123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747 |
- //===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the TargetInstrInfoImpl class, it just provides default
- // implementations of various methods.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Target/TargetRegisterInfo.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineMemOperand.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
- #include "llvm/CodeGen/PseudoSourceValue.h"
- #include "llvm/MC/MCInstrItineraries.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- static cl::opt<bool> DisableHazardRecognizer(
- "disable-sched-hazard", cl::Hidden, cl::init(false),
- cl::desc("Disable hazard detection during preRA scheduling"));
- /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
- /// after it, replacing it with an unconditional branch to NewDest.
- void
- TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
- MachineBasicBlock *NewDest) const {
- MachineBasicBlock *MBB = Tail->getParent();
- // Remove all the old successors of MBB from the CFG.
- while (!MBB->succ_empty())
- MBB->removeSuccessor(MBB->succ_begin());
- // Remove all the dead instructions from the end of MBB.
- MBB->erase(Tail, MBB->end());
- // If MBB isn't immediately before MBB, insert a branch to it.
- if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
- InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
- Tail->getDebugLoc());
- MBB->addSuccessor(NewDest);
- }
- // commuteInstruction - The default implementation of this method just exchanges
- // the two operands returned by findCommutedOpIndices.
- MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
- bool NewMI) const {
- const MCInstrDesc &MCID = MI->getDesc();
- bool HasDef = MCID.getNumDefs();
- if (HasDef && !MI->getOperand(0).isReg())
- // No idea how to commute this instruction. Target should implement its own.
- return 0;
- unsigned Idx1, Idx2;
- if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
- std::string msg;
- raw_string_ostream Msg(msg);
- Msg << "Don't know how to commute: " << *MI;
- report_fatal_error(Msg.str());
- }
- assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
- "This only knows how to commute register operands so far");
- unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
- unsigned Reg1 = MI->getOperand(Idx1).getReg();
- unsigned Reg2 = MI->getOperand(Idx2).getReg();
- unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
- unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
- unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
- bool Reg1IsKill = MI->getOperand(Idx1).isKill();
- bool Reg2IsKill = MI->getOperand(Idx2).isKill();
- // If destination is tied to either of the commuted source register, then
- // it must be updated.
- if (HasDef && Reg0 == Reg1 &&
- MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
- Reg2IsKill = false;
- Reg0 = Reg2;
- SubReg0 = SubReg2;
- } else if (HasDef && Reg0 == Reg2 &&
- MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
- Reg1IsKill = false;
- Reg0 = Reg1;
- SubReg0 = SubReg1;
- }
- if (NewMI) {
- // Create a new instruction.
- bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false;
- MachineFunction &MF = *MI->getParent()->getParent();
- if (HasDef)
- return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
- .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead), SubReg0)
- .addReg(Reg2, getKillRegState(Reg2IsKill), SubReg2)
- .addReg(Reg1, getKillRegState(Reg1IsKill), SubReg1);
- else
- return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
- .addReg(Reg2, getKillRegState(Reg2IsKill), SubReg2)
- .addReg(Reg1, getKillRegState(Reg1IsKill), SubReg1);
- }
- if (HasDef) {
- MI->getOperand(0).setReg(Reg0);
- MI->getOperand(0).setSubReg(SubReg0);
- }
- MI->getOperand(Idx2).setReg(Reg1);
- MI->getOperand(Idx1).setReg(Reg2);
- MI->getOperand(Idx2).setSubReg(SubReg1);
- MI->getOperand(Idx1).setSubReg(SubReg2);
- MI->getOperand(Idx2).setIsKill(Reg1IsKill);
- MI->getOperand(Idx1).setIsKill(Reg2IsKill);
- return MI;
- }
- /// findCommutedOpIndices - If specified MI is commutable, return the two
- /// operand indices that would swap value. Return true if the instruction
- /// is not in a form which this routine understands.
- bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
- unsigned &SrcOpIdx1,
- unsigned &SrcOpIdx2) const {
- assert(!MI->isBundle() &&
- "TargetInstrInfoImpl::findCommutedOpIndices() can't handle bundles");
- const MCInstrDesc &MCID = MI->getDesc();
- if (!MCID.isCommutable())
- return false;
- // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
- // is not true, then the target must implement this.
- SrcOpIdx1 = MCID.getNumDefs();
- SrcOpIdx2 = SrcOpIdx1 + 1;
- if (!MI->getOperand(SrcOpIdx1).isReg() ||
- !MI->getOperand(SrcOpIdx2).isReg())
- // No idea.
- return false;
- return true;
- }
- bool
- TargetInstrInfoImpl::isUnpredicatedTerminator(const MachineInstr *MI) const {
- if (!MI->isTerminator()) return false;
- // Conditional branch is a special case.
- if (MI->isBranch() && !MI->isBarrier())
- return true;
- if (!MI->isPredicable())
- return true;
- return !isPredicated(MI);
- }
- bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
- const SmallVectorImpl<MachineOperand> &Pred) const {
- bool MadeChange = false;
- assert(!MI->isBundle() &&
- "TargetInstrInfoImpl::PredicateInstruction() can't handle bundles");
- const MCInstrDesc &MCID = MI->getDesc();
- if (!MI->isPredicable())
- return false;
- for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
- if (MCID.OpInfo[i].isPredicate()) {
- MachineOperand &MO = MI->getOperand(i);
- if (MO.isReg()) {
- MO.setReg(Pred[j].getReg());
- MadeChange = true;
- } else if (MO.isImm()) {
- MO.setImm(Pred[j].getImm());
- MadeChange = true;
- } else if (MO.isMBB()) {
- MO.setMBB(Pred[j].getMBB());
- MadeChange = true;
- }
- ++j;
- }
- }
- return MadeChange;
- }
- bool TargetInstrInfoImpl::hasLoadFromStackSlot(const MachineInstr *MI,
- const MachineMemOperand *&MMO,
- int &FrameIndex) const {
- for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
- oe = MI->memoperands_end();
- o != oe;
- ++o) {
- if ((*o)->isLoad() && (*o)->getValue())
- if (const FixedStackPseudoSourceValue *Value =
- dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
- FrameIndex = Value->getFrameIndex();
- MMO = *o;
- return true;
- }
- }
- return false;
- }
- bool TargetInstrInfoImpl::hasStoreToStackSlot(const MachineInstr *MI,
- const MachineMemOperand *&MMO,
- int &FrameIndex) const {
- for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
- oe = MI->memoperands_end();
- o != oe;
- ++o) {
- if ((*o)->isStore() && (*o)->getValue())
- if (const FixedStackPseudoSourceValue *Value =
- dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
- FrameIndex = Value->getFrameIndex();
- MMO = *o;
- return true;
- }
- }
- return false;
- }
- void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I,
- unsigned DestReg,
- unsigned SubIdx,
- const MachineInstr *Orig,
- const TargetRegisterInfo &TRI) const {
- MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
- MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
- MBB.insert(I, MI);
- }
- bool
- TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0,
- const MachineInstr *MI1,
- const MachineRegisterInfo *MRI) const {
- return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
- }
- MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig,
- MachineFunction &MF) const {
- assert(!Orig->isNotDuplicable() &&
- "Instruction cannot be duplicated");
- return MF.CloneMachineInstr(Orig);
- }
- // If the COPY instruction in MI can be folded to a stack operation, return
- // the register class to use.
- static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
- unsigned FoldIdx) {
- assert(MI->isCopy() && "MI must be a COPY instruction");
- if (MI->getNumOperands() != 2)
- return 0;
- assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
- const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
- const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
- if (FoldOp.getSubReg() || LiveOp.getSubReg())
- return 0;
- unsigned FoldReg = FoldOp.getReg();
- unsigned LiveReg = LiveOp.getReg();
- assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
- "Cannot fold physregs");
- const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
- const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
- if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
- return RC->contains(LiveOp.getReg()) ? RC : 0;
- if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
- return RC;
- // FIXME: Allow folding when register classes are memory compatible.
