12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842 |
- //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
- // stores that can be put together into vector-stores. Next, it attempts to
- // construct vectorizable tree using the use-def chains. If a profitable tree
- // was found, the SLP vectorizer performs vectorization on the tree.
- //
- // The pass is inspired by the work described in the paper:
- // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/iterator.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/CodeMetrics.h"
- #include "llvm/Analysis/DemandedBits.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/LoopAccessAnalysis.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/MemoryLocation.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/NoFolder.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/IR/Verifier.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/DOTGraphTraits.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/GraphWriter.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Vectorize.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <iterator>
- #include <memory>
- #include <set>
- #include <string>
- #include <tuple>
- #include <utility>
- #include <vector>
- using namespace llvm;
- using namespace llvm::PatternMatch;
- using namespace slpvectorizer;
- #define SV_NAME "slp-vectorizer"
- #define DEBUG_TYPE "SLP"
- STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
- static cl::opt<int>
- SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
- cl::desc("Only vectorize if you gain more than this "
- "number "));
- static cl::opt<bool>
- ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
- cl::desc("Attempt to vectorize horizontal reductions"));
- static cl::opt<bool> ShouldStartVectorizeHorAtStore(
- "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
- cl::desc(
- "Attempt to vectorize horizontal reductions feeding into a store"));
- static cl::opt<int>
- MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
- cl::desc("Attempt to vectorize for this register size in bits"));
- /// Limits the size of scheduling regions in a block.
- /// It avoid long compile times for _very_ large blocks where vector
- /// instructions are spread over a wide range.
- /// This limit is way higher than needed by real-world functions.
- static cl::opt<int>
- ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
- cl::desc("Limit the size of the SLP scheduling region per block"));
- static cl::opt<int> MinVectorRegSizeOption(
- "slp-min-reg-size", cl::init(128), cl::Hidden,
- cl::desc("Attempt to vectorize for this register size in bits"));
- static cl::opt<unsigned> RecursionMaxDepth(
- "slp-recursion-max-depth", cl::init(12), cl::Hidden,
- cl::desc("Limit the recursion depth when building a vectorizable tree"));
- static cl::opt<unsigned> MinTreeSize(
- "slp-min-tree-size", cl::init(3), cl::Hidden,
- cl::desc("Only vectorize small trees if they are fully vectorizable"));
- static cl::opt<bool>
- ViewSLPTree("view-slp-tree", cl::Hidden,
- cl::desc("Display the SLP trees with Graphviz"));
- // Limit the number of alias checks. The limit is chosen so that
- // it has no negative effect on the llvm benchmarks.
- static const unsigned AliasedCheckLimit = 10;
- // Another limit for the alias checks: The maximum distance between load/store
- // instructions where alias checks are done.
- // This limit is useful for very large basic blocks.
- static const unsigned MaxMemDepDistance = 160;
- /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
- /// regions to be handled.
- static const int MinScheduleRegionSize = 16;
- /// Predicate for the element types that the SLP vectorizer supports.
- ///
- /// The most important thing to filter here are types which are invalid in LLVM
- /// vectors. We also filter target specific types which have absolutely no
- /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
- /// avoids spending time checking the cost model and realizing that they will
- /// be inevitably scalarized.
- static bool isValidElementType(Type *Ty) {
- return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
- !Ty->isPPC_FP128Ty();
- }
- /// \returns true if all of the instructions in \p VL are in the same block or
- /// false otherwise.
- static bool allSameBlock(ArrayRef<Value *> VL) {
- Instruction *I0 = dyn_cast<Instruction>(VL[0]);
- if (!I0)
- return false;
- BasicBlock *BB = I0->getParent();
- for (int i = 1, e = VL.size(); i < e; i++) {
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- if (!I)
- return false;
- if (BB != I->getParent())
- return false;
- }
- return true;
- }
- /// \returns True if all of the values in \p VL are constants.
- static bool allConstant(ArrayRef<Value *> VL) {
- for (Value *i : VL)
- if (!isa<Constant>(i))
- return false;
- return true;
- }
- /// \returns True if all of the values in \p VL are identical.
- static bool isSplat(ArrayRef<Value *> VL) {
- for (unsigned i = 1, e = VL.size(); i < e; ++i)
- if (VL[i] != VL[0])
- return false;
- return true;
- }
- /// \returns True if \p I is commutative, handles CmpInst as well as Instruction.
- static bool isCommutative(Instruction *I) {
- if (auto *IC = dyn_cast<CmpInst>(I))
- return IC->isCommutative();
- return I->isCommutative();
- }
- /// Checks if the vector of instructions can be represented as a shuffle, like:
- /// %x0 = extractelement <4 x i8> %x, i32 0
- /// %x3 = extractelement <4 x i8> %x, i32 3
- /// %y1 = extractelement <4 x i8> %y, i32 1
- /// %y2 = extractelement <4 x i8> %y, i32 2
- /// %x0x0 = mul i8 %x0, %x0
- /// %x3x3 = mul i8 %x3, %x3
- /// %y1y1 = mul i8 %y1, %y1
- /// %y2y2 = mul i8 %y2, %y2
- /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
- /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
- /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
- /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
- /// ret <4 x i8> %ins4
- /// can be transformed into:
- /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
- /// i32 6>
- /// %2 = mul <4 x i8> %1, %1
- /// ret <4 x i8> %2
- /// We convert this initially to something like:
- /// %x0 = extractelement <4 x i8> %x, i32 0
- /// %x3 = extractelement <4 x i8> %x, i32 3
- /// %y1 = extractelement <4 x i8> %y, i32 1
- /// %y2 = extractelement <4 x i8> %y, i32 2
- /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
- /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
- /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
- /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
- /// %5 = mul <4 x i8> %4, %4
- /// %6 = extractelement <4 x i8> %5, i32 0
- /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
- /// %7 = extractelement <4 x i8> %5, i32 1
- /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
- /// %8 = extractelement <4 x i8> %5, i32 2
- /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
- /// %9 = extractelement <4 x i8> %5, i32 3
- /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
- /// ret <4 x i8> %ins4
- /// InstCombiner transforms this into a shuffle and vector mul
- /// TODO: Can we split off and reuse the shuffle mask detection from
- /// TargetTransformInfo::getInstructionThroughput?
- static Optional<TargetTransformInfo::ShuffleKind>
- isShuffle(ArrayRef<Value *> VL) {
- auto *EI0 = cast<ExtractElementInst>(VL[0]);
- unsigned Size = EI0->getVectorOperandType()->getVectorNumElements();
- Value *Vec1 = nullptr;
- Value *Vec2 = nullptr;
- enum ShuffleMode { Unknown, Select, Permute };
- ShuffleMode CommonShuffleMode = Unknown;
- for (unsigned I = 0, E = VL.size(); I < E; ++I) {
- auto *EI = cast<ExtractElementInst>(VL[I]);
- auto *Vec = EI->getVectorOperand();
- // All vector operands must have the same number of vector elements.
- if (Vec->getType()->getVectorNumElements() != Size)
- return None;
- auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
- if (!Idx)
- return None;
- // Undefined behavior if Idx is negative or >= Size.
- if (Idx->getValue().uge(Size))
- continue;
- unsigned IntIdx = Idx->getValue().getZExtValue();
- // We can extractelement from undef vector.
- if (isa<UndefValue>(Vec))
- continue;
- // For correct shuffling we have to have at most 2 different vector operands
- // in all extractelement instructions.
- if (!Vec1 || Vec1 == Vec)
- Vec1 = Vec;
- else if (!Vec2 || Vec2 == Vec)
- Vec2 = Vec;
- else
- return None;
- if (CommonShuffleMode == Permute)
- continue;
- // If the extract index is not the same as the operation number, it is a
- // permutation.
- if (IntIdx != I) {
- CommonShuffleMode = Permute;
- continue;
- }
- CommonShuffleMode = Select;
- }
- // If we're not crossing lanes in different vectors, consider it as blending.
- if (CommonShuffleMode == Select && Vec2)
- return TargetTransformInfo::SK_Select;
- // If Vec2 was never used, we have a permutation of a single vector, otherwise
- // we have permutation of 2 vectors.
- return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
- : TargetTransformInfo::SK_PermuteSingleSrc;
- }
- namespace {
- /// Main data required for vectorization of instructions.
- struct InstructionsState {
- /// The very first instruction in the list with the main opcode.
- Value *OpValue = nullptr;
- /// The main/alternate instruction.
- Instruction *MainOp = nullptr;
- Instruction *AltOp = nullptr;
- /// The main/alternate opcodes for the list of instructions.
- unsigned getOpcode() const {
- return MainOp ? MainOp->getOpcode() : 0;
- }
- unsigned getAltOpcode() const {
- return AltOp ? AltOp->getOpcode() : 0;
- }
- /// Some of the instructions in the list have alternate opcodes.
- bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
- bool isOpcodeOrAlt(Instruction *I) const {
- unsigned CheckedOpcode = I->getOpcode();
- return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
- }
- InstructionsState() = delete;
- InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
- : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
- };
- } // end anonymous namespace
- /// Chooses the correct key for scheduling data. If \p Op has the same (or
- /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
- /// OpValue.
- static Value *isOneOf(const InstructionsState &S, Value *Op) {
- auto *I = dyn_cast<Instruction>(Op);
- if (I && S.isOpcodeOrAlt(I))
- return Op;
- return S.OpValue;
- }
- /// \returns analysis of the Instructions in \p VL described in
- /// InstructionsState, the Opcode that we suppose the whole list
- /// could be vectorized even if its structure is diverse.
- static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
- unsigned BaseIndex = 0) {
- // Make sure these are all Instructions.
- if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
- return InstructionsState(VL[BaseIndex], nullptr, nullptr);
- bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
- bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
- unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
- unsigned AltOpcode = Opcode;
- unsigned AltIndex = BaseIndex;
- // Check for one alternate opcode from another BinaryOperator.
- // TODO - generalize to support all operators (types, calls etc.).
- for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
- unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
- if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
- if (InstOpcode == Opcode || InstOpcode == AltOpcode)
- continue;
- if (Opcode == AltOpcode) {
- AltOpcode = InstOpcode;
- AltIndex = Cnt;
- continue;
- }
- } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
- Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
- Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
- if (Ty0 == Ty1) {
- if (InstOpcode == Opcode || InstOpcode == AltOpcode)
- continue;
- if (Opcode == AltOpcode) {
- AltOpcode = InstOpcode;
- AltIndex = Cnt;
- continue;
- }
- }
- } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
- continue;
- return InstructionsState(VL[BaseIndex], nullptr, nullptr);
- }
- return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
- cast<Instruction>(VL[AltIndex]));
- }
- /// \returns true if all of the values in \p VL have the same type or false
- /// otherwise.
- static bool allSameType(ArrayRef<Value *> VL) {
- Type *Ty = VL[0]->getType();
- for (int i = 1, e = VL.size(); i < e; i++)
- if (VL[i]->getType() != Ty)
- return false;
- return true;
- }
- /// \returns True if Extract{Value,Element} instruction extracts element Idx.
- static Optional<unsigned> getExtractIndex(Instruction *E) {
- unsigned Opcode = E->getOpcode();
- assert((Opcode == Instruction::ExtractElement ||
- Opcode == Instruction::ExtractValue) &&
- "Expected extractelement or extractvalue instruction.");
- if (Opcode == Instruction::ExtractElement) {
- auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
- if (!CI)
- return None;
- return CI->getZExtValue();
- }
- ExtractValueInst *EI = cast<ExtractValueInst>(E);
- if (EI->getNumIndices() != 1)
- return None;
- return *EI->idx_begin();
- }
- /// \returns True if in-tree use also needs extract. This refers to
- /// possible scalar operand in vectorized instruction.
- static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
- TargetLibraryInfo *TLI) {
- unsigned Opcode = UserInst->getOpcode();
- switch (Opcode) {
- case Instruction::Load: {
- LoadInst *LI = cast<LoadInst>(UserInst);
- return (LI->getPointerOperand() == Scalar);
- }
- case Instruction::Store: {
- StoreInst *SI = cast<StoreInst>(UserInst);
- return (SI->getPointerOperand() == Scalar);
- }
- case Instruction::Call: {
- CallInst *CI = cast<CallInst>(UserInst);
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
- if (hasVectorInstrinsicScalarOpd(ID, i))
- return (CI->getArgOperand(i) == Scalar);
- }
- LLVM_FALLTHROUGH;
- }
- default:
- return false;
- }
- }
- /// \returns the AA location that is being access by the instruction.
- static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return MemoryLocation::get(SI);
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return MemoryLocation::get(LI);
- return MemoryLocation();
- }
- /// \returns True if the instruction is not a volatile or atomic load/store.
- static bool isSimple(Instruction *I) {
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return LI->isSimple();
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return SI->isSimple();
- if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
- return !MI->isVolatile();
- return true;
- }
- namespace llvm {
- namespace slpvectorizer {
- /// Bottom Up SLP Vectorizer.
- class BoUpSLP {
- public:
- using ValueList = SmallVector<Value *, 8>;
- using InstrList = SmallVector<Instruction *, 16>;
- using ValueSet = SmallPtrSet<Value *, 16>;
- using StoreList = SmallVector<StoreInst *, 8>;
- using ExtraValueToDebugLocsMap =
- MapVector<Value *, SmallVector<Instruction *, 2>>;
- BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
- TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
- DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
- const DataLayout *DL, OptimizationRemarkEmitter *ORE)
- : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
- DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
- CodeMetrics::collectEphemeralValues(F, AC, EphValues);
- // Use the vector register size specified by the target unless overridden
- // by a command-line option.
- // TODO: It would be better to limit the vectorization factor based on
- // data type rather than just register size. For example, x86 AVX has
- // 256-bit registers, but it does not support integer operations
- // at that width (that requires AVX2).
- if (MaxVectorRegSizeOption.getNumOccurrences())
- MaxVecRegSize = MaxVectorRegSizeOption;
- else
- MaxVecRegSize = TTI->getRegisterBitWidth(true);
- if (MinVectorRegSizeOption.getNumOccurrences())
- MinVecRegSize = MinVectorRegSizeOption;
- else
- MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
- }
- /// Vectorize the tree that starts with the elements in \p VL.
- /// Returns the vectorized root.
- Value *vectorizeTree();
- /// Vectorize the tree but with the list of externally used values \p
- /// ExternallyUsedValues. Values in this MapVector can be replaced but the
- /// generated extractvalue instructions.
- Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
- /// \returns the cost incurred by unwanted spills and fills, caused by
- /// holding live values over call sites.
- int getSpillCost() const;
- /// \returns the vectorization cost of the subtree that starts at \p VL.
- /// A negative number means that this is profitable.
- int getTreeCost();
- /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
- /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
- void buildTree(ArrayRef<Value *> Roots,
- ArrayRef<Value *> UserIgnoreLst = None);
- /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
- /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
- /// into account (anf updating it, if required) list of externally used
- /// values stored in \p ExternallyUsedValues.
- void buildTree(ArrayRef<Value *> Roots,
- ExtraValueToDebugLocsMap &ExternallyUsedValues,
- ArrayRef<Value *> UserIgnoreLst = None);
- /// Clear the internal data structures that are created by 'buildTree'.
- void deleteTree() {
- VectorizableTree.clear();
- ScalarToTreeEntry.clear();
- MustGather.clear();
- ExternalUses.clear();
- NumOpsWantToKeepOrder.clear();
- NumOpsWantToKeepOriginalOrder = 0;
- for (auto &Iter : BlocksSchedules) {
- BlockScheduling *BS = Iter.second.get();
- BS->clear();
- }
- MinBWs.clear();
- }
- unsigned getTreeSize() const { return VectorizableTree.size(); }
- /// Perform LICM and CSE on the newly generated gather sequences.
- void optimizeGatherSequence();
- /// \returns The best order of instructions for vectorization.
- Optional<ArrayRef<unsigned>> bestOrder() const {
- auto I = std::max_element(
- NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
- [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
- const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
- return D1.second < D2.second;
- });
- if (I == NumOpsWantToKeepOrder.end() ||
- I->getSecond() <= NumOpsWantToKeepOriginalOrder)
- return None;
- return makeArrayRef(I->getFirst());
- }
- /// \return The vector element size in bits to use when vectorizing the
- /// expression tree ending at \p V. If V is a store, the size is the width of
- /// the stored value. Otherwise, the size is the width of the largest loaded
- /// value reaching V. This method is used by the vectorizer to calculate
- /// vectorization factors.
- unsigned getVectorElementSize(Value *V) const;
- /// Compute the minimum type sizes required to represent the entries in a
- /// vectorizable tree.
- void computeMinimumValueSizes();
- // \returns maximum vector register size as set by TTI or overridden by cl::opt.
- unsigned getMaxVecRegSize() const {
- return MaxVecRegSize;
- }
- // \returns minimum vector register size as set by cl::opt.
- unsigned getMinVecRegSize() const {
- return MinVecRegSize;
- }
- /// Check if ArrayType or StructType is isomorphic to some VectorType.
- ///
- /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
- unsigned canMapToVector(Type *T, const DataLayout &DL) const;
- /// \returns True if the VectorizableTree is both tiny and not fully
- /// vectorizable. We do not vectorize such trees.
- bool isTreeTinyAndNotFullyVectorizable() const;
- OptimizationRemarkEmitter *getORE() { return ORE; }
- /// This structure holds any data we need about the edges being traversed
- /// during buildTree_rec(). We keep track of:
- /// (i) the user TreeEntry index, and
- /// (ii) the index of the edge.
- struct EdgeInfo {
- EdgeInfo() = default;
- /// The index of the user TreeEntry in VectorizableTree.
- int Idx = -1;
- /// The operand index of the use.
- unsigned EdgeIdx = UINT_MAX;
- #ifndef NDEBUG
- friend inline raw_ostream &operator<<(raw_ostream &OS,
- const BoUpSLP::EdgeInfo &EI) {
- EI.dump(OS);
- return OS;
- }
- /// Debug print.
- void dump(raw_ostream &OS) const {
- OS << "{User:" << Idx << " EdgeIdx:" << EdgeIdx << "}";
- }
- LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
- #endif
- };
- /// A helper data structure to hold the operands of a vector of instructions.
- /// This supports a fixed vector length for all operand vectors.
- class VLOperands {
- /// For each operand we need (i) the value, and (ii) the opcode that it
- /// would be attached to if the expression was in a left-linearized form.
- /// This is required to avoid illegal operand reordering.
- /// For example:
- /// \verbatim
- /// 0 Op1
- /// |/
- /// Op1 Op2 Linearized + Op2
- /// \ / ----------> |/
- /// - -
- ///
- /// Op1 - Op2 (0 + Op1) - Op2
- /// \endverbatim
- ///
- /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
- ///
- /// Another way to think of this is to track all the operations across the
- /// path from the operand all the way to the root of the tree and to
- /// calculate the operation that corresponds to this path. For example, the
- /// path from Op2 to the root crosses the RHS of the '-', therefore the
- /// corresponding operation is a '-' (which matches the one in the
- /// linearized tree, as shown above).
- ///
- /// For lack of a better term, we refer to this operation as Accumulated
- /// Path Operation (APO).
- struct OperandData {
- OperandData() = default;
- OperandData(Value *V, bool APO, bool IsUsed)
- : V(V), APO(APO), IsUsed(IsUsed) {}
- /// The operand value.
- Value *V = nullptr;
- /// TreeEntries only allow a single opcode, or an alternate sequence of
- /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
- /// APO. It is set to 'true' if 'V' is attached to an inverse operation
- /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
- /// (e.g., Add/Mul)
- bool APO = false;
- /// Helper data for the reordering function.
- bool IsUsed = false;
- };
- /// During operand reordering, we are trying to select the operand at lane
- /// that matches best with the operand at the neighboring lane. Our
- /// selection is based on the type of value we are looking for. For example,
- /// if the neighboring lane has a load, we need to look for a load that is
- /// accessing a consecutive address. These strategies are summarized in the
- /// 'ReorderingMode' enumerator.
- enum class ReorderingMode {
- Load, ///< Matching loads to consecutive memory addresses
- Opcode, ///< Matching instructions based on opcode (same or alternate)
- Constant, ///< Matching constants
- Splat, ///< Matching the same instruction multiple times (broadcast)
- Failed, ///< We failed to create a vectorizable group
- };
- using OperandDataVec = SmallVector<OperandData, 2>;
- /// A vector of operand vectors.
- SmallVector<OperandDataVec, 4> OpsVec;
- const DataLayout &DL;
- ScalarEvolution &SE;
- /// \returns the operand data at \p OpIdx and \p Lane.
- OperandData &getData(unsigned OpIdx, unsigned Lane) {
- return OpsVec[OpIdx][Lane];
- }
- /// \returns the operand data at \p OpIdx and \p Lane. Const version.
- const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
- return OpsVec[OpIdx][Lane];
- }
- /// Clears the used flag for all entries.
- void clearUsed() {
- for (unsigned OpIdx = 0, NumOperands = getNumOperands();
- OpIdx != NumOperands; ++OpIdx)
- for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
- ++Lane)
- OpsVec[OpIdx][Lane].IsUsed = false;
- }
- /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
- void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
- std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
- }
- // Search all operands in Ops[*][Lane] for the one that matches best
- // Ops[OpIdx][LastLane] and return its opreand index.
- // If no good match can be found, return None.
- Optional<unsigned>
- getBestOperand(unsigned OpIdx, int Lane, int LastLane,
- ArrayRef<ReorderingMode> ReorderingModes) {
- unsigned NumOperands = getNumOperands();
- // The operand of the previous lane at OpIdx.
- Value *OpLastLane = getData(OpIdx, LastLane).V;
- // Our strategy mode for OpIdx.
- ReorderingMode RMode = ReorderingModes[OpIdx];
- // The linearized opcode of the operand at OpIdx, Lane.
- bool OpIdxAPO = getData(OpIdx, Lane).APO;
- const unsigned BestScore = 2;
- const unsigned GoodScore = 1;
- // The best operand index and its score.
- // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
- // are using the score to differentiate between the two.
- struct BestOpData {
- Optional<unsigned> Idx = None;
- unsigned Score = 0;
- } BestOp;
- // Iterate through all unused operands and look for the best.
- for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
- // Get the operand at Idx and Lane.
- OperandData &OpData = getData(Idx, Lane);
- Value *Op = OpData.V;
- bool OpAPO = OpData.APO;
- // Skip already selected operands.
