree can be rewritten in a smaller type, we truncate the
- // vectorized root. InstCombine will then rewrite the entire expression. We
- // sign extend the extracted values below.
- auto *ScalarRoot = VectorizableTree[0].Scalars[0];
- if (MinBWs.count(ScalarRoot)) {
- if (auto *I = dyn_cast<Instruction>(VectorRoot))
- Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
- auto BundleWidth = VectorizableTree[0].Scalars.size();
- auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
- auto *VecTy = VectorType::get(MinTy, BundleWidth);
- auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
- VectorizableTree[0].VectorizedValue = Trunc;
- }
- DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
- // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
- // specified by ScalarType.
- auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
- if (!MinBWs.count(ScalarRoot))
- return Ex;
- if (MinBWs[ScalarRoot].second)
- return Builder.CreateSExt(Ex, ScalarType);
- return Builder.CreateZExt(Ex, ScalarType);
- };
- // Extract all of the elements with the external uses.
- for (const auto &ExternalUse : ExternalUses) {
- Value *Scalar = ExternalUse.Scalar;
- llvm::User *User = ExternalUse.User;
- // Skip users that we already RAUW. This happens when one instruction
- // has multiple uses of the same value.
- if (User && !is_contained(Scalar->users(), User))
- continue;
- TreeEntry *E = getTreeEntry(Scalar);
- assert(E && "Invalid scalar");
- assert(!E->NeedToGather && "Extracting from a gather list");
- Value *Vec = E->VectorizedValue;
- assert(Vec && "Can't find vectorizable value");
- Value *Lane = Builder.getInt32(ExternalUse.Lane);
- // If User == nullptr, the Scalar is used as extra arg. Generate
- // ExtractElement instruction and update the record for this scalar in
- // ExternallyUsedValues.
- if (!User) {
- assert(ExternallyUsedValues.count(Scalar) &&
- "Scalar with nullptr as an external user must be registered in "
- "ExternallyUsedValues map");
- if (auto *VecI = dyn_cast<Instruction>(Vec)) {
- Builder.SetInsertPoint(VecI->getParent(),
- std::next(VecI->getIterator()));
- } else {
- Builder.SetInsertPoint(&F->getEntryBlock().front());
- }
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- Ex = extend(ScalarRoot, Ex, Scalar->getType());
- CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
- auto &Locs = ExternallyUsedValues[Scalar];
- ExternallyUsedValues.insert({Ex, Locs});
- ExternallyUsedValues.erase(Scalar);
- continue;
- }
- // Generate extracts for out-of-tree users.
- // Find the insertion point for the extractelement lane.
- if (auto *VecI = dyn_cast<Instruction>(Vec)) {
- if (PHINode *PH = dyn_cast<PHINode>(User)) {
- for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
- if (PH->getIncomingValue(i) == Scalar) {
- TerminatorInst *IncomingTerminator =
- PH->getIncomingBlock(i)->getTerminator();
- if (isa<CatchSwitchInst>(IncomingTerminator)) {
- Builder.SetInsertPoint(VecI->getParent(),
- std::next(VecI->getIterator()));
- } else {
- Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
- }
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- Ex = extend(ScalarRoot, Ex, Scalar->getType());
- CSEBlocks.insert(PH->getIncomingBlock(i));
- PH->setOperand(i, Ex);
- }
- }
- } else {
- Builder.SetInsertPoint(cast<Instruction>(User));
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- Ex = extend(ScalarRoot, Ex, Scalar->getType());
- CSEBlocks.insert(cast<Instruction>(User)->getParent());
- User->replaceUsesOfWith(Scalar, Ex);
- }
- } else {
- Builder.SetInsertPoint(&F->getEntryBlock().front());
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- Ex = extend(ScalarRoot, Ex, Scalar->getType());
- CSEBlocks.insert(&F->getEntryBlock());
- User->replaceUsesOfWith(Scalar, Ex);
- }
- DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
- }
- // For each vectorized value:
- for (TreeEntry &EIdx : VectorizableTree) {
- TreeEntry *Entry = &EIdx;
- // For each lane:
- for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
- Value *Scalar = Entry->Scalars[Lane];
- // No need to handle users of gathered values.
- if (Entry->NeedToGather)
- continue;
- assert(Entry->VectorizedValue && "Can't find vectorizable value");
- Type *Ty = Scalar->getType();
- if (!Ty->isVoidTy()) {
- #ifndef NDEBUG
- for (User *U : Scalar->users()) {
- DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
- // It is legal to replace users in the ignorelist by undef.
- assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
- "Replacing out-of-tree value with undef");
- }
- #endif
- Value *Undef = UndefValue::get(Ty);
- Scalar->replaceAllUsesWith(Undef);
- }
- DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
- eraseInstruction(cast<Instruction>(Scalar));
- }
- }
- Builder.ClearInsertionPoint();
- return VectorizableTree[0].VectorizedValue;
- }
- void BoUpSLP::optimizeGatherSequence() {
- DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
- << " gather sequences instructions.\n");
- // LICM InsertElementInst sequences.
- for (Instruction *it : GatherSeq) {
- InsertElementInst *Insert = dyn_cast<InsertElementInst>(it);
- if (!Insert)
- continue;
- // Check if this block is inside a loop.
- Loop *L = LI->getLoopFor(Insert->getParent());
- if (!L)
- continue;
- // Check if it has a preheader.
- BasicBlock *PreHeader = L->getLoopPreheader();
- if (!PreHeader)
- continue;
- // If the vector or the element that we insert into it are
- // instructions that are defined in this basic block then we can't
- // hoist this instruction.
- Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
- Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
- if (CurrVec && L->contains(CurrVec))
- continue;
- if (NewElem && L->contains(NewElem))
- continue;
- // We can hoist this instruction. Move it to the pre-header.
- Insert->moveBefore(PreHeader->getTerminator());
- }
- // Make a list of all reachable blocks in our CSE queue.
- SmallVector<const DomTreeNode *, 8> CSEWorkList;
- CSEWorkList.reserve(CSEBlocks.size());
- for (BasicBlock *BB : CSEBlocks)
- if (DomTreeNode *N = DT->getNode(BB)) {
- assert(DT->isReachableFromEntry(N));
- CSEWorkList.push_back(N);
- }
- // Sort blocks by domination. This ensures we visit a block after all blocks
- // dominating it are visited.
- std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
- [this](const DomTreeNode *A, const DomTreeNode *B) {
- return DT->properlyDominates(A, B);
- });
- // Perform O(N^2) search over the gather sequences and merge identical
- // instructions. TODO: We can further optimize this scan if we split the
- // instructions into different buckets based on the insert lane.
- SmallVector<Instruction *, 16> Visited;
- for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
- assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
- "Worklist not sorted properly!");
- BasicBlock *BB = (*I)->getBlock();
- // For all instructions in blocks containing gather sequences:
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
- Instruction *In = &*it++;
- if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
- continue;
- // Check if we can replace this instruction with any of the
- // visited instructions.
- for (Instruction *v : Visited) {
- if (In->isIdenticalTo(v) &&
- DT->dominates(v->getParent(), In->getParent())) {
- In->replaceAllUsesWith(v);
- eraseInstruction(In);
- In = nullptr;
- break;
- }
- }
- if (In) {
- assert(!is_contained(Visited, In));
- Visited.push_back(In);
- }
- }
- }
- CSEBlocks.clear();
- GatherSeq.clear();
- }
- // Groups the instructions to a bundle (which is then a single scheduling entity)
- // and schedules instructions until the bundle gets ready.
- bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
- BoUpSLP *SLP, Value *OpValue) {
- if (isa<PHINode>(OpValue))
- return true;
- // Initialize the instruction bundle.
- Instruction *OldScheduleEnd = ScheduleEnd;
- ScheduleData *PrevInBundle = nullptr;
- ScheduleData *Bundle = nullptr;
- bool ReSchedule = false;
- DEBUG(dbgs() << "SLP: bundle: " << *OpValue << "\n");
- // Make sure that the scheduling region contains all
- // instructions of the bundle.
- for (Value *V : VL) {
- if (!extendSchedulingRegion(V))
- return false;
- }
- for (Value *V : VL) {
- ScheduleData *BundleMember = getScheduleData(V);
- assert(BundleMember &&
- "no ScheduleData for bundle member (maybe not in same basic block)");
- if (BundleMember->IsScheduled) {
- // A bundle member was scheduled as single instruction before and now
- // needs to be scheduled as part of the bundle. We just get rid of the
- // existing schedule.
- DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
- << " was already scheduled\n");
- ReSchedule = true;
- }
- assert(BundleMember->isSchedulingEntity() &&
- "bundle member already part of other bundle");
- if (PrevInBundle) {
- PrevInBundle->NextInBundle = BundleMember;
- } else {
- Bundle = BundleMember;
- }
- BundleMember->UnscheduledDepsInBundle = 0;
- Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
- // Group the instructions to a bundle.
- BundleMember->FirstInBundle = Bundle;
- PrevInBundle = BundleMember;
- }
- if (ScheduleEnd != OldScheduleEnd) {
- // The scheduling region got new instructions at the lower end (or it is a
- // new region for the first bundle). This makes it necessary to
- // recalculate all dependencies.
- // It is seldom that this needs to be done a second time after adding the
- // initial bundle to the region.
- for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
- ScheduleData *SD = getScheduleData(I);
- SD->clearDependencies();
- }
- ReSchedule = true;
- }
- if (ReSchedule) {
- resetSchedule();
- initialFillReadyList(ReadyInsts);
- }
- DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
- << BB->getName() << "\n");
- calculateDependencies(Bundle, true, SLP);
- // Now try to schedule the new bundle. As soon as the bundle is "ready" it
- // means that there are no cyclic dependencies and we can schedule it.
- // Note that's important that we don't "schedule" the bundle yet (see
- // cancelScheduling).
- while (!Bundle->isReady() && !ReadyInsts.empty()) {
- ScheduleData *pickedSD = ReadyInsts.back();
- ReadyInsts.pop_back();
- if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
- schedule(pickedSD, ReadyInsts);
- }
- }
- if (!Bundle->isReady()) {
- cancelScheduling(VL, OpValue);
- return false;
- }
- return true;
- }
- void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
- Value *OpValue) {
- if (isa<PHINode>(OpValue))
- return;
- ScheduleData *Bundle = getScheduleData(OpValue);
- DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n");
- assert(!Bundle->IsScheduled &&
- "Can't cancel bundle which is already scheduled");
- assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
- "tried to unbundle something which is not a bundle");
- // Un-bundle: make single instructions out of the bundle.
- ScheduleData *BundleMember = Bundle;
- while (BundleMember) {
- assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
- BundleMember->FirstInBundle = BundleMember;
- ScheduleData *Next = BundleMember->NextInBundle;
- BundleMember->NextInBundle = nullptr;
- BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
- if (BundleMember->UnscheduledDepsInBundle == 0) {
- ReadyInsts.insert(BundleMember);
- }
- BundleMember = Next;
- }
- }
- bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) {
- if (getScheduleData(V))
- return true;
- Instruction *I = dyn_cast<Instruction>(V);
- assert(I && "bundle member must be an instruction");
- assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
- if (!ScheduleStart) {
- // It's the first instruction in the new region.
- initScheduleData(I, I->getNextNode(), nullptr, nullptr);
- ScheduleStart = I;
- ScheduleEnd = I->getNextNode();
- assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
- DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n");
- return true;
- }
- // Search up and down at the same time, because we don't know if the new
- // instruction is above or below the existing scheduling region.
- BasicBlock::reverse_iterator UpIter =
- ++ScheduleStart->getIterator().getReverse();
- BasicBlock::reverse_iterator UpperEnd = BB->rend();
- BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
- BasicBlock::iterator LowerEnd = BB->end();
- for (;;) {
- if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
- DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n");
- return false;
- }
- if (UpIter != UpperEnd) {
- if (&*UpIter == I) {
- initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
- ScheduleStart = I;
- DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n");
- return true;
- }
- UpIter++;
- }
- if (DownIter != LowerEnd) {
- if (&*DownIter == I) {
- initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
- nullptr);
- ScheduleEnd = I->getNextNode();
- assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
- DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n");
- return true;
- }
- DownIter++;
- }
- assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
- "instruction not found in block");
- }
- return true;
- }
- void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
- Instruction *ToI,
- ScheduleData *PrevLoadStore,
- ScheduleData *NextLoadStore) {
- ScheduleData *CurrentLoadStore = PrevLoadStore;
- for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
- ScheduleData *SD = ScheduleDataMap[I];
- if (!SD) {
- // Allocate a new ScheduleData for the instruction.
- if (ChunkPos >= ChunkSize) {
- ScheduleDataChunks.push_back(
- llvm::make_unique<ScheduleData[]>(ChunkSize));
- ChunkPos = 0;
- }
- SD = &(ScheduleDataChunks.back()[ChunkPos++]);
- ScheduleDataMap[I] = SD;
- SD->Inst = I;
- }
- assert(!isInSchedulingRegion(SD) &&
- "new ScheduleData already in scheduling region");
- SD->init(SchedulingRegionID);
- if (I->mayReadOrWriteMemory()) {
- // Update the linked list of memory accessing instructions.
- if (CurrentLoadStore) {
- CurrentLoadStore->NextLoadStore = SD;
- } else {
- FirstLoadStoreInRegion = SD;
- }
- CurrentLoadStore = SD;
- }
- }
- if (NextLoadStore) {
- if (CurrentLoadStore)
- CurrentLoadStore->NextLoadStore = NextLoadStore;
- } else {
- LastLoadStoreInRegion = CurrentLoadStore;
- }
- }
- void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
- bool InsertInReadyList,
- BoUpSLP *SLP) {
- assert(SD->isSchedulingEntity());
- SmallVector<ScheduleData *, 10> WorkList;
- WorkList.push_back(SD);
- while (!WorkList.empty()) {
- ScheduleData *SD = WorkList.back();
- WorkList.pop_back();
- ScheduleData *BundleMember = SD;
- while (BundleMember) {
- assert(isInSchedulingRegion(BundleMember));
- if (!BundleMember->hasValidDependencies()) {
- DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n");
- BundleMember->Dependencies = 0;
- BundleMember->resetUnscheduledDeps();
- // Handle def-use chain dependencies.
- for (User *U : BundleMember->Inst->users()) {
- if (isa<Instruction>(U)) {
- ScheduleData *UseSD = getScheduleData(U);
- if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
- BundleMember->Dependencies++;
- ScheduleData *DestBundle = UseSD->FirstInBundle;
- if (!DestBundle->IsScheduled)
- BundleMember->incrementUnscheduledDeps(1);
- if (!DestBundle->hasValidDependencies())
- WorkList.push_back(DestBundle);
- }
- } else {
- // I'm not sure if this can ever happen. But we need to be safe.
- // This lets the instruction/bundle never be scheduled and
- // eventually disable vectorization.
- BundleMember->Dependencies++;
- BundleMember->incrementUnscheduledDeps(1);
- }
- }
- // Handle the memory dependencies.
- ScheduleData *DepDest = BundleMember->NextLoadStore;
- if (DepDest) {
- Instruction *SrcInst = BundleMember->Inst;
- MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
- bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
- unsigned numAliased = 0;
- unsigned DistToSrc = 1;
- while (DepDest) {
- assert(isInSchedulingRegion(DepDest));
- // We have two limits to reduce the complexity:
- // 1) AliasedCheckLimit: It's a small limit to reduce calls to
- // SLP->isAliased (which is the expensive part in this loop).
- // 2) MaxMemDepDistance: It's for very large blocks and it aborts
- // the whole loop (even if the loop is fast, it's quadratic).
- // It's important for the loop break condition (see below) to
- // check this limit even between two read-only instructions.
- if (DistToSrc >= MaxMemDepDistance ||
- ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
- (numAliased >= AliasedCheckLimit ||
- SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
- // We increment the counter only if the locations are aliased
- // (instead of counting all alias checks). This gives a better
- // balance between reduced runtime and accurate dependencies.
- numAliased++;
- DepDest->MemoryDependencies.push_back(BundleMember);
- BundleMember->Dependencies++;
- ScheduleData *DestBundle = DepDest->FirstInBundle;
- if (!DestBundle->IsScheduled) {
- BundleMember->incrementUnscheduledDeps(1);
- }
- if (!DestBundle->hasValidDependencies()) {
- WorkList.push_back(DestBundle);
- }
- }
- DepDest = DepDest->NextLoadStore;
- // Example, explaining the loop break condition: Let's assume our
- // starting instruction is i0 and MaxMemDepDistance = 3.
- //
- // +--------v--v--v
- // i0,i1,i2,i3,i4,i5,i6,i7,i8
- // +--------^--^--^
- //
- // MaxMemDepDistance let us stop alias-checking at i3 and we add
- // dependencies from i0 to i3,i4,.. (even if they are not aliased).
- // Previously we already added dependencies from i3 to i6,i7,i8
- // (because of MaxMemDepDistance). As we added a dependency from
- // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
- // and we can abort this loop at i6.