- return 0;
- }
- bool TargetInstrInfoImpl::
- canFoldMemoryOperand(const MachineInstr *MI,
- const SmallVectorImpl<unsigned> &Ops) const {
- return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
- }
- /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
- /// slot into the specified machine instruction for the specified operand(s).
- /// If this is possible, a new instruction is returned with the specified
- /// operand folded, otherwise NULL is returned. The client is responsible for
- /// removing the old instruction and adding the new one in the instruction
- /// stream.
- MachineInstr*
- TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
- const SmallVectorImpl<unsigned> &Ops,
- int FI) const {
- unsigned Flags = 0;
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- if (MI->getOperand(Ops[i]).isDef())
- Flags |= MachineMemOperand::MOStore;
- else
- Flags |= MachineMemOperand::MOLoad;
- MachineBasicBlock *MBB = MI->getParent();
- assert(MBB && "foldMemoryOperand needs an inserted instruction");
- MachineFunction &MF = *MBB->getParent();
- // Ask the target to do the actual folding.
- if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) {
- // Add a memory operand, foldMemoryOperandImpl doesn't do that.
- assert((!(Flags & MachineMemOperand::MOStore) ||
- NewMI->mayStore()) &&
- "Folded a def to a non-store!");
- assert((!(Flags & MachineMemOperand::MOLoad) ||
- NewMI->mayLoad()) &&
- "Folded a use to a non-load!");
- const MachineFrameInfo &MFI = *MF.getFrameInfo();
- assert(MFI.getObjectOffset(FI) != -1);
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
- Flags, MFI.getObjectSize(FI),
- MFI.getObjectAlignment(FI));
- NewMI->addMemOperand(MF, MMO);
- // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
- return MBB->insert(MI, NewMI);
- }
- // Straight COPY may fold as load/store.
- if (!MI->isCopy() || Ops.size() != 1)
- return 0;
- const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
- if (!RC)
- return 0;
- const MachineOperand &MO = MI->getOperand(1-Ops[0]);
- MachineBasicBlock::iterator Pos = MI;
- const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
- if (Flags == MachineMemOperand::MOStore)
- storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
- else
- loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
- return --Pos;
- }
- /// foldMemoryOperand - Same as the previous version except it allows folding
- /// of any load and store from / to any address, not just from a specific
- /// stack slot.
- MachineInstr*
- TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
- const SmallVectorImpl<unsigned> &Ops,
- MachineInstr* LoadMI) const {
- assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
- #ifndef NDEBUG
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
- #endif
- MachineBasicBlock &MBB = *MI->getParent();
- MachineFunction &MF = *MBB.getParent();
- // Ask the target to do the actual folding.
- MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
- if (!NewMI) return 0;
- NewMI = MBB.insert(MI, NewMI);
- // Copy the memoperands from the load to the folded instruction.
- NewMI->setMemRefs(LoadMI->memoperands_begin(),
- LoadMI->memoperands_end());
- return NewMI;
- }
- bool TargetInstrInfo::
- isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
- AliasAnalysis *AA) const {
- const MachineFunction &MF = *MI->getParent()->getParent();
- const MachineRegisterInfo &MRI = MF.getRegInfo();
- const TargetMachine &TM = MF.getTarget();
- const TargetInstrInfo &TII = *TM.getInstrInfo();
- // Remat clients assume operand 0 is the defined register.
- if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
- return false;
- unsigned DefReg = MI->getOperand(0).getReg();
- // A sub-register definition can only be rematerialized if the instruction
- // doesn't read the other parts of the register. Otherwise it is really a
- // read-modify-write operation on the full virtual register which cannot be
- // moved safely.
- if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
- MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
- return false;
- // A load from a fixed stack slot can be rematerialized. This may be
- // redundant with subsequent checks, but it's target-independent,
- // simple, and a common case.
- int FrameIdx = 0;
- if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
- MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
- return true;
- // Avoid instructions obviously unsafe for remat.
- if (MI->isNotDuplicable() || MI->mayStore() ||
- MI->hasUnmodeledSideEffects())
- return false;
- // Don't remat inline asm. We have no idea how expensive it is
- // even if it's side effect free.
- if (MI->isInlineAsm())
- return false;
- // Avoid instructions which load from potentially varying memory.
- if (MI->mayLoad() && !MI->isInvariantLoad(AA))
- return false;
- // If any of the registers accessed are non-constant, conservatively assume
- // the instruction is not rematerializable.
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg()) continue;
- unsigned Reg = MO.getReg();
- if (Reg == 0)
- continue;
- // Check for a well-behaved physical register.
- if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
- if (MO.isUse()) {
- // If the physreg has no defs anywhere, it's just an ambient register
- // and we can freely move its uses. Alternatively, if it's allocatable,
- // it could get allocated to something with a def during allocation.
- if (!MRI.isConstantPhysReg(Reg, MF))
- return false;
- } else {
- // A physreg def. We can't remat it.
- return false;
- }
- continue;
- }
- // Only allow one virtual-register def. There may be multiple defs of the
- // same virtual register, though.
- if (MO.isDef() && Reg != DefReg)
- return false;
- // Don't allow any virtual-register uses. Rematting an instruction with
- // virtual register uses would length the live ranges of the uses, which
- // is not necessarily a good idea, certainly not "trivial".
- if (MO.isUse())
- return false;
- }
- // Everything checked out.
- return true;
- }
- /// isSchedulingBoundary - Test if the given instruction should be
- /// considered a scheduling boundary. This primarily includes labels
- /// and terminators.
- bool TargetInstrInfoImpl::isSchedulingBoundary(const MachineInstr *MI,
- const MachineBasicBlock *MBB,
- const MachineFunction &MF) const{
- // Terminators and labels can't be scheduled around.
- if (MI->isTerminator() || MI->isLabel())
- return true;
- // Don't attempt to schedule around any instruction that defines
- // a stack-oriented pointer, as it's unlikely to be profitable. This
- // saves compile time, because it doesn't require every single
- // stack slot reference to depend on the instruction that does the
- // modification.
- const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
- if (MI->definesRegister(TLI.getStackPointerRegisterToSaveRestore()))
- return true;
- return false;
- }
- // Provide a global flag for disabling the PreRA hazard recognizer that targets
- // may choose to honor.
- bool TargetInstrInfoImpl::usePreRAHazardRecognizer() const {
- return !DisableHazardRecognizer;
- }
- // Default implementation of CreateTargetRAHazardRecognizer.
- ScheduleHazardRecognizer *TargetInstrInfoImpl::
- CreateTargetHazardRecognizer(const TargetMachine *TM,
- const ScheduleDAG *DAG) const {
- // Dummy hazard recognizer allows all instructions to issue.
- return new ScheduleHazardRecognizer();
- }
- // Default implementation of CreateTargetMIHazardRecognizer.
- ScheduleHazardRecognizer *TargetInstrInfoImpl::
- CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
- const ScheduleDAG *DAG) const {
- return (ScheduleHazardRecognizer *)
- new ScoreboardHazardRecognizer(II, DAG, "misched");
- }
- // Default implementation of CreateTargetPostRAHazardRecognizer.
- ScheduleHazardRecognizer *TargetInstrInfoImpl::
- CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
- const ScheduleDAG *DAG) const {
- return (ScheduleHazardRecognizer *)
- new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
- }
- //===----------------------------------------------------------------------===//
- // SelectionDAG latency interface.