- if (OpData.IsUsed)
- continue;
- // Skip if we are trying to move the operand to a position with a
- // different opcode in the linearized tree form. This would break the
- // semantics.
- if (OpAPO != OpIdxAPO)
- continue;
- // Look for an operand that matches the current mode.
- switch (RMode) {
- case ReorderingMode::Load:
- if (isa<LoadInst>(Op)) {
- // Figure out which is left and right, so that we can check for
- // consecutive loads
- bool LeftToRight = Lane > LastLane;
- Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
- Value *OpRight = (LeftToRight) ? Op : OpLastLane;
- if (isConsecutiveAccess(cast<LoadInst>(OpLeft),
- cast<LoadInst>(OpRight), DL, SE))
- BestOp.Idx = Idx;
- }
- break;
- case ReorderingMode::Opcode:
- // We accept both Instructions and Undefs, but with different scores.
- if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) &&
- cast<Instruction>(Op)->getOpcode() ==
- cast<Instruction>(OpLastLane)->getOpcode()) ||
- (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) ||
- isa<UndefValue>(Op)) {
- // An instruction has a higher score than an undef.
- unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
- if (Score > BestOp.Score) {
- BestOp.Idx = Idx;
- BestOp.Score = Score;
- }
- }
- break;
- case ReorderingMode::Constant:
- if (isa<Constant>(Op)) {
- unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
- if (Score > BestOp.Score) {
- BestOp.Idx = Idx;
- BestOp.Score = Score;
- }
- }
- break;
- case ReorderingMode::Splat:
- if (Op == OpLastLane)
- BestOp.Idx = Idx;
- break;
- case ReorderingMode::Failed:
- return None;
- }
- }
- if (BestOp.Idx) {
- getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
- return BestOp.Idx;
- }
- // If we could not find a good match return None.
- return None;
- }
- /// Helper for reorderOperandVecs. \Returns the lane that we should start
- /// reordering from. This is the one which has the least number of operands
- /// that can freely move about.
- unsigned getBestLaneToStartReordering() const {
- unsigned BestLane = 0;
- unsigned Min = UINT_MAX;
- for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
- ++Lane) {
- unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
- if (NumFreeOps < Min) {
- Min = NumFreeOps;
- BestLane = Lane;
- }
- }
- return BestLane;
- }
- /// \Returns the maximum number of operands that are allowed to be reordered
- /// for \p Lane. This is used as a heuristic for selecting the first lane to
- /// start operand reordering.
- unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
- unsigned CntTrue = 0;
- unsigned NumOperands = getNumOperands();
- // Operands with the same APO can be reordered. We therefore need to count
- // how many of them we have for each APO, like this: Cnt[APO] = x.
- // Since we only have two APOs, namely true and false, we can avoid using
- // a map. Instead we can simply count the number of operands that
- // correspond to one of them (in this case the 'true' APO), and calculate
- // the other by subtracting it from the total number of operands.
- for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
- if (getData(OpIdx, Lane).APO)
- ++CntTrue;
- unsigned CntFalse = NumOperands - CntTrue;
- return std::max(CntTrue, CntFalse);
- }
- /// Go through the instructions in VL and append their operands.
- void appendOperandsOfVL(ArrayRef<Value *> VL) {
- assert(!VL.empty() && "Bad VL");
- assert((empty() || VL.size() == getNumLanes()) &&
- "Expected same number of lanes");
- assert(isa<Instruction>(VL[0]) && "Expected instruction");
- unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
- OpsVec.resize(NumOperands);
- unsigned NumLanes = VL.size();
- for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
- OpsVec[OpIdx].resize(NumLanes);
- for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
- assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
- // Our tree has just 3 nodes: the root and two operands.
- // It is therefore trivial to get the APO. We only need to check the
- // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
- // RHS operand. The LHS operand of both add and sub is never attached
- // to an inversese operation in the linearized form, therefore its APO
- // is false. The RHS is true only if VL[Lane] is an inverse operation.
- // Since operand reordering is performed on groups of commutative
- // operations or alternating sequences (e.g., +, -), we can safely
- // tell the inverse operations by checking commutativity.
- bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
- bool APO = (OpIdx == 0) ? false : IsInverseOperation;
- OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
- APO, false};
- }
- }
- }
- /// \returns the number of operands.
- unsigned getNumOperands() const { return OpsVec.size(); }
- /// \returns the number of lanes.
- unsigned getNumLanes() const { return OpsVec[0].size(); }
- /// \returns the operand value at \p OpIdx and \p Lane.
- Value *getValue(unsigned OpIdx, unsigned Lane) const {
- return getData(OpIdx, Lane).V;
- }
- /// \returns true if the data structure is empty.
- bool empty() const { return OpsVec.empty(); }
- /// Clears the data.
- void clear() { OpsVec.clear(); }
- public:
- /// Initialize with all the operands of the instruction vector \p RootVL.
- VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
- ScalarEvolution &SE)
- : DL(DL), SE(SE) {
- // Append all the operands of RootVL.
- appendOperandsOfVL(RootVL);
- }
- /// \Returns a value vector with the operands across all lanes for the
- /// opearnd at \p OpIdx.
- ValueList getVL(unsigned OpIdx) const {
- ValueList OpVL(OpsVec[OpIdx].size());
- assert(OpsVec[OpIdx].size() == getNumLanes() &&
- "Expected same num of lanes across all operands");
- for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
- OpVL[Lane] = OpsVec[OpIdx][Lane].V;
- return OpVL;
- }
- // Performs operand reordering for 2 or more operands.
- // The original operands are in OrigOps[OpIdx][Lane].
- // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
- void reorder() {
- unsigned NumOperands = getNumOperands();
- unsigned NumLanes = getNumLanes();
- // Each operand has its own mode. We are using this mode to help us select
- // the instructions for each lane, so that they match best with the ones
- // we have selected so far.
- SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
- // This is a greedy single-pass algorithm. We are going over each lane
- // once and deciding on the best order right away with no back-tracking.
- // However, in order to increase its effectiveness, we start with the lane
- // that has operands that can move the least. For example, given the
- // following lanes:
- // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
- // Lane 1 : A[1] = C[1] - B[1] // Visited 1st
- // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
- // Lane 3 : A[3] = C[3] - B[3] // Visited 4th
- // we will start at Lane 1, since the operands of the subtraction cannot
- // be reordered. Then we will visit the rest of the lanes in a circular
- // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
- // Find the first lane that we will start our search from.
- unsigned FirstLane = getBestLaneToStartReordering();
- // Initialize the modes.
- for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
- Value *OpLane0 = getValue(OpIdx, FirstLane);
- // Keep track if we have instructions with all the same opcode on one
- // side.
- if (isa<LoadInst>(OpLane0))
- ReorderingModes[OpIdx] = ReorderingMode::Load;
- else if (isa<Instruction>(OpLane0))
- ReorderingModes[OpIdx] = ReorderingMode::Opcode;
- else if (isa<Constant>(OpLane0))
- ReorderingModes[OpIdx] = ReorderingMode::Constant;
- else if (isa<Argument>(OpLane0))
- // Our best hope is a Splat. It may save some cost in some cases.
- ReorderingModes[OpIdx] = ReorderingMode::Splat;
- else
- // NOTE: This should be unreachable.
- ReorderingModes[OpIdx] = ReorderingMode::Failed;
- }
- // If the initial strategy fails for any of the operand indexes, then we
- // perform reordering again in a second pass. This helps avoid assigning
- // high priority to the failed strategy, and should improve reordering for
- // the non-failed operand indexes.
- for (int Pass = 0; Pass != 2; ++Pass) {
- // Skip the second pass if the first pass did not fail.
- bool StrategyFailed = false;
- // Mark the operand data as free to use for all but the first pass.
- if (Pass > 0)
- clearUsed();
- // We keep the original operand order for the FirstLane, so reorder the
- // rest of the lanes. We are visiting the nodes in a circular fashion,
- // using FirstLane as the center point and increasing the radius
- // distance.
- for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
- // Visit the lane on the right and then the lane on the left.
- for (int Direction : {+1, -1}) {
- int Lane = FirstLane + Direction * Distance;
- if (Lane < 0 || Lane >= (int)NumLanes)
- continue;
- int LastLane = Lane - Direction;
- assert(LastLane >= 0 && LastLane < (int)NumLanes &&
- "Out of bounds");
- // Look for a good match for each operand.
- for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
- // Search for the operand that matches SortedOps[OpIdx][Lane-1].
- Optional<unsigned> BestIdx =
- getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
- // By not selecting a value, we allow the operands that follow to
- // select a better matching value. We will get a non-null value in
- // the next run of getBestOperand().
- if (BestIdx) {
- // Swap the current operand with the one returned by
- // getBestOperand().
- swap(OpIdx, BestIdx.getValue(), Lane);
- } else {
- // We failed to find a best operand, set mode to 'Failed'.
- ReorderingModes[OpIdx] = ReorderingMode::Failed;
- // Enable the second pass.
- StrategyFailed = true;
- }
- }
- }
- }
- // Skip second pass if the strategy did not fail.
- if (!StrategyFailed)
- break;
- }
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
- switch (RMode) {
- case ReorderingMode::Load:
- return "Load";
- case ReorderingMode::Opcode:
- return "Opcode";
- case ReorderingMode::Constant:
- return "Constant";
- case ReorderingMode::Splat:
- return "Splat";
- case ReorderingMode::Failed:
- return "Failed";
- }
- llvm_unreachable("Unimplemented Reordering Type");
- }
- LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
- raw_ostream &OS) {
- return OS << getModeStr(RMode);
- }
- /// Debug print.
- LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
- printMode(RMode, dbgs());
- }
- friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
- return printMode(RMode, OS);
- }
- LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
- const unsigned Indent = 2;
- unsigned Cnt = 0;
- for (const OperandDataVec &OpDataVec : OpsVec) {
- OS << "Operand " << Cnt++ << "\n";
- for (const OperandData &OpData : OpDataVec) {
- OS.indent(Indent) << "{";
- if (Value *V = OpData.V)
- OS << *V;
- else
- OS << "null";
- OS << ", APO:" << OpData.APO << "}\n";
- }
- OS << "\n";
- }
- return OS;
- }
- /// Debug print.
- LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
- #endif
- };
- private:
- struct TreeEntry;
- /// Checks if all users of \p I are the part of the vectorization tree.
- bool areAllUsersVectorized(Instruction *I) const;
- /// \returns the cost of the vectorizable entry.
- int getEntryCost(TreeEntry *E);
- /// This is the recursive part of buildTree.
- void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, EdgeInfo EI);
- /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
- /// be vectorized to use the original vector (or aggregate "bitcast" to a
- /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
- /// returns false, setting \p CurrentOrder to either an empty vector or a
- /// non-identity permutation that allows to reuse extract instructions.
- bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
- SmallVectorImpl<unsigned> &CurrentOrder) const;
- /// Vectorize a single entry in the tree.
- Value *vectorizeTree(TreeEntry *E);
- /// Vectorize a single entry in the tree, starting in \p VL.
- Value *vectorizeTree(ArrayRef<Value *> VL);
- /// \returns the scalarization cost for this type. Scalarization in this
- /// context means the creation of vectors from a group of scalars.
- int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const;
- /// \returns the scalarization cost for this list of values. Assuming that
- /// this subtree gets vectorized, we may need to extract the values from the
- /// roots. This method calculates the cost of extracting the values.
- int getGatherCost(ArrayRef<Value *> VL) const;
- /// Set the Builder insert point to one after the last instruction in
- /// the bundle
- void setInsertPointAfterBundle(ArrayRef<Value *> VL,
- const InstructionsState &S);
- /// \returns a vector from a collection of scalars in \p VL.
- Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
- /// \returns whether the VectorizableTree is fully vectorizable and will
- /// be beneficial even the tree height is tiny.
- bool isFullyVectorizableTinyTree() const;
- /// Reorder commutative or alt operands to get better probability of
- /// generating vectorized code.
- static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
- SmallVectorImpl<Value *> &Left,
- SmallVectorImpl<Value *> &Right,
- const DataLayout &DL,
- ScalarEvolution &SE);
- struct TreeEntry {
- TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {}
- /// \returns true if the scalars in VL are equal to this entry.
- bool isSame(ArrayRef<Value *> VL) const {
- if (VL.size() == Scalars.size())
- return std::equal(VL.begin(), VL.end(), Scalars.begin());
- return VL.size() == ReuseShuffleIndices.size() &&
- std::equal(
- VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
- [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; });
- }
- /// A vector of scalars.
- ValueList Scalars;
- /// The Scalars are vectorized into this value. It is initialized to Null.
- Value *VectorizedValue = nullptr;
- /// Do we need to gather this sequence ?
- bool NeedToGather = false;
- /// Does this sequence require some shuffling?
- SmallVector<unsigned, 4> ReuseShuffleIndices;
- /// Does this entry require reordering?
- ArrayRef<unsigned> ReorderIndices;
- /// Points back to the VectorizableTree.
- ///
- /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
- /// to be a pointer and needs to be able to initialize the child iterator.
- /// Thus we need a reference back to the container to translate the indices
- /// to entries.
- std::vector<TreeEntry> &Container;
- /// The TreeEntry index containing the user of this entry. We can actually
- /// have multiple users so the data structure is not truly a tree.
- SmallVector<EdgeInfo, 1> UserTreeIndices;
- private:
- /// The operands of each instruction in each lane Operands[op_index][lane].
- /// Note: This helps avoid the replication of the code that performs the
- /// reordering of operands during buildTree_rec() and vectorizeTree().
- SmallVector<ValueList, 2> Operands;
- public:
- /// Set this bundle's \p OpIdx'th operand to \p OpVL.
- void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL,
- ArrayRef<unsigned> ReuseShuffleIndices) {
- if (Operands.size() < OpIdx + 1)
- Operands.resize(OpIdx + 1);
- assert(Operands[OpIdx].size() == 0 && "Already resized?");
- Operands[OpIdx].resize(Scalars.size());
- for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
- Operands[OpIdx][Lane] = (!ReuseShuffleIndices.empty())
- ? OpVL[ReuseShuffleIndices[Lane]]
- : OpVL[Lane];
- }
- /// If there is a user TreeEntry, then set its operand.
- void trySetUserTEOperand(const EdgeInfo &UserTreeIdx,
- ArrayRef<Value *> OpVL,
- ArrayRef<unsigned> ReuseShuffleIndices) {
- if (UserTreeIdx.Idx >= 0) {
- auto &VectorizableTree = Container;
- VectorizableTree[UserTreeIdx.Idx].setOperand(UserTreeIdx.EdgeIdx, OpVL,
- ReuseShuffleIndices);
- }
- }
- /// \returns the \p OpIdx operand of this TreeEntry.
- ValueList &getOperand(unsigned OpIdx) {
- assert(OpIdx < Operands.size() && "Off bounds");
- return Operands[OpIdx];
- }
- /// \return the single \p OpIdx operand.
- Value *getSingleOperand(unsigned OpIdx) const {
- assert(OpIdx < Operands.size() && "Off bounds");
- assert(!Operands[OpIdx].empty() && "No operand availabe");
- return Operands[OpIdx][0];
- }
- #ifndef NDEBUG
- /// Debug printer.
- LLVM_DUMP_METHOD void dump() const {
- for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
- dbgs() << "Operand " << OpI << ":\n";
- for (const Value *V : Operands[OpI])
- dbgs().indent(2) << *V << "\n";
- }
- dbgs() << "Scalars: \n";
- for (Value *V : Scalars)
- dbgs().indent(2) << *V << "\n";
- dbgs() << "NeedToGather: " << NeedToGather << "\n";
- dbgs() << "VectorizedValue: ";
- if (VectorizedValue)
- dbgs() << *VectorizedValue;
- else
- dbgs() << "NULL";
- dbgs() << "\n";
- dbgs() << "ReuseShuffleIndices: ";
- if (ReuseShuffleIndices.empty())
- dbgs() << "Emtpy";
- else
- for (unsigned Idx : ReuseShuffleIndices)
- dbgs() << Idx << ", ";
- dbgs() << "\n";
- dbgs() << "ReorderIndices: ";
- for (unsigned Idx : ReorderIndices)
- dbgs() << Idx << ", ";
- dbgs() << "\n";
- dbgs() << "UserTreeIndices: ";
- for (const auto &EInfo : UserTreeIndices)
- dbgs() << EInfo << ", ";
- dbgs() << "\n";
- }
- #endif
- };
- /// Create a new VectorizableTree entry.
- void newTreeEntry(ArrayRef<Value *> VL, bool Vectorized,
- EdgeInfo &UserTreeIdx,
- ArrayRef<unsigned> ReuseShuffleIndices = None,
- ArrayRef<unsigned> ReorderIndices = None) {
- VectorizableTree.emplace_back(VectorizableTree);
- int idx = VectorizableTree.size() - 1;
- TreeEntry *Last = &VectorizableTree[idx];
- Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
- Last->NeedToGather = !Vectorized;
- Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
- ReuseShuffleIndices.end());
- Last->ReorderIndices = ReorderIndices;
- if (Vectorized) {
- for (int i = 0, e = VL.size(); i != e; ++i) {
- assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
- ScalarToTreeEntry[VL[i]] = idx;
- }
- } else {
- MustGather.insert(VL.begin(), VL.end());
- }
- if (UserTreeIdx.Idx >= 0)
- Last->UserTreeIndices.push_back(UserTreeIdx);
- Last->trySetUserTEOperand(UserTreeIdx, VL, ReuseShuffleIndices);
- UserTreeIdx.Idx = idx;
- }
- /// -- Vectorization State --
- /// Holds all of the tree entries.
- std::vector<TreeEntry> VectorizableTree;
- #ifndef NDEBUG
- /// Debug printer.
- LLVM_DUMP_METHOD void dumpVectorizableTree() const {
- for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
- dbgs() << Id << ".\n";
- VectorizableTree[Id].dump();
- dbgs() << "\n";
- }
- }
- #endif
- TreeEntry *getTreeEntry(Value *V) {
- auto I = ScalarToTreeEntry.find(V);
- if (I != ScalarToTreeEntry.end())
- return &VectorizableTree[I->second];
- return nullptr;
- }
- const TreeEntry *getTreeEntry(Value *V) const {
- auto I = ScalarToTreeEntry.find(V);
- if (I != ScalarToTreeEntry.end())
- return &VectorizableTree[I->second];
- return nullptr;
- }
- /// Maps a specific scalar to its tree entry.
- SmallDenseMap<Value*, int> ScalarToTreeEntry;
- /// A list of scalars that we found that we need to keep as scalars.
- ValueSet MustGather;
- /// This POD struct describes one external user in the vectorized tree.
- struct ExternalUser {
- ExternalUser(Value *S, llvm::User *U, int L)
- : Scalar(S), User(U), Lane(L) {}
- // Which scalar in our function.
- Value *Scalar;
- // Which user that uses the scalar.
- llvm::User *User;
- // Which lane does the scalar belong to.
- int Lane;
- };
- using UserList = SmallVector<ExternalUser, 16>;
- /// Checks if two instructions may access the same memory.
- ///
- /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
- /// is invariant in the calling loop.
- bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
- Instruction *Inst2) {
- // First check if the result is already in the cache.
- AliasCacheKey key = std::make_pair(Inst1, Inst2);
- Optional<bool> &result = AliasCache[key];
- if (result.hasValue()) {
- return result.getValue();
- }
- MemoryLocation Loc2 = getLocation(Inst2, AA);
- bool aliased = true;
- if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
- // Do the alias check.
- aliased = AA->alias(Loc1, Loc2);
- }
- // Store the result in the cache.
- result = aliased;
- return aliased;
- }
- using AliasCacheKey = std::pair<Instruction *, Instruction *>;
- /// Cache for alias results.
- /// TODO: consider moving this to the AliasAnalysis itself.
- DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
- /// Removes an instruction from its block and eventually deletes it.
- /// It's like Instruction::eraseFromParent() except that the actual deletion
- /// is delayed until BoUpSLP is destructed.
- /// This is required to ensure that there are no incorrect collisions in the
- /// AliasCache, which can happen if a new instruction is allocated at the
- /// same address as a previously deleted instruction.
- void eraseInstruction(Instruction *I) {
- I->removeFromParent();
- I->dropAllReferences();
- DeletedInstructions.emplace_back(I);
- }
- /// Temporary store for deleted instructions. Instructions will be deleted
- /// eventually when the BoUpSLP is destructed.
- SmallVector<unique_value, 8> DeletedInstructions;
- /// A list of values that need to extracted out of the tree.
- /// This list holds pairs of (Internal Scalar : External User). External User
- /// can be nullptr, it means that this Internal Scalar will be used later,
- /// after vectorization.
- UserList ExternalUses;
- /// Values used only by @llvm.assume calls.
- SmallPtrSet<const Value *, 32> EphValues;
- /// Holds all of the instructions that we gathered.
- SetVector<Instruction *> GatherSeq;
- /// A list of blocks that we are going to CSE.
- SetVector<BasicBlock *> CSEBlocks;
- /// Contains all scheduling relevant data for an instruction.
- /// A ScheduleData either represents a single instruction or a member of an
- /// instruction bundle (= a group of instructions which is combined into a
- /// vector instruction).
- struct ScheduleData {
- // The initial value for the dependency counters. It means that the
- // dependencies are not calculated yet.
- enum { InvalidDeps = -1 };
- ScheduleData() = default;
- void init(int BlockSchedulingRegionID, Value *OpVal) {
- FirstInBundle = this;
- NextInBundle = nullptr;
- NextLoadStore = nullptr;
- IsScheduled = false;
- SchedulingRegionID = BlockSchedulingRegionID;
- UnscheduledDepsInBundle = UnscheduledDeps;
- clearDependencies();
- OpValue = OpVal;
- }
- /// Returns true if the dependency information has been calculated.
- bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
- /// Returns true for single instructions and for bundle representatives
- /// (= the head of a bundle).
- bool isSchedulingEntity() const { return FirstInBundle == this; }
- /// Returns true if it represents an instruction bundle and not only a
- /// single instruction.
- bool isPartOfBundle() const {
- return NextInBundle != nullptr || FirstInBundle != this;
- }
- /// Returns true if it is ready for scheduling, i.e. it has no more
- /// unscheduled depending instructions/bundles.
- bool isReady() const {
- assert(isSchedulingEntity() &&
- "can't consider non-scheduling entity for ready list");
- return UnscheduledDepsInBundle == 0 && !IsScheduled;
- }
- /// Modifies the number of unscheduled dependencies, also updating it for
- /// the whole bundle.