- if (DistToSrc >= 2 * MaxMemDepDistance)
- break;
- DistToSrc++;
- }
- }
- }
- BundleMember = BundleMember->NextInBundle;
- }
- if (InsertInReadyList && SD->isReady()) {
- ReadyInsts.push_back(SD);
- DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n");
- }
- }
- }
- void BoUpSLP::BlockScheduling::resetSchedule() {
- assert(ScheduleStart &&
- "tried to reset schedule on block which has not been scheduled");
- for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
- ScheduleData *SD = getScheduleData(I);
- assert(isInSchedulingRegion(SD));
- SD->IsScheduled = false;
- SD->resetUnscheduledDeps();
- }
- ReadyInsts.clear();
- }
- void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
- if (!BS->ScheduleStart)
- return;
- DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
- BS->resetSchedule();
- // For the real scheduling we use a more sophisticated ready-list: it is
- // sorted by the original instruction location. This lets the final schedule
- // be as close as possible to the original instruction order.
- struct ScheduleDataCompare {
- bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
- return SD2->SchedulingPriority < SD1->SchedulingPriority;
- }
- };
- std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
- // Ensure that all dependency data is updated and fill the ready-list with
- // initial instructions.
- int Idx = 0;
- int NumToSchedule = 0;
- for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
- I = I->getNextNode()) {
- ScheduleData *SD = BS->getScheduleData(I);
- assert(
- SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr) &&
- "scheduler and vectorizer have different opinion on what is a bundle");
- SD->FirstInBundle->SchedulingPriority = Idx++;
- if (SD->isSchedulingEntity()) {
- BS->calculateDependencies(SD, false, this);
- NumToSchedule++;
- }
- }
- BS->initialFillReadyList(ReadyInsts);
- Instruction *LastScheduledInst = BS->ScheduleEnd;
- // Do the "real" scheduling.
- while (!ReadyInsts.empty()) {
- ScheduleData *picked = *ReadyInsts.begin();
- ReadyInsts.erase(ReadyInsts.begin());
- // Move the scheduled instruction(s) to their dedicated places, if not
- // there yet.
- ScheduleData *BundleMember = picked;
- while (BundleMember) {
- Instruction *pickedInst = BundleMember->Inst;
- if (LastScheduledInst->getNextNode() != pickedInst) {
- BS->BB->getInstList().remove(pickedInst);
- BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
- pickedInst);
- }
- LastScheduledInst = pickedInst;
- BundleMember = BundleMember->NextInBundle;
- }
- BS->schedule(picked, ReadyInsts);
- NumToSchedule--;
- }
- assert(NumToSchedule == 0 && "could not schedule all instructions");
- // Avoid duplicate scheduling of the block.
- BS->ScheduleStart = nullptr;
- }
- unsigned BoUpSLP::getVectorElementSize(Value *V) {
- // If V is a store, just return the width of the stored value without
- // traversing the expression tree. This is the common case.
- if (auto *Store = dyn_cast<StoreInst>(V))
- return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
- // If V is not a store, we can traverse the expression tree to find loads
- // that feed it. The type of the loaded value may indicate a more suitable
- // width than V's type. We want to base the vector element size on the width
- // of memory operations where possible.
- SmallVector<Instruction *, 16> Worklist;
- SmallPtrSet<Instruction *, 16> Visited;
- if (auto *I = dyn_cast<Instruction>(V))
- Worklist.push_back(I);
- // Traverse the expression tree in bottom-up order looking for loads. If we
- // encounter an instruciton we don't yet handle, we give up.
- auto MaxWidth = 0u;
- auto FoundUnknownInst = false;
- while (!Worklist.empty() && !FoundUnknownInst) {
- auto *I = Worklist.pop_back_val();
- Visited.insert(I);
- // We should only be looking at scalar instructions here. If the current
- // instruction has a vector type, give up.
- auto *Ty = I->getType();
- if (isa<VectorType>(Ty))
- FoundUnknownInst = true;
- // If the current instruction is a load, update MaxWidth to reflect the
- // width of the loaded value.
- else if (isa<LoadInst>(I))
- MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
- // Otherwise, we need to visit the operands of the instruction. We only
- // handle the interesting cases from buildTree here. If an operand is an
- // instruction we haven't yet visited, we add it to the worklist.
- else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
- isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
- for (Use &U : I->operands())
- if (auto *J = dyn_cast<Instruction>(U.get()))
- if (!Visited.count(J))
- Worklist.push_back(J);
- }
- // If we don't yet handle the instruction, give up.
- else
- FoundUnknownInst = true;
- }
- // If we didn't encounter a memory access in the expression tree, or if we
- // gave up for some reason, just return the width of V.
- if (!MaxWidth || FoundUnknownInst)
- return DL->getTypeSizeInBits(V->getType());
- // Otherwise, return the maximum width we found.
- return MaxWidth;
- }
- // Determine if a value V in a vectorizable expression Expr can be demoted to a
- // smaller type with a truncation. We collect the values that will be demoted
- // in ToDemote and additional roots that require investigating in Roots.
- static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
- SmallVectorImpl<Value *> &ToDemote,
- SmallVectorImpl<Value *> &Roots) {
- // We can always demote constants.
- if (isa<Constant>(V)) {
- ToDemote.push_back(V);
- return true;
- }
- // If the value is not an instruction in the expression with only one use, it
- // cannot be demoted.
- auto *I = dyn_cast<Instruction>(V);
- if (!I || !I->hasOneUse() || !Expr.count(I))
- return false;
- switch (I->getOpcode()) {
- // We can always demote truncations and extensions. Since truncations can
- // seed additional demotion, we save the truncated value.
- case Instruction::Trunc:
- Roots.push_back(I->getOperand(0));
- case Instruction::ZExt:
- case Instruction::SExt:
- break;
- // We can demote certain binary operations if we can demote both of their
- // operands.
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
- !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
- return false;
- break;
- // We can demote selects if we can demote their true and false values.
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
- !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
- return false;
- break;
- }
- // We can demote phis if we can demote all their incoming operands. Note that
- // we don't need to worry about cycles since we ensure single use above.
- case Instruction::PHI: {
- PHINode *PN = cast<PHINode>(I);
- for (Value *IncValue : PN->incoming_values())
- if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
- return false;
- break;
- }
- // Otherwise, conservatively give up.
- default:
- return false;
- }
- // Record the value that we can demote.
- ToDemote.push_back(V);
- return true;
- }
- void BoUpSLP::computeMinimumValueSizes() {
- // If there are no external uses, the expression tree must be rooted by a
- // store. We can't demote in-memory values, so there is nothing to do here.
- if (ExternalUses.empty())
- return;
- // We only attempt to truncate integer expressions.
- auto &TreeRoot = VectorizableTree[0].Scalars;
- auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
- if (!TreeRootIT)
- return;
- // If the expression is not rooted by a store, these roots should have
- // external uses. We will rely on InstCombine to rewrite the expression in
- // the narrower type. However, InstCombine only rewrites single-use values.
- // This means that if a tree entry other than a root is used externally, it
- // must have multiple uses and InstCombine will not rewrite it. The code
- // below ensures that only the roots are used externally.
- SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
- for (auto &EU : ExternalUses)
- if (!Expr.erase(EU.Scalar))
- return;
- if (!Expr.empty())
- return;
- // Collect the scalar values of the vectorizable expression. We will use this
- // context to determine which values can be demoted. If we see a truncation,
- // we mark it as seeding another demotion.
- for (auto &Entry : VectorizableTree)
- Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end());
- // Ensure the roots of the vectorizable tree don't form a cycle. They must
- // have a single external user that is not in the vectorizable tree.
- for (auto *Root : TreeRoot)
- if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
- return;
- // Conservatively determine if we can actually truncate the roots of the
- // expression. Collect the values that can be demoted in ToDemote and
- // additional roots that require investigating in Roots.
- SmallVector<Value *, 32> ToDemote;
- SmallVector<Value *, 4> Roots;
- for (auto *Root : TreeRoot)
- if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
- return;
- // The maximum bit width required to represent all the values that can be
- // demoted without loss of precision. It would be safe to truncate the roots
- // of the expression to this width.
- auto MaxBitWidth = 8u;
- // We first check if all the bits of the roots are demanded. If they're not,
- // we can truncate the roots to this narrower type.
- for (auto *Root : TreeRoot) {
- auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
- MaxBitWidth = std::max<unsigned>(
- Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
- }
- // True if the roots can be zero-extended back to their original type, rather
- // than sign-extended. We know that if the leading bits are not demanded, we
- // can safely zero-extend. So we initialize IsKnownPositive to True.
- bool IsKnownPositive = true;
- // If all the bits of the roots are demanded, we can try a little harder to
- // compute a narrower type. This can happen, for example, if the roots are
- // getelementptr indices. InstCombine promotes these indices to the pointer
- // width. Thus, all their bits are technically demanded even though the
- // address computation might be vectorized in a smaller type.
- //
- // We start by looking at each entry that can be demoted. We compute the
- // maximum bit width required to store the scalar by using ValueTracking to
- // compute the number of high-order bits we can truncate.
- if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) {
- MaxBitWidth = 8u;
- // Determine if the sign bit of all the roots is known to be zero. If not,
- // IsKnownPositive is set to False.
- IsKnownPositive = all_of(TreeRoot, [&](Value *R) {
- KnownBits Known = computeKnownBits(R, *DL);
- return Known.isNonNegative();
- });
- // Determine the maximum number of bits required to store the scalar
- // values.
- for (auto *Scalar : ToDemote) {
- auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT);
- auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
- MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
- }
- // If we can't prove that the sign bit is zero, we must add one to the
- // maximum bit width to account for the unknown sign bit. This preserves
- // the existing sign bit so we can safely sign-extend the root back to the
- // original type. Otherwise, if we know the sign bit is zero, we will
- // zero-extend the root instead.
- //
- // FIXME: This is somewhat suboptimal, as there will be cases where adding
- // one to the maximum bit width will yield a larger-than-necessary
- // type. In general, we need to add an extra bit only if we can't
- // prove that the upper bit of the original type is equal to the
- // upper bit of the proposed smaller type. If these two bits are the
- // same (either zero or one) we know that sign-extending from the
- // smaller type will result in the same value. Here, since we can't
- // yet prove this, we are just making the proposed smaller type
- // larger to ensure correctness.
- if (!IsKnownPositive)
- ++MaxBitWidth;
- }
- // Round MaxBitWidth up to the next power-of-two.
- if (!isPowerOf2_64(MaxBitWidth))
- MaxBitWidth = NextPowerOf2(MaxBitWidth);
- // If the maximum bit width we compute is less than the with of the roots'
- // type, we can proceed with the narrowing. Otherwise, do nothing.
- if (MaxBitWidth >= TreeRootIT->getBitWidth())
- return;
- // If we can truncate the root, we must collect additional values that might
- // be demoted as a result. That is, those seeded by truncations we will
- // modify.
- while (!Roots.empty())
- collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
- // Finally, map the values we can demote to the maximum bit with we computed.
- for (auto *Scalar : ToDemote)
- MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
- }
- namespace {
- /// The SLPVectorizer Pass.
- struct SLPVectorizer : public FunctionPass {
- SLPVectorizerPass Impl;
- /// Pass identification, replacement for typeid
- static char ID;
- explicit SLPVectorizer() : FunctionPass(ID) {
- initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
- }
- bool doInitialization(Module &M) override {
- return false;
- }
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
- auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
- auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
- auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
- auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
- auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
- return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- FunctionPass::getAnalysisUsage(AU);
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<ScalarEvolutionWrapperPass>();
- AU.addRequired<AAResultsWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<DemandedBitsWrapperPass>();
- AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<AAResultsWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.setPreservesCFG();
- }
- };
- } // end anonymous namespace
- PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
- auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
- auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
- auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
- auto *AA = &AM.getResult<AAManager>(F);
- auto *LI = &AM.getResult<LoopAnalysis>(F);
- auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
- auto *AC = &AM.getResult<AssumptionAnalysis>(F);
- auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
- auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
- bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
- if (!Changed)
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- PA.preserve<AAManager>();
- PA.preserve<GlobalsAA>();
- return PA;
- }
- bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
- TargetTransformInfo *TTI_,
- TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
- LoopInfo *LI_, DominatorTree *DT_,
- AssumptionCache *AC_, DemandedBits *DB_,
- OptimizationRemarkEmitter *ORE_) {
- SE = SE_;
- TTI = TTI_;
- TLI = TLI_;
- AA = AA_;
- LI = LI_;
- DT = DT_;
- AC = AC_;
- DB = DB_;
- DL = &F.getParent()->getDataLayout();
- Stores.clear();
- GEPs.clear();
- bool Changed = false;
- // If the target claims to have no vector registers don't attempt
- // vectorization.
- if (!TTI->getNumberOfRegisters(true))
- return false;
- // Don't vectorize when the attribute NoImplicitFloat is used.
- if (F.hasFnAttribute(Attribute::NoImplicitFloat))
- return false;
- DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
- // Use the bottom up slp vectorizer to construct chains that start with
- // store instructions.
- BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
- // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
- // delete instructions.
- // Scan the blocks in the function in post order.
- for (auto BB : post_order(&F.getEntryBlock())) {
- collectSeedInstructions(BB);
- // Vectorize trees that end at stores.
- if (!Stores.empty()) {
- DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
- << " underlying objects.\n");
- Changed |= vectorizeStoreChains(R);
- }
- // Vectorize trees that end at reductions.
- Changed |= vectorizeChainsInBlock(BB, R);
- // Vectorize the index computations of getelementptr instructions. This
- // is primarily intended to catch gather-like idioms ending at
- // non-consecutive loads.
- if (!GEPs.empty()) {
- DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
- << " underlying objects.\n");
- Changed |= vectorizeGEPIndices(BB, R);
- }
- }
- if (Changed) {
- R.optimizeGatherSequence();
- DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
- DEBUG(verifyFunction(F));
- }
- return Changed;
- }
- /// \brief Check that the Values in the slice in VL array are still existent in
- /// the WeakTrackingVH array.
- /// Vectorization of part of the VL array may cause later values in the VL array
- /// to become invalid. We track when this has happened in the WeakTrackingVH
- /// array.
- static bool hasValueBeenRAUWed(ArrayRef<Value *> VL,
- ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin,
- unsigned SliceSize) {
- VL = VL.slice(SliceBegin, SliceSize);
- VH = VH.slice(SliceBegin, SliceSize);
- return !std::equal(VL.begin(), VL.end(), VH.begin());
- }
- bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
- unsigned VecRegSize) {
- unsigned ChainLen = Chain.size();
- DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
- << "\n");
- unsigned Sz = R.getVectorElementSize(Chain[0]);
- unsigned VF = VecRegSize / Sz;
- if (!isPowerOf2_32(Sz) || VF < 2)
- return false;
- // Keep track of values that were deleted by vectorizing in the loop below.
- SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end());
- bool Changed = false;
- // Look for profitable vectorizable trees at all offsets, starting at zero.
- for (unsigned i = 0, e = ChainLen; i < e; ++i) {
- if (i + VF > e)
- break;
- // Check that a previous iteration of this loop did not delete the Value.
- if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
- continue;
- DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
- << "\n");
- ArrayRef<Value *> Operands = Chain.slice(i, VF);
- R.buildTree(Operands);
- if (R.isTreeTinyAndNotFullyVectorizable())
- continue;
- R.computeMinimumValueSizes();
- int Cost = R.getTreeCost();
- DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
- if (Cost < -SLPCostThreshold) {
- DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
- using namespace ore;
- R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
- cast<StoreInst>(Chain[i]))
- << "Stores SLP vectorized with cost " << NV("Cost", Cost)
- << " and with tree size "
- << NV("TreeSize", R.getTreeSize()));
- R.vectorizeTree();
- // Move to the next bundle.
- i += VF - 1;
- Changed = true;
- }
- }
- return Changed;
- }
- bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
- BoUpSLP &R) {
- SetVector<StoreInst *> Heads, Tails;
- SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
- // We may run into multiple chains that merge into a single chain. We mark the
- // stores that we vectorized so that we don't visit the same store twice.
- BoUpSLP::ValueSet VectorizedStores;
- bool Changed = false;
- // Do a quadratic search on all of the given stores and find
- // all of the pairs of stores that follow each other.
- SmallVector<unsigned, 16> IndexQueue;
- for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
- IndexQueue.clear();
- // If a store has multiple consecutive store candidates, search Stores
- // array according to the sequence: from i+1 to e, then from i-1 to 0.
- // This is because usually pairing with immediate succeeding or preceding
- // candidate create the best chance to find slp vectorization opportunity.
- unsigned j = 0;
- for (j = i + 1; j < e; ++j)
- IndexQueue.push_back(j);
- for (j = i; j > 0; --j)
- IndexQueue.push_back(j - 1);
- for (auto &k : IndexQueue) {
- if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) {
- Tails.insert(Stores[k]);
- Heads.insert(Stores[i]);
- ConsecutiveChain[Stores[i]] = Stores[k];
- break;
- }
- }
- }
- // For stores that start but don't end a link in the chain:
- for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
- it != e; ++it) {
- if (Tails.count(*it))
- continue;
- // We found a store instr that starts a chain. Now follow the chain and try
- // to vectorize it.
- BoUpSLP::ValueList Operands;
- StoreInst *I = *it;
- // Collect the chain into a list.
- while (Tails.count(I) || Heads.count(I)) {
- if (VectorizedStores.count(I))
- break;
- Operands.push_back(I);
- // Move to the next value in the chain.
- I = ConsecutiveChain[I];
- }
- // FIXME: Is division-by-2 the correct step? Should we assert that the
- // register size is a power-of-2?
- for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize();
- Size /= 2) {
- if (vectorizeStoreChain(Operands, R, Size)) {
- // Mark the vectorized stores so that we don't vectorize them again.
- VectorizedStores.insert(Operands.begin(), Operands.end());
- Changed = true;
- break;
- }
- }
- }
- return Changed;
- }
- void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
- // Initialize the collections. We will make a single pass over the block.
- Stores.clear();
- GEPs.clear();
- // Visit the store and getelementptr instructions in BB and organize them in
- // Stores and GEPs according to the underlying objects of their pointer
- // operands.
- for (Instruction &I : *BB) {
- // Ignore store instructions that are volatile or have a pointer operand
- // that doesn't point to a scalar type.
- if (auto *SI = dyn_cast<StoreInst>(&I)) {
- if (!SI->isSimple())
- continue;
- if (!isValidElementType(SI->getValueOperand()->getType()))
- continue;
- Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
- }
- // Ignore getelementptr instructions that have more than one index, a
- // constant index, or a pointer operand that doesn't point to a scalar
- // type.
- else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
- auto Idx = GEP->idx_begin()->get();
- if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
- continue;
- if (!isValidElementType(Idx->getType()))
- continue;
- if (GEP->getType()->isVectorTy())
- continue;
- GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP);
- }
- }
- }
- bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
- if (!A || !B)
- return false;
- Value *VL[] = { A, B };
- return tryToVectorizeList(VL, R, None, true);
- }
- bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
- ArrayRef<Value *> BuildVector,
- bool AllowReorder) {
- if (VL.size() < 2)
- return false;
- DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size()
- << ".\n");
- // Check that all of the parts are scalar instructions of the same type.
- Instruction *I0 = dyn_cast<Instruction>(VL[0]);
- if (!I0)
- return false;
- unsigned Opcode0 = I0->getOpcode();
- unsigned Sz = R.getVectorElementSize(I0);
- unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
- unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
- if (MaxVF < 2)
- return false;
- for (Value *V : VL) {
- Type *Ty = V->getType();
- if (!isValidElementType(Ty))
- return false;
- Instruction *Inst = dyn_cast<Instruction>(V);
- if (!Inst || Inst->getOpcode() != Opcode0)
- return false;
- }
- bool Changed = false;
- // Keep track of values that were deleted by vectorizing in the loop below.
- SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end());
- unsigned NextInst = 0, MaxInst = VL.size();
- for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF;
- VF /= 2) {
- // No actual vectorization should happen, if number of parts is the same as
- // provided vectorization factor (i.e. the scalar type is used for vector
- // code during codegen).
- auto *VecTy = VectorType::get(VL[0]->getType(), VF);
- if (TTI->getNumberOfParts(VecTy) == VF)
- continue;
- for (unsigned I = NextInst; I < MaxInst; ++I) {
- unsigned OpsWidth = 0;
- if (I + VF > MaxInst)
- OpsWidth = MaxInst - I;
- else
- OpsWidth = VF;
- if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
- break;
- // Check that a previous iteration of this loop did not delete the Value.
- if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth))
- continue;
- DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
- << "\n");
- ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
- ArrayRef<Value *> BuildVectorSlice;
- if (!BuildVector.empty())
- BuildVectorSlice = BuildVector.slice(I, OpsWidth);
- R.buildTree(Ops, BuildVectorSlice);
- // TODO: check if we can allow reordering for more cases.
- if (AllowReorder && R.shouldReorder()) {
- // Conceptually, there is nothing actually preventing us from trying to
- // reorder a larger list. In fact, we do exactly this when vectorizing
- // reductions. However, at this point, we only expect to get here when
- // there are exactly two operations.
- assert(Ops.size() == 2);
- assert(BuildVectorSlice.empty());
- Value *ReorderedOps[] = {Ops[1], Ops[0]};
- R.buildTree(ReorderedOps, None);
- }
- if (R.isTreeTinyAndNotFullyVectorizable())
- continue;
- R.computeMinimumValueSizes();
- int Cost = R.getTreeCost();
- if (Cost < -SLPCostThreshold) {
- DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
- R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
- cast<Instruction>(Ops[0]))
- << "SLP vectorized with cost " << ore::NV("Cost", Cost)
- << " and with tree size "
- << ore::NV("TreeSize", R.getTreeSize()));
- Value *VectorizedRoot = R.vectorizeTree();
- // Reconstruct the build vector by extracting the vectorized root. This
- // way we handle the case where some elements of the vector are
- // undefined.
- // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
- if (!BuildVectorSlice.empty()) {
- // The insert point is the last build vector instruction. The
- // vectorized root will precede it. This guarantees that we get an
- // instruction. The vectorized tree could have been constant folded.
- Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
- unsigned VecIdx = 0;
- for (auto &V : BuildVectorSlice) {
- IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
- ++BasicBlock::iterator(InsertAfter));
- Instruction *I = cast<Instruction>(V);
- assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I));
- Instruction *Extract =
- cast<Instruction>(Builder.CreateExtractElement(
- VectorizedRoot, Builder.getInt32(VecIdx++)));
- I->setOperand(1, Extract);
- I->removeFromParent();
- I->insertAfter(Extract);
- InsertAfter = I;
- }
- }
- // Move to the next bundle.
- I += VF - 1;
- NextInst = I + 1;
- Changed = true;
- }
- }
- }
- return Changed;
- }
- bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
- if (!V)
- return false;
- Value *P = V->getParent();
- // Vectorize in current basic block only.
- auto *Op0 = dyn_cast<Instruction>(V->getOperand(0));
- auto *Op1 = dyn_cast<Instruction>(V->getOperand(1));
- if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
- return false;
- // Try to vectorize V.
- if (tryToVectorizePair(Op0, Op1, R))
- return true;
- auto *A = dyn_cast<BinaryOperator>(Op0);
- auto *B = dyn_cast<BinaryOperator>(Op1);
- // Try to skip B.
- if (B && B->hasOneUse()) {
- auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
- auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
- if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
- return true;
- if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
- return true;
- }
- // Try to skip A.
- if (A && A->hasOneUse()) {
- auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
- auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
- if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
- return true;
- if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
- return true;
- }
- return false;
- }
- /// \brief Generate a shuffle mask to be used in a reduction tree.
- ///
- /// \param VecLen The length of the vector to be reduced.
- /// \param NumEltsToRdx The number of elements that should be reduced in the
- /// vector.
- /// \param IsPairwise Whether the reduction is a pairwise or splitting
- /// reduction. A pairwise reduction will generate a mask of
- /// <0,2,...> or <1,3,..> while a splitting reduction will generate
- /// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
- /// \param IsLeft True will generate a mask of even elements, odd otherwise.
- static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
- bool IsPairwise, bool IsLeft,
- IRBuilder<> &Builder) {
- assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
- SmallVector<Constant *, 32> ShuffleMask(
- VecLen, UndefValue::get(Builder.getInt32Ty()));
- if (IsPairwise)
- // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
- for (unsigned i = 0; i != NumEltsToRdx; ++i)
- ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
- else
- // Move the upper half of the vector to the lower half.
- for (unsigned i = 0; i != NumEltsToRdx; ++i)
- ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
- return ConstantVector::get(ShuffleMask);
- }
- namespace {
- /// Model horizontal reductions.
- ///
- /// A horizontal reduction is a tree of reduction operations (currently add and
- /// fadd) that has operations that can be put into a vector as its leaf.
- /// For example, this tree:
- ///
- /// mul mul mul mul
- /// \ / \ /
- /// + +
- /// \ /
- /// +
- /// This tree has "mul" as its reduced values and "+" as its reduction
- /// operations. A reduction might be feeding into a store or a binary operation
- /// feeding a phi.
- /// ...
- /// \ /
- /// +
- /// |
- /// phi +=
- ///
- /// Or:
- /// ...
- /// \ /
- /// +
- /// |
- /// *p =
- ///
- class HorizontalReduction {
- SmallVector<Value *, 16> ReductionOps;
- SmallVector<Value *, 32> ReducedVals;
- // Use map vector to make stable output.
- MapVector<Instruction *, Value *> ExtraArgs;
- BinaryOperator *ReductionRoot = nullptr;
- /// The opcode of the reduction.
- Instruction::BinaryOps ReductionOpcode = Instruction::BinaryOpsEnd;
- /// The opcode of the values we perform a reduction on.
- unsigned ReducedValueOpcode = 0;
- /// Should we model this reduction as a pairwise reduction tree or a tree that
- /// splits the vector in halves and adds those halves.
- bool IsPairwiseReduction = false;
- /// Checks if the ParentStackElem.first should be marked as a reduction
- /// operation with an extra argument or as extra argument itself.
- void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
- Value *ExtraArg) {
- if (ExtraArgs.count(ParentStackElem.first)) {
- ExtraArgs[ParentStackElem.first] = nullptr;
- // We ran into something like:
- // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
- // The whole ParentStackElem.first should be considered as an extra value
- // in this case.
- // Do not perform analysis of remaining operands of ParentStackElem.first
- // instruction, this whole instruction is an extra argument.
- ParentStackElem.second = ParentStackElem.first->getNumOperands();
- } else {
- // We ran into something like:
- // ParentStackElem.first += ... + ExtraArg + ...
- ExtraArgs[ParentStackElem.first] = ExtraArg;
- }
- }
- public:
- HorizontalReduction() = default;
- /// \brief Try to find a reduction tree.
- bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) {
- assert((!Phi || is_contained(Phi->operands(), B)) &&
- "Thi phi needs to use the binary operator");
- // We could have a initial reductions that is not an add.
- // r *= v1 + v2 + v3 + v4
- // In such a case start looking for a tree rooted in the first '+'.
- if (Phi) {
- if (B->getOperand(0) == Phi) {
- Phi = nullptr;
- B = dyn_cast<BinaryOperator>(B->getOperand(1));
- } else if (B->getOperand(1) == Phi) {
- Phi = nullptr;
- B = dyn_cast<BinaryOperator>(B->getOperand(0));
- }
- }
- if (!B)
- return false;
- Type *Ty = B->getType();
- if (!isValidElementType(Ty))
- return false;
- ReductionOpcode = B->getOpcode();
- ReducedValueOpcode = 0;
- ReductionRoot = B;
- // We currently only support adds.
- if ((ReductionOpcode != Instruction::Add &&
- ReductionOpcode != Instruction::FAdd) ||
- !B->isAssociative())
- return false;
- // Post order traverse the reduction tree starting at B. We only handle true
- // trees containing only binary operators or selects.
- SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
- Stack.push_back(std::make_pair(B, 0));
- while (!Stack.empty()) {
- Instruction *TreeN = Stack.back().first;
- unsigned EdgeToVist = Stack.back().second++;
- bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
- // Postorder vist.
- if (EdgeToVist == 2 || IsReducedValue) {
- if (IsReducedValue)
- ReducedVals.push_back(TreeN);
- else {
- auto I = ExtraArgs.find(TreeN);
- if (I != ExtraArgs.end() && !I->second) {
- // Check if TreeN is an extra argument of its parent operation.
- if (Stack.size() <= 1) {
- // TreeN can't be an extra argument as it is a root reduction
- // operation.
- return false;
- }
- // Yes, TreeN is an extra argument, do not add it to a list of
- // reduction operations.
- // Stack[Stack.size() - 2] always points to the parent operation.
- markExtraArg(Stack[Stack.size() - 2], TreeN);
- ExtraArgs.erase(TreeN);
- } else
- ReductionOps.push_back(TreeN);
- }
- // Retract.
- Stack.pop_back();
- continue;
- }
- // Visit left or right.
- Value *NextV = TreeN->getOperand(EdgeToVist);
- if (NextV != Phi) {
- auto *I = dyn_cast<Instruction>(NextV);
- // Continue analysis if the next operand is a reduction operation or
- // (possibly) a reduced value. If the reduced value opcode is not set,
- // the first met operation != reduction operation is considered as the
- // reduced value class.
- if (I && (!ReducedValueOpcode || I->getOpcode() == ReducedValueOpcode ||
- I->getOpcode() == ReductionOpcode)) {
- // Only handle trees in the current basic block.
- if (I->getParent() != B->getParent()) {
- // I is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), I);
- continue;
- }
- // Each tree node needs to have one user except for the ultimate
- // reduction.
- if (!I->hasOneUse() && I != B) {
- // I is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), I);
- continue;
- }
- if (I->getOpcode() == ReductionOpcode) {
- // We need to be able to reassociate the reduction operations.
- if (!I->isAssociative()) {
- // I is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), I);
- continue;
- }
- } else if (ReducedValueOpcode &&
- ReducedValueOpcode != I->getOpcode()) {
- // Make sure that the opcodes of the operations that we are going to
- // reduce match.
- // I is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), I);
- continue;
- } else if (!ReducedValueOpcode)
- ReducedValueOpcode = I->getOpcode();
- Stack.push_back(std::make_pair(I, 0));
- continue;
- }
- }
- // NextV is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), NextV);
- }
- return true;
- }
- /// \brief Attempt to vectorize the tree found by
- /// matchAssociativeReduction.
- bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
- if (ReducedVals.empty())
- return false;
- // If there is a sufficient number of reduction values, reduce
- // to a nearby power-of-2. Can safely generate oversized
- // vectors and rely on the backend to split them to legal sizes.
- unsigned NumReducedVals = ReducedVals.size();
- if (NumReducedVals < 4)
- return false;
- unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
- Value *VectorizedTree = nullptr;
- IRBuilder<> Builder(ReductionRoot);
- FastMathFlags Unsafe;
- Unsafe.setUnsafeAlgebra();
- Builder.setFastMathFlags(Unsafe);
- unsigned i = 0;
- BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
- // The same extra argument may be used several time, so log each attempt
- // to use it.
- for (auto &Pair : ExtraArgs)
- ExternallyUsedValues[Pair.second].push_back(Pair.first);
- while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
- auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
- V.buildTree(VL, ExternallyUsedValues, ReductionOps);
- if (V.shouldReorder()) {
- SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend());
- V.buildTree(Reversed, ExternallyUsedValues, ReductionOps);
- }
- if (V.isTreeTinyAndNotFullyVectorizable())
- break;
- V.computeMinimumValueSizes();
- // Estimate cost.
- int Cost =
- V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth);
- if (Cost >= -SLPCostThreshold)
- break;
- DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
- << ". (HorRdx)\n");
- auto *I0 = cast<Instruction>(VL[0]);
- V.getORE()->emit(
- OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", I0)
- << "Vectorized horizontal reduction with cost "
- << ore::NV("Cost", Cost) << " and with tree size "
- << ore::NV("TreeSize", V.getTreeSize()));
- // Vectorize a tree.
- DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
- Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
- // Emit a reduction.
- Value *ReducedSubTree =
- emitReduction(VectorizedRoot, Builder, ReduxWidth, ReductionOps, TTI);
- if (VectorizedTree) {
- Builder.SetCurrentDebugLocation(Loc);
- VectorizedTree = Builder.CreateBinOp(ReductionOpcode, VectorizedTree,
- ReducedSubTree, "bin.rdx");
- propagateIRFlags(VectorizedTree, ReductionOps);
- } else
- VectorizedTree = ReducedSubTree;
- i += ReduxWidth;
- ReduxWidth = PowerOf2Floor(NumReducedVals - i);
- }
- if (VectorizedTree) {
- // Finish the reduction.
- for (; i < NumReducedVals; ++i) {
- auto *I = cast<Instruction>(ReducedVals[i]);
- Builder.SetCurrentDebugLocation(I->getDebugLoc());
- VectorizedTree =
- Builder.CreateBinOp(ReductionOpcode, VectorizedTree, I);
- propagateIRFlags(VectorizedTree, ReductionOps);
- }
- for (auto &Pair : ExternallyUsedValues) {
- assert(!Pair.second.empty() &&
- "At least one DebugLoc must be inserted");
- // Add each externally used value to the final reduction.
- for (auto *I : Pair.second) {
- Builder.SetCurrentDebugLocation(I->getDebugLoc());
- VectorizedTree = Builder.CreateBinOp(ReductionOpcode, VectorizedTree,
- Pair.first, "bin.extra");
- propagateIRFlags(VectorizedTree, I);
- }
- }
- // Update users.
- ReductionRoot->replaceAllUsesWith(VectorizedTree);
- }
- return VectorizedTree != nullptr;
- }
- unsigned numReductionValues() const {
- return ReducedVals.size();
- }
- private:
- /// \brief Calculate the cost of a reduction.
- int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
- unsigned ReduxWidth) {
- Type *ScalarTy = FirstReducedVal->getType();
- Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
- int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
- int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
- IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
- int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
- int ScalarReduxCost =
- (ReduxWidth - 1) *
- TTI->getArithmeticInstrCost(ReductionOpcode, ScalarTy);
- DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
- << " for reduction that starts with " << *FirstReducedVal
- << " (It is a "
- << (IsPairwiseReduction ? "pairwise" : "splitting")
- << " reduction)\n");
- return VecReduxCost - ScalarReduxCost;
- }
- /// \brief Emit a horizontal reduction of the vectorized value.
- Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
- unsigned ReduxWidth, ArrayRef<Value *> RedOps,
- const TargetTransformInfo *TTI) {
- assert(VectorizedValue && "Need to have a vectorized tree node");
- assert(isPowerOf2_32(ReduxWidth) &&
- "We only handle power-of-two reductions for now");
- if (!IsPairwiseReduction)
- return createSimpleTargetReduction(
- Builder, TTI, ReductionOpcode, VectorizedValue,
- TargetTransformInfo::ReductionFlags(), RedOps);
- Value *TmpVec = VectorizedValue;
- for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
- Value *LeftMask =
- createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
- Value *RightMask =
- createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
- Value *LeftShuf = Builder.CreateShuffleVector(
- TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
- Value *RightShuf = Builder.CreateShuffleVector(
- TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
- "rdx.shuf.r");
- TmpVec =
- Builder.CreateBinOp(ReductionOpcode, LeftShuf, RightShuf, "bin.rdx");
- propagateIRFlags(TmpVec, RedOps);
- }
- // The result is in the first element of the vector.
- return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
- }
- };
- } // end anonymous namespace
- /// \brief Recognize construction of vectors like
- /// %ra = insertelement <4 x float> undef, float %s0, i32 0
- /// %rb = insertelement <4 x float> %ra, float %s1, i32 1
- /// %rc = insertelement <4 x float> %rb, float %s2, i32 2
- /// %rd = insertelement <4 x float> %rc, float %s3, i32 3
- ///
- /// Returns true if it matches
- ///
- static bool findBuildVector(InsertElementInst *FirstInsertElem,
- SmallVectorImpl<Value *> &BuildVector,
- SmallVectorImpl<Value *> &BuildVectorOpds) {
- if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
- return false;
- InsertElementInst *IE = FirstInsertElem;
- while (true) {
- BuildVector.push_back(IE);
- BuildVectorOpds.push_back(IE->getOperand(1));
- if (IE->use_empty())
- return false;
- InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
- if (!NextUse)
- return true;
- // If this isn't the final use, make sure the next insertelement is the only
- // use. It's OK if the final constructed vector is used multiple times
- if (!IE->hasOneUse())
- return false;
- IE = NextUse;
- }
- return false;
- }
- /// \brief Like findBuildVector, but looks backwards for construction of aggregate.
- ///
- /// \return true if it matches.
- static bool findBuildAggregate(InsertValueInst *IV,
- SmallVectorImpl<Value *> &BuildVector,
- SmallVectorImpl<Value *> &BuildVectorOpds) {
- Value *V;
- do {
- BuildVector.push_back(IV);
- BuildVectorOpds.push_back(IV->getInsertedValueOperand());
- V = IV->getAggregateOperand();
- if (isa<UndefValue>(V))
- break;
- IV = dyn_cast<InsertValueInst>(V);
- if (!IV || !IV->hasOneUse())
- return false;
- } while (true);
- std::reverse(BuildVector.begin(), BuildVector.end());
- std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
- return true;
- }
- static bool PhiTypeSorterFunc(Value *V, Value *V2) {
- return V->getType() < V2->getType();
- }
- /// \brief Try and get a reduction value from a phi node.
- ///
- /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
- /// if they come from either \p ParentBB or a containing loop latch.
- ///
- /// \returns A candidate reduction value if possible, or \code nullptr \endcode
- /// if not possible.
- static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
- BasicBlock *ParentBB, LoopInfo *LI) {
- // There are situations where the reduction value is not dominated by the
- // reduction phi. Vectorizing such cases has been reported to cause
- // miscompiles. See PR25787.
- auto DominatedReduxValue = [&](Value *R) {
- return (
- dyn_cast<Instruction>(R) &&
- DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent()));
- };
- Value *Rdx = nullptr;
- // Return the incoming value if it comes from the same BB as the phi node.
- if (P->getIncomingBlock(0) == ParentBB) {
- Rdx = P->getIncomingValue(0);
- } else if (P->getIncomingBlock(1) == ParentBB) {
- Rdx = P->getIncomingValue(1);
- }
- if (Rdx && DominatedReduxValue(Rdx))
- return Rdx;
- // Otherwise, check whether we have a loop latch to look at.
- Loop *BBL = LI->getLoopFor(ParentBB);
- if (!BBL)
- return nullptr;
- BasicBlock *BBLatch = BBL->getLoopLatch();
- if (!BBLatch)
- return nullptr;
- // There is a loop latch, return the incoming value if it comes from
- // that. This reduction pattern occasionally turns up.
- if (P->getIncomingBlock(0) == BBLatch) {
- Rdx = P->getIncomingValue(0);
- } else if (P->getIncomingBlock(1) == BBLatch) {
- Rdx = P->getIncomingValue(1);
- }
- if (Rdx && DominatedReduxValue(Rdx))
- return Rdx;
- return nullptr;
- }
- /// Attempt to reduce a horizontal reduction.
- /// If it is legal to match a horizontal reduction feeding the phi node \a P
- /// with reduction operators \a Root (or one of its operands) in a basic block
- /// \a BB, then check if it can be done. If horizontal reduction is not found
- /// and root instruction is a binary operation, vectorization of the operands is
- /// attempted.
- /// \returns true if a horizontal reduction was matched and reduced or operands
- /// of one of the binary instruction were vectorized.
- /// \returns false if a horizontal reduction was not matched (or not possible)
- /// or no vectorization of any binary operation feeding \a Root instruction was
- /// performed.
- static bool tryToVectorizeHorReductionOrInstOperands(
- PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
- TargetTransformInfo *TTI,
- const function_ref<bool(BinaryOperator *, BoUpSLP &)> Vectorize) {
- if (!ShouldVectorizeHor)
- return false;
- if (!Root)
- return false;
- if (Root->getParent() != BB || isa<PHINode>(Root))
- return false;
- // Start analysis starting from Root instruction. If horizontal reduction is
- // found, try to vectorize it. If it is not a horizontal reduction or
- // vectorization is not possible or not effective, and currently analyzed
- // instruction is a binary operation, try to vectorize the operands, using
- // pre-order DFS traversal order. If the operands were not vectorized, repeat
- // the same procedure considering each operand as a possible root of the
- // horizontal reduction.
- // Interrupt the process if the Root instruction itself was vectorized or all
- // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
- SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0});
- SmallSet<Value *, 8> VisitedInstrs;
- bool Res = false;
- while (!Stack.empty()) {
- Value *V;
- unsigned Level;
- std::tie(V, Level) = Stack.pop_back_val();
- if (!V)
- continue;
- auto *Inst = dyn_cast<Instruction>(V);
- if (!Inst)
- continue;
- if (auto *BI = dyn_cast<BinaryOperator>(Inst)) {
- HorizontalReduction HorRdx;
- if (HorRdx.matchAssociativeReduction(P, BI)) {
- if (HorRdx.tryToReduce(R, TTI)) {
- Res = true;
- // Set P to nullptr to avoid re-analysis of phi node in
- // matchAssociativeReduction function unless this is the root node.
- P = nullptr;
- continue;
- }
- }
- if (P) {
- Inst = dyn_cast<Instruction>(BI->getOperand(0));
- if (Inst == P)
- Inst = dyn_cast<Instruction>(BI->getOperand(1));
- if (!Inst) {
- // Set P to nullptr to avoid re-analysis of phi node in
- // matchAssociativeReduction function unless this is the root node.
- P = nullptr;
- continue;
- }
- }
- }
- // Set P to nullptr to avoid re-analysis of phi node in
- // matchAssociativeReduction function unless this is the root node.
- P = nullptr;
- if (Vectorize(dyn_cast<BinaryOperator>(Inst), R)) {
- Res = true;
- continue;
- }
- // Try to vectorize operands.
- // Continue analysis for the instruction from the same basic block only to
- // save compile time.
- if (++Level < RecursionMaxDepth)
- for (auto *Op : Inst->operand_values())
- if (VisitedInstrs.insert(Op).second)
- if (auto *I = dyn_cast<Instruction>(Op))
- if (!isa<PHINode>(Inst) && I->getParent() == BB)
- Stack.emplace_back(Op, Level);
- }
- return Res;
- }
- bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
- BasicBlock *BB, BoUpSLP &R,
- TargetTransformInfo *TTI) {
- if (!V)
- return false;
- auto *I = dyn_cast<Instruction>(V);
- if (!I)
- return false;
- if (!isa<BinaryOperator>(I))
- P = nullptr;
- // Try to match and vectorize a horizontal reduction.
- return tryToVectorizeHorReductionOrInstOperands(
- P, I, BB, R, TTI, [this](BinaryOperator *BI, BoUpSLP &R) -> bool {
- return tryToVectorize(BI, R);
- });
- }
- bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
- bool Changed = false;
- SmallVector<Value *, 4> Incoming;
- SmallSet<Value *, 16> VisitedInstrs;
- bool HaveVectorizedPhiNodes = true;
- while (HaveVectorizedPhiNodes) {
- HaveVectorizedPhiNodes = false;
- // Collect the incoming values from the PHIs.
- Incoming.clear();
- for (Instruction &I : *BB) {
- PHINode *P = dyn_cast<PHINode>(&I);
- if (!P)
- break;
- if (!VisitedInstrs.count(P))
- Incoming.push_back(P);
- }
- // Sort by type.
- std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
- // Try to vectorize elements base on their type.
- for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
- E = Incoming.end();
- IncIt != E;) {
- // Look for the next elements with the same type.
- SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
- while (SameTypeIt != E &&
- (*SameTypeIt)->getType() == (*IncIt)->getType()) {
- VisitedInstrs.insert(*SameTypeIt);
- ++SameTypeIt;
- }
- // Try to vectorize them.
- unsigned NumElts = (SameTypeIt - IncIt);
- DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
- // The order in which the phi nodes appear in the program does not matter.
- // So allow tryToVectorizeList to reorder them if it is beneficial. This
- // is done when there are exactly two elements since tryToVectorizeList
- // asserts that there are only two values when AllowReorder is true.
- bool AllowReorder = NumElts == 2;
- if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
- None, AllowReorder)) {
- // Success start over because instructions might have been changed.
- HaveVectorizedPhiNodes = true;
- Changed = true;
- break;
- }
- // Start over at the next instruction of a different type (or the end).
- IncIt = SameTypeIt;
- }
- }
- VisitedInstrs.clear();
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
- // We may go through BB multiple times so skip the one we have checked.
- if (!VisitedInstrs.insert(&*it).second)
- continue;
- if (isa<DbgInfoIntrinsic>(it))
- continue;
- // Try to vectorize reductions that use PHINodes.
- if (PHINode *P = dyn_cast<PHINode>(it)) {
- // Check that the PHI is a reduction PHI.
- if (P->getNumIncomingValues() != 2)
- return Changed;
- // Try to match and vectorize a horizontal reduction.
- if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
- TTI)) {
- Changed = true;
- it = BB->begin();
- e = BB->end();
- continue;
- }
- continue;
- }
- if (ShouldStartVectorizeHorAtStore) {
- if (StoreInst *SI = dyn_cast<StoreInst>(it)) {
- // Try to match and vectorize a horizontal reduction.
- if (vectorizeRootInstruction(nullptr, SI->getValueOperand(), BB, R,
- TTI)) {
- Changed = true;
- it = BB->begin();
- e = BB->end();
- continue;
- }
- }
- }
- // Try to vectorize horizontal reductions feeding into a return.
- if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) {
- if (RI->getNumOperands() != 0) {
- // Try to match and vectorize a horizontal reduction.
- if (vectorizeRootInstruction(nullptr, RI->getOperand(0), BB, R, TTI)) {
- Changed = true;
- it = BB->begin();
- e = BB->end();
- continue;
- }
- }
- }
- // Try to vectorize trees that start at compare instructions.
- if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
- if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
- Changed = true;
- // We would like to start over since some instructions are deleted
- // and the iterator may become invalid value.
- it = BB->begin();
- e = BB->end();
- continue;
- }
- for (int I = 0; I < 2; ++I) {
- if (vectorizeRootInstruction(nullptr, CI->getOperand(I), BB, R, TTI)) {
- Changed = true;
- // We would like to start over since some instructions are deleted
- // and the iterator may become invalid value.
- it = BB->begin();
- e = BB->end();
- break;
- }
- }
- continue;
- }
- // Try to vectorize trees that start at insertelement instructions.
- if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
- SmallVector<Value *, 16> BuildVector;
- SmallVector<Value *, 16> BuildVectorOpds;
- if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
- continue;
- // Vectorize starting with the build vector operands ignoring the
- // BuildVector instructions for the purpose of scheduling and user
- // extraction.
- if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
- Changed = true;
- it = BB->begin();
- e = BB->end();
- }
- continue;
- }
- // Try to vectorize trees that start at insertvalue instructions feeding into
- // a store.
- if (StoreInst *SI = dyn_cast<StoreInst>(it)) {
- if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) {
- const DataLayout &DL = BB->getModule()->getDataLayout();
- if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) {
- SmallVector<Value *, 16> BuildVector;
- SmallVector<Value *, 16> BuildVectorOpds;
- if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds))
- continue;
- DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n");
- if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) {
- Changed = true;
- it = BB->begin();
- e = BB->end();
- }
- continue;
- }
- }
- }
- }
- return Changed;
- }
- bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
- auto Changed = false;
- for (auto &Entry : GEPs) {
- // If the getelementptr list has fewer than two elements, there's nothing
- // to do.
- if (Entry.second.size() < 2)
- continue;
- DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
- << Entry.second.size() << ".\n");
- // We process the getelementptr list in chunks of 16 (like we do for
- // stores) to minimize compile-time.
- for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) {
- auto Len = std::min<unsigned>(BE - BI, 16);
- auto GEPList = makeArrayRef(&Entry.second[BI], Len);
- // Initialize a set a candidate getelementptrs. Note that we use a
- // SetVector here to preserve program order. If the index computations
- // are vectorizable and begin with loads, we want to minimize the chance
- // of having to reorder them later.
- SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
- // Some of the candidates may have already been vectorized after we
- // initially collected them. If so, the WeakTrackingVHs will have
- // nullified the
- // values, so remove them from the set of candidates.
- Candidates.remove(nullptr);
- // Remove from the set of candidates all pairs of getelementptrs with
- // constant differences. Such getelementptrs are likely not good
- // candidates for vectorization in a bottom-up phase since one can be
- // computed from the other. We also ensure all candidate getelementptr
- // indices are unique.
- for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
- auto *GEPI = cast<GetElementPtrInst>(GEPList[I]);
- if (!Candidates.count(GEPI))
- continue;
- auto *SCEVI = SE->getSCEV(GEPList[I]);
- for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
- auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]);
- auto *SCEVJ = SE->getSCEV(GEPList[J]);
- if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
- Candidates.remove(GEPList[I]);
- Candidates.remove(GEPList[J]);
- } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
- Candidates.remove(GEPList[J]);
- }
- }
- }
- // We break out of the above computation as soon as we know there are
- // fewer than two candidates remaining.
- if (Candidates.size() < 2)
- continue;
- // Add the single, non-constant index of each candidate to the bundle. We
- // ensured the indices met these constraints when we originally collected
- // the getelementptrs.
- SmallVector<Value *, 16> Bundle(Candidates.size());
- auto BundleIndex = 0u;
- for (auto *V : Candidates) {
- auto *GEP = cast<GetElementPtrInst>(V);
- auto *GEPIdx = GEP->idx_begin()->get();
- assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
- Bundle[BundleIndex++] = GEPIdx;
- }
- // Try and vectorize the indices. We are currently only interested in
- // gather-like cases of the form:
- //
- // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
- //
- // where the loads of "a", the loads of "b", and the subtractions can be
- // performed in parallel. It's likely that detecting this pattern in a
- // bottom-up phase will be simpler and less costly than building a
- // full-blown top-down phase beginning at the consecutive loads.
- Changed |= tryToVectorizeList(Bundle, R);
- }
- }
- return Changed;
- }
- bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
- bool Changed = false;
- // Attempt to sort and vectorize each of the store-groups.
- for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
- ++it) {
- if (it->second.size() < 2)
- continue;
- DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
- << it->second.size() << ".\n");
- // Process the stores in chunks of 16.
- // TODO: The limit of 16 inhibits greater vectorization factors.
- // For example, AVX2 supports v32i8. Increasing this limit, however,
- // may cause a significant compile-time increase.
- for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
- unsigned Len = std::min<unsigned>(CE - CI, 16);
- Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R);
- }
- }
- return Changed;
- }
- char SLPVectorizer::ID = 0;
- static const char lv_name[] = "SLP Vectorizer";
- INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
- INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
- INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
- INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
- namespace llvm {
- Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
- }
|