- //===----------------------------------------------------------------------===//
- int
- TargetInstrInfoImpl::getOperandLatency(const InstrItineraryData *ItinData,
- SDNode *DefNode, unsigned DefIdx,
- SDNode *UseNode, unsigned UseIdx) const {
- if (!ItinData || ItinData->isEmpty())
- return -1;
- if (!DefNode->isMachineOpcode())
- return -1;
- unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
- if (!UseNode->isMachineOpcode())
- return ItinData->getOperandCycle(DefClass, DefIdx);
- unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
- return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
- }
- int TargetInstrInfoImpl::getInstrLatency(const InstrItineraryData *ItinData,
- SDNode *N) const {
- if (!ItinData || ItinData->isEmpty())
- return 1;
- if (!N->isMachineOpcode())
- return 1;
- return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
- }
- //===----------------------------------------------------------------------===//
- // MachineInstr latency interface.
- //===----------------------------------------------------------------------===//
- unsigned
- TargetInstrInfoImpl::getNumMicroOps(const InstrItineraryData *ItinData,
- const MachineInstr *MI) const {
- if (!ItinData || ItinData->isEmpty())
- return 1;
- unsigned Class = MI->getDesc().getSchedClass();
- int UOps = ItinData->Itineraries[Class].NumMicroOps;
- if (UOps >= 0)
- return UOps;
- // The # of u-ops is dynamically determined. The specific target should
- // override this function to return the right number.
- return 1;
- }
- /// Return the default expected latency for a def based on it's opcode.
- unsigned TargetInstrInfo::defaultDefLatency(const InstrItineraryData *ItinData,
- const MachineInstr *DefMI) const {
- if (DefMI->mayLoad())
- return ItinData->SchedModel->LoadLatency;
- if (isHighLatencyDef(DefMI->getOpcode()))
- return ItinData->SchedModel->HighLatency;
- return 1;
- }
- unsigned TargetInstrInfoImpl::
- getInstrLatency(const InstrItineraryData *ItinData,
- const MachineInstr *MI,
- unsigned *PredCost) const {
- // Default to one cycle for no itinerary. However, an "empty" itinerary may
- // still have a MinLatency property, which getStageLatency checks.
- if (!ItinData)
- return MI->mayLoad() ? 2 : 1;
- return ItinData->getStageLatency(MI->getDesc().getSchedClass());
- }
- bool TargetInstrInfoImpl::hasLowDefLatency(const InstrItineraryData *ItinData,
- const MachineInstr *DefMI,
- unsigned DefIdx) const {
- if (!ItinData || ItinData->isEmpty())
- return false;
- unsigned DefClass = DefMI->getDesc().getSchedClass();
- int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
- return (DefCycle != -1 && DefCycle <= 1);
- }
- /// Both DefMI and UseMI must be valid. By default, call directly to the
- /// itinerary. This may be overriden by the target.
- int TargetInstrInfoImpl::
- getOperandLatency(const InstrItineraryData *ItinData,
- const MachineInstr *DefMI, unsigned DefIdx,
- const MachineInstr *UseMI, unsigned UseIdx) const {
- unsigned DefClass = DefMI->getDesc().getSchedClass();
- unsigned UseClass = UseMI->getDesc().getSchedClass();
- return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
- }
- /// If we can determine the operand latency from the def only, without itinerary
- /// lookup, do so. Otherwise return -1.
- static int computeDefOperandLatency(
- const TargetInstrInfo *TII, const InstrItineraryData *ItinData,
- const MachineInstr *DefMI, bool FindMin) {
- // Let the target hook getInstrLatency handle missing itineraries.
- if (!ItinData)
- return TII->getInstrLatency(ItinData, DefMI);
- // Return a latency based on the itinerary properties and defining instruction
- // if possible. Some common subtargets don't require per-operand latency,
- // especially for minimum latencies.
- if (FindMin) {
- // If MinLatency is valid, call getInstrLatency. This uses Stage latency if
- // it exists before defaulting to MinLatency.
- if (ItinData->SchedModel->MinLatency >= 0)
- return TII->getInstrLatency(ItinData, DefMI);
- // If MinLatency is invalid, OperandLatency is interpreted as MinLatency.
- // For empty itineraries, short-cirtuit the check and default to one cycle.
- if (ItinData->isEmpty())
- return 1;
- }
- else if(ItinData->isEmpty())
- return TII->defaultDefLatency(ItinData, DefMI);
- // ...operand lookup required
- return -1;
- }
- /// computeOperandLatency - Compute and return the latency of the given data
- /// dependent def and use when the operand indices are already known.
- ///
- /// FindMin may be set to get the minimum vs. expected latency.
- unsigned TargetInstrInfo::
- computeOperandLatency(const InstrItineraryData *ItinData,
- const MachineInstr *DefMI, unsigned DefIdx,
- const MachineInstr *UseMI, unsigned UseIdx,
- bool FindMin) const {
- int DefLatency = computeDefOperandLatency(this, ItinData, DefMI, FindMin);
- if (DefLatency >= 0)
- return DefLatency;
- assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
- int OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
- if (OperLatency >= 0)
- return OperLatency;
- // No operand latency was found.
- unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
- // Expected latency is the max of the stage latency and itinerary props.
- if (!FindMin)
- InstrLatency = std::max(InstrLatency, defaultDefLatency(ItinData, DefMI));
- return InstrLatency;
- }
- /// computeOperandLatency - Compute and return the latency of the given data
- /// dependent def and use. DefMI must be a valid def. UseMI may be NULL for an
- /// unknown use. Depending on the subtarget's itinerary properties, this may or
- /// may not need to call getOperandLatency().
- ///
- /// FindMin may be set to get the minimum vs. expected latency. Minimum
- /// latency is used for scheduling groups, while expected latency is for
- /// instruction cost and critical path.
- ///
- /// For most subtargets, we don't need DefIdx or UseIdx to compute min latency.
- /// DefMI must be a valid definition, but UseMI may be NULL for an unknown use.
- unsigned TargetInstrInfo::
- computeOperandLatency(const InstrItineraryData *ItinData,
- const TargetRegisterInfo *TRI,
- const MachineInstr *DefMI, const MachineInstr *UseMI,
- unsigned Reg, bool FindMin) const {
- int DefLatency = computeDefOperandLatency(this, ItinData, DefMI, FindMin);
- if (DefLatency >= 0)
- return DefLatency;
- assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
- // Find the definition of the register in the defining instruction.
- int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
- if (DefIdx != -1) {
- const MachineOperand &MO = DefMI->getOperand(DefIdx);
- if (MO.isReg() && MO.isImplicit() &&
- DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
- // This is an implicit def, getOperandLatency() won't return the correct
- // latency. e.g.
- // %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
- // %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
- // What we want is to compute latency between def of %D6/%D7 and use of
- // %Q3 instead.
- unsigned Op2 = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
- if (DefMI->getOperand(Op2).isReg())
- DefIdx = Op2;
- }
- // For all uses of the register, calculate the maxmimum latency
- int OperLatency = -1;
- // UseMI is null, then it must be a scheduling barrier.
- if (!UseMI) {
- unsigned DefClass = DefMI->getDesc().getSchedClass();
- OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
- }
- else {
- for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = UseMI->getOperand(i);
- if (!MO.isReg() || !MO.isUse())
- continue;
- unsigned MOReg = MO.getReg();
- if (MOReg != Reg)
- continue;
- int UseCycle = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, i);
- OperLatency = std::max(OperLatency, UseCycle);
- }
- }
- // If we found an operand latency, we're done.
- if (OperLatency >= 0)
- return OperLatency;
- }
- // No operand latency was found.
- unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
- // Expected latency is the max of the stage latency and itinerary props.
- if (!FindMin)
- InstrLatency = std::max(InstrLatency, defaultDefLatency(ItinData, DefMI));
- return InstrLatency;
- }
|