- int incrementUnscheduledDeps(int Incr) {
- UnscheduledDeps += Incr;
- return FirstInBundle->UnscheduledDepsInBundle += Incr;
- }
- /// Sets the number of unscheduled dependencies to the number of
- /// dependencies.
- void resetUnscheduledDeps() {
- incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
- }
- /// Clears all dependency information.
- void clearDependencies() {
- Dependencies = InvalidDeps;
- resetUnscheduledDeps();
- MemoryDependencies.clear();
- }
- void dump(raw_ostream &os) const {
- if (!isSchedulingEntity()) {
- os << "/ " << *Inst;
- } else if (NextInBundle) {
- os << '[' << *Inst;
- ScheduleData *SD = NextInBundle;
- while (SD) {
- os << ';' << *SD->Inst;
- SD = SD->NextInBundle;
- }
- os << ']';
- } else {
- os << *Inst;
- }
- }
- Instruction *Inst = nullptr;
- /// Points to the head in an instruction bundle (and always to this for
- /// single instructions).
- ScheduleData *FirstInBundle = nullptr;
- /// Single linked list of all instructions in a bundle. Null if it is a
- /// single instruction.
- ScheduleData *NextInBundle = nullptr;
- /// Single linked list of all memory instructions (e.g. load, store, call)
- /// in the block - until the end of the scheduling region.
- ScheduleData *NextLoadStore = nullptr;
- /// The dependent memory instructions.
- /// This list is derived on demand in calculateDependencies().
- SmallVector<ScheduleData *, 4> MemoryDependencies;
- /// This ScheduleData is in the current scheduling region if this matches
- /// the current SchedulingRegionID of BlockScheduling.
- int SchedulingRegionID = 0;
- /// Used for getting a "good" final ordering of instructions.
- int SchedulingPriority = 0;
- /// The number of dependencies. Constitutes of the number of users of the
- /// instruction plus the number of dependent memory instructions (if any).
- /// This value is calculated on demand.
- /// If InvalidDeps, the number of dependencies is not calculated yet.
- int Dependencies = InvalidDeps;
- /// The number of dependencies minus the number of dependencies of scheduled
- /// instructions. As soon as this is zero, the instruction/bundle gets ready
- /// for scheduling.
- /// Note that this is negative as long as Dependencies is not calculated.
- int UnscheduledDeps = InvalidDeps;
- /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
- /// single instructions.
- int UnscheduledDepsInBundle = InvalidDeps;
- /// True if this instruction is scheduled (or considered as scheduled in the
- /// dry-run).
- bool IsScheduled = false;
- /// Opcode of the current instruction in the schedule data.
- Value *OpValue = nullptr;
- };
- #ifndef NDEBUG
- friend inline raw_ostream &operator<<(raw_ostream &os,
- const BoUpSLP::ScheduleData &SD) {
- SD.dump(os);
- return os;
- }
- #endif
- friend struct GraphTraits<BoUpSLP *>;
- friend struct DOTGraphTraits<BoUpSLP *>;
- /// Contains all scheduling data for a basic block.
- struct BlockScheduling {
- BlockScheduling(BasicBlock *BB)
- : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
- void clear() {
- ReadyInsts.clear();
- ScheduleStart = nullptr;
- ScheduleEnd = nullptr;
- FirstLoadStoreInRegion = nullptr;
- LastLoadStoreInRegion = nullptr;
- // Reduce the maximum schedule region size by the size of the
- // previous scheduling run.
- ScheduleRegionSizeLimit -= ScheduleRegionSize;
- if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
- ScheduleRegionSizeLimit = MinScheduleRegionSize;
- ScheduleRegionSize = 0;
- // Make a new scheduling region, i.e. all existing ScheduleData is not
- // in the new region yet.
- ++SchedulingRegionID;
- }
- ScheduleData *getScheduleData(Value *V) {
- ScheduleData *SD = ScheduleDataMap[V];
- if (SD && SD->SchedulingRegionID == SchedulingRegionID)
- return SD;
- return nullptr;
- }
- ScheduleData *getScheduleData(Value *V, Value *Key) {
- if (V == Key)
- return getScheduleData(V);
- auto I = ExtraScheduleDataMap.find(V);
- if (I != ExtraScheduleDataMap.end()) {
- ScheduleData *SD = I->second[Key];
- if (SD && SD->SchedulingRegionID == SchedulingRegionID)
- return SD;
- }
- return nullptr;
- }
- bool isInSchedulingRegion(ScheduleData *SD) {
- return SD->SchedulingRegionID == SchedulingRegionID;
- }
- /// Marks an instruction as scheduled and puts all dependent ready
- /// instructions into the ready-list.
- template <typename ReadyListType>
- void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
- SD->IsScheduled = true;
- LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n");
- ScheduleData *BundleMember = SD;
- while (BundleMember) {
- if (BundleMember->Inst != BundleMember->OpValue) {
- BundleMember = BundleMember->NextInBundle;
- continue;
- }
- // Handle the def-use chain dependencies.
- for (Use &U : BundleMember->Inst->operands()) {
- auto *I = dyn_cast<Instruction>(U.get());
- if (!I)
- continue;
- doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
- if (OpDef && OpDef->hasValidDependencies() &&
- OpDef->incrementUnscheduledDeps(-1) == 0) {
- // There are no more unscheduled dependencies after
- // decrementing, so we can put the dependent instruction
- // into the ready list.
- ScheduleData *DepBundle = OpDef->FirstInBundle;
- assert(!DepBundle->IsScheduled &&
- "already scheduled bundle gets ready");
- ReadyList.insert(DepBundle);
- LLVM_DEBUG(dbgs()
- << "SLP: gets ready (def): " << *DepBundle << "\n");
- }
- });
- }
- // Handle the memory dependencies.
- for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
- if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
- // There are no more unscheduled dependencies after decrementing,
- // so we can put the dependent instruction into the ready list.
- ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
- assert(!DepBundle->IsScheduled &&
- "already scheduled bundle gets ready");
- ReadyList.insert(DepBundle);
- LLVM_DEBUG(dbgs()
- << "SLP: gets ready (mem): " << *DepBundle << "\n");
- }
- }
- BundleMember = BundleMember->NextInBundle;
- }
- }
- void doForAllOpcodes(Value *V,
- function_ref<void(ScheduleData *SD)> Action) {
- if (ScheduleData *SD = getScheduleData(V))
- Action(SD);
- auto I = ExtraScheduleDataMap.find(V);
- if (I != ExtraScheduleDataMap.end())
- for (auto &P : I->second)
- if (P.second->SchedulingRegionID == SchedulingRegionID)
- Action(P.second);
- }
- /// Put all instructions into the ReadyList which are ready for scheduling.
- template <typename ReadyListType>
- void initialFillReadyList(ReadyListType &ReadyList) {
- for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
- doForAllOpcodes(I, [&](ScheduleData *SD) {
- if (SD->isSchedulingEntity() && SD->isReady()) {
- ReadyList.insert(SD);
- LLVM_DEBUG(dbgs()
- << "SLP: initially in ready list: " << *I << "\n");
- }
- });
- }
- }
- /// Checks if a bundle of instructions can be scheduled, i.e. has no
- /// cyclic dependencies. This is only a dry-run, no instructions are
- /// actually moved at this stage.
- bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
- const InstructionsState &S);
- /// Un-bundles a group of instructions.
- void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
- /// Allocates schedule data chunk.
- ScheduleData *allocateScheduleDataChunks();
- /// Extends the scheduling region so that V is inside the region.
- /// \returns true if the region size is within the limit.
- bool extendSchedulingRegion(Value *V, const InstructionsState &S);
- /// Initialize the ScheduleData structures for new instructions in the
- /// scheduling region.
- void initScheduleData(Instruction *FromI, Instruction *ToI,
- ScheduleData *PrevLoadStore,
- ScheduleData *NextLoadStore);
- /// Updates the dependency information of a bundle and of all instructions/
- /// bundles which depend on the original bundle.
- void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
- BoUpSLP *SLP);
- /// Sets all instruction in the scheduling region to un-scheduled.
- void resetSchedule();
- BasicBlock *BB;
- /// Simple memory allocation for ScheduleData.
- std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
- /// The size of a ScheduleData array in ScheduleDataChunks.
- int ChunkSize;
- /// The allocator position in the current chunk, which is the last entry
- /// of ScheduleDataChunks.
- int ChunkPos;
- /// Attaches ScheduleData to Instruction.
- /// Note that the mapping survives during all vectorization iterations, i.e.
- /// ScheduleData structures are recycled.
- DenseMap<Value *, ScheduleData *> ScheduleDataMap;
- /// Attaches ScheduleData to Instruction with the leading key.
- DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
- ExtraScheduleDataMap;
- struct ReadyList : SmallVector<ScheduleData *, 8> {
- void insert(ScheduleData *SD) { push_back(SD); }
- };
- /// The ready-list for scheduling (only used for the dry-run).
- ReadyList ReadyInsts;
- /// The first instruction of the scheduling region.
- Instruction *ScheduleStart = nullptr;
- /// The first instruction _after_ the scheduling region.
- Instruction *ScheduleEnd = nullptr;
- /// The first memory accessing instruction in the scheduling region
- /// (can be null).
- ScheduleData *FirstLoadStoreInRegion = nullptr;
- /// The last memory accessing instruction in the scheduling region
- /// (can be null).
- ScheduleData *LastLoadStoreInRegion = nullptr;
- /// The current size of the scheduling region.
- int ScheduleRegionSize = 0;
- /// The maximum size allowed for the scheduling region.
- int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
- /// The ID of the scheduling region. For a new vectorization iteration this
- /// is incremented which "removes" all ScheduleData from the region.
- // Make sure that the initial SchedulingRegionID is greater than the
- // initial SchedulingRegionID in ScheduleData (which is 0).
- int SchedulingRegionID = 1;
- };
- /// Attaches the BlockScheduling structures to basic blocks.
- MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
- /// Performs the "real" scheduling. Done before vectorization is actually
- /// performed in a basic block.
- void scheduleBlock(BlockScheduling *BS);
- /// List of users to ignore during scheduling and that don't need extracting.
- ArrayRef<Value *> UserIgnoreList;
- using OrdersType = SmallVector<unsigned, 4>;
- /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
- /// sorted SmallVectors of unsigned.
- struct OrdersTypeDenseMapInfo {
- static OrdersType getEmptyKey() {
- OrdersType V;
- V.push_back(~1U);
- return V;
- }
- static OrdersType getTombstoneKey() {
- OrdersType V;
- V.push_back(~2U);
- return V;
- }
- static unsigned getHashValue(const OrdersType &V) {
- return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
- }
- static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
- return LHS == RHS;
- }
- };
- /// Contains orders of operations along with the number of bundles that have
- /// operations in this order. It stores only those orders that require
- /// reordering, if reordering is not required it is counted using \a
- /// NumOpsWantToKeepOriginalOrder.
- DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
- /// Number of bundles that do not require reordering.
- unsigned NumOpsWantToKeepOriginalOrder = 0;
- // Analysis and block reference.
- Function *F;
- ScalarEvolution *SE;
- TargetTransformInfo *TTI;
- TargetLibraryInfo *TLI;
- AliasAnalysis *AA;
- LoopInfo *LI;
- DominatorTree *DT;
- AssumptionCache *AC;
- DemandedBits *DB;
- const DataLayout *DL;
- OptimizationRemarkEmitter *ORE;
- unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
- unsigned MinVecRegSize; // Set by cl::opt (default: 128).
- /// Instruction builder to construct the vectorized tree.
- IRBuilder<> Builder;
- /// A map of scalar integer values to the smallest bit width with which they
- /// can legally be represented. The values map to (width, signed) pairs,
- /// where "width" indicates the minimum bit width and "signed" is True if the
- /// value must be signed-extended, rather than zero-extended, back to its
- /// original width.
- MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
- };
- } // end namespace slpvectorizer
- template <> struct GraphTraits<BoUpSLP *> {
- using TreeEntry = BoUpSLP::TreeEntry;
- /// NodeRef has to be a pointer per the GraphWriter.
- using NodeRef = TreeEntry *;
- /// Add the VectorizableTree to the index iterator to be able to return
- /// TreeEntry pointers.
- struct ChildIteratorType
- : public iterator_adaptor_base<
- ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
- std::vector<TreeEntry> &VectorizableTree;
- ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
- std::vector<TreeEntry> &VT)
- : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
- NodeRef operator*() { return &VectorizableTree[I->Idx]; }
- };
- static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; }
- static ChildIteratorType child_begin(NodeRef N) {
- return {N->UserTreeIndices.begin(), N->Container};
- }
- static ChildIteratorType child_end(NodeRef N) {
- return {N->UserTreeIndices.end(), N->Container};
- }
- /// For the node iterator we just need to turn the TreeEntry iterator into a
- /// TreeEntry* iterator so that it dereferences to NodeRef.
- using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>;
- static nodes_iterator nodes_begin(BoUpSLP *R) {
- return nodes_iterator(R->VectorizableTree.begin());
- }
- static nodes_iterator nodes_end(BoUpSLP *R) {
- return nodes_iterator(R->VectorizableTree.end());
- }
- static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
- };
- template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
- using TreeEntry = BoUpSLP::TreeEntry;
- DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
- std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
- std::string Str;
- raw_string_ostream OS(Str);
- if (isSplat(Entry->Scalars)) {
- OS << "<splat> " << *Entry->Scalars[0];
- return Str;
- }
- for (auto V : Entry->Scalars) {
- OS << *V;
- if (std::any_of(
- R->ExternalUses.begin(), R->ExternalUses.end(),
- [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
- OS << " <extract>";
- OS << "\n";
- }
- return Str;
- }
- static std::string getNodeAttributes(const TreeEntry *Entry,
- const BoUpSLP *) {
- if (Entry->NeedToGather)
- return "color=red";
- return "";
- }
- };
- } // end namespace llvm
- void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
- ArrayRef<Value *> UserIgnoreLst) {
- ExtraValueToDebugLocsMap ExternallyUsedValues;
- buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
- }
- void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
- ExtraValueToDebugLocsMap &ExternallyUsedValues,
- ArrayRef<Value *> UserIgnoreLst) {
- deleteTree();
- UserIgnoreList = UserIgnoreLst;
- if (!allSameType(Roots))
- return;
- buildTree_rec(Roots, 0, EdgeInfo());
- // Collect the values that we need to extract from the tree.
- for (TreeEntry &EIdx : VectorizableTree) {
- TreeEntry *Entry = &EIdx;
- // No need to handle users of gathered values.
- if (Entry->NeedToGather)
- continue;
- // For each lane:
- for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
- Value *Scalar = Entry->Scalars[Lane];
- int FoundLane = Lane;
- if (!Entry->ReuseShuffleIndices.empty()) {
- FoundLane =
- std::distance(Entry->ReuseShuffleIndices.begin(),
- llvm::find(Entry->ReuseShuffleIndices, FoundLane));
- }
- // Check if the scalar is externally used as an extra arg.
- auto ExtI = ExternallyUsedValues.find(Scalar);
- if (ExtI != ExternallyUsedValues.end()) {
- LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
- << Lane << " from " << *Scalar << ".\n");
- ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
- }
- for (User *U : Scalar->users()) {
- LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
- Instruction *UserInst = dyn_cast<Instruction>(U);
- if (!UserInst)
- continue;
- // Skip in-tree scalars that become vectors
- if (TreeEntry *UseEntry = getTreeEntry(U)) {
- Value *UseScalar = UseEntry->Scalars[0];
- // Some in-tree scalars will remain as scalar in vectorized
- // instructions. If that is the case, the one in Lane 0 will
- // be used.
- if (UseScalar != U ||
- !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
- LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
- << ".\n");
- assert(!UseEntry->NeedToGather && "Bad state");
- continue;
- }
- }
- // Ignore users in the user ignore list.
- if (is_contained(UserIgnoreList, UserInst))
- continue;
- LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
- << Lane << " from " << *Scalar << ".\n");
- ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
- }
- }
- }
- }
- void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
- EdgeInfo UserTreeIdx) {
- assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
- InstructionsState S = getSameOpcode(VL);
- if (Depth == RecursionMaxDepth) {
- LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- // Don't handle vectors.
- if (S.OpValue->getType()->isVectorTy()) {
- LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
- if (SI->getValueOperand()->getType()->isVectorTy()) {
- LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- // If all of the operands are identical or constant we have a simple solution.
- if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
- LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- // We now know that this is a vector of instructions of the same type from
- // the same block.
- // Don't vectorize ephemeral values.
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- if (EphValues.count(VL[i])) {
- LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i]
- << ") is ephemeral.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- }
- // Check if this is a duplicate of another entry.
- if (TreeEntry *E = getTreeEntry(S.OpValue)) {
- LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
- if (!E->isSame(VL)) {
- LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- // Record the reuse of the tree node. FIXME, currently this is only used to
- // properly draw the graph rather than for the actual vectorization.
- E->UserTreeIndices.push_back(UserTreeIdx);
- LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
- << ".\n");
- E->trySetUserTEOperand(UserTreeIdx, VL, None);
- return;
- }
- // Check that none of the instructions in the bundle are already in the tree.
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- auto *I = dyn_cast<Instruction>(VL[i]);
- if (!I)
- continue;
- if (getTreeEntry(I)) {
- LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i]
- << ") is already in tree.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- }
- // If any of the scalars is marked as a value that needs to stay scalar, then
- // we need to gather the scalars.
- // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- if (MustGather.count(VL[i]) || is_contained(UserIgnoreList, VL[i])) {
- LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- }
- // Check that all of the users of the scalars that we want to vectorize are
- // schedulable.
- auto *VL0 = cast<Instruction>(S.OpValue);
- BasicBlock *BB = VL0->getParent();
- if (!DT->isReachableFromEntry(BB)) {
- // Don't go into unreachable blocks. They may contain instructions with
- // dependency cycles which confuse the final scheduling.
- LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- // Check that every instruction appears once in this bundle.
- SmallVector<unsigned, 4> ReuseShuffleIndicies;
- SmallVector<Value *, 4> UniqueValues;
- DenseMap<Value *, unsigned> UniquePositions;
- for (Value *V : VL) {
- auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
- ReuseShuffleIndicies.emplace_back(Res.first->second);
- if (Res.second)
- UniqueValues.emplace_back(V);
- }
- if (UniqueValues.size() == VL.size()) {
- ReuseShuffleIndicies.clear();
- } else {
- LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
- if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) {
- LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- VL = UniqueValues;
- }
- auto &BSRef = BlocksSchedules[BB];
- if (!BSRef)
- BSRef = llvm::make_unique<BlockScheduling>(BB);
- BlockScheduling &BS = *BSRef.get();
- if (!BS.tryScheduleBundle(VL, this, S)) {
- LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
- assert((!BS.getScheduleData(VL0) ||
- !BS.getScheduleData(VL0)->isPartOfBundle()) &&
- "tryScheduleBundle should cancelScheduling on failure");
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- return;
- }
- LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
- unsigned ShuffleOrOp = S.isAltShuffle() ?
- (unsigned) Instruction::ShuffleVector : S.getOpcode();
- switch (ShuffleOrOp) {
- case Instruction::PHI: {
- PHINode *PH = dyn_cast<PHINode>(VL0);
- // Check for terminator values (e.g. invoke).
- for (unsigned j = 0; j < VL.size(); ++j)
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- Instruction *Term = dyn_cast<Instruction>(
- cast<PHINode>(VL[j])->getIncomingValueForBlock(
- PH->getIncomingBlock(i)));
- if (Term && Term->isTerminator()) {
- LLVM_DEBUG(dbgs()
- << "SLP: Need to swizzle PHINodes (terminator use).\n");
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- return;
- }
- }
- newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
- PH->getIncomingBlock(i)));
- UserTreeIdx.EdgeIdx = i;
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
- }
- return;
- }
- case Instruction::ExtractValue:
- case Instruction::ExtractElement: {
- OrdersType CurrentOrder;
- bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
- if (Reuse) {
- LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
- ++NumOpsWantToKeepOriginalOrder;
- newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx,
- ReuseShuffleIndicies);
- // This is a special case, as it does not gather, but at the same time
- // we are not extending buildTree_rec() towards the operands.
- ValueList Op0;
- Op0.assign(VL.size(), VL0->getOperand(0));
- VectorizableTree.back().setOperand(0, Op0, ReuseShuffleIndicies);
- return;
- }
- if (!CurrentOrder.empty()) {
- LLVM_DEBUG({
- dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
- "with order";
- for (unsigned Idx : CurrentOrder)
- dbgs() << " " << Idx;
- dbgs() << "\n";
- });
- // Insert new order with initial value 0, if it does not exist,
- // otherwise return the iterator to the existing one.
- auto StoredCurrentOrderAndNum =
- NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
- ++StoredCurrentOrderAndNum->getSecond();
- newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies,
- StoredCurrentOrderAndNum->getFirst());
- // This is a special case, as it does not gather, but at the same time
- // we are not extending buildTree_rec() towards the operands.
- ValueList Op0;
- Op0.assign(VL.size(), VL0->getOperand(0));
- VectorizableTree.back().setOperand(0, Op0, ReuseShuffleIndicies);
- return;
- }
- LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
- newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies);
- BS.cancelScheduling(VL, VL0);
- return;
- }
- case Instruction::Load: {
- // Check that a vectorized load would load the same memory as a scalar
- // load. For example, we don't want to vectorize loads that are smaller
- // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
- // treats loading/storing it as an i8 struct. If we vectorize loads/stores
- // from such a struct, we read/write packed bits disagreeing with the
- // unvectorized version.
- Type *ScalarTy = VL0->getType();
- if (DL->getTypeSizeInBits(ScalarTy) !=
- DL->getTypeAllocSizeInBits(ScalarTy)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
- return;
- }
- // Make sure all loads in the bundle are simple - we can't vectorize
- // atomic or volatile loads.
- SmallVector<Value *, 4> PointerOps(VL.size());
- auto POIter = PointerOps.begin();
- for (Value *V : VL) {
- auto *L = cast<LoadInst>(V);
- if (!L->isSimple()) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
- return;
- }
- *POIter = L->getPointerOperand();
- ++POIter;
- }
- OrdersType CurrentOrder;
- // Check the order of pointer operands.
- if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
- Value *Ptr0;
- Value *PtrN;
- if (CurrentOrder.empty()) {
- Ptr0 = PointerOps.front();
- PtrN = PointerOps.back();
- } else {
- Ptr0 = PointerOps[CurrentOrder.front()];
- PtrN = PointerOps[CurrentOrder.back()];
- }
- const SCEV *Scev0 = SE->getSCEV(Ptr0);
- const SCEV *ScevN = SE->getSCEV(PtrN);
- const auto *Diff =
- dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
- uint64_t Size = DL->getTypeAllocSize(ScalarTy);
- // Check that the sorted loads are consecutive.
- if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) {
- if (CurrentOrder.empty()) {
- // Original loads are consecutive and does not require reordering.
- ++NumOpsWantToKeepOriginalOrder;
- newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx,
- ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
- } else {
- // Need to reorder.
- auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
- ++I->getSecond();
- newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx,
- ReuseShuffleIndicies, I->getFirst());
- LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
- }
- return;
- }
- }
- LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- return;
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- Type *SrcTy = VL0->getOperand(0)->getType();
- for (unsigned i = 0; i < VL.size(); ++i) {
- Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
- if (Ty != SrcTy || !isValidElementType(Ty)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs()
- << "SLP: Gathering casts with different src types.\n");
- return;
- }
- }
- newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(i));
- UserTreeIdx.EdgeIdx = i;
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
- }
- return;
- }
- case Instruction::ICmp:
- case Instruction::FCmp: {
- // Check that all of the compares have the same predicate.
- CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
- CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
- Type *ComparedTy = VL0->getOperand(0)->getType();
- for (unsigned i = 1, e = VL.size(); i < e; ++i) {
- CmpInst *Cmp = cast<CmpInst>(VL[i]);
- if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
- Cmp->getOperand(0)->getType() != ComparedTy) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs()
- << "SLP: Gathering cmp with different predicate.\n");
- return;
- }
- }
- newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
- ValueList Left, Right;
- if (cast<CmpInst>(VL0)->isCommutative()) {
- // Commutative predicate - collect + sort operands of the instructions
- // so that each side is more likely to have the same opcode.
- assert(P0 == SwapP0 && "Commutative Predicate mismatch");
- reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
- } else {
- // Collect operands - commute if it uses the swapped predicate.
- for (Value *V : VL) {
- auto *Cmp = cast<CmpInst>(V);
- Value *LHS = Cmp->getOperand(0);
- Value *RHS = Cmp->getOperand(1);
- if (Cmp->getPredicate() != P0)
- std::swap(LHS, RHS);
- Left.push_back(LHS);
- Right.push_back(RHS);
- }
- }
- UserTreeIdx.EdgeIdx = 0;
- buildTree_rec(Left, Depth + 1, UserTreeIdx);
- UserTreeIdx.EdgeIdx = 1;
- buildTree_rec(Right, Depth + 1, UserTreeIdx);
- return;
- }
- case Instruction::Select:
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
- // Sort operands of the instructions so that each side is more likely to
- // have the same opcode.
- if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
- ValueList Left, Right;
- reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
- UserTreeIdx.EdgeIdx = 0;
- buildTree_rec(Left, Depth + 1, UserTreeIdx);
- UserTreeIdx.EdgeIdx = 1;
- buildTree_rec(Right, Depth + 1, UserTreeIdx);
- return;
- }
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(i));
- UserTreeIdx.EdgeIdx = i;
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
- }
- return;
- case Instruction::GetElementPtr: {
- // We don't combine GEPs with complicated (nested) indexing.
- for (unsigned j = 0; j < VL.size(); ++j) {
- if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
- LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- return;
- }
- }
- // We can't combine several GEPs into one vector if they operate on
- // different types.
- Type *Ty0 = VL0->getOperand(0)->getType();
- for (unsigned j = 0; j < VL.size(); ++j) {
- Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
- if (Ty0 != CurTy) {
- LLVM_DEBUG(dbgs()
- << "SLP: not-vectorizable GEP (different types).\n");
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- return;
- }
- }
- // We don't combine GEPs with non-constant indexes.
- for (unsigned j = 0; j < VL.size(); ++j) {
- auto Op = cast<Instruction>(VL[j])->getOperand(1);
- if (!isa<ConstantInt>(Op)) {
- LLVM_DEBUG(dbgs()
- << "SLP: not-vectorizable GEP (non-constant indexes).\n");
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- return;
- }
- }
- newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
- for (unsigned i = 0, e = 2; i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(i));
- UserTreeIdx.EdgeIdx = i;
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
- }
- return;
- }
- case Instruction::Store: {
- // Check if the stores are consecutive or of we need to swizzle them.
- for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
- if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
- return;
- }
- newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
- ValueList Operands;
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(0));
- UserTreeIdx.EdgeIdx = 0;
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
- return;
- }
- case Instruction::Call: {
- // Check if the calls are all to the same vectorizable intrinsic.
- CallInst *CI = cast<CallInst>(VL0);
- // Check if this is an Intrinsic call or something that can be
- // represented by an intrinsic call
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- if (!isTriviallyVectorizable(ID)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
- return;
- }
- Function *Int = CI->getCalledFunction();
- unsigned NumArgs = CI->getNumArgOperands();
- SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
- for (unsigned j = 0; j != NumArgs; ++j)
- if (hasVectorInstrinsicScalarOpd(ID, j))
- ScalarArgs[j] = CI->getArgOperand(j);
- for (unsigned i = 1, e = VL.size(); i != e; ++i) {
- CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
- if (!CI2 || CI2->getCalledFunction() != Int ||
- getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
- !CI->hasIdenticalOperandBundleSchema(*CI2)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
- << "\n");
- return;
- }
- // Some intrinsics have scalar arguments and should be same in order for
- // them to be vectorized.
- for (unsigned j = 0; j != NumArgs; ++j) {
- if (hasVectorInstrinsicScalarOpd(ID, j)) {
- Value *A1J = CI2->getArgOperand(j);
- if (ScalarArgs[j] != A1J) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
- << " argument " << ScalarArgs[j] << "!=" << A1J
- << "\n");
- return;
- }
- }
- }
- // Verify that the bundle operands are identical between the two calls.
- if (CI->hasOperandBundles() &&
- !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
- CI->op_begin() + CI->getBundleOperandsEndIndex(),
- CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
- << *CI << "!=" << *VL[i] << '\n');
- return;
- }
- }
- newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
- for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL) {
- CallInst *CI2 = dyn_cast<CallInst>(j);
- Operands.push_back(CI2->getArgOperand(i));
- }
- UserTreeIdx.EdgeIdx = i;
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
- }
- return;
- }
- case Instruction::ShuffleVector:
- // If this is not an alternate sequence of opcode like add-sub
- // then do not vectorize this instruction.
- if (!S.isAltShuffle()) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
- return;
- }
- newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
- // Reorder operands if reordering would enable vectorization.
- if (isa<BinaryOperator>(VL0)) {
- ValueList Left, Right;
- reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
- UserTreeIdx.EdgeIdx = 0;
- buildTree_rec(Left, Depth + 1, UserTreeIdx);
- UserTreeIdx.EdgeIdx = 1;
- buildTree_rec(Right, Depth + 1, UserTreeIdx);
- return;
- }
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(i));
- UserTreeIdx.EdgeIdx = i;
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
- }
- return;
- default:
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
- return;
- }
- }
- unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
- unsigned N;
- Type *EltTy;
- auto *ST = dyn_cast<StructType>(T);
- if (ST) {
- N = ST->getNumElements();
- EltTy = *ST->element_begin();
- } else {
- N = cast<ArrayType>(T)->getNumElements();
- EltTy = cast<ArrayType>(T)->getElementType();
- }
- if (!isValidElementType(EltTy))
- return 0;
- uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
- if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
- return 0;
- if (ST) {
- // Check that struct is homogeneous.
- for (const auto *Ty : ST->elements())
- if (Ty != EltTy)
- return 0;
- }
- return N;
- }
- bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
- SmallVectorImpl<unsigned> &CurrentOrder) const {
- Instruction *E0 = cast<Instruction>(OpValue);
- assert(E0->getOpcode() == Instruction::ExtractElement ||
- E0->getOpcode() == Instruction::ExtractValue);
- assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
- // Check if all of the extracts come from the same vector and from the
- // correct offset.
- Value *Vec = E0->getOperand(0);
- CurrentOrder.clear();
- // We have to extract from a vector/aggregate with the same number of elements.
- unsigned NElts;
- if (E0->getOpcode() == Instruction::ExtractValue) {
- const DataLayout &DL = E0->getModule()->getDataLayout();
- NElts = canMapToVector(Vec->getType(), DL);
- if (!NElts)
- return false;
- // Check if load can be rewritten as load of vector.
- LoadInst *LI = dyn_cast<LoadInst>(Vec);
- if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
- return false;
- } else {
- NElts = Vec->getType()->getVectorNumElements();
- }
- if (NElts != VL.size())
- return false;
- // Check that all of the indices extract from the correct offset.
- bool ShouldKeepOrder = true;
- unsigned E = VL.size();
- // Assign to all items the initial value E + 1 so we can check if the extract
- // instruction index was used already.
- // Also, later we can check that all the indices are used and we have a
- // consecutive access in the extract instructions, by checking that no
- // element of CurrentOrder still has value E + 1.
- CurrentOrder.assign(E, E + 1);
- unsigned I = 0;
- for (; I < E; ++I) {
- auto *Inst = cast<Instruction>(VL[I]);
- if (Inst->getOperand(0) != Vec)
- break;
- Optional<unsigned> Idx = getExtractIndex(Inst);
- if (!Idx)
- break;
- const unsigned ExtIdx = *Idx;
- if (ExtIdx != I) {
- if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
- break;
- ShouldKeepOrder = false;
- CurrentOrder[ExtIdx] = I;
- } else {
- if (CurrentOrder[I] != E + 1)
- break;
- CurrentOrder[I] = I;
- }
- }
- if (I < E) {
- CurrentOrder.clear();
- return false;
- }
- return ShouldKeepOrder;
- }
- bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
- return I->hasOneUse() ||
- std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
- return ScalarToTreeEntry.count(U) > 0;
- });
- }
- int BoUpSLP::getEntryCost(TreeEntry *E) {
- ArrayRef<Value*> VL = E->Scalars;
- Type *ScalarTy = VL[0]->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- ScalarTy = SI->getValueOperand()->getType();
- else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
- ScalarTy = CI->getOperand(0)->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- // If we have computed a smaller type for the expression, update VecTy so
- // that the costs will be accurate.
- if (MinBWs.count(VL[0]))
- VecTy = VectorType::get(
- IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
- unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
- bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
- int ReuseShuffleCost = 0;
- if (NeedToShuffleReuses) {
- ReuseShuffleCost =
- TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
- }
- if (E->NeedToGather) {
- if (allConstant(VL))
- return 0;
- if (isSplat(VL)) {
- return ReuseShuffleCost +
- TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
- }
- if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement &&
- allSameType(VL) && allSameBlock(VL)) {
- Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
- if (ShuffleKind.hasValue()) {
- int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
- for (auto *V : VL) {
- // If all users of instruction are going to be vectorized and this
- // instruction itself is not going to be vectorized, consider this
- // instruction as dead and remove its cost from the final cost of the
- // vectorized tree.
- if (areAllUsersVectorized(cast<Instruction>(V)) &&
- !ScalarToTreeEntry.count(V)) {
- auto *IO = cast<ConstantInt>(
- cast<ExtractElementInst>(V)->getIndexOperand());
- Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
- IO->getZExtValue());
- }
- }
- return ReuseShuffleCost + Cost;
- }
- }
- return ReuseShuffleCost + getGatherCost(VL);
- }
- InstructionsState S = getSameOpcode(VL);
- assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
- Instruction *VL0 = cast<Instruction>(S.OpValue);
- unsigned ShuffleOrOp = S.isAltShuffle() ?
- (unsigned) Instruction::ShuffleVector : S.getOpcode();
- switch (ShuffleOrOp) {
- case Instruction::PHI:
- return 0;
- case Instruction::ExtractValue:
- case Instruction::ExtractElement:
- if (NeedToShuffleReuses) {
- unsigned Idx = 0;
- for (unsigned I : E->ReuseShuffleIndices) {
- if (ShuffleOrOp == Instruction::ExtractElement) {
- auto *IO = cast<ConstantInt>(
- cast<ExtractElementInst>(VL[I])->getIndexOperand());
- Idx = IO->getZExtValue();
- ReuseShuffleCost -= TTI->getVectorInstrCost(
- Instruction::ExtractElement, VecTy, Idx);
- } else {
- ReuseShuffleCost -= TTI->getVectorInstrCost(
- Instruction::ExtractElement, VecTy, Idx);
- ++Idx;
- }
- }
- Idx = ReuseShuffleNumbers;
- for (Value *V : VL) {
- if (ShuffleOrOp == Instruction::ExtractElement) {
- auto *IO = cast<ConstantInt>(
- cast<ExtractElementInst>(V)->getIndexOperand());
- Idx = IO->getZExtValue();
- } else {
- --Idx;
- }
- ReuseShuffleCost +=
- TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
- }
- }
- if (!E->NeedToGather) {
- int DeadCost = ReuseShuffleCost;
- if (!E->ReorderIndices.empty()) {
- // TODO: Merge this shuffle with the ReuseShuffleCost.
- DeadCost += TTI->getShuffleCost(
- TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
- }
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- Instruction *E = cast<Instruction>(VL[i]);
- // If all users are going to be vectorized, instruction can be
- // considered as dead.
- // The same, if have only one user, it will be vectorized for sure.
- if (areAllUsersVectorized(E)) {
- // Take credit for instruction that will become dead.
- if (E->hasOneUse()) {
- Instruction *Ext = E->user_back();
- if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
- all_of(Ext->users(),
- [](User *U) { return isa<GetElementPtrInst>(U); })) {
- // Use getExtractWithExtendCost() to calculate the cost of
- // extractelement/ext pair.
- DeadCost -= TTI->getExtractWithExtendCost(
- Ext->getOpcode(), Ext->getType(), VecTy, i);
- // Add back the cost of s|zext which is subtracted separately.
- DeadCost += TTI->getCastInstrCost(
- Ext->getOpcode(), Ext->getType(), E->getType(), Ext);
- continue;
- }
- }
- DeadCost -=
- TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
- }
- }
- return DeadCost;
- }
- return ReuseShuffleCost + getGatherCost(VL);
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- Type *SrcTy = VL0->getOperand(0)->getType();
- int ScalarEltCost =
- TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0);
- if (NeedToShuffleReuses) {
- ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
- }
- // Calculate the cost of this instruction.
- int ScalarCost = VL.size() * ScalarEltCost;
- VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
- int VecCost = 0;
- // Check if the values are candidates to demote.
- if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
- VecCost = ReuseShuffleCost +
- TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0);
- }
- return VecCost - ScalarCost;
- }
- case Instruction::FCmp:
- case Instruction::ICmp:
- case Instruction::Select: {
- // Calculate the cost of this instruction.
- int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy,
- Builder.getInt1Ty(), VL0);
- if (NeedToShuffleReuses) {
- ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
- }
- VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
- int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
- int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0);
- return ReuseShuffleCost + VecCost - ScalarCost;
- }
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // Certain instructions can be cheaper to vectorize if they have a
- // constant second vector operand.
- TargetTransformInfo::OperandValueKind Op1VK =
- TargetTransformInfo::OK_AnyValue;
- TargetTransformInfo::OperandValueKind Op2VK =
- TargetTransformInfo::OK_UniformConstantValue;
- TargetTransformInfo::OperandValueProperties Op1VP =
- TargetTransformInfo::OP_None;
- TargetTransformInfo::OperandValueProperties Op2VP =
- TargetTransformInfo::OP_PowerOf2;
- // If all operands are exactly the same ConstantInt then set the
- // operand kind to OK_UniformConstantValue.
- // If instead not all operands are constants, then set the operand kind
- // to OK_AnyValue. If all operands are constants but not the same,
- // then set the operand kind to OK_NonUniformConstantValue.
- ConstantInt *CInt0 = nullptr;
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- const Instruction *I = cast<Instruction>(VL[i]);
- ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(1));
- if (!CInt) {
- Op2VK = TargetTransformInfo::OK_AnyValue;
- Op2VP = TargetTransformInfo::OP_None;
- break;
- }
- if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
- !CInt->getValue().isPowerOf2())
- Op2VP = TargetTransformInfo::OP_None;
- if (i == 0) {
- CInt0 = CInt;
- continue;
- }
- if (CInt0 != CInt)
- Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
- }
- SmallVector<const Value *, 4> Operands(VL0->operand_values());
- int ScalarEltCost = TTI->getArithmeticInstrCost(
- S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands);
- if (NeedToShuffleReuses) {
- ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
- }
- int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
- int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK,
- Op2VK, Op1VP, Op2VP, Operands);
- return ReuseShuffleCost + VecCost - ScalarCost;
- }
- case Instruction::GetElementPtr: {
- TargetTransformInfo::OperandValueKind Op1VK =
- TargetTransformInfo::OK_AnyValue;
- TargetTransformInfo::OperandValueKind Op2VK =
- TargetTransformInfo::OK_UniformConstantValue;
- int ScalarEltCost =
- TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
- if (NeedToShuffleReuses) {
- ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
- }
- int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
- int VecCost =
- TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
- return ReuseShuffleCost + VecCost - ScalarCost;
- }
- case Instruction::Load: {
- // Cost of wide load - cost of scalar loads.
- unsigned alignment = cast<LoadInst>(VL0)->getAlignment();
- int ScalarEltCost =
- TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
- if (NeedToShuffleReuses) {
- ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
- }
- int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
- int VecLdCost =
- TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0);
- if (!E->ReorderIndices.empty()) {
- // TODO: Merge this shuffle with the ReuseShuffleCost.
- VecLdCost += TTI->getShuffleCost(
- TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
- }
- return ReuseShuffleCost + VecLdCost - ScalarLdCost;
- }
- case Instruction::Store: {
- // We know that we can merge the stores. Calculate the cost.
- unsigned alignment = cast<StoreInst>(VL0)->getAlignment();
- int ScalarEltCost =
- TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0);
- if (NeedToShuffleReuses) {
- ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
- }
- int ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
- int VecStCost =
- TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0);
- return ReuseShuffleCost + VecStCost - ScalarStCost;
- }
- case Instruction::Call: {
- CallInst *CI = cast<CallInst>(VL0);
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- // Calculate the cost of the scalar and vector calls.
- SmallVector<Type *, 4> ScalarTys;
- for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op)
- ScalarTys.push_back(CI->getArgOperand(op)->getType());
- FastMathFlags FMF;
- if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
- FMF = FPMO->getFastMathFlags();
- int ScalarEltCost =
- TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
- if (NeedToShuffleReuses) {
- ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
- }
- int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
- SmallVector<Value *, 4> Args(CI->arg_operands());
- int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
- VecTy->getNumElements());
- LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
- << " (" << VecCallCost << "-" << ScalarCallCost << ")"
- << " for " << *CI << "\n");
- return ReuseShuffleCost + VecCallCost - ScalarCallCost;
- }
- case Instruction::ShuffleVector: {
- assert(S.isAltShuffle() &&
- ((Instruction::isBinaryOp(S.getOpcode()) &&
- Instruction::isBinaryOp(S.getAltOpcode())) ||
- (Instruction::isCast(S.getOpcode()) &&
- Instruction::isCast(S.getAltOpcode()))) &&
- "Invalid Shuffle Vector Operand");
- int ScalarCost = 0;
- if (NeedToShuffleReuses) {
- for (unsigned Idx : E->ReuseShuffleIndices) {
- Instruction *I = cast<Instruction>(VL[Idx]);
- ReuseShuffleCost -= TTI->getInstructionCost(
- I, TargetTransformInfo::TCK_RecipThroughput);
- }
- for (Value *V : VL) {
- Instruction *I = cast<Instruction>(V);
- ReuseShuffleCost += TTI->getInstructionCost(
- I, TargetTransformInfo::TCK_RecipThroughput);
- }
- }
- for (Value *i : VL) {
- Instruction *I = cast<Instruction>(i);
- assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
- ScalarCost += TTI->getInstructionCost(
- I, TargetTransformInfo::TCK_RecipThroughput);
- }
- // VecCost is equal to sum of the cost of creating 2 vectors
- // and the cost of creating shuffle.
- int VecCost = 0;
- if (Instruction::isBinaryOp(S.getOpcode())) {
- VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy);
- VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy);
- } else {
- Type *Src0SclTy = S.MainOp->getOperand(0)->getType();
- Type *Src1SclTy = S.AltOp->getOperand(0)->getType();
- VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size());
- VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size());
- VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty);
- VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty);
- }
- VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0);
- return ReuseShuffleCost + VecCost - ScalarCost;
- }
- default:
- llvm_unreachable("Unknown instruction");
- }
- }
- bool BoUpSLP::isFullyVectorizableTinyTree() const {
- LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
- << VectorizableTree.size() << " is fully vectorizable .\n");
- // We only handle trees of heights 1 and 2.
- if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather)
- return true;
- if (VectorizableTree.size() != 2)
- return false;
- // Handle splat and all-constants stores.
- if (!VectorizableTree[0].NeedToGather &&
- (allConstant(VectorizableTree[1].Scalars) ||
- isSplat(VectorizableTree[1].Scalars)))
- return true;
- // Gathering cost would be too much for tiny trees.
- if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
- return false;
- return true;
- }
- bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
- // We can vectorize the tree if its size is greater than or equal to the
- // minimum size specified by the MinTreeSize command line option.
- if (VectorizableTree.size() >= MinTreeSize)
- return false;
- // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
- // can vectorize it if we can prove it fully vectorizable.
- if (isFullyVectorizableTinyTree())
- return false;
- assert(VectorizableTree.empty()
- ? ExternalUses.empty()
- : true && "We shouldn't have any external users");
- // Otherwise, we can't vectorize the tree. It is both tiny and not fully
- // vectorizable.
- return true;
- }
- int BoUpSLP::getSpillCost() const {
- // Walk from the bottom of the tree to the top, tracking which values are
- // live. When we see a call instruction that is not part of our tree,
- // query TTI to see if there is a cost to keeping values live over it
- // (for example, if spills and fills are required).
- unsigned BundleWidth = VectorizableTree.front().Scalars.size();
- int Cost = 0;
- SmallPtrSet<Instruction*, 4> LiveValues;
- Instruction *PrevInst = nullptr;
- for (const auto &N : VectorizableTree) {
- Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]);
- if (!Inst)
- continue;
- if (!PrevInst) {
- PrevInst = Inst;
- continue;
- }
- // Update LiveValues.
- LiveValues.erase(PrevInst);
- for (auto &J : PrevInst->operands()) {
- if (isa<Instruction>(&*J) && getTreeEntry(&*J))
- LiveValues.insert(cast<Instruction>(&*J));
- }
- LLVM_DEBUG({
- dbgs() << "SLP: #LV: " << LiveValues.size();
- for (auto *X : LiveValues)
- dbgs() << " " << X->getName();
- dbgs() << ", Looking at ";
- Inst->dump();
- });
- // Now find the sequence of instructions between PrevInst and Inst.
- BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
- PrevInstIt =
- PrevInst->getIterator().getReverse();
- while (InstIt != PrevInstIt) {
- if (PrevInstIt == PrevInst->getParent()->rend()) {
- PrevInstIt = Inst->getParent()->rbegin();
- continue;
- }
- // Debug informations don't impact spill cost.
- if ((isa<CallInst>(&*PrevInstIt) &&
- !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
- &*PrevInstIt != PrevInst) {
- SmallVector<Type*, 4> V;
- for (auto *II : LiveValues)
- V.push_back(VectorType::get(II->getType(), BundleWidth));
- Cost += TTI->getCostOfKeepingLiveOverCall(V);
- }
- ++PrevInstIt;
- }
- PrevInst = Inst;
- }
- return Cost;
- }
- int BoUpSLP::getTreeCost() {
- int Cost = 0;
- LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
- << VectorizableTree.size() << ".\n");
- unsigned BundleWidth = VectorizableTree[0].Scalars.size();
- for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
- TreeEntry &TE = VectorizableTree[I];
- // We create duplicate tree entries for gather sequences that have multiple
- // uses. However, we should not compute the cost of duplicate sequences.
- // For example, if we have a build vector (i.e., insertelement sequence)
- // that is used by more than one vector instruction, we only need to
- // compute the cost of the insertelement instructions once. The redundant
- // instructions will be eliminated by CSE.
- //
- // We should consider not creating duplicate tree entries for gather
- // sequences, and instead add additional edges to the tree representing
- // their uses. Since such an approach results in fewer total entries,
- // existing heuristics based on tree size may yield different results.
- //
- if (TE.NeedToGather &&
- std::any_of(std::next(VectorizableTree.begin(), I + 1),
- VectorizableTree.end(), [TE](TreeEntry &Entry) {
- return Entry.NeedToGather && Entry.isSame(TE.Scalars);
- }))
- continue;
- int C = getEntryCost(&TE);
- LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
- << " for bundle that starts with " << *TE.Scalars[0]
- << ".\n");
- Cost += C;
- }
- SmallPtrSet<Value *, 16> ExtractCostCalculated;
- int ExtractCost = 0;
- for (ExternalUser &EU : ExternalUses) {
- // We only add extract cost once for the same scalar.
- if (!ExtractCostCalculated.insert(EU.Scalar).second)
- continue;
- // Uses by ephemeral values are free (because the ephemeral value will be
- // removed prior to code generation, and so the extraction will be
- // removed as well).
- if (EphValues.count(EU.User))
- continue;
- // If we plan to rewrite the tree in a smaller type, we will need to sign
- // extend the extracted value back to the original type. Here, we account
- // for the extract and the added cost of the sign extend if needed.
- auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
- auto *ScalarRoot = VectorizableTree[0].Scalars[0];
- if (MinBWs.count(ScalarRoot)) {
- auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
- auto Extend =
- MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
- VecTy = VectorType::get(MinTy, BundleWidth);
- ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
- VecTy, EU.Lane);
- } else {
- ExtractCost +=
- TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
- }
- }
- int SpillCost = getSpillCost();
- Cost += SpillCost + ExtractCost;
- std::string Str;
- {
- raw_string_ostream OS(Str);
- OS << "SLP: Spill Cost = " << SpillCost << ".\n"
- << "SLP: Extract Cost = " << ExtractCost << ".\n"
- << "SLP: Total Cost = " << Cost << ".\n";
- }
- LLVM_DEBUG(dbgs() << Str);
- if (ViewSLPTree)
- ViewGraph(this, "SLP" + F->getName(), false, Str);
- return Cost;
- }
- int BoUpSLP::getGatherCost(Type *Ty,
- const DenseSet<unsigned> &ShuffledIndices) const {
- int Cost = 0;
- for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
- if (!ShuffledIndices.count(i))
- Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
- if (!ShuffledIndices.empty())
- Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
- return Cost;
- }
- int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
- // Find the type of the operands in VL.
- Type *ScalarTy = VL[0]->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- // Find the cost of inserting/extracting values from the vector.
- // Check if the same elements are inserted several times and count them as
- // shuffle candidates.
- DenseSet<unsigned> ShuffledElements;
- DenseSet<Value *> UniqueElements;
- // Iterate in reverse order to consider insert elements with the high cost.
- for (unsigned I = VL.size(); I > 0; --I) {
- unsigned Idx = I - 1;
- if (!UniqueElements.insert(VL[Idx]).second)
- ShuffledElements.insert(Idx);
- }
- return getGatherCost(VecTy, ShuffledElements);
- }
- // Perform operand reordering on the instructions in VL and return the reordered
- // operands in Left and Right.
- void BoUpSLP::reorderInputsAccordingToOpcode(
- ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left,
- SmallVectorImpl<Value *> &Right, const DataLayout &DL,
- ScalarEvolution &SE) {
- if (VL.empty())
- return;
- VLOperands Ops(VL, DL, SE);
- // Reorder the operands in place.
- Ops.reorder();
- Left = Ops.getVL(0);
- Right = Ops.getVL(1);
- }
- void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL,
- const InstructionsState &S) {
- // Get the basic block this bundle is in. All instructions in the bundle
- // should be in this block.
- auto *Front = cast<Instruction>(S.OpValue);
- auto *BB = Front->getParent();
- assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool {
- auto *I = cast<Instruction>(V);
- return !S.isOpcodeOrAlt(I) || I->getParent() == BB;
- }));
- // The last instruction in the bundle in program order.
- Instruction *LastInst = nullptr;
- // Find the last instruction. The common case should be that BB has been
- // scheduled, and the last instruction is VL.back(). So we start with
- // VL.back() and iterate over schedule data until we reach the end of the
- // bundle. The end of the bundle is marked by null ScheduleData.
- if (BlocksSchedules.count(BB)) {
- auto *Bundle =
- BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back()));
- if (Bundle && Bundle->isPartOfBundle())
- for (; Bundle; Bundle = Bundle->NextInBundle)
- if (Bundle->OpValue == Bundle->Inst)
- LastInst = Bundle->Inst;
- }
- // LastInst can still be null at this point if there's either not an entry
- // for BB in BlocksSchedules or there's no ScheduleData available for
- // VL.back(). This can be the case if buildTree_rec aborts for various
- // reasons (e.g., the maximum recursion depth is reached, the maximum region
- // size is reached, etc.). ScheduleData is initialized in the scheduling
- // "dry-run".
- //
- // If this happens, we can still find the last instruction by brute force. We
- // iterate forwards from Front (inclusive) until we either see all
- // instructions in the bundle or reach the end of the block. If Front is the
- // last instruction in program order, LastInst will be set to Front, and we
- // will visit all the remaining instructions in the block.
- //
- // One of the reasons we exit early from buildTree_rec is to place an upper
- // bound on compile-time. Thus, taking an additional compile-time hit here is
- // not ideal. However, this should be exceedingly rare since it requires that
- // we both exit early from buildTree_rec and that the bundle be out-of-order
- // (causing us to iterate all the way to the end of the block).
- if (!LastInst) {
- SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end());
- for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
- if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I))
- LastInst = &I;
- if (Bundle.empty())
- break;
- }
- }
- // Set the insertion point after the last instruction in the bundle. Set the
- // debug location to Front.
- Builder.SetInsertPoint(BB, ++LastInst->getIterator());
- Builder.SetCurrentDebugLocation(Front->getDebugLoc());
- }
- Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
- Value *Vec = UndefValue::get(Ty);
- // Generate the 'InsertElement' instruction.
- for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
- Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
- if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
- GatherSeq.insert(Insrt);
- CSEBlocks.insert(Insrt->getParent());
- // Add to our 'need-to-extract' list.
- if (TreeEntry *E = getTreeEntry(VL[i])) {
- // Find which lane we need to extract.
- int FoundLane = -1;
- for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) {
- // Is this the lane of the scalar that we are looking for ?
- if (E->Scalars[Lane] == VL[i]) {
- FoundLane = Lane;
- break;
- }
- }
- assert(FoundLane >= 0 && "Could not find the correct lane");
- if (!E->ReuseShuffleIndices.empty()) {
- FoundLane =
- std::distance(E->ReuseShuffleIndices.begin(),
- llvm::find(E->ReuseShuffleIndices, FoundLane));
- }
- ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
- }
- }
- }
- return Vec;
- }
- Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
- InstructionsState S = getSameOpcode(VL);
- if (S.getOpcode()) {
- if (TreeEntry *E = getTreeEntry(S.OpValue)) {
- if (E->isSame(VL)) {
- Value *V = vectorizeTree(E);
- if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
- // We need to get the vectorized value but without shuffle.
- if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
- V = SV->getOperand(0);
- } else {
- // Reshuffle to get only unique values.
- SmallVector<unsigned, 4> UniqueIdxs;
- SmallSet<unsigned, 4> UsedIdxs;
- for(unsigned Idx : E->ReuseShuffleIndices)
- if (UsedIdxs.insert(Idx).second)
- UniqueIdxs.emplace_back(Idx);
- V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
- UniqueIdxs);
- }
- }
- return V;
- }
- }
- }
- Type *ScalarTy = S.OpValue->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
- ScalarTy = SI->getValueOperand()->getType();
- // Check that every instruction appears once in this bundle.
- SmallVector<unsigned, 4> ReuseShuffleIndicies;
- SmallVector<Value *, 4> UniqueValues;
- if (VL.size() > 2) {
- DenseMap<Value *, unsigned> UniquePositions;
- for (Value *V : VL) {
- auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
- ReuseShuffleIndicies.emplace_back(Res.first->second);
- if (Res.second || isa<Constant>(V))
- UniqueValues.emplace_back(V);
- }
- // Do not shuffle single element or if number of unique values is not power
- // of 2.
- if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
- !llvm::isPowerOf2_32(UniqueValues.size()))
- ReuseShuffleIndicies.clear();
- else
- VL = UniqueValues;
- }
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- Value *V = Gather(VL, VecTy);
- if (!ReuseShuffleIndicies.empty()) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- ReuseShuffleIndicies, "shuffle");
- if (auto *I = dyn_cast<Instruction>(V)) {
- GatherSeq.insert(I);
- CSEBlocks.insert(I->getParent());
- }
- }
- return V;
- }
- static void inversePermutation(ArrayRef<unsigned> Indices,
- SmallVectorImpl<unsigned> &Mask) {
- Mask.clear();
- const unsigned E = Indices.size();
- Mask.resize(E);
- for (unsigned I = 0; I < E; ++I)
- Mask[Indices[I]] = I;
- }
- Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
- IRBuilder<>::InsertPointGuard Guard(Builder);
- if (E->VectorizedValue) {
- LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
- return E->VectorizedValue;
- }
- InstructionsState S = getSameOpcode(E->Scalars);
- Instruction *VL0 = cast<Instruction>(S.OpValue);
- Type *ScalarTy = VL0->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
- bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
- if (E->NeedToGather) {
- setInsertPointAfterBundle(E->Scalars, S);
- auto *V = Gather(E->Scalars, VecTy);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- if (auto *I = dyn_cast<Instruction>(V)) {
- GatherSeq.insert(I);
- CSEBlocks.insert(I->getParent());
- }
- }
- E->VectorizedValue = V;
- return V;
- }
- unsigned ShuffleOrOp = S.isAltShuffle() ?
- (unsigned) Instruction::ShuffleVector : S.getOpcode();
- switch (ShuffleOrOp) {
- case Instruction::PHI: {
- PHINode *PH = dyn_cast<PHINode>(VL0);
- Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
- Builder.SetCurrentDebugLocation(PH->getDebugLoc());
- PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
- Value *V = NewPhi;
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- // PHINodes may have multiple entries from the same block. We want to
- // visit every block once.
- SmallPtrSet<BasicBlock*, 4> VisitedBBs;
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- ValueList Operands;
- BasicBlock *IBB = PH->getIncomingBlock(i);
- if (!VisitedBBs.insert(IBB).second) {
- NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
- continue;
- }
- Builder.SetInsertPoint(IBB->getTerminator());
- Builder.SetCurrentDebugLocation(PH->getDebugLoc());
- Value *Vec = vectorizeTree(E->getOperand(i));
- NewPhi->addIncoming(Vec, IBB);
- }
- assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
- "Invalid number of incoming values");
- return V;
- }
- case Instruction::ExtractElement: {
- if (!E->NeedToGather) {
- Value *V = E->getSingleOperand(0);
- if (!E->ReorderIndices.empty()) {
- OrdersType Mask;
- inversePermutation(E->ReorderIndices, Mask);
- Builder.SetInsertPoint(VL0);
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask,
- "reorder_shuffle");
- }
- if (NeedToShuffleReuses) {
- // TODO: Merge this shuffle with the ReorderShuffleMask.
- if (E->ReorderIndices.empty())
- Builder.SetInsertPoint(VL0);
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- return V;
- }
- setInsertPointAfterBundle(E->Scalars, S);
- auto *V = Gather(E->Scalars, VecTy);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- if (auto *I = dyn_cast<Instruction>(V)) {
- GatherSeq.insert(I);
- CSEBlocks.insert(I->getParent());
- }
- }
- E->VectorizedValue = V;
- return V;
- }
- case Instruction::ExtractValue: {
- if (!E->NeedToGather) {
- LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0));
- Builder.SetInsertPoint(LI);
- PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
- Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
- LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment());
- Value *NewV = propagateMetadata(V, E->Scalars);
- if (!E->ReorderIndices.empty()) {
- OrdersType Mask;
- inversePermutation(E->ReorderIndices, Mask);
- NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask,
- "reorder_shuffle");
- }
- if (NeedToShuffleReuses) {
- // TODO: Merge this shuffle with the ReorderShuffleMask.
- NewV = Builder.CreateShuffleVector(
- NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = NewV;
- return NewV;
- }
- setInsertPointAfterBundle(E->Scalars, S);
- auto *V = Gather(E->Scalars, VecTy);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- if (auto *I = dyn_cast<Instruction>(V)) {
- GatherSeq.insert(I);
- CSEBlocks.insert(I->getParent());
- }
- }
- E->VectorizedValue = V;
- return V;
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- setInsertPointAfterBundle(E->Scalars, S);
- Value *InVec = vectorizeTree(E->getOperand(0));
- if (E->VectorizedValue) {
- LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
- return E->VectorizedValue;
- }
- CastInst *CI = dyn_cast<CastInst>(VL0);
- Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::FCmp:
- case Instruction::ICmp: {
- setInsertPointAfterBundle(E->Scalars, S);
- Value *L = vectorizeTree(E->getOperand(0));
- Value *R = vectorizeTree(E->getOperand(1));
- if (E->VectorizedValue) {
- LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
- return E->VectorizedValue;
- }
- CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
- Value *V;
- if (S.getOpcode() == Instruction::FCmp)
- V = Builder.CreateFCmp(P0, L, R);
- else
- V = Builder.CreateICmp(P0, L, R);
- propagateIRFlags(V, E->Scalars, VL0);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::Select: {
- setInsertPointAfterBundle(E->Scalars, S);
- Value *Cond = vectorizeTree(E->getOperand(0));
- Value *True = vectorizeTree(E->getOperand(1));
- Value *False = vectorizeTree(E->getOperand(2));
- if (E->VectorizedValue) {
- LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
- return E->VectorizedValue;
- }
- Value *V = Builder.CreateSelect(Cond, True, False);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- setInsertPointAfterBundle(E->Scalars, S);
- Value *LHS = vectorizeTree(E->getOperand(0));
- Value *RHS = vectorizeTree(E->getOperand(1));
- if (E->VectorizedValue) {
- LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
- return E->VectorizedValue;
- }
- Value *V = Builder.CreateBinOp(
- static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS);
- propagateIRFlags(V, E->Scalars, VL0);
- if (auto *I = dyn_cast<Instruction>(V))
- V = propagateMetadata(I, E->Scalars);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::Load: {
- // Loads are inserted at the head of the tree because we don't want to
- // sink them all the way down past store instructions.
- bool IsReorder = !E->ReorderIndices.empty();
- if (IsReorder) {
- S = getSameOpcode(E->Scalars, E->ReorderIndices.front());
- VL0 = cast<Instruction>(S.OpValue);
- }
- setInsertPointAfterBundle(E->Scalars, S);
- LoadInst *LI = cast<LoadInst>(VL0);
- Type *ScalarLoadTy = LI->getType();
- unsigned AS = LI->getPointerAddressSpace();
- Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
- VecTy->getPointerTo(AS));
- // The pointer operand uses an in-tree scalar so we add the new BitCast to
- // ExternalUses list to make sure that an extract will be generated in the
- // future.
- Value *PO = LI->getPointerOperand();
- if (getTreeEntry(PO))
- ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
- unsigned Alignment = LI->getAlignment();
- LI = Builder.CreateLoad(VecTy, VecPtr);
- if (!Alignment) {
- Alignment = DL->getABITypeAlignment(ScalarLoadTy);
- }
- LI->setAlignment(Alignment);
- Value *V = propagateMetadata(LI, E->Scalars);
- if (IsReorder) {
- OrdersType Mask;
- inversePermutation(E->ReorderIndices, Mask);
- V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
- Mask, "reorder_shuffle");
- }
- if (NeedToShuffleReuses) {
- // TODO: Merge this shuffle with the ReorderShuffleMask.
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::Store: {
- StoreInst *SI = cast<StoreInst>(VL0);
- unsigned Alignment = SI->getAlignment();
- unsigned AS = SI->getPointerAddressSpace();
- setInsertPointAfterBundle(E->Scalars, S);
- Value *VecValue = vectorizeTree(E->getOperand(0));
- Value *ScalarPtr = SI->getPointerOperand();
- Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS));
- StoreInst *ST = Builder.CreateStore(VecValue, VecPtr);
- // The pointer operand uses an in-tree scalar, so add the new BitCast to
- // ExternalUses to make sure that an extract will be generated in the
- // future.
- if (getTreeEntry(ScalarPtr))
- ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
- if (!Alignment)
- Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
- ST->setAlignment(Alignment);
- Value *V = propagateMetadata(ST, E->Scalars);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::GetElementPtr: {
- setInsertPointAfterBundle(E->Scalars, S);
- Value *Op0 = vectorizeTree(E->getOperand(0));
- std::vector<Value *> OpVecs;
- for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
- ++j) {
- Value *OpVec = vectorizeTree(E->getOperand(j));
- OpVecs.push_back(OpVec);
- }
- Value *V = Builder.CreateGEP(
- cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
- if (Instruction *I = dyn_cast<Instruction>(V))
- V = propagateMetadata(I, E->Scalars);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::Call: {
- CallInst *CI = cast<CallInst>(VL0);
- setInsertPointAfterBundle(E->Scalars, S);
- Function *FI;
- Intrinsic::ID IID = Intrinsic::not_intrinsic;
- Value *ScalarArg = nullptr;
- if (CI && (FI = CI->getCalledFunction())) {
- IID = FI->getIntrinsicID();
- }
- std::vector<Value *> OpVecs;
- for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
- ValueList OpVL;
- // Some intrinsics have scalar arguments. This argument should not be
- // vectorized.
- if (hasVectorInstrinsicScalarOpd(IID, j)) {
- CallInst *CEI = cast<CallInst>(VL0);
- ScalarArg = CEI->getArgOperand(j);
- OpVecs.push_back(CEI->getArgOperand(j));
- continue;
- }
- Value *OpVec = vectorizeTree(E->getOperand(j));
- LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
- OpVecs.push_back(OpVec);
- }
- Module *M = F->getParent();
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
- Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
- SmallVector<OperandBundleDef, 1> OpBundles;
- CI->getOperandBundlesAsDefs(OpBundles);
- Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
- // The scalar argument uses an in-tree scalar so we add the new vectorized
- // call to ExternalUses list to make sure that an extract will be
- // generated in the future.
- if (ScalarArg && getTreeEntry(ScalarArg))
- ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
- propagateIRFlags(V, E->Scalars, VL0);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::ShuffleVector: {
- assert(S.isAltShuffle() &&
- ((Instruction::isBinaryOp(S.getOpcode()) &&
- Instruction::isBinaryOp(S.getAltOpcode())) ||
- (Instruction::isCast(S.getOpcode()) &&
- Instruction::isCast(S.getAltOpcode()))) &&
- "Invalid Shuffle Vector Operand");
- Value *LHS, *RHS;
- if (Instruction::isBinaryOp(S.getOpcode())) {
- setInsertPointAfterBundle(E->Scalars, S);
- LHS = vectorizeTree(E->getOperand(0));
- RHS = vectorizeTree(E->getOperand(1));
- } else {
- setInsertPointAfterBundle(E->Scalars, S);
- LHS = vectorizeTree(E->getOperand(0));
- }
- if (E->VectorizedValue) {
- LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
- return E->VectorizedValue;
- }
- Value *V0, *V1;
- if (Instruction::isBinaryOp(S.getOpcode())) {
- V0 = Builder.CreateBinOp(
- static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS);
- V1 = Builder.CreateBinOp(
- static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS);
- } else {
- V0 = Builder.CreateCast(
- static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy);
- V1 = Builder.CreateCast(
- static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy);
- }
- // Create shuffle to take alternate operations from the vector.
- // Also, gather up main and alt scalar ops to propagate IR flags to
- // each vector operation.
- ValueList OpScalars, AltScalars;
- unsigned e = E->Scalars.size();
- SmallVector<Constant *, 8> Mask(e);
- for (unsigned i = 0; i < e; ++i) {
- auto *OpInst = cast<Instruction>(E->Scalars[i]);
- assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
- if (OpInst->getOpcode() == S.getAltOpcode()) {
- Mask[i] = Builder.getInt32(e + i);
- AltScalars.push_back(E->Scalars[i]);
- } else {
- Mask[i] = Builder.getInt32(i);
- OpScalars.push_back(E->Scalars[i]);
- }
- }
- Value *ShuffleMask = ConstantVector::get(Mask);
- propagateIRFlags(V0, OpScalars);
- propagateIRFlags(V1, AltScalars);
- Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
- if (Instruction *I = dyn_cast<Instruction>(V))
- V = propagateMetadata(I, E->Scalars);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- default:
- llvm_unreachable("unknown inst");
- }
- return nullptr;
- }
- Value *BoUpSLP::vectorizeTree() {
- ExtraValueToDebugLocsMap ExternallyUsedValues;
- return vectorizeTree(ExternallyUsedValues);
- }
- Value *
- BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
- // All blocks must be scheduled before any instructions are inserted.
- for (auto &BSIter : BlocksSchedules) {
- scheduleBlock(BSIter.second.get());
- }
- Builder.SetInsertPoint(&F->getEntryBlock().front());
- auto *VectorRoot = vectorizeTree(&VectorizableTree[0]);
- // If the vectorized tree can be rewritten in a smaller type, we truncate the
- // vectorized root. InstCombine will then rewrite the entire expression. We
- // sign extend the extracted values below.
- auto *ScalarRoot = VectorizableTree[0].Scalars[0];
- if (MinBWs.count(ScalarRoot)) {
- if (auto *I = dyn_cast<Instruction>(VectorRoot))
- Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
- auto BundleWidth = VectorizableTree[0].Scalars.size();
- auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
- auto *VecTy = VectorType::get(MinTy, BundleWidth);
- auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
- VectorizableTree[0].VectorizedValue = Trunc;
- }
- LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
- << " values .\n");
- // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
- // specified by ScalarType.
- auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
- if (!MinBWs.count(ScalarRoot))
- return Ex;
- if (MinBWs[ScalarRoot].second)
- return Builder.CreateSExt(Ex, ScalarType);
- return Builder.CreateZExt(Ex, ScalarType);
- };
- // Extract all of the elements with the external uses.
- for (const auto &ExternalUse : ExternalUses) {
- Value *Scalar = ExternalUse.Scalar;
- llvm::User *User = ExternalUse.User;
- // Skip users that we already RAUW. This happens when one instruction
- // has multiple uses of the same value.
- if (User && !is_contained(Scalar->users(), User))
- continue;
- TreeEntry *E = getTreeEntry(Scalar);
- assert(E && "Invalid scalar");
- assert(!E->NeedToGather && "Extracting from a gather list");
- Value *Vec = E->VectorizedValue;
- assert(Vec && "Can't find vectorizable value");
- Value *Lane = Builder.getInt32(ExternalUse.Lane);
- // If User == nullptr, the Scalar is used as extra arg. Generate
- // ExtractElement instruction and update the record for this scalar in
- // ExternallyUsedValues.
- if (!User) {
- assert(ExternallyUsedValues.count(Scalar) &&
- "Scalar with nullptr as an external user must be registered in "
- "ExternallyUsedValues map");
- if (auto *VecI = dyn_cast<Instruction>(Vec)) {
- Builder.SetInsertPoint(VecI->getParent(),
- std::next(VecI->getIterator()));
- } else {
- Builder.SetInsertPoint(&F->getEntryBlock().front());
- }
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- Ex = extend(ScalarRoot, Ex, Scalar->getType());
- CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
- auto &Locs = ExternallyUsedValues[Scalar];
- ExternallyUsedValues.insert({Ex, Locs});
- ExternallyUsedValues.erase(Scalar);
- // Required to update internally referenced instructions.
- Scalar->replaceAllUsesWith(Ex);
- continue;
- }
- // Generate extracts for out-of-tree users.
- // Find the insertion point for the extractelement lane.
- if (auto *VecI = dyn_cast<Instruction>(Vec)) {
- if (PHINode *PH = dyn_cast<PHINode>(User)) {
- for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
- if (PH->getIncomingValue(i) == Scalar) {
- Instruction *IncomingTerminator =
- PH->getIncomingBlock(i)->getTerminator();
- if (isa<CatchSwitchInst>(IncomingTerminator)) {
- Builder.SetInsertPoint(VecI->getParent(),
- std::next(VecI->getIterator()));
- } else {
- Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
- }
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- Ex = extend(ScalarRoot, Ex, Scalar->getType());
- CSEBlocks.insert(PH->getIncomingBlock(i));
- PH->setOperand(i, Ex);
- }
- }
- } else {
- Builder.SetInsertPoint(cast<Instruction>(User));
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- Ex = extend(ScalarRoot, Ex, Scalar->getType());
- CSEBlocks.insert(cast<Instruction>(User)->getParent());
- User->replaceUsesOfWith(Scalar, Ex);
- }
- } else {
- Builder.SetInsertPoint(&F->getEntryBlock().front());
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- Ex = extend(ScalarRoot, Ex, Scalar->getType());
- CSEBlocks.insert(&F->getEntryBlock());
- User->replaceUsesOfWith(Scalar, Ex);
- }
- LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
- }
- // For each vectorized value:
- for (TreeEntry &EIdx : VectorizableTree) {
- TreeEntry *Entry = &EIdx;
- // No need to handle users of gathered values.
- if (Entry->NeedToGather)
- continue;
- assert(Entry->VectorizedValue && "Can't find vectorizable value");
- // For each lane:
- for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
- Value *Scalar = Entry->Scalars[Lane];
- Type *Ty = Scalar->getType();
- if (!Ty->isVoidTy()) {
- #ifndef NDEBUG
- for (User *U : Scalar->users()) {
- LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
- // It is legal to replace users in the ignorelist by undef.
- assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
- "Replacing out-of-tree value with undef");
- }
- #endif
- Value *Undef = UndefValue::get(Ty);
- Scalar->replaceAllUsesWith(Undef);
- }
- LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
- eraseInstruction(cast<Instruction>(Scalar));
- }
- }
- Builder.ClearInsertionPoint();
- return VectorizableTree[0].VectorizedValue;
- }
- void BoUpSLP::optimizeGatherSequence() {
- LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
- << " gather sequences instructions.\n");
- // LICM InsertElementInst sequences.
- for (Instruction *I : GatherSeq) {
- if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I))
- continue;
- // Check if this block is inside a loop.
- Loop *L = LI->getLoopFor(I->getParent());
- if (!L)
- continue;
- // Check if it has a preheader.
- BasicBlock *PreHeader = L->getLoopPreheader();
- if (!PreHeader)
- continue;
- // If the vector or the element that we insert into it are
- // instructions that are defined in this basic block then we can't
- // hoist this instruction.
- auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
- auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
- if (Op0 && L->contains(Op0))
- continue;
- if (Op1 && L->contains(Op1))
- continue;
- // We can hoist this instruction. Move it to the pre-header.
- I->moveBefore(PreHeader->getTerminator());
- }
- // Make a list of all reachable blocks in our CSE queue.
- SmallVector<const DomTreeNode *, 8> CSEWorkList;
- CSEWorkList.reserve(CSEBlocks.size());
- for (BasicBlock *BB : CSEBlocks)
- if (DomTreeNode *N = DT->getNode(BB)) {
- assert(DT->isReachableFromEntry(N));
- CSEWorkList.push_back(N);
- }
- // Sort blocks by domination. This ensures we visit a block after all blocks
- // dominating it are visited.
- llvm::stable_sort(CSEWorkList,
- [this](const DomTreeNode *A, const DomTreeNode *B) {
- return DT->properlyDominates(A, B);
- });
- // Perform O(N^2) search over the gather sequences and merge identical
- // instructions. TODO: We can further optimize this scan if we split the
- // instructions into different buckets based on the insert lane.
- SmallVector<Instruction *, 16> Visited;
- for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
- assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
- "Worklist not sorted properly!");
- BasicBlock *BB = (*I)->getBlock();
- // For all instructions in blocks containing gather sequences:
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
- Instruction *In = &*it++;
- if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
- continue;
- // Check if we can replace this instruction with any of the
- // visited instructions.
- for (Instruction *v : Visited) {
- if (In->isIdenticalTo(v) &&
- DT->dominates(v->getParent(), In->getParent())) {
- In->replaceAllUsesWith(v);
- eraseInstruction(In);
- In = nullptr;
- break;
- }
- }
- if (In) {
- assert(!is_contained(Visited, In));
- Visited.push_back(In);
- }
- }
- }
- CSEBlocks.clear();
- GatherSeq.clear();
- }
- // Groups the instructions to a bundle (which is then a single scheduling entity)
- // and schedules instructions until the bundle gets ready.
- bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
- BoUpSLP *SLP,
- const InstructionsState &S) {
- if (isa<PHINode>(S.OpValue))
- return true;
- // Initialize the instruction bundle.
- Instruction *OldScheduleEnd = ScheduleEnd;
- ScheduleData *PrevInBundle = nullptr;
- ScheduleData *Bundle = nullptr;
- bool ReSchedule = false;
- LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n");
- // Make sure that the scheduling region contains all
- // instructions of the bundle.
- for (Value *V : VL) {
- if (!extendSchedulingRegion(V, S))
- return false;
- }
- for (Value *V : VL) {
- ScheduleData *BundleMember = getScheduleData(V);
- assert(BundleMember &&
- "no ScheduleData for bundle member (maybe not in same basic block)");
- if (BundleMember->IsScheduled) {
- // A bundle member was scheduled as single instruction before and now
- // needs to be scheduled as part of the bundle. We just get rid of the
- // existing schedule.
- LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
- << " was already scheduled\n");
- ReSchedule = true;
- }
- assert(BundleMember->isSchedulingEntity() &&
- "bundle member already part of other bundle");
- if (PrevInBundle) {
- PrevInBundle->NextInBundle = BundleMember;
- } else {
- Bundle = BundleMember;
- }
- BundleMember->UnscheduledDepsInBundle = 0;
- Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
- // Group the instructions to a bundle.
- BundleMember->FirstInBundle = Bundle;
- PrevInBundle = BundleMember;
- }
- if (ScheduleEnd != OldScheduleEnd) {
- // The scheduling region got new instructions at the lower end (or it is a
- // new region for the first bundle). This makes it necessary to
- // recalculate all dependencies.
- // It is seldom that this needs to be done a second time after adding the
- // initial bundle to the region.
- for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
- doForAllOpcodes(I, [](ScheduleData *SD) {
- SD->clearDependencies();
- });
- }
- ReSchedule = true;
- }
- if (ReSchedule) {
- resetSchedule();
- initialFillReadyList(ReadyInsts);
- }
- LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
- << BB->getName() << "\n");
- calculateDependencies(Bundle, true, SLP);
- // Now try to schedule the new bundle. As soon as the bundle is "ready" it
- // means that there are no cyclic dependencies and we can schedule it.
- // Note that's important that we don't "schedule" the bundle yet (see
- // cancelScheduling).
- while (!Bundle->isReady() && !ReadyInsts.empty()) {
- ScheduleData *pickedSD = ReadyInsts.back();
- ReadyInsts.pop_back();
- if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
- schedule(pickedSD, ReadyInsts);
- }
- }
- if (!Bundle->isReady()) {
- cancelScheduling(VL, S.OpValue);
- return false;
- }
- return true;
- }
- void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
- Value *OpValue) {
- if (isa<PHINode>(OpValue))
- return;
- ScheduleData *Bundle = getScheduleData(OpValue);
- LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n");
- assert(!Bundle->IsScheduled &&
- "Can't cancel bundle which is already scheduled");
- assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
- "tried to unbundle something which is not a bundle");
- // Un-bundle: make single instructions out of the bundle.
- ScheduleData *BundleMember = Bundle;
- while (BundleMember) {
- assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
- BundleMember->FirstInBundle = BundleMember;
- ScheduleData *Next = BundleMember->NextInBundle;
- BundleMember->NextInBundle = nullptr;
- BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
- if (BundleMember->UnscheduledDepsInBundle == 0) {
- ReadyInsts.insert(BundleMember);
- }
- BundleMember = Next;
- }
- }
- BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
- // Allocate a new ScheduleData for the instruction.
- if (ChunkPos >= ChunkSize) {
- ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize));
- ChunkPos = 0;
- }
- return &(ScheduleDataChunks.back()[ChunkPos++]);
- }
- bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
- const InstructionsState &S) {
- if (getScheduleData(V, isOneOf(S, V)))
- return true;
- Instruction *I = dyn_cast<Instruction>(V);
- assert(I && "bundle member must be an instruction");
- assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
- auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
- ScheduleData *ISD = getScheduleData(I);
- if (!ISD)
- return false;
- assert(isInSchedulingRegion(ISD) &&
- "ScheduleData not in scheduling region");
- ScheduleData *SD = allocateScheduleDataChunks();
- SD->Inst = I;
- SD->init(SchedulingRegionID, S.OpValue);
- ExtraScheduleDataMap[I][S.OpValue] = SD;
- return true;
- };
- if (CheckSheduleForI(I))
- return true;
- if (!ScheduleStart) {
- // It's the first instruction in the new region.
- initScheduleData(I, I->getNextNode(), nullptr, nullptr);
- ScheduleStart = I;
- ScheduleEnd = I->getNextNode();
- if (isOneOf(S, I) != I)
- CheckSheduleForI(I);
- assert(ScheduleEnd && "tried to vectorize a terminator?");
- LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n");
- return true;
- }
- // Search up and down at the same time, because we don't know if the new
- // instruction is above or below the existing scheduling region.
- BasicBlock::reverse_iterator UpIter =
- ++ScheduleStart->getIterator().getReverse();
- BasicBlock::reverse_iterator UpperEnd = BB->rend();
- BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
- BasicBlock::iterator LowerEnd = BB->end();
- while (true) {
- if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
- LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n");
- return false;
- }
- if (UpIter != UpperEnd) {
- if (&*UpIter == I) {
- initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
- ScheduleStart = I;
- if (isOneOf(S, I) != I)
- CheckSheduleForI(I);
- LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I
- << "\n");
- return true;
- }
- ++UpIter;
- }
- if (DownIter != LowerEnd) {
- if (&*DownIter == I) {
- initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
- nullptr);
- ScheduleEnd = I->getNextNode();
- if (isOneOf(S, I) != I)
- CheckSheduleForI(I);
- assert(ScheduleEnd && "tried to vectorize a terminator?");
- LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I
- << "\n");
- return true;
- }
- ++DownIter;
- }
- assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
- "instruction not found in block");
- }
- return true;
- }
- void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
- Instruction *ToI,
- ScheduleData *PrevLoadStore,
- ScheduleData *NextLoadStore) {
- ScheduleData *CurrentLoadStore = PrevLoadStore;
- for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
- ScheduleData *SD = ScheduleDataMap[I];
- if (!SD) {
- SD = allocateScheduleDataChunks();
- ScheduleDataMap[I] = SD;
- SD->Inst = I;
- }
- assert(!isInSchedulingRegion(SD) &&
- "new ScheduleData already in scheduling region");
- SD->init(SchedulingRegionID, I);
- if (I->mayReadOrWriteMemory() &&
- (!isa<IntrinsicInst>(I) ||
- cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
- // Update the linked list of memory accessing instructions.
- if (CurrentLoadStore) {
- CurrentLoadStore->NextLoadStore = SD;
- } else {
- FirstLoadStoreInRegion = SD;
- }
- CurrentLoadStore = SD;
- }
- }
- if (NextLoadStore) {
- if (CurrentLoadStore)
- CurrentLoadStore->NextLoadStore = NextLoadStore;
- } else {
- LastLoadStoreInRegion = CurrentLoadStore;
- }
- }
- void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
- bool InsertInReadyList,
- BoUpSLP *SLP) {
- assert(SD->isSchedulingEntity());
- SmallVector<ScheduleData *, 10> WorkList;
- WorkList.push_back(SD);
- while (!WorkList.empty()) {
- ScheduleData *SD = WorkList.back();
- WorkList.pop_back();
- ScheduleData *BundleMember = SD;
- while (BundleMember) {
- assert(isInSchedulingRegion(BundleMember));
- if (!BundleMember->hasValidDependencies()) {
- LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember
- << "\n");
- BundleMember->Dependencies = 0;
- BundleMember->resetUnscheduledDeps();
- // Handle def-use chain dependencies.
- if (BundleMember->OpValue != BundleMember->Inst) {
- ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
- if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
- BundleMember->Dependencies++;
- ScheduleData *DestBundle = UseSD->FirstInBundle;
- if (!DestBundle->IsScheduled)
- BundleMember->incrementUnscheduledDeps(1);
- if (!DestBundle->hasValidDependencies())
- WorkList.push_back(DestBundle);
- }
- } else {
- for (User *U : BundleMember->Inst->users()) {
- if (isa<Instruction>(U)) {
- ScheduleData *UseSD = getScheduleData(U);
- if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
- BundleMember->Dependencies++;
- ScheduleData *DestBundle = UseSD->FirstInBundle;
- if (!DestBundle->IsScheduled)
- BundleMember->incrementUnscheduledDeps(1);
- if (!DestBundle->hasValidDependencies())
- WorkList.push_back(DestBundle);
- }
- } else {
- // I'm not sure if this can ever happen. But we need to be safe.
- // This lets the instruction/bundle never be scheduled and
- // eventually disable vectorization.
- BundleMember->Dependencies++;
- BundleMember->incrementUnscheduledDeps(1);
- }
- }
- }
- // Handle the memory dependencies.
- ScheduleData *DepDest = BundleMember->NextLoadStore;
- if (DepDest) {
- Instruction *SrcInst = BundleMember->Inst;
- MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
- bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
- unsigned numAliased = 0;
- unsigned DistToSrc = 1;
- while (DepDest) {
- assert(isInSchedulingRegion(DepDest));
- // We have two limits to reduce the complexity:
- // 1) AliasedCheckLimit: It's a small limit to reduce calls to
- // SLP->isAliased (which is the expensive part in this loop).
- // 2) MaxMemDepDistance: It's for very large blocks and it aborts
- // the whole loop (even if the loop is fast, it's quadratic).
- // It's important for the loop break condition (see below) to
- // check this limit even between two read-only instructions.
- if (DistToSrc >= MaxMemDepDistance ||
- ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
- (numAliased >= AliasedCheckLimit ||
- SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
- // We increment the counter only if the locations are aliased
- // (instead of counting all alias checks). This gives a better
- // balance between reduced runtime and accurate dependencies.
- numAliased++;
- DepDest->MemoryDependencies.push_back(BundleMember);
- BundleMember->Dependencies++;
- ScheduleData *DestBundle = DepDest->FirstInBundle;
- if (!DestBundle->IsScheduled) {
- BundleMember->incrementUnscheduledDeps(1);
- }
- if (!DestBundle->hasValidDependencies()) {
- WorkList.push_back(DestBundle);
- }
- }
- DepDest = DepDest->NextLoadStore;
- // Example, explaining the loop break condition: Let's assume our
- // starting instruction is i0 and MaxMemDepDistance = 3.
- //
- // +--------v--v--v
- // i0,i1,i2,i3,i4,i5,i6,i7,i8
- // +--------^--^--^
- //
- // MaxMemDepDistance let us stop alias-checking at i3 and we add
- // dependencies from i0 to i3,i4,.. (even if they are not aliased).
- // Previously we already added dependencies from i3 to i6,i7,i8
- // (because of MaxMemDepDistance). As we added a dependency from
- // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
- // and we can abort this loop at i6.
- if (DistToSrc >= 2 * MaxMemDepDistance)
- break;
- DistToSrc++;
- }
- }
- }
- BundleMember = BundleMember->NextInBundle;
- }
- if (InsertInReadyList && SD->isReady()) {
- ReadyInsts.push_back(SD);
- LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst
- << "\n");
- }
- }
- }
- void BoUpSLP::BlockScheduling::resetSchedule() {
- assert(ScheduleStart &&
- "tried to reset schedule on block which has not been scheduled");
- for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
- doForAllOpcodes(I, [&](ScheduleData *SD) {
- assert(isInSchedulingRegion(SD) &&
- "ScheduleData not in scheduling region");
- SD->IsScheduled = false;
- SD->resetUnscheduledDeps();
- });
- }
- ReadyInsts.clear();
- }
- void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
- if (!BS->ScheduleStart)
- return;
- LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
- BS->resetSchedule();
- // For the real scheduling we use a more sophisticated ready-list: it is
- // sorted by the original instruction location. This lets the final schedule
- // be as close as possible to the original instruction order.
- struct ScheduleDataCompare {
- bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
- return SD2->SchedulingPriority < SD1->SchedulingPriority;
- }
- };
- std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
- // Ensure that all dependency data is updated and fill the ready-list with
- // initial instructions.
- int Idx = 0;
- int NumToSchedule = 0;
- for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
- I = I->getNextNode()) {
- BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
- assert(SD->isPartOfBundle() ==
- (getTreeEntry(SD->Inst) != nullptr) &&
- "scheduler and vectorizer bundle mismatch");
- SD->FirstInBundle->SchedulingPriority = Idx++;
- if (SD->isSchedulingEntity()) {
- BS->calculateDependencies(SD, false, this);
- NumToSchedule++;
- }
- });
- }
- BS->initialFillReadyList(ReadyInsts);
- Instruction *LastScheduledInst = BS->ScheduleEnd;
- // Do the "real" scheduling.
- while (!ReadyInsts.empty()) {
- ScheduleData *picked = *ReadyInsts.begin();
- ReadyInsts.erase(ReadyInsts.begin());
- // Move the scheduled instruction(s) to their dedicated places, if not
- // there yet.
- ScheduleData *BundleMember = picked;
- while (BundleMember) {
- Instruction *pickedInst = BundleMember->Inst;
- if (LastScheduledInst->getNextNode() != pickedInst) {
- BS->BB->getInstList().remove(pickedInst);
- BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
- pickedInst);
- }
- LastScheduledInst = pickedInst;
- BundleMember = BundleMember->NextInBundle;
- }
- BS->schedule(picked, ReadyInsts);
- NumToSchedule--;
- }
- assert(NumToSchedule == 0 && "could not schedule all instructions");
- // Avoid duplicate scheduling of the block.
- BS->ScheduleStart = nullptr;
- }
- unsigned BoUpSLP::getVectorElementSize(Value *V) const {
- // If V is a store, just return the width of the stored value without
- // traversing the expression tree. This is the common case.
- if (auto *Store = dyn_cast<StoreInst>(V))
- return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
- // If V is not a store, we can traverse the expression tree to find loads
- // that feed it. The type of the loaded value may indicate a more suitable
- // width than V's type. We want to base the vector element size on the width
- // of memory operations where possible.
- SmallVector<Instruction *, 16> Worklist;
- SmallPtrSet<Instruction *, 16> Visited;
- if (auto *I = dyn_cast<Instruction>(V))
- Worklist.push_back(I);
- // Traverse the expression tree in bottom-up order looking for loads. If we
- // encounter an instruction we don't yet handle, we give up.
- auto MaxWidth = 0u;
- auto FoundUnknownInst = false;
- while (!Worklist.empty() && !FoundUnknownInst) {
- auto *I = Worklist.pop_back_val();
- Visited.insert(I);
- // We should only be looking at scalar instructions here. If the current
- // instruction has a vector type, give up.
- auto *Ty = I->getType();
- if (isa<VectorType>(Ty))
- FoundUnknownInst = true;
- // If the current instruction is a load, update MaxWidth to reflect the
- // width of the loaded value.
- else if (isa<LoadInst>(I))
- MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
- // Otherwise, we need to visit the operands of the instruction. We only
- // handle the interesting cases from buildTree here. If an operand is an
- // instruction we haven't yet visited, we add it to the worklist.
- else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
- isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
- for (Use &U : I->operands())
- if (auto *J = dyn_cast<Instruction>(U.get()))
- if (!Visited.count(J))
- Worklist.push_back(J);
- }
- // If we don't yet handle the instruction, give up.
- else
- FoundUnknownInst = true;
- }
- // If we didn't encounter a memory access in the expression tree, or if we
- // gave up for some reason, just return the width of V.
- if (!MaxWidth || FoundUnknownInst)
- return DL->getTypeSizeInBits(V->getType());
- // Otherwise, return the maximum width we found.
- return MaxWidth;
- }
- // Determine if a value V in a vectorizable expression Expr can be demoted to a
- // smaller type with a truncation. We collect the values that will be demoted
- // in ToDemote and additional roots that require investigating in Roots.
- static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
- SmallVectorImpl<Value *> &ToDemote,
- SmallVectorImpl<Value *> &Roots) {
- // We can always demote constants.
- if (isa<Constant>(V)) {
- ToDemote.push_back(V);
- return true;
- }
- // If the value is not an instruction in the expression with only one use, it
- // cannot be demoted.
- auto *I = dyn_cast<Instruction>(V);
- if (!I || !I->hasOneUse() || !Expr.count(I))
- return false;
- switch (I->getOpcode()) {
- // We can always demote truncations and extensions. Since truncations can
- // seed additional demotion, we save the truncated value.
- case Instruction::Trunc:
- Roots.push_back(I->getOperand(0));
- break;
- case Instruction::ZExt:
- case Instruction::SExt:
- break;
- // We can demote certain binary operations if we can demote both of their
- // operands.
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
- !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
- return false;
- break;
- // We can demote selects if we can demote their true and false values.
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
- !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
- return false;
- break;
- }
- // We can demote phis if we can demote all their incoming operands. Note that
- // we don't need to worry about cycles since we ensure single use above.
- case Instruction::PHI: {
- PHINode *PN = cast<PHINode>(I);
- for (Value *IncValue : PN->incoming_values())
- if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
- return false;
- break;
- }
- // Otherwise, conservatively give up.
- default:
- return false;
- }
- // Record the value that we can demote.
- ToDemote.push_back(V);
- return true;
- }
- void BoUpSLP::computeMinimumValueSizes() {
- // If there are no external uses, the expression tree must be rooted by a
- // store. We can't demote in-memory values, so there is nothing to do here.
- if (ExternalUses.empty())
- return;
- // We only attempt to truncate integer expressions.
- auto &TreeRoot = VectorizableTree[0].Scalars;
- auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
- if (!TreeRootIT)
- return;
- // If the expression is not rooted by a store, these roots should have
- // external uses. We will rely on InstCombine to rewrite the expression in
- // the narrower type. However, InstCombine only rewrites single-use values.
- // This means that if a tree entry other than a root is used externally, it
- // must have multiple uses and InstCombine will not rewrite it. The code
- // below ensures that only the roots are used externally.
- SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
- for (auto &EU : ExternalUses)
- if (!Expr.erase(EU.Scalar))
- return;
- if (!Expr.empty())
- return;
- // Collect the scalar values of the vectorizable expression. We will use this
- // context to determine which values can be demoted. If we see a truncation,
- // we mark it as seeding another demotion.
- for (auto &Entry : VectorizableTree)
- Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end());
- // Ensure the roots of the vectorizable tree don't form a cycle. They must
- // have a single external user that is not in the vectorizable tree.
- for (auto *Root : TreeRoot)
- if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
- return;
- // Conservatively determine if we can actually truncate the roots of the
- // expression. Collect the values that can be demoted in ToDemote and
- // additional roots that require investigating in Roots.
- SmallVector<Value *, 32> ToDemote;
- SmallVector<Value *, 4> Roots;
- for (auto *Root : TreeRoot)
- if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
- return;
- // The maximum bit width required to represent all the values that can be
- // demoted without loss of precision. It would be safe to truncate the roots
- // of the expression to this width.
- auto MaxBitWidth = 8u;
- // We first check if all the bits of the roots are demanded. If they're not,
- // we can truncate the roots to this narrower type.
- for (auto *Root : TreeRoot) {
- auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
- MaxBitWidth = std::max<unsigned>(
- Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
- }
- // True if the roots can be zero-extended back to their original type, rather
- // than sign-extended. We know that if the leading bits are not demanded, we
- // can safely zero-extend. So we initialize IsKnownPositive to True.
- bool IsKnownPositive = true;
- // If all the bits of the roots are demanded, we can try a little harder to
- // compute a narrower type. This can happen, for example, if the roots are
- // getelementptr indices. InstCombine promotes these indices to the pointer
- // width. Thus, all their bits are technically demanded even though the
- // address computation might be vectorized in a smaller type.
- //
- // We start by looking at each entry that can be demoted. We compute the
- // maximum bit width required to store the scalar by using ValueTracking to
- // compute the number of high-order bits we can truncate.
- if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
- llvm::all_of(TreeRoot, [](Value *R) {
- assert(R->hasOneUse() && "Root should have only one use!");
- return isa<GetElementPtrInst>(R->user_back());
- })) {
- MaxBitWidth = 8u;
- // Determine if the sign bit of all the roots is known to be zero. If not,
- // IsKnownPositive is set to False.
- IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
- KnownBits Known = computeKnownBits(R, *DL);
- return Known.isNonNegative();
- });
- // Determine the maximum number of bits required to store the scalar
- // values.
- for (auto *Scalar : ToDemote) {
- auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
- auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
- MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
- }
- // If we can't prove that the sign bit is zero, we must add one to the
- // maximum bit width to account for the unknown sign bit. This preserves
- // the existing sign bit so we can safely sign-extend the root back to the
- // original type. Otherwise, if we know the sign bit is zero, we will
- // zero-extend the root instead.
- //
- // FIXME: This is somewhat suboptimal, as there will be cases where adding
- // one to the maximum bit width will yield a larger-than-necessary
- // type. In general, we need to add an extra bit only if we can't
- // prove that the upper bit of the original type is equal to the
- // upper bit of the proposed smaller type. If these two bits are the
- // same (either zero or one) we know that sign-extending from the
- // smaller type will result in the same value. Here, since we can't
- // yet prove this, we are just making the proposed smaller type
- // larger to ensure correctness.
- if (!IsKnownPositive)
- ++MaxBitWidth;
- }
- // Round MaxBitWidth up to the next power-of-two.
- if (!isPowerOf2_64(MaxBitWidth))
- MaxBitWidth = NextPowerOf2(MaxBitWidth);
- // If the maximum bit width we compute is less than the with of the roots'
- // type, we can proceed with the narrowing. Otherwise, do nothing.
- if (MaxBitWidth >= TreeRootIT->getBitWidth())
- return;
- // If we can truncate the root, we must collect additional values that might
- // be demoted as a result. That is, those seeded by truncations we will
- // modify.
- while (!Roots.empty())
- collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
- // Finally, map the values we can demote to the maximum bit with we computed.
- for (auto *Scalar : ToDemote)
- MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
- }
- namespace {
- /// The SLPVectorizer Pass.
- struct SLPVectorizer : public FunctionPass {
- SLPVectorizerPass Impl;
- /// Pass identification, replacement for typeid
- static char ID;
- explicit SLPVectorizer() : FunctionPass(ID) {
- initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
- }
- bool doInitialization(Module &M) override {
- return false;
- }
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
- auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
- auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
- auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
- auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
- auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
- return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- FunctionPass::getAnalysisUsage(AU);
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<ScalarEvolutionWrapperPass>();
- AU.addRequired<AAResultsWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<DemandedBitsWrapperPass>();
- AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<AAResultsWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.setPreservesCFG();
- }
- };
- } // end anonymous namespace
- PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
- auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
- auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
- auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
- auto *AA = &AM.getResult<AAManager>(F);
- auto *LI = &AM.getResult<LoopAnalysis>(F);
- auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
- auto *AC = &AM.getResult<AssumptionAnalysis>(F);
- auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
- auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
- bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
- if (!Changed)
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- PA.preserve<AAManager>();
- PA.preserve<GlobalsAA>();
- return PA;
- }
- bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
- TargetTransformInfo *TTI_,
- TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
- LoopInfo *LI_, DominatorTree *DT_,
- AssumptionCache *AC_, DemandedBits *DB_,
- OptimizationRemarkEmitter *ORE_) {
- SE = SE_;
- TTI = TTI_;
- TLI = TLI_;
- AA = AA_;
- LI = LI_;
- DT = DT_;
- AC = AC_;
- DB = DB_;
- DL = &F.getParent()->getDataLayout();
- Stores.clear();
- GEPs.clear();
- bool Changed = false;
- // If the target claims to have no vector registers don't attempt
- // vectorization.
- if (!TTI->getNumberOfRegisters(true))
- return false;
- // Don't vectorize when the attribute NoImplicitFloat is used.
- if (F.hasFnAttribute(Attribute::NoImplicitFloat))
- return false;
- LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
- // Use the bottom up slp vectorizer to construct chains that start with
- // store instructions.
- BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
- // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
- // delete instructions.
- // Scan the blocks in the function in post order.
- for (auto BB : post_order(&F.getEntryBlock())) {
- collectSeedInstructions(BB);
- // Vectorize trees that end at stores.
- if (!Stores.empty()) {
- LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
- << " underlying objects.\n");
- Changed |= vectorizeStoreChains(R);
- }
- // Vectorize trees that end at reductions.
- Changed |= vectorizeChainsInBlock(BB, R);
- // Vectorize the index computations of getelementptr instructions. This
- // is primarily intended to catch gather-like idioms ending at
- // non-consecutive loads.
- if (!GEPs.empty()) {
- LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
- << " underlying objects.\n");
- Changed |= vectorizeGEPIndices(BB, R);
- }
- }
- if (Changed) {
- R.optimizeGatherSequence();
- LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
- LLVM_DEBUG(verifyFunction(F));
- }
- return Changed;
- }
- /// Check that the Values in the slice in VL array are still existent in
- /// the WeakTrackingVH array.
- /// Vectorization of part of the VL array may cause later values in the VL array
- /// to become invalid. We track when this has happened in the WeakTrackingVH
- /// array.
- static bool hasValueBeenRAUWed(ArrayRef<Value *> VL,
- ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin,
- unsigned SliceSize) {
- VL = VL.slice(SliceBegin, SliceSize);
- VH = VH.slice(SliceBegin, SliceSize);
- return !std::equal(VL.begin(), VL.end(), VH.begin());
- }
- bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
- unsigned VecRegSize) {
- const unsigned ChainLen = Chain.size();
- LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
- << "\n");
- const unsigned Sz = R.getVectorElementSize(Chain[0]);
- const unsigned VF = VecRegSize / Sz;
- if (!isPowerOf2_32(Sz) || VF < 2)
- return false;
- // Keep track of values that were deleted by vectorizing in the loop below.
- const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end());
- bool Changed = false;
- // Look for profitable vectorizable trees at all offsets, starting at zero.
- for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) {
- // Check that a previous iteration of this loop did not delete the Value.
- if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
- continue;
- LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
- << "\n");
- ArrayRef<Value *> Operands = Chain.slice(i, VF);
- R.buildTree(Operands);
- if (R.isTreeTinyAndNotFullyVectorizable())
- continue;
- R.computeMinimumValueSizes();
- int Cost = R.getTreeCost();
- LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF
- << "\n");
- if (Cost < -SLPCostThreshold) {
- LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
- using namespace ore;
- R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
- cast<StoreInst>(Chain[i]))
- << "Stores SLP vectorized with cost " << NV("Cost", Cost)
- << " and with tree size "
- << NV("TreeSize", R.getTreeSize()));
- R.vectorizeTree();
- // Move to the next bundle.
- i += VF - 1;
- Changed = true;
- }
- }
- return Changed;
- }
- bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
- BoUpSLP &R) {
- SetVector<StoreInst *> Heads;
- SmallDenseSet<StoreInst *> Tails;
- SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
- // We may run into multiple chains that merge into a single chain. We mark the
- // stores that we vectorized so that we don't visit the same store twice.
- BoUpSLP::ValueSet VectorizedStores;
- bool Changed = false;
- auto &&FindConsecutiveAccess =
- [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) {
- if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE))
- return false;
- Tails.insert(Stores[Idx]);
- Heads.insert(Stores[K]);
- ConsecutiveChain[Stores[K]] = Stores[Idx];
- return true;
- };
- // Do a quadratic search on all of the given stores in reverse order and find
- // all of the pairs of stores that follow each other.
- int E = Stores.size();
- for (int Idx = E - 1; Idx >= 0; --Idx) {
- // If a store has multiple consecutive store candidates, search according
- // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
- // This is because usually pairing with immediate succeeding or preceding
- // candidate create the best chance to find slp vectorization opportunity.
- for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset)
- if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
- (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
- break;
- }
- // For stores that start but don't end a link in the chain:
- for (auto *SI : llvm::reverse(Heads)) {
- if (Tails.count(SI))
- continue;
- // We found a store instr that starts a chain. Now follow the chain and try
- // to vectorize it.
- BoUpSLP::ValueList Operands;
- StoreInst *I = SI;
- // Collect the chain into a list.
- while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) {
- Operands.push_back(I);
- // Move to the next value in the chain.
- I = ConsecutiveChain[I];
- }
- // FIXME: Is division-by-2 the correct step? Should we assert that the
- // register size is a power-of-2?
- for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize();
- Size /= 2) {
- if (vectorizeStoreChain(Operands, R, Size)) {
- // Mark the vectorized stores so that we don't vectorize them again.
- VectorizedStores.insert(Operands.begin(), Operands.end());
- Changed = true;
- break;
- }
- }
- }
- return Changed;
- }
- void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
- // Initialize the collections. We will make a single pass over the block.
- Stores.clear();
- GEPs.clear();
- // Visit the store and getelementptr instructions in BB and organize them in
- // Stores and GEPs according to the underlying objects of their pointer
- // operands.
- for (Instruction &I : *BB) {
- // Ignore store instructions that are volatile or have a pointer operand
- // that doesn't point to a scalar type.
- if (auto *SI = dyn_cast<StoreInst>(&I)) {
- if (!SI->isSimple())
- continue;
- if (!isValidElementType(SI->getValueOperand()->getType()))
- continue;
- Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
- }
- // Ignore getelementptr instructions that have more than one index, a
- // constant index, or a pointer operand that doesn't point to a scalar
- // type.
- else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
- auto Idx = GEP->idx_begin()->get();
- if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
- continue;
- if (!isValidElementType(Idx->getType()))
- continue;
- if (GEP->getType()->isVectorTy())
- continue;
- GEPs[GEP->getPointerOperand()].push_back(GEP);
- }
- }
- }
- bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
- if (!A || !B)
- return false;
- Value *VL[] = { A, B };
- return tryToVectorizeList(VL, R, /*UserCost=*/0, true);
- }
- bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
- int UserCost, bool AllowReorder) {
- if (VL.size() < 2)
- return false;
- LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
- << VL.size() << ".\n");
- // Check that all of the parts are scalar instructions of the same type,
- // we permit an alternate opcode via InstructionsState.
- InstructionsState S = getSameOpcode(VL);
- if (!S.getOpcode())
- return false;
- Instruction *I0 = cast<Instruction>(S.OpValue);
- unsigned Sz = R.getVectorElementSize(I0);
- unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
- unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
- if (MaxVF < 2) {
- R.getORE()->emit([&]() {
- return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
- << "Cannot SLP vectorize list: vectorization factor "
- << "less than 2 is not supported";
- });
- return false;
- }
- for (Value *V : VL) {
- Type *Ty = V->getType();
- if (!isValidElementType(Ty)) {
- // NOTE: the following will give user internal llvm type name, which may
- // not be useful.
- R.getORE()->emit([&]() {
- std::string type_str;
- llvm::raw_string_ostream rso(type_str);
- Ty->print(rso);
- return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
- << "Cannot SLP vectorize list: type "
- << rso.str() + " is unsupported by vectorizer";
- });
- return false;
- }
- }
- bool Changed = false;
- bool CandidateFound = false;
- int MinCost = SLPCostThreshold;
- // Keep track of values that were deleted by vectorizing in the loop below.
- SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end());
- unsigned NextInst = 0, MaxInst = VL.size();
- for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF;
- VF /= 2) {
- // No actual vectorization should happen, if number of parts is the same as
- // provided vectorization factor (i.e. the scalar type is used for vector
- // code during codegen).
- auto *VecTy = VectorType::get(VL[0]->getType(), VF);
- if (TTI->getNumberOfParts(VecTy) == VF)
- continue;
- for (unsigned I = NextInst; I < MaxInst; ++I) {
- unsigned OpsWidth = 0;
- if (I + VF > MaxInst)
- OpsWidth = MaxInst - I;
- else
- OpsWidth = VF;
- if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
- break;
- // Check that a previous iteration of this loop did not delete the Value.
- if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth))
- continue;
- LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
- << "\n");
- ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
- R.buildTree(Ops);
- Optional<ArrayRef<unsigned>> Order = R.bestOrder();
- // TODO: check if we can allow reordering for more cases.
- if (AllowReorder && Order) {
- // TODO: reorder tree nodes without tree rebuilding.
- // Conceptually, there is nothing actually preventing us from trying to
- // reorder a larger list. In fact, we do exactly this when vectorizing
- // reductions. However, at this point, we only expect to get here when
- // there are exactly two operations.
- assert(Ops.size() == 2);
- Value *ReorderedOps[] = {Ops[1], Ops[0]};
- R.buildTree(ReorderedOps, None);
- }
- if (R.isTreeTinyAndNotFullyVectorizable())
- continue;
- R.computeMinimumValueSizes();
- int Cost = R.getTreeCost() - UserCost;
- CandidateFound = true;
- MinCost = std::min(MinCost, Cost);
- if (Cost < -SLPCostThreshold) {
- LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
- R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
- cast<Instruction>(Ops[0]))
- << "SLP vectorized with cost " << ore::NV("Cost", Cost)
- << " and with tree size "
- << ore::NV("TreeSize", R.getTreeSize()));
- R.vectorizeTree();
- // Move to the next bundle.
- I += VF - 1;
- NextInst = I + 1;
- Changed = true;
- }
- }
- }
- if (!Changed && CandidateFound) {
- R.getORE()->emit([&]() {
- return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
- << "List vectorization was possible but not beneficial with cost "
- << ore::NV("Cost", MinCost) << " >= "
- << ore::NV("Treshold", -SLPCostThreshold);
- });
- } else if (!Changed) {
- R.getORE()->emit([&]() {
- return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
- << "Cannot SLP vectorize list: vectorization was impossible"
- << " with available vectorization factors";
- });
- }
- return Changed;
- }
- bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
- if (!I)
- return false;
- if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
- return false;
- Value *P = I->getParent();
- // Vectorize in current basic block only.
- auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
- auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
- if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
- return false;
- // Try to vectorize V.
- if (tryToVectorizePair(Op0, Op1, R))
- return true;
- auto *A = dyn_cast<BinaryOperator>(Op0);
- auto *B = dyn_cast<BinaryOperator>(Op1);
- // Try to skip B.
- if (B && B->hasOneUse()) {
- auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
- auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
- if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
- return true;
- if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
- return true;
- }
- // Try to skip A.
- if (A && A->hasOneUse()) {
- auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
- auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
- if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
- return true;
- if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
- return true;
- }
- return false;
- }
- /// Generate a shuffle mask to be used in a reduction tree.
- ///
- /// \param VecLen The length of the vector to be reduced.
- /// \param NumEltsToRdx The number of elements that should be reduced in the
- /// vector.
- /// \param IsPairwise Whether the reduction is a pairwise or splitting
- /// reduction. A pairwise reduction will generate a mask of
- /// <0,2,...> or <1,3,..> while a splitting reduction will generate
- /// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
- /// \param IsLeft True will generate a mask of even elements, odd otherwise.
- static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
- bool IsPairwise, bool IsLeft,
- IRBuilder<> &Builder) {
- assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
- SmallVector<Constant *, 32> ShuffleMask(
- VecLen, UndefValue::get(Builder.getInt32Ty()));
- if (IsPairwise)
- // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
- for (unsigned i = 0; i != NumEltsToRdx; ++i)
- ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
- else
- // Move the upper half of the vector to the lower half.
- for (unsigned i = 0; i != NumEltsToRdx; ++i)
- ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
- return ConstantVector::get(ShuffleMask);
- }
- namespace {
- /// Model horizontal reductions.
- ///
- /// A horizontal reduction is a tree of reduction operations (currently add and
- /// fadd) that has operations that can be put into a vector as its leaf.
- /// For example, this tree:
- ///
- /// mul mul mul mul
- /// \ / \ /
- /// + +
- /// \ /
- /// +
- /// This tree has "mul" as its reduced values and "+" as its reduction
- /// operations. A reduction might be feeding into a store or a binary operation
- /// feeding a phi.
- /// ...
- /// \ /
- /// +
- /// |
- /// phi +=
- ///
- /// Or:
- /// ...
- /// \ /
- /// +
- /// |
- /// *p =
- ///
- class HorizontalReduction {
- using ReductionOpsType = SmallVector<Value *, 16>;
- using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
- ReductionOpsListType ReductionOps;
- SmallVector<Value *, 32> ReducedVals;
- // Use map vector to make stable output.
- MapVector<Instruction *, Value *> ExtraArgs;
- /// Kind of the reduction data.
- enum ReductionKind {
- RK_None, /// Not a reduction.
- RK_Arithmetic, /// Binary reduction data.
- RK_Min, /// Minimum reduction data.
- RK_UMin, /// Unsigned minimum reduction data.
- RK_Max, /// Maximum reduction data.
- RK_UMax, /// Unsigned maximum reduction data.
- };
- /// Contains info about operation, like its opcode, left and right operands.
- class OperationData {
- /// Opcode of the instruction.
- unsigned Opcode = 0;
- /// Left operand of the reduction operation.
- Value *LHS = nullptr;
- /// Right operand of the reduction operation.
- Value *RHS = nullptr;
- /// Kind of the reduction operation.
- ReductionKind Kind = RK_None;
- /// True if float point min/max reduction has no NaNs.
- bool NoNaN = false;
- /// Checks if the reduction operation can be vectorized.
- bool isVectorizable() const {
- return LHS && RHS &&
- // We currently only support add/mul/logical && min/max reductions.
- ((Kind == RK_Arithmetic &&
- (Opcode == Instruction::Add || Opcode == Instruction::FAdd ||
- Opcode == Instruction::Mul || Opcode == Instruction::FMul ||
- Opcode == Instruction::And || Opcode == Instruction::Or ||
- Opcode == Instruction::Xor)) ||
- ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
- (Kind == RK_Min || Kind == RK_Max)) ||
- (Opcode == Instruction::ICmp &&
- (Kind == RK_UMin || Kind == RK_UMax)));
- }
- /// Creates reduction operation with the current opcode.
- Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
- assert(isVectorizable() &&
- "Expected add|fadd or min/max reduction operation.");
- Value *Cmp;
- switch (Kind) {
- case RK_Arithmetic:
- return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
- Name);
- case RK_Min:
- Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
- : Builder.CreateFCmpOLT(LHS, RHS);
- break;
- case RK_Max:
- Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
- : Builder.CreateFCmpOGT(LHS, RHS);
- break;
- case RK_UMin:
- assert(Opcode == Instruction::ICmp && "Expected integer types.");
- Cmp = Builder.CreateICmpULT(LHS, RHS);
- break;
- case RK_UMax:
- assert(Opcode == Instruction::ICmp && "Expected integer types.");
- Cmp = Builder.CreateICmpUGT(LHS, RHS);
- break;
- case RK_None:
- llvm_unreachable("Unknown reduction operation.");
- }
- return Builder.CreateSelect(Cmp, LHS, RHS, Name);
- }
- public:
- explicit OperationData() = default;
- /// Construction for reduced values. They are identified by opcode only and
- /// don't have associated LHS/RHS values.
- explicit OperationData(Value *V) {
- if (auto *I = dyn_cast<Instruction>(V))
- Opcode = I->getOpcode();
- }
- /// Constructor for reduction operations with opcode and its left and
- /// right operands.
- OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
- bool NoNaN = false)
- : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
- assert(Kind != RK_None && "One of the reduction operations is expected.");
- }
- explicit operator bool() const { return Opcode; }
- /// Get the index of the first operand.
- unsigned getFirstOperandIndex() const {
- assert(!!*this && "The opcode is not set.");
- switch (Kind) {
- case RK_Min:
- case RK_UMin:
- case RK_Max:
- case RK_UMax:
- return 1;
- case RK_Arithmetic:
- case RK_None:
- break;
- }
- return 0;
- }
- /// Total number of operands in the reduction operation.
- unsigned getNumberOfOperands() const {
- assert(Kind != RK_None && !!*this && LHS && RHS &&
- "Expected reduction operation.");
- switch (Kind) {
- case RK_Arithmetic:
- return 2;
- case RK_Min:
- case RK_UMin:
- case RK_Max:
- case RK_UMax:
- return 3;
- case RK_None:
- break;
- }
- llvm_unreachable("Reduction kind is not set");
- }
- /// Checks if the operation has the same parent as \p P.
- bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
- assert(Kind != RK_None && !!*this && LHS && RHS &&
- "Expected reduction operation.");
- if (!IsRedOp)
- return I->getParent() == P;
- switch (Kind) {
- case RK_Arithmetic:
- // Arithmetic reduction operation must be used once only.
- return I->getParent() == P;
- case RK_Min:
- case RK_UMin:
- case RK_Max:
- case RK_UMax: {
- // SelectInst must be used twice while the condition op must have single
- // use only.
- auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
- return I->getParent() == P && Cmp && Cmp->getParent() == P;
- }
- case RK_None:
- break;
- }
- llvm_unreachable("Reduction kind is not set");
- }
- /// Expected number of uses for reduction operations/reduced values.
- bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
- assert(Kind != RK_None && !!*this && LHS && RHS &&
- "Expected reduction operation.");
- switch (Kind) {
- case RK_Arithmetic:
- return I->hasOneUse();
- case RK_Min:
- case RK_UMin:
- case RK_Max:
- case RK_UMax:
- return I->hasNUses(2) &&
- (!IsReductionOp ||
- cast<SelectInst>(I)->getCondition()->hasOneUse());
- case RK_None:
- break;
- }
- llvm_unreachable("Reduction kind is not set");
- }
- /// Initializes the list of reduction operations.
- void initReductionOps(ReductionOpsListType &ReductionOps) {
- assert(Kind != RK_None && !!*this && LHS && RHS &&
- "Expected reduction operation.");
- switch (Kind) {
- case RK_Arithmetic:
- ReductionOps.assign(1, ReductionOpsType());
- break;
- case RK_Min:
- case RK_UMin:
- case RK_Max:
- case RK_UMax:
- ReductionOps.assign(2, ReductionOpsType());
- break;
- case RK_None:
- llvm_unreachable("Reduction kind is not set");
- }
- }
- /// Add all reduction operations for the reduction instruction \p I.
- void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
- assert(Kind != RK_None && !!*this && LHS && RHS &&
- "Expected reduction operation.");
- switch (Kind) {
- case RK_Arithmetic:
- ReductionOps[0].emplace_back(I);
- break;
- case RK_Min:
- case RK_UMin:
- case RK_Max:
- case RK_UMax:
- ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
- ReductionOps[1].emplace_back(I);
- break;
- case RK_None:
- llvm_unreachable("Reduction kind is not set");
- }
- }
- /// Checks if instruction is associative and can be vectorized.
- bool isAssociative(Instruction *I) const {
- assert(Kind != RK_None && *this && LHS && RHS &&
- "Expected reduction operation.");
- switch (Kind) {
- case RK_Arithmetic:
- return I->isAssociative();
- case RK_Min:
- case RK_Max:
- return Opcode == Instruction::ICmp ||
- cast<Instruction>(I->getOperand(0))->isFast();
- case RK_UMin:
- case RK_UMax:
- assert(Opcode == Instruction::ICmp &&
- "Only integer compare operation is expected.");
- return true;
- case RK_None:
- break;
- }
- llvm_unreachable("Reduction kind is not set");
- }
- /// Checks if the reduction operation can be vectorized.
- bool isVectorizable(Instruction *I) const {
- return isVectorizable() && isAssociative(I);
- }
- /// Checks if two operation data are both a reduction op or both a reduced
- /// value.
- bool operator==(const OperationData &OD) {
- assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
- "One of the comparing operations is incorrect.");
- return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
- }
- bool operator!=(const OperationData &OD) { return !(*this == OD); }
- void clear() {
- Opcode = 0;
- LHS = nullptr;
- RHS = nullptr;
- Kind = RK_None;
- NoNaN = false;
- }
- /// Get the opcode of the reduction operation.
- unsigned getOpcode() const {
- assert(isVectorizable() && "Expected vectorizable operation.");
- return Opcode;
- }
- /// Get kind of reduction data.
- ReductionKind getKind() const { return Kind; }
- Value *getLHS() const { return LHS; }
- Value *getRHS() const { return RHS; }
- Type *getConditionType() const {
- switch (Kind) {
- case RK_Arithmetic:
- return nullptr;
- case RK_Min:
- case RK_Max:
- case RK_UMin:
- case RK_UMax:
- return CmpInst::makeCmpResultType(LHS->getType());
- case RK_None:
- break;
- }
- llvm_unreachable("Reduction kind is not set");
- }
- /// Creates reduction operation with the current opcode with the IR flags
- /// from \p ReductionOps.
- Value *createOp(IRBuilder<> &Builder, const Twine &Name,
- const ReductionOpsListType &ReductionOps) const {
- assert(isVectorizable() &&
- "Expected add|fadd or min/max reduction operation.");
- auto *Op = createOp(Builder, Name);
- switch (Kind) {
- case RK_Arithmetic:
- propagateIRFlags(Op, ReductionOps[0]);
- return Op;
- case RK_Min:
- case RK_Max:
- case RK_UMin:
- case RK_UMax:
- if (auto *SI = dyn_cast<SelectInst>(Op))
- propagateIRFlags(SI->getCondition(), ReductionOps[0]);
- propagateIRFlags(Op, ReductionOps[1]);
- return Op;
- case RK_None:
- break;
- }
- llvm_unreachable("Unknown reduction operation.");
- }
- /// Creates reduction operation with the current opcode with the IR flags
- /// from \p I.
- Value *createOp(IRBuilder<> &Builder, const Twine &Name,
- Instruction *I) const {
- assert(isVectorizable() &&
- "Expected add|fadd or min/max reduction operation.");
- auto *Op = createOp(Builder, Name);
- switch (Kind) {
- case RK_Arithmetic:
- propagateIRFlags(Op, I);
- return Op;
- case RK_Min:
- case RK_Max:
- case RK_UMin:
- case RK_UMax:
- if (auto *SI = dyn_cast<SelectInst>(Op)) {
- propagateIRFlags(SI->getCondition(),
- cast<SelectInst>(I)->getCondition());
- }
- propagateIRFlags(Op, I);
- return Op;
- case RK_None:
- break;
- }
- llvm_unreachable("Unknown reduction operation.");
- }
- TargetTransformInfo::ReductionFlags getFlags() const {
- TargetTransformInfo::ReductionFlags Flags;
- Flags.NoNaN = NoNaN;
- switch (Kind) {
- case RK_Arithmetic:
- break;
- case RK_Min:
- Flags.IsSigned = Opcode == Instruction::ICmp;
- Flags.IsMaxOp = false;
- break;
- case RK_Max:
- Flags.IsSigned = Opcode == Instruction::ICmp;
- Flags.IsMaxOp = true;
- break;
- case RK_UMin:
- Flags.IsSigned = false;
- Flags.IsMaxOp = false;
- break;
- case RK_UMax:
- Flags.IsSigned = false;
- Flags.IsMaxOp = true;
- break;
- case RK_None:
- llvm_unreachable("Reduction kind is not set");
- }
- return Flags;
- }
- };
- WeakTrackingVH ReductionRoot;
- /// The operation data of the reduction operation.
- OperationData ReductionData;
- /// The operation data of the values we perform a reduction on.
- OperationData ReducedValueData;
- /// Should we model this reduction as a pairwise reduction tree or a tree that
- /// splits the vector in halves and adds those halves.
- bool IsPairwiseReduction = false;
- /// Checks if the ParentStackElem.first should be marked as a reduction
- /// operation with an extra argument or as extra argument itself.
- void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
- Value *ExtraArg) {
- if (ExtraArgs.count(ParentStackElem.first)) {
- ExtraArgs[ParentStackElem.first] = nullptr;
- // We ran into something like:
- // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
- // The whole ParentStackElem.first should be considered as an extra value
- // in this case.
- // Do not perform analysis of remaining operands of ParentStackElem.first
- // instruction, this whole instruction is an extra argument.
- ParentStackElem.second = ParentStackElem.first->getNumOperands();
- } else {
- // We ran into something like:
- // ParentStackElem.first += ... + ExtraArg + ...
- ExtraArgs[ParentStackElem.first] = ExtraArg;
- }
- }
- static OperationData getOperationData(Value *V) {
- if (!V)
- return OperationData();
- Value *LHS;
- Value *RHS;
- if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
- return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
- RK_Arithmetic);
- }
- if (auto *Select = dyn_cast<SelectInst>(V)) {
- // Look for a min/max pattern.
- if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
- return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
- } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
- return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
- } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
- m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
- return OperationData(
- Instruction::FCmp, LHS, RHS, RK_Min,
- cast<Instruction>(Select->getCondition())->hasNoNaNs());
- } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
- return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
- } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
- return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
- } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
- m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
- return OperationData(
- Instruction::FCmp, LHS, RHS, RK_Max,
- cast<Instruction>(Select->getCondition())->hasNoNaNs());
- } else {
- // Try harder: look for min/max pattern based on instructions producing
- // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
- // During the intermediate stages of SLP, it's very common to have
- // pattern like this (since optimizeGatherSequence is run only once
- // at the end):
- // %1 = extractelement <2 x i32> %a, i32 0
- // %2 = extractelement <2 x i32> %a, i32 1
- // %cond = icmp sgt i32 %1, %2
- // %3 = extractelement <2 x i32> %a, i32 0
- // %4 = extractelement <2 x i32> %a, i32 1
- // %select = select i1 %cond, i32 %3, i32 %4
- CmpInst::Predicate Pred;
- Instruction *L1;
- Instruction *L2;
- LHS = Select->getTrueValue();
- RHS = Select->getFalseValue();
- Value *Cond = Select->getCondition();
- // TODO: Support inverse predicates.
- if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
- if (!isa<ExtractElementInst>(RHS) ||
- !L2->isIdenticalTo(cast<Instruction>(RHS)))
- return OperationData(V);
- } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
- if (!isa<ExtractElementInst>(LHS) ||
- !L1->isIdenticalTo(cast<Instruction>(LHS)))
- return OperationData(V);
- } else {
- if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
- return OperationData(V);
- if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
- !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
- !L2->isIdenticalTo(cast<Instruction>(RHS)))
- return OperationData(V);
- }
- switch (Pred) {
- default:
- return OperationData(V);
- case CmpInst::ICMP_ULT:
- case CmpInst::ICMP_ULE:
- return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
- case CmpInst::ICMP_SLT:
- case CmpInst::ICMP_SLE:
- return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
- case CmpInst::FCMP_OLT:
- case CmpInst::FCMP_OLE:
- case CmpInst::FCMP_ULT:
- case CmpInst::FCMP_ULE:
- return OperationData(Instruction::FCmp, LHS, RHS, RK_Min,
- cast<Instruction>(Cond)->hasNoNaNs());
- case CmpInst::ICMP_UGT:
- case CmpInst::ICMP_UGE:
- return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
- case CmpInst::ICMP_SGT:
- case CmpInst::ICMP_SGE:
- return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
- case CmpInst::FCMP_OGT:
- case CmpInst::FCMP_OGE:
- case CmpInst::FCMP_UGT:
- case CmpInst::FCMP_UGE:
- return OperationData(Instruction::FCmp, LHS, RHS, RK_Max,
- cast<Instruction>(Cond)->hasNoNaNs());
- }
- }
- }
- return OperationData(V);
- }
- public:
- HorizontalReduction() = default;
- /// Try to find a reduction tree.
- bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
- assert((!Phi || is_contained(Phi->operands(), B)) &&
- "Thi phi needs to use the binary operator");
- ReductionData = getOperationData(B);
- // We could have a initial reductions that is not an add.
- // r *= v1 + v2 + v3 + v4
- // In such a case start looking for a tree rooted in the first '+'.
- if (Phi) {
- if (ReductionData.getLHS() == Phi) {
- Phi = nullptr;
- B = dyn_cast<Instruction>(ReductionData.getRHS());
- ReductionData = getOperationData(B);
- } else if (ReductionData.getRHS() == Phi) {
- Phi = nullptr;
- B = dyn_cast<Instruction>(ReductionData.getLHS());
- ReductionData = getOperationData(B);
- }
- }
- if (!ReductionData.isVectorizable(B))
- return false;
- Type *Ty = B->getType();
- if (!isValidElementType(Ty))
- return false;
- if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy())
- return false;
- ReducedValueData.clear();
- ReductionRoot = B;
- // Post order traverse the reduction tree starting at B. We only handle true
- // trees containing only binary operators.
- SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
- Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
- ReductionData.initReductionOps(ReductionOps);
- while (!Stack.empty()) {
- Instruction *TreeN = Stack.back().first;
- unsigned EdgeToVist = Stack.back().second++;
- OperationData OpData = getOperationData(TreeN);
- bool IsReducedValue = OpData != ReductionData;
- // Postorder vist.
- if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
- if (IsReducedValue)
- ReducedVals.push_back(TreeN);
- else {
- auto I = ExtraArgs.find(TreeN);
- if (I != ExtraArgs.end() && !I->second) {
- // Check if TreeN is an extra argument of its parent operation.
- if (Stack.size() <= 1) {
- // TreeN can't be an extra argument as it is a root reduction
- // operation.
- return false;
- }
- // Yes, TreeN is an extra argument, do not add it to a list of
- // reduction operations.
- // Stack[Stack.size() - 2] always points to the parent operation.
- markExtraArg(Stack[Stack.size() - 2], TreeN);
- ExtraArgs.erase(TreeN);
- } else
- ReductionData.addReductionOps(TreeN, ReductionOps);
- }
- // Retract.
- Stack.pop_back();
- continue;
- }
- // Visit left or right.
- Value *NextV = TreeN->getOperand(EdgeToVist);
- if (NextV != Phi) {
- auto *I = dyn_cast<Instruction>(NextV);
- OpData = getOperationData(I);
- // Continue analysis if the next operand is a reduction operation or
- // (possibly) a reduced value. If the reduced value opcode is not set,
- // the first met operation != reduction operation is considered as the
- // reduced value class.
- if (I && (!ReducedValueData || OpData == ReducedValueData ||
- OpData == ReductionData)) {
- const bool IsReductionOperation = OpData == ReductionData;
- // Only handle trees in the current basic block.
- if (!ReductionData.hasSameParent(I, B->getParent(),
- IsReductionOperation)) {
- // I is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), I);
- continue;
- }
- // Each tree node needs to have minimal number of users except for the
- // ultimate reduction.
- if (!ReductionData.hasRequiredNumberOfUses(I,
- OpData == ReductionData) &&
- I != B) {
- // I is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), I);
- continue;
- }
- if (IsReductionOperation) {
- // We need to be able to reassociate the reduction operations.
- if (!OpData.isAssociative(I)) {
- // I is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), I);
- continue;
- }
- } else if (ReducedValueData &&
- ReducedValueData != OpData) {
- // Make sure that the opcodes of the operations that we are going to
- // reduce match.
- // I is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), I);
- continue;
- } else if (!ReducedValueData)
- ReducedValueData = OpData;
- Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
- continue;
- }
- }
- // NextV is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), NextV);
- }
- return true;
- }
- /// Attempt to vectorize the tree found by
- /// matchAssociativeReduction.
- bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
- if (ReducedVals.empty())
- return false;
- // If there is a sufficient number of reduction values, reduce
- // to a nearby power-of-2. Can safely generate oversized
- // vectors and rely on the backend to split them to legal sizes.
- unsigned NumReducedVals = ReducedVals.size();
- if (NumReducedVals < 4)
- return false;
- unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
- Value *VectorizedTree = nullptr;
- IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
- FastMathFlags Unsafe;
- Unsafe.setFast();
- Builder.setFastMathFlags(Unsafe);
- unsigned i = 0;
- BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
- // The same extra argument may be used several time, so log each attempt
- // to use it.
- for (auto &Pair : ExtraArgs) {
- assert(Pair.first && "DebugLoc must be set.");
- ExternallyUsedValues[Pair.second].push_back(Pair.first);
- }
- // The reduction root is used as the insertion point for new instructions,
- // so set it as externally used to prevent it from being deleted.
- ExternallyUsedValues[ReductionRoot];
- SmallVector<Value *, 16> IgnoreList;
- for (auto &V : ReductionOps)
- IgnoreList.append(V.begin(), V.end());
- while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
- auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
- V.buildTree(VL, ExternallyUsedValues, IgnoreList);
- Optional<ArrayRef<unsigned>> Order = V.bestOrder();
- // TODO: Handle orders of size less than number of elements in the vector.
- if (Order && Order->size() == VL.size()) {
- // TODO: reorder tree nodes without tree rebuilding.
- SmallVector<Value *, 4> ReorderedOps(VL.size());
- llvm::transform(*Order, ReorderedOps.begin(),
- [VL](const unsigned Idx) { return VL[Idx]; });
- V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
- }
- if (V.isTreeTinyAndNotFullyVectorizable())
- break;
- V.computeMinimumValueSizes();
- // Estimate cost.
- int TreeCost = V.getTreeCost();
- int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth);
- int Cost = TreeCost + ReductionCost;
- if (Cost >= -SLPCostThreshold) {
- V.getORE()->emit([&]() {
- return OptimizationRemarkMissed(
- SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0]))
- << "Vectorizing horizontal reduction is possible"
- << "but not beneficial with cost "
- << ore::NV("Cost", Cost) << " and threshold "
- << ore::NV("Threshold", -SLPCostThreshold);
- });
- break;
- }
- LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
- << Cost << ". (HorRdx)\n");
- V.getORE()->emit([&]() {
- return OptimizationRemark(
- SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0]))
- << "Vectorized horizontal reduction with cost "
- << ore::NV("Cost", Cost) << " and with tree size "
- << ore::NV("TreeSize", V.getTreeSize());
- });
- // Vectorize a tree.
- DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
- Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
- // Emit a reduction.
- Builder.SetInsertPoint(cast<Instruction>(ReductionRoot));
- Value *ReducedSubTree =
- emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
- if (VectorizedTree) {
- Builder.SetCurrentDebugLocation(Loc);
- OperationData VectReductionData(ReductionData.getOpcode(),
- VectorizedTree, ReducedSubTree,
- ReductionData.getKind());
- VectorizedTree =
- VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
- } else
- VectorizedTree = ReducedSubTree;
- i += ReduxWidth;
- ReduxWidth = PowerOf2Floor(NumReducedVals - i);
- }
- if (VectorizedTree) {
- // Finish the reduction.
- for (; i < NumReducedVals; ++i) {
- auto *I = cast<Instruction>(ReducedVals[i]);
- Builder.SetCurrentDebugLocation(I->getDebugLoