123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311 |
- //===- ExprTypeConvert.cpp - Code to change an LLVM Expr Type -------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file was developed by the LLVM research group and is distributed under
- // the University of Illinois Open Source License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the part of level raising that checks to see if it is
- // possible to coerce an entire expression tree into a different type. If
- // convertible, other routines from this file will do the conversion.
- //
- //===----------------------------------------------------------------------===//
- #include "TransformInternals.h"
- #include "llvm/Constants.h"
- #include "llvm/iOther.h"
- #include "llvm/iPHINode.h"
- #include "llvm/iMemory.h"
- #include "llvm/Analysis/Expressions.h"
- #include "Support/STLExtras.h"
- #include "Support/Debug.h"
- #include <algorithm>
- using namespace llvm;
- static bool OperandConvertibleToType(User *U, Value *V, const Type *Ty,
- ValueTypeCache &ConvertedTypes,
- const TargetData &TD);
- static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
- ValueMapCache &VMC, const TargetData &TD);
- // Peephole Malloc instructions: we take a look at the use chain of the
- // malloc instruction, and try to find out if the following conditions hold:
- // 1. The malloc is of the form: 'malloc [sbyte], uint <constant>'
- // 2. The only users of the malloc are cast & add instructions
- // 3. Of the cast instructions, there is only one destination pointer type
- // [RTy] where the size of the pointed to object is equal to the number
- // of bytes allocated.
- //
- // If these conditions hold, we convert the malloc to allocate an [RTy]
- // element. TODO: This comment is out of date WRT arrays
- //
- static bool MallocConvertibleToType(MallocInst *MI, const Type *Ty,
- ValueTypeCache &CTMap,
- const TargetData &TD) {
- if (!isa<PointerType>(Ty)) return false; // Malloc always returns pointers
- // Deal with the type to allocate, not the pointer type...
- Ty = cast<PointerType>(Ty)->getElementType();
- if (!Ty->isSized()) return false; // Can only alloc something with a size
- // Analyze the number of bytes allocated...
- ExprType Expr = ClassifyExpr(MI->getArraySize());
- // Get information about the base datatype being allocated, before & after
- int ReqTypeSize = TD.getTypeSize(Ty);
- if (ReqTypeSize == 0) return false;
- unsigned OldTypeSize = TD.getTypeSize(MI->getType()->getElementType());
- // Must have a scale or offset to analyze it...
- if (!Expr.Offset && !Expr.Scale && OldTypeSize == 1) return false;
- // Get the offset and scale of the allocation...
- int64_t OffsetVal = Expr.Offset ? getConstantValue(Expr.Offset) : 0;
- int64_t ScaleVal = Expr.Scale ? getConstantValue(Expr.Scale) :(Expr.Var != 0);
- // The old type might not be of unit size, take old size into consideration
- // here...
- int64_t Offset = OffsetVal * OldTypeSize;
- int64_t Scale = ScaleVal * OldTypeSize;
-
- // In order to be successful, both the scale and the offset must be a multiple
- // of the requested data type's size.
- //
- if (Offset/ReqTypeSize*ReqTypeSize != Offset ||
- Scale/ReqTypeSize*ReqTypeSize != Scale)
- return false; // Nope.
- return true;
- }
- static Instruction *ConvertMallocToType(MallocInst *MI, const Type *Ty,
- const std::string &Name,
- ValueMapCache &VMC,
- const TargetData &TD){
- BasicBlock *BB = MI->getParent();
- BasicBlock::iterator It = BB->end();
- // Analyze the number of bytes allocated...
- ExprType Expr = ClassifyExpr(MI->getArraySize());
- const PointerType *AllocTy = cast<PointerType>(Ty);
- const Type *ElType = AllocTy->getElementType();
- unsigned DataSize = TD.getTypeSize(ElType);
- unsigned OldTypeSize = TD.getTypeSize(MI->getType()->getElementType());
- // Get the offset and scale coefficients that we are allocating...
- int64_t OffsetVal = (Expr.Offset ? getConstantValue(Expr.Offset) : 0);
- int64_t ScaleVal = Expr.Scale ? getConstantValue(Expr.Scale) : (Expr.Var !=0);
- // The old type might not be of unit size, take old size into consideration
- // here...
- unsigned Offset = (uint64_t)OffsetVal * OldTypeSize / DataSize;
- unsigned Scale = (uint64_t)ScaleVal * OldTypeSize / DataSize;
- // Locate the malloc instruction, because we may be inserting instructions
- It = MI;
- // If we have a scale, apply it first...
- if (Expr.Var) {
- // Expr.Var is not necessarily unsigned right now, insert a cast now.
- if (Expr.Var->getType() != Type::UIntTy)
- Expr.Var = new CastInst(Expr.Var, Type::UIntTy,
- Expr.Var->getName()+"-uint", It);
- if (Scale != 1)
- Expr.Var = BinaryOperator::create(Instruction::Mul, Expr.Var,
- ConstantUInt::get(Type::UIntTy, Scale),
- Expr.Var->getName()+"-scl", It);
- } else {
- // If we are not scaling anything, just make the offset be the "var"...
- Expr.Var = ConstantUInt::get(Type::UIntTy, Offset);
- Offset = 0; Scale = 1;
- }
- // If we have an offset now, add it in...
- if (Offset != 0) {
- assert(Expr.Var && "Var must be nonnull by now!");
- Expr.Var = BinaryOperator::create(Instruction::Add, Expr.Var,
- ConstantUInt::get(Type::UIntTy, Offset),
- Expr.Var->getName()+"-off", It);
- }
- assert(AllocTy == Ty);
- return new MallocInst(AllocTy->getElementType(), Expr.Var, Name);
- }
- // ExpressionConvertibleToType - Return true if it is possible
- bool llvm::ExpressionConvertibleToType(Value *V, const Type *Ty,
- ValueTypeCache &CTMap, const TargetData &TD) {
- // Expression type must be holdable in a register.
- if (!Ty->isFirstClassType())
- return false;
-
- ValueTypeCache::iterator CTMI = CTMap.find(V);
- if (CTMI != CTMap.end()) return CTMI->second == Ty;
- // If it's a constant... all constants can be converted to a different
- // type.
- //
- if (Constant *CPV = dyn_cast<Constant>(V))
- return true;
-
- CTMap[V] = Ty;
- if (V->getType() == Ty) return true; // Expression already correct type!
- Instruction *I = dyn_cast<Instruction>(V);
- if (I == 0) return false; // Otherwise, we can't convert!
- switch (I->getOpcode()) {
- case Instruction::Cast:
- // We can convert the expr if the cast destination type is losslessly
- // convertible to the requested type.
- if (!Ty->isLosslesslyConvertibleTo(I->getType())) return false;
- // We also do not allow conversion of a cast that casts from a ptr to array
- // of X to a *X. For example: cast [4 x %List *] * %val to %List * *
- //
- if (const PointerType *SPT =
- dyn_cast<PointerType>(I->getOperand(0)->getType()))
- if (const PointerType *DPT = dyn_cast<PointerType>(I->getType()))
- if (const ArrayType *AT = dyn_cast<ArrayType>(SPT->getElementType()))
- if (AT->getElementType() == DPT->getElementType())
- return false;
- break;
- case Instruction::Add:
- case Instruction::Sub:
- if (!Ty->isInteger() && !Ty->isFloatingPoint()) return false;
- if (!ExpressionConvertibleToType(I->getOperand(0), Ty, CTMap, TD) ||
- !ExpressionConvertibleToType(I->getOperand(1), Ty, CTMap, TD))
- return false;
- break;
- case Instruction::Shr:
- if (!Ty->isInteger()) return false;
- if (Ty->isSigned() != V->getType()->isSigned()) return false;
- // FALL THROUGH
- case Instruction::Shl:
- if (!Ty->isInteger()) return false;
- if (!ExpressionConvertibleToType(I->getOperand(0), Ty, CTMap, TD))
- return false;
- break;
- case Instruction::Load: {
- LoadInst *LI = cast<LoadInst>(I);
- if (!ExpressionConvertibleToType(LI->getPointerOperand(),
- PointerType::get(Ty), CTMap, TD))
- return false;
- break;
- }
- case Instruction::PHI: {
- PHINode *PN = cast<PHINode>(I);
- // Be conservative if we find a giant PHI node.
- if (PN->getNumIncomingValues() > 32) return false;
- for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i)
- if (!ExpressionConvertibleToType(PN->getIncomingValue(i), Ty, CTMap, TD))
- return false;
- break;
- }
- case Instruction::Malloc:
- if (!MallocConvertibleToType(cast<MallocInst>(I), Ty, CTMap, TD))
- return false;
- break;
- case Instruction::GetElementPtr: {
- // GetElementPtr's are directly convertible to a pointer type if they have
- // a number of zeros at the end. Because removing these values does not
- // change the logical offset of the GEP, it is okay and fair to remove them.
- // This can change this:
- // %t1 = getelementptr %Hosp * %hosp, ubyte 4, ubyte 0 ; <%List **>
- // %t2 = cast %List * * %t1 to %List *
- // into
- // %t2 = getelementptr %Hosp * %hosp, ubyte 4 ; <%List *>
- //
- GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
- const PointerType *PTy = dyn_cast<PointerType>(Ty);
- if (!PTy) return false; // GEP must always return a pointer...
- const Type *PVTy = PTy->getElementType();
- // Check to see if there are zero elements that we can remove from the
- // index array. If there are, check to see if removing them causes us to
- // get to the right type...
- //
- std::vector<Value*> Indices(GEP->idx_begin(), GEP->idx_end());
- const Type *BaseType = GEP->getPointerOperand()->getType();
- const Type *ElTy = 0;
- while (!Indices.empty() &&
- Indices.back() == Constant::getNullValue(Indices.back()->getType())){
- Indices.pop_back();
- ElTy = GetElementPtrInst::getIndexedType(BaseType, Indices, true);
- if (ElTy == PVTy)
- break; // Found a match!!
- ElTy = 0;
- }
- if (ElTy) break; // Found a number of zeros we can strip off!
- // Otherwise, we can convert a GEP from one form to the other iff the
- // current gep is of the form 'getelementptr sbyte*, long N
- // and we could convert this to an appropriate GEP for the new type.
- //
- if (GEP->getNumOperands() == 2 &&
- GEP->getType() == PointerType::get(Type::SByteTy)) {
- // Do not Check to see if our incoming pointer can be converted
- // to be a ptr to an array of the right type... because in more cases than
- // not, it is simply not analyzable because of pointer/array
- // discrepancies. To fix this, we will insert a cast before the GEP.
- //
- // Check to see if 'N' is an expression that can be converted to
- // the appropriate size... if so, allow it.
- //
- std::vector<Value*> Indices;
- const Type *ElTy = ConvertibleToGEP(PTy, I->getOperand(1), Indices, TD);
- if (ElTy == PVTy) {
- if (!ExpressionConvertibleToType(I->getOperand(0),
- PointerType::get(ElTy), CTMap, TD))
- return false; // Can't continue, ExConToTy might have polluted set!
- break;
- }
- }
- // Otherwise, it could be that we have something like this:
- // getelementptr [[sbyte] *] * %reg115, long %reg138 ; [sbyte]**
- // and want to convert it into something like this:
- // getelemenptr [[int] *] * %reg115, long %reg138 ; [int]**
- //
- if (GEP->getNumOperands() == 2 &&
- PTy->getElementType()->isSized() &&
- TD.getTypeSize(PTy->getElementType()) ==
- TD.getTypeSize(GEP->getType()->getElementType())) {
- const PointerType *NewSrcTy = PointerType::get(PVTy);
- if (!ExpressionConvertibleToType(I->getOperand(0), NewSrcTy, CTMap, TD))
- return false;
- break;
- }
- return false; // No match, maybe next time.
- }
- case Instruction::Call: {
- if (isa<Function>(I->getOperand(0)))
- return false; // Don't even try to change direct calls.
- // If this is a function pointer, we can convert the return type if we can
- // convert the source function pointer.
- //
- const PointerType *PT = cast<PointerType>(I->getOperand(0)->getType());
- const FunctionType *FT = cast<FunctionType>(PT->getElementType());
- std::vector<const Type *> ArgTys(FT->param_begin(), FT->param_end());
- const FunctionType *NewTy =
- FunctionType::get(Ty, ArgTys, FT->isVarArg());
- if (!ExpressionConvertibleToType(I->getOperand(0),
- PointerType::get(NewTy), CTMap, TD))
- return false;
- break;
- }
- default:
- return false;
- }
- // Expressions are only convertible if all of the users of the expression can
- // have this value converted. This makes use of the map to avoid infinite
- // recursion.
- //
- for (Value::use_iterator It = I->use_begin(), E = I->use_end(); It != E; ++It)
- if (!OperandConvertibleToType(*It, I, Ty, CTMap, TD))
- return false;
- return true;
- }
- Value *llvm::ConvertExpressionToType(Value *V, const Type *Ty,
- ValueMapCache &VMC, const TargetData &TD) {
- if (V->getType() == Ty) return V; // Already where we need to be?
- ValueMapCache::ExprMapTy::iterator VMCI = VMC.ExprMap.find(V);
- if (VMCI != VMC.ExprMap.end()) {
- const Value *GV = VMCI->second;
- const Type *GTy = VMCI->second->getType();
- assert(VMCI->second->getType() == Ty);
- if (Instruction *I = dyn_cast<Instruction>(V))
- ValueHandle IHandle(VMC, I); // Remove I if it is unused now!
- return VMCI->second;
- }
- DEBUG(std::cerr << "CETT: " << (void*)V << " " << V);
- Instruction *I = dyn_cast<Instruction>(V);
- if (I == 0) {
- Constant *CPV = cast<Constant>(V);
- // Constants are converted by constant folding the cast that is required.
- // We assume here that all casts are implemented for constant prop.
- Value *Result = ConstantExpr::getCast(CPV, Ty);
- // Add the instruction to the expression map
- //VMC.ExprMap[V] = Result;
- return Result;
- }
- BasicBlock *BB = I->getParent();
- std::string Name = I->getName(); if (!Name.empty()) I->setName("");
- Instruction *Res; // Result of conversion
- ValueHandle IHandle(VMC, I); // Prevent I from being removed!
-
- Constant *Dummy = Constant::getNullValue(Ty);
- switch (I->getOpcode()) {
- case Instruction::Cast:
- assert(VMC.NewCasts.count(ValueHandle(VMC, I)) == 0);
- Res = new CastInst(I->getOperand(0), Ty, Name);
- VMC.NewCasts.insert(ValueHandle(VMC, Res));
- break;
-
- case Instruction::Add:
- case Instruction::Sub:
- Res = BinaryOperator::create(cast<BinaryOperator>(I)->getOpcode(),
- Dummy, Dummy, Name);
- VMC.ExprMap[I] = Res; // Add node to expression eagerly
- Res->setOperand(0, ConvertExpressionToType(I->getOperand(0), Ty, VMC, TD));
- Res->setOperand(1, ConvertExpressionToType(I->getOperand(1), Ty, VMC, TD));
- break;
- case Instruction::Shl:
- case Instruction::Shr:
- Res = new ShiftInst(cast<ShiftInst>(I)->getOpcode(), Dummy,
- I->getOperand(1), Name);
- VMC.ExprMap[I] = Res;
- Res->setOperand(0, ConvertExpressionToType(I->getOperand(0), Ty, VMC, TD));
- break;
- case Instruction::Load: {
- LoadInst *LI = cast<LoadInst>(I);
- Res = new LoadInst(Constant::getNullValue(PointerType::get(Ty)), Name);
- VMC.ExprMap[I] = Res;
- Res->setOperand(0, ConvertExpressionToType(LI->getPointerOperand(),
- PointerType::get(Ty), VMC, TD));
- assert(Res->getOperand(0)->getType() == PointerType::get(Ty));
- assert(Ty == Res->getType());
- assert(Res->getType()->isFirstClassType() && "Load of structure or array!");
- break;
- }
- case Instruction::PHI: {
- PHINode *OldPN = cast<PHINode>(I);
- PHINode *NewPN = new PHINode(Ty, Name);
- VMC.ExprMap[I] = NewPN; // Add node to expression eagerly
- while (OldPN->getNumOperands()) {
- BasicBlock *BB = OldPN->getIncomingBlock(0);
- Value *OldVal = OldPN->getIncomingValue(0);
- ValueHandle OldValHandle(VMC, OldVal);
- OldPN->removeIncomingValue(BB, false);
- Value *V = ConvertExpressionToType(OldVal, Ty, VMC, TD);
- NewPN->addIncoming(V, BB);
- }
- Res = NewPN;
- break;
- }
- case Instruction::Malloc: {
- Res = ConvertMallocToType(cast<MallocInst>(I), Ty, Name, VMC, TD);
- break;
- }
- case Instruction::GetElementPtr: {
- // GetElementPtr's are directly convertible to a pointer type if they have
- // a number of zeros at the end. Because removing these values does not
- // change the logical offset of the GEP, it is okay and fair to remove them.
- // This can change this:
- // %t1 = getelementptr %Hosp * %hosp, ubyte 4, ubyte 0 ; <%List **>
- // %t2 = cast %List * * %t1 to %List *
- // into
- // %t2 = getelementptr %Hosp * %hosp, ubyte 4 ; <%List *>
- //
- GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
- // Check to see if there are zero elements that we can remove from the
- // index array. If there are, check to see if removing them causes us to
- // get to the right type...
- //
- std::vector<Value*> Indices(GEP->idx_begin(), GEP->idx_end());
- const Type *BaseType = GEP->getPointerOperand()->getType();
- const Type *PVTy = cast<PointerType>(Ty)->getElementType();
- Res = 0;
- while (!Indices.empty() &&
- Indices.back() == Constant::getNullValue(Indices.back()->getType())){
- Indices.pop_back();
- if (GetElementPtrInst::getIndexedType(BaseType, Indices, true) == PVTy) {
- if (Indices.size() == 0)
- Res = new CastInst(GEP->getPointerOperand(), BaseType); // NOOP CAST
- else
- Res = new GetElementPtrInst(GEP->getPointerOperand(), Indices, Name);
- break;
- }
- }
- if (Res == 0 && GEP->getNumOperands() == 2 &&
- GEP->getType() == PointerType::get(Type::SByteTy)) {
-
- // Otherwise, we can convert a GEP from one form to the other iff the
- // current gep is of the form 'getelementptr sbyte*, unsigned N
- // and we could convert this to an appropriate GEP for the new type.
- //
- const PointerType *NewSrcTy = PointerType::get(PVTy);
- BasicBlock::iterator It = I;
- // Check to see if 'N' is an expression that can be converted to
- // the appropriate size... if so, allow it.
- //
- std::vector<Value*> Indices;
- const Type *ElTy = ConvertibleToGEP(NewSrcTy, I->getOperand(1),
- Indices, TD, &It);
- if (ElTy) {
- assert(ElTy == PVTy && "Internal error, setup wrong!");
- Res = new GetElementPtrInst(Constant::getNullValue(NewSrcTy),
- Indices, Name);
- VMC.ExprMap[I] = Res;
- Res->setOperand(0, ConvertExpressionToType(I->getOperand(0),
- NewSrcTy, VMC, TD));
- }
- }
- // Otherwise, it could be that we have something like this:
- // getelementptr [[sbyte] *] * %reg115, uint %reg138 ; [sbyte]**
- // and want to convert it into something like this:
- // getelemenptr [[int] *] * %reg115, uint %reg138 ; [int]**
- //
- if (Res == 0) {
- const PointerType *NewSrcTy = PointerType::get(PVTy);
- std::vector<Value*> Indices(GEP->idx_begin(), GEP->idx_end());
- Res = new GetElementPtrInst(Constant::getNullValue(NewSrcTy),
- Indices, Name);
- VMC.ExprMap[I] = Res;
- Res->setOperand(0, ConvertExpressionToType(I->getOperand(0),
- NewSrcTy, VMC, TD));
- }
- assert(Res && "Didn't find match!");
- break;
- }
- case Instruction::Call: {
- assert(!isa<Function>(I->getOperand(0)));
- // If this is a function pointer, we can convert the return type if we can
- // convert the source function pointer.
- //
- const PointerType *PT = cast<PointerType>(I->getOperand(0)->getType());
- const FunctionType *FT = cast<FunctionType>(PT->getElementType());
- std::vector<const Type *> ArgTys(FT->param_begin(), FT->param_end());
- const FunctionType *NewTy =
- FunctionType::get(Ty, ArgTys, FT->isVarArg());
- const PointerType *NewPTy = PointerType::get(NewTy);
- if (Ty == Type::VoidTy)
- Name = ""; // Make sure not to name calls that now return void!
- Res = new CallInst(Constant::getNullValue(NewPTy),
- std::vector<Value*>(I->op_begin()+1, I->op_end()),
- Name);
- VMC.ExprMap[I] = Res;
- Res->setOperand(0, ConvertExpressionToType(I->getOperand(0),NewPTy,VMC,TD));
- break;
- }
- default:
- assert(0 && "Expression convertible, but don't know how to convert?");
- return 0;
- }
- assert(Res->getType() == Ty && "Didn't convert expr to correct type!");
- BB->getInstList().insert(I, Res);
- // Add the instruction to the expression map
- VMC.ExprMap[I] = Res;
- unsigned NumUses = I->use_size();
- for (unsigned It = 0; It < NumUses; ) {
- unsigned OldSize = NumUses;
- Value::use_iterator UI = I->use_begin();
- std::advance(UI, It);
- ConvertOperandToType(*UI, I, Res, VMC, TD);
- NumUses = I->use_size();
- if (NumUses == OldSize) ++It;
- }
- DEBUG(std::cerr << "ExpIn: " << (void*)I << " " << I
- << "ExpOut: " << (void*)Res << " " << Res);
- return Res;
- }
- // ValueConvertibleToType - Return true if it is possible
- bool llvm::ValueConvertibleToType(Value *V, const Type *Ty,
- ValueTypeCache &ConvertedTypes,
- const TargetData &TD) {
- ValueTypeCache::iterator I = ConvertedTypes.find(V);
- if (I != ConvertedTypes.end()) return I->second == Ty;
- ConvertedTypes[V] = Ty;
- // It is safe to convert the specified value to the specified type IFF all of
- // the uses of the value can be converted to accept the new typed value.
- //
- if (V->getType() != Ty) {
- for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I)
- if (!OperandConvertibleToType(*I, V, Ty, ConvertedTypes, TD))
- return false;
- }
- return true;
- }
- // OperandConvertibleToType - Return true if it is possible to convert operand
- // V of User (instruction) U to the specified type. This is true iff it is
- // possible to change the specified instruction to accept this. CTMap is a map
- // of converted types, so that circular definitions will see the future type of
- // the expression, not the static current type.
- //
- static bool OperandConvertibleToType(User *U, Value *V, const Type *Ty,
- ValueTypeCache &CTMap,
- const TargetData &TD) {
- // if (V->getType() == Ty) return true; // Operand already the right type?
- // Expression type must be holdable in a register.
- if (!Ty->isFirstClassType())
- return false;
- Instruction *I = dyn_cast<Instruction>(U);
- if (I == 0) return false; // We can't convert!
- switch (I->getOpcode()) {
- case Instruction::Cast:
- assert(I->getOperand(0) == V);
- // We can convert the expr if the cast destination type is losslessly
- // convertible to the requested type.
- // Also, do not change a cast that is a noop cast. For all intents and
- // purposes it should be eliminated.
- if (!Ty->isLosslesslyConvertibleTo(I->getOperand(0)->getType()) ||
- I->getType() == I->getOperand(0)->getType())
- return false;
- // Do not allow a 'cast ushort %V to uint' to have it's first operand be
- // converted to a 'short' type. Doing so changes the way sign promotion
- // happens, and breaks things. Only allow the cast to take place if the
- // signedness doesn't change... or if the current cast is not a lossy
- // conversion.
- //
- if (!I->getType()->isLosslesslyConvertibleTo(I->getOperand(0)->getType()) &&
- I->getOperand(0)->getType()->isSigned() != Ty->isSigned())
- return false;
- // We also do not allow conversion of a cast that casts from a ptr to array
- // of X to a *X. For example: cast [4 x %List *] * %val to %List * *
- //
- if (const PointerType *SPT =
- dyn_cast<PointerType>(I->getOperand(0)->getType()))
- if (const PointerType *DPT = dyn_cast<PointerType>(I->getType()))
- if (const ArrayType *AT = dyn_cast<ArrayType>(SPT->getElementType()))
- if (AT->getElementType() == DPT->getElementType())
- return false;
- return true;
- case Instruction::Add:
- if (isa<PointerType>(Ty)) {
- Value *IndexVal = I->getOperand(V == I->getOperand(0) ? 1 : 0);
- std::vector<Value*> Indices;
- if (const Type *ETy = ConvertibleToGEP(Ty, IndexVal, Indices, TD)) {
- const Type *RetTy = PointerType::get(ETy);
- // Only successful if we can convert this type to the required type
- if (ValueConvertibleToType(I, RetTy, CTMap, TD)) {
- CTMap[I] = RetTy;
- return true;
- }
- // We have to return failure here because ValueConvertibleToType could
- // have polluted our map
- return false;
- }
- }
- // FALLTHROUGH
- case Instruction::Sub: {
- if (!Ty->isInteger() && !Ty->isFloatingPoint()) return false;
- Value *OtherOp = I->getOperand((V == I->getOperand(0)) ? 1 : 0);
- return ValueConvertibleToType(I, Ty, CTMap, TD) &&
- ExpressionConvertibleToType(OtherOp, Ty, CTMap, TD);
- }
- case Instruction::SetEQ:
- case Instruction::SetNE: {
- Value *OtherOp = I->getOperand((V == I->getOperand(0)) ? 1 : 0);
- return ExpressionConvertibleToType(OtherOp, Ty, CTMap, TD);
- }
- case Instruction::Shr:
- if (Ty->isSigned() != V->getType()->isSigned()) return false;
- // FALL THROUGH
- case Instruction::Shl:
- if (I->getOperand(1) == V) return false; // Cannot change shift amount type
- if (!Ty->isInteger()) return false;
- return ValueConvertibleToType(I, Ty, CTMap, TD);
- case Instruction::Free:
- assert(I->getOperand(0) == V);
- return isa<PointerType>(Ty); // Free can free any pointer type!
- case Instruction::Load:
- // Cannot convert the types of any subscripts...
- if (I->getOperand(0) != V) return false;
- if (const PointerType *PT = dyn_cast<PointerType>(Ty)) {
- LoadInst *LI = cast<LoadInst>(I);
-
- const Type *LoadedTy = PT->getElementType();
- // They could be loading the first element of a composite type...
- if (const CompositeType *CT = dyn_cast<CompositeType>(LoadedTy)) {
- unsigned Offset = 0; // No offset, get first leaf.
- std::vector<Value*> Indices; // Discarded...
- LoadedTy = getStructOffsetType(CT, Offset, Indices, TD, false);
- assert(Offset == 0 && "Offset changed from zero???");
- }
- if (!LoadedTy->isFirstClassType())
- return false;
- if (TD.getTypeSize(LoadedTy) != TD.getTypeSize(LI->getType()))
- return false;
- return ValueConvertibleToType(LI, LoadedTy, CTMap, TD);
- }
- return false;
- case Instruction::Store: {
- StoreInst *SI = cast<StoreInst>(I);
- if (V == I->getOperand(0)) {
- ValueTypeCache::iterator CTMI = CTMap.find(I->getOperand(1));
- if (CTMI != CTMap.end()) { // Operand #1 is in the table already?
- // If so, check to see if it's Ty*, or, more importantly, if it is a
- // pointer to a structure where the first element is a Ty... this code
- // is necessary because we might be trying to change the source and
- // destination type of the store (they might be related) and the dest
- // pointer type might be a pointer to structure. Below we allow pointer
- // to structures where the 0th element is compatible with the value,
- // now we have to support the symmetrical part of this.
- //
- const Type *ElTy = cast<PointerType>(CTMI->second)->getElementType();
- // Already a pointer to what we want? Trivially accept...
- if (ElTy == Ty) return true;
- // Tricky case now, if the destination is a pointer to structure,
- // obviously the source is not allowed to be a structure (cannot copy
- // a whole structure at a time), so the level raiser must be trying to
- // store into the first field. Check for this and allow it now:
- //
- if (const StructType *SElTy = dyn_cast<StructType>(ElTy)) {
- unsigned Offset = 0;
- std::vector<Value*> Indices;
- ElTy = getStructOffsetType(ElTy, Offset, Indices, TD, false);
- assert(Offset == 0 && "Offset changed!");
- if (ElTy == 0) // Element at offset zero in struct doesn't exist!
- return false; // Can only happen for {}*
-
- if (ElTy == Ty) // Looks like the 0th element of structure is
- return true; // compatible! Accept now!
- // Otherwise we know that we can't work, so just stop trying now.
- return false;
- }
- }
- // Can convert the store if we can convert the pointer operand to match
- // the new value type...
- return ExpressionConvertibleToType(I->getOperand(1), PointerType::get(Ty),
- CTMap, TD);
- } else if (const PointerType *PT = dyn_cast<PointerType>(Ty)) {
- const Type *ElTy = PT->getElementType();
- assert(V == I->getOperand(1));
- if (isa<StructType>(ElTy)) {
- // We can change the destination pointer if we can store our first
- // argument into the first element of the structure...
- //
- unsigned Offset = 0;
- std::vector<Value*> Indices;
- ElTy = getStructOffsetType(ElTy, Offset, Indices, TD, false);
- assert(Offset == 0 && "Offset changed!");
- if (ElTy == 0) // Element at offset zero in struct doesn't exist!
- return false; // Can only happen for {}*
- }
- // Must move the same amount of data...
- if (!ElTy->isSized() ||
- TD.getTypeSize(ElTy) != TD.getTypeSize(I->getOperand(0)->getType()))
- return false;
- // Can convert store if the incoming value is convertible and if the
- // result will preserve semantics...
- const Type *Op0Ty = I->getOperand(0)->getType();
- if (!(Op0Ty->isIntegral() ^ ElTy->isIntegral()) &&
- !(Op0Ty->isFloatingPoint() ^ ElTy->isFloatingPoint()))
- return ExpressionConvertibleToType(I->getOperand(0), ElTy, CTMap, TD);
- }
- return false;
- }
- case Instruction::GetElementPtr:
- if (V != I->getOperand(0) || !isa<PointerType>(Ty)) return false;
- // If we have a two operand form of getelementptr, this is really little
- // more than a simple addition. As with addition, check to see if the
- // getelementptr instruction can be changed to index into the new type.
- //
- if (I->getNumOperands() == 2) {
- const Type *OldElTy = cast<PointerType>(I->getType())->getElementType();
- unsigned DataSize = TD.getTypeSize(OldElTy);
- Value *Index = I->getOperand(1);
- Instruction *TempScale = 0;
- // If the old data element is not unit sized, we have to create a scale
- // instruction so that ConvertibleToGEP will know the REAL amount we are
- // indexing by. Note that this is never inserted into the instruction
- // stream, so we have to delete it when we're done.
- //
- if (DataSize != 1) {
- Value *CST;
- if (Index->getType()->isSigned())
- CST = ConstantSInt::get(Index->getType(), DataSize);
- else
- CST = ConstantUInt::get(Index->getType(), DataSize);
-
- TempScale = BinaryOperator::create(Instruction::Mul, Index, CST);
- Index = TempScale;
- }
- // Check to see if the second argument is an expression that can
- // be converted to the appropriate size... if so, allow it.
- //
- std::vector<Value*> Indices;
- const Type *ElTy = ConvertibleToGEP(Ty, Index, Indices, TD);
- delete TempScale; // Free our temporary multiply if we made it
- if (ElTy == 0) return false; // Cannot make conversion...
- return ValueConvertibleToType(I, PointerType::get(ElTy), CTMap, TD);
- }
- return false;
- case Instruction::PHI: {
- PHINode *PN = cast<PHINode>(I);
- // Be conservative if we find a giant PHI node.
- if (PN->getNumIncomingValues() > 32) return false;
- for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i)
- if (!ExpressionConvertibleToType(PN->getIncomingValue(i), Ty, CTMap, TD))
- return false;
- return ValueConvertibleToType(PN, Ty, CTMap, TD);
- }
- case Instruction::Call: {
- User::op_iterator OI = find(I->op_begin(), I->op_end(), V);
- assert (OI != I->op_end() && "Not using value!");
- unsigned OpNum = OI - I->op_begin();
- // Are we trying to change the function pointer value to a new type?
- if (OpNum == 0) {
- const PointerType *PTy = dyn_cast<PointerType>(Ty);
- if (PTy == 0) return false; // Can't convert to a non-pointer type...
- const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
- if (FTy == 0) return false; // Can't convert to a non ptr to function...
- // Do not allow converting to a call where all of the operands are ...'s
- if (FTy->getNumParams() == 0 && FTy->isVarArg())
- return false; // Do not permit this conversion!
- // Perform sanity checks to make sure that new function type has the
- // correct number of arguments...
- //
- unsigned NumArgs = I->getNumOperands()-1; // Don't include function ptr
- // Cannot convert to a type that requires more fixed arguments than
- // the call provides...
- //
- if (NumArgs < FTy->getNumParams()) return false;
-
- // Unless this is a vararg function type, we cannot provide more arguments
- // than are desired...
- //
- if (!FTy->isVarArg() && NumArgs > FTy->getNumParams())
- return false;
- // Okay, at this point, we know that the call and the function type match
- // number of arguments. Now we see if we can convert the arguments
- // themselves. Note that we do not require operands to be convertible,
- // we can insert casts if they are convertible but not compatible. The
- // reason for this is that we prefer to have resolved functions but casted
- // arguments if possible.
- //
- for (unsigned i = 0, NA = FTy->getNumParams(); i < NA; ++i)
- if (!FTy->getParamType(i)->isLosslesslyConvertibleTo(I->getOperand(i+1)->getType()))
- return false; // Operands must have compatible types!
- // Okay, at this point, we know that all of the arguments can be
- // converted. We succeed if we can change the return type if
- // necessary...
- //
- return ValueConvertibleToType(I, FTy->getReturnType(), CTMap, TD);
- }
-
- const PointerType *MPtr = cast<PointerType>(I->getOperand(0)->getType());
- const FunctionType *FTy = cast<FunctionType>(MPtr->getElementType());
- if (!FTy->isVarArg()) return false;
- if ((OpNum-1) < FTy->getNumParams())
- return false; // It's not in the varargs section...
- // If we get this far, we know the value is in the varargs section of the
- // function! We can convert if we don't reinterpret the value...
- //
- return Ty->isLosslesslyConvertibleTo(V->getType());
- }
- }
- return false;
- }
- void llvm::ConvertValueToNewType(Value *V, Value *NewVal, ValueMapCache &VMC,
- const TargetData &TD) {
- ValueHandle VH(VMC, V);
- unsigned NumUses = V->use_size();
- for (unsigned It = 0; It < NumUses; ) {
- unsigned OldSize = NumUses;
- Value::use_iterator UI = V->use_begin();
- std::advance(UI, It);
- ConvertOperandToType(*UI, V, NewVal, VMC, TD);
- NumUses = V->use_size();
- if (NumUses == OldSize) ++It;
- }
- }
- static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
- ValueMapCache &VMC, const TargetData &TD) {
- if (isa<ValueHandle>(U)) return; // Valuehandles don't let go of operands...
- if (VMC.OperandsMapped.count(U)) return;
- VMC.OperandsMapped.insert(U);
- ValueMapCache::ExprMapTy::iterator VMCI = VMC.ExprMap.find(U);
- if (VMCI != VMC.ExprMap.end())
- return;
- Instruction *I = cast<Instruction>(U); // Only Instructions convertible
- BasicBlock *BB = I->getParent();
- assert(BB != 0 && "Instruction not embedded in basic block!");
- std::string Name = I->getName();
- I->setName("");
- Instruction *Res; // Result of conversion
- //std::cerr << endl << endl << "Type:\t" << Ty << "\nInst: " << I
- // << "BB Before: " << BB << endl;
- // Prevent I from being removed...
- ValueHandle IHandle(VMC, I);
- const Type *NewTy = NewVal->getType();
- Constant *Dummy = (NewTy != Type::VoidTy) ?
- Constant::getNullValue(NewTy) : 0;
- switch (I->getOpcode()) {
- case Instruction::Cast:
- if (VMC.NewCasts.count(ValueHandle(VMC, I))) {
- // This cast has already had it's value converted, causing a new cast to
- // be created. We don't want to create YET ANOTHER cast instruction
- // representing the original one, so just modify the operand of this cast
- // instruction, which we know is newly created.
- I->setOperand(0, NewVal);
- I->setName(Name); // give I its name back
- return;
- } else {
- Res = new CastInst(NewVal, I->getType(), Name);
- }
- break;
- case Instruction::Add:
- if (isa<PointerType>(NewTy)) {
- Value *IndexVal = I->getOperand(OldVal == I->getOperand(0) ? 1 : 0);
- std::vector<Value*> Indices;
- BasicBlock::iterator It = I;
- if (const Type *ETy = ConvertibleToGEP(NewTy, IndexVal, Indices, TD,&It)){
- // If successful, convert the add to a GEP
- //const Type *RetTy = PointerType::get(ETy);
- // First operand is actually the given pointer...
- Res = new GetElementPtrInst(NewVal, Indices, Name);
- assert(cast<PointerType>(Res->getType())->getElementType() == ETy &&
- "ConvertibleToGEP broken!");
- break;
- }
- }
- // FALLTHROUGH
- case Instruction::Sub:
- case Instruction::SetEQ:
- case Instruction::SetNE: {
- Res = BinaryOperator::create(cast<BinaryOperator>(I)->getOpcode(),
- Dummy, Dummy, Name);
- VMC.ExprMap[I] = Res; // Add node to expression eagerly
- unsigned OtherIdx = (OldVal == I->getOperand(0)) ? 1 : 0;
- Value *OtherOp = I->getOperand(OtherIdx);
- Value *NewOther = ConvertExpressionToType(OtherOp, NewTy, VMC, TD);
- Res->setOperand(OtherIdx, NewOther);
- Res->setOperand(!OtherIdx, NewVal);
- break;
- }
- case Instruction::Shl:
- case Instruction::Shr:
- assert(I->getOperand(0) == OldVal);
- Res = new ShiftInst(cast<ShiftInst>(I)->getOpcode(), NewVal,
- I->getOperand(1), Name);
- break;
- case Instruction::Free: // Free can free any pointer type!
- assert(I->getOperand(0) == OldVal);
- Res = new FreeInst(NewVal);
- break;
- case Instruction::Load: {
- assert(I->getOperand(0) == OldVal && isa<PointerType>(NewVal->getType()));
- const Type *LoadedTy =
- cast<PointerType>(NewVal->getType())->getElementType();
- Value *Src = NewVal;
- if (const CompositeType *CT = dyn_cast<CompositeType>(LoadedTy)) {
- std::vector<Value*> Indices;
- Indices.push_back(Constant::getNullValue(Type::UIntTy));
- unsigned Offset = 0; // No offset, get first leaf.
- LoadedTy = getStructOffsetType(CT, Offset, Indices, TD, false);
- assert(LoadedTy->isFirstClassType());
- if (Indices.size() != 1) { // Do not generate load X, 0
- // Insert the GEP instruction before this load.
- Src = new GetElementPtrInst(Src, Indices, Name+".idx", I);
- }
- }
-
- Res = new LoadInst(Src, Name);
- assert(Res->getType()->isFirstClassType() && "Load of structure or array!");
- break;
- }
- case Instruction::Store: {
- if (I->getOperand(0) == OldVal) { // Replace the source value
- // Check to see if operand #1 has already been converted...
- ValueMapCache::ExprMapTy::iterator VMCI =
- VMC.ExprMap.find(I->getOperand(1));
- if (VMCI != VMC.ExprMap.end()) {
- // Comments describing this stuff are in the OperandConvertibleToType
- // switch statement for Store...
- //
- const Type *ElTy =
- cast<PointerType>(VMCI->second->getType())->getElementType();
-
- Value *SrcPtr = VMCI->second;
- if (ElTy != NewTy) {
- // We check that this is a struct in the initial scan...
- const StructType *SElTy = cast<StructType>(ElTy);
-
- std::vector<Value*> Indices;
- Indices.push_back(Constant::getNullValue(Type::UIntTy));
- unsigned Offset = 0;
- const Type *Ty = getStructOffsetType(ElTy, Offset, Indices, TD,false);
- assert(Offset == 0 && "Offset changed!");
- assert(NewTy == Ty && "Did not convert to correct type!");
- // Insert the GEP instruction before this store.
- SrcPtr = new GetElementPtrInst(SrcPtr, Indices,
- SrcPtr->getName()+".idx", I);
- }
- Res = new StoreInst(NewVal, SrcPtr);
- VMC.ExprMap[I] = Res;
- } else {
- // Otherwise, we haven't converted Operand #1 over yet...
- const PointerType *NewPT = PointerType::get(NewTy);
- Res = new StoreInst(NewVal, Constant::getNullValue(NewPT));
- VMC.ExprMap[I] = Res;
- Res->setOperand(1, ConvertExpressionToType(I->getOperand(1),
- NewPT, VMC, TD));
- }
- } else { // Replace the source pointer
- const Type *ValTy = cast<PointerType>(NewTy)->getElementType();
- Value *SrcPtr = NewVal;
- if (isa<StructType>(ValTy)) {
- std::vector<Value*> Indices;
- Indices.push_back(Constant::getNullValue(Type::UIntTy));
- unsigned Offset = 0;
- ValTy = getStructOffsetType(ValTy, Offset, Indices, TD, false);
- assert(Offset == 0 && ValTy);
- // Insert the GEP instruction before this store.
- SrcPtr = new GetElementPtrInst(SrcPtr, Indices,
- SrcPtr->getName()+".idx", I);
- }
- Res = new StoreInst(Constant::getNullValue(ValTy), SrcPtr);
- VMC.ExprMap[I] = Res;
- Res->setOperand(0, ConvertExpressionToType(I->getOperand(0),
- ValTy, VMC, TD));
- }
- break;
- }
- case Instruction::GetElementPtr: {
- // Convert a one index getelementptr into just about anything that is
- // desired.
- //
- BasicBlock::iterator It = I;
- const Type *OldElTy = cast<PointerType>(I->getType())->getElementType();
- unsigned DataSize = TD.getTypeSize(OldElTy);
- Value *Index = I->getOperand(1);
- if (DataSize != 1) {
- // Insert a multiply of the old element type is not a unit size...
- Value *CST;
- if (Index->getType()->isSigned())
- CST = ConstantSInt::get(Index->getType(), DataSize);
- else
- CST = ConstantUInt::get(Index->getType(), DataSize);
- Index = BinaryOperator::create(Instruction::Mul, Index, CST, "scale", It);
- }
- // Perform the conversion now...
- //
- std::vector<Value*> Indices;
- const Type *ElTy = ConvertibleToGEP(NewVal->getType(),Index,Indices,TD,&It);
- assert(ElTy != 0 && "GEP Conversion Failure!");
- Res = new GetElementPtrInst(NewVal, Indices, Name);
- assert(Res->getType() == PointerType::get(ElTy) &&
- "ConvertibleToGet failed!");
- }
- #if 0
- if (I->getType() == PointerType::get(Type::SByteTy)) {
- // Convert a getelementptr sbyte * %reg111, uint 16 freely back to
- // anything that is a pointer type...
- //
- BasicBlock::iterator It = I;
-
- // Check to see if the second argument is an expression that can
- // be converted to the appropriate size... if so, allow it.
- //
- std::vector<Value*> Indices;
- const Type *ElTy = ConvertibleToGEP(NewVal->getType(), I->getOperand(1),
- Indices, TD, &It);
- assert(ElTy != 0 && "GEP Conversion Failure!");
-
- Res = new GetElementPtrInst(NewVal, Indices, Name);
- } else {
- // Convert a getelementptr ulong * %reg123, uint %N
- // to getelementptr long * %reg123, uint %N
- // ... where the type must simply stay the same size...
- //
- GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
- std::vector<Value*> Indices(GEP->idx_begin(), GEP->idx_end());
- Res = new GetElementPtrInst(NewVal, Indices, Name);
- }
- #endif
- break;
- case Instruction::PHI: {
- PHINode *OldPN = cast<PHINode>(I);
- PHINode *NewPN = new PHINode(NewTy, Name);
- VMC.ExprMap[I] = NewPN;
- while (OldPN->getNumOperands()) {
- BasicBlock *BB = OldPN->getIncomingBlock(0);
- Value *OldVal = OldPN->getIncomingValue(0);
- OldPN->removeIncomingValue(BB, false);
- Value *V = ConvertExpressionToType(OldVal, NewTy, VMC, TD);
- NewPN->addIncoming(V, BB);
- }
- Res = NewPN;
- break;
- }
- case Instruction::Call: {
- Value *Meth = I->getOperand(0);
- std::vector<Value*> Params(I->op_begin()+1, I->op_end());
- if (Meth == OldVal) { // Changing the function pointer?
- const PointerType *NewPTy = cast<PointerType>(NewVal->getType());
- const FunctionType *NewTy = cast<FunctionType>(NewPTy->getElementType());
- if (NewTy->getReturnType() == Type::VoidTy)
- Name = ""; // Make sure not to name a void call!
- // Get an iterator to the call instruction so that we can insert casts for
- // operands if need be. Note that we do not require operands to be
- // convertible, we can insert casts if they are convertible but not
- // compatible. The reason for this is that we prefer to have resolved
- // functions but casted arguments if possible.
- //
- BasicBlock::iterator It = I;
- // Convert over all of the call operands to their new types... but only
- // convert over the part that is not in the vararg section of the call.
- //
- for (unsigned i = 0; i != NewTy->getNumParams(); ++i)
- if (Params[i]->getType() != NewTy->getParamType(i)) {
- // Create a cast to convert it to the right type, we know that this
- // is a lossless cast...
- //
- Params[i] = new CastInst(Params[i], NewTy->getParamType(i),
- "callarg.cast." +
- Params[i]->getName(), It);
- }
- Meth = NewVal; // Update call destination to new value
- } else { // Changing an argument, must be in vararg area
- std::vector<Value*>::iterator OI =
- find(Params.begin(), Params.end(), OldVal);
- assert (OI != Params.end() && "Not using value!");
- *OI = NewVal;
- }
- Res = new CallInst(Meth, Params, Name);
- break;
- }
- default:
- assert(0 && "Expression convertible, but don't know how to convert?");
- return;
- }
- // If the instruction was newly created, insert it into the instruction
- // stream.
- //
- BasicBlock::iterator It = I;
- assert(It != BB->end() && "Instruction not in own basic block??");
- BB->getInstList().insert(It, Res); // Keep It pointing to old instruction
- DEBUG(std::cerr << "COT CREATED: " << (void*)Res << " " << Res
- << "In: " << (void*)I << " " << I << "Out: " << (void*)Res
- << " " << Res);
- // Add the instruction to the expression map
- VMC.ExprMap[I] = Res;
- if (I->getType() != Res->getType())
- ConvertValueToNewType(I, Res, VMC, TD);
- else {
- bool FromStart = true;
- Value::use_iterator UI;
- while (1) {
- if (FromStart) UI = I->use_begin();
- if (UI == I->use_end()) break;
-
- if (isa<ValueHandle>(*UI)) {
- ++UI;
- FromStart = false;
- } else {
- User *U = *UI;
- if (!FromStart) --UI;
- U->replaceUsesOfWith(I, Res);
- if (!FromStart) ++UI;
- }
- }
- }
- }
- ValueHandle::ValueHandle(ValueMapCache &VMC, Value *V)
- : Instruction(Type::VoidTy, UserOp1, ""), Cache(VMC) {
- //DEBUG(std::cerr << "VH AQUIRING: " << (void*)V << " " << V);
- Operands.push_back(Use(V, this));
- }
- ValueHandle::ValueHandle(const ValueHandle &VH)
- : Instruction(Type::VoidTy, UserOp1, ""), Cache(VH.Cache) {
- //DEBUG(std::cerr << "VH AQUIRING: " << (void*)V << " " << V);
- Operands.push_back(Use((Value*)VH.getOperand(0), this));
- }
- static void RecursiveDelete(ValueMapCache &Cache, Instruction *I) {
- if (!I || !I->use_empty()) return;
- assert(I->getParent() && "Inst not in basic block!");
- //DEBUG(std::cerr << "VH DELETING: " << (void*)I << " " << I);
- for (User::op_iterator OI = I->op_begin(), OE = I->op_end();
- OI != OE; ++OI)
- if (Instruction *U = dyn_cast<Instruction>(OI)) {
- *OI = 0;
- RecursiveDelete(Cache, U);
- }
- I->getParent()->getInstList().remove(I);
- Cache.OperandsMapped.erase(I);
- Cache.ExprMap.erase(I);
- delete I;
- }
- ValueHandle::~ValueHandle() {
- if (Operands[0]->hasOneUse()) {
- Value *V = Operands[0];
- Operands[0] = 0; // Drop use!
- // Now we just need to remove the old instruction so we don't get infinite
- // loops. Note that we cannot use DCE because DCE won't remove a store
- // instruction, for example.
- //
- RecursiveDelete(Cache, dyn_cast<Instruction>(V));
- } else {
- //DEBUG(std::cerr << "VH RELEASING: " << (void*)Operands[0].get() << " "
- // << Operands[0]->use_size() << " " << Operands[0]);
- }
- }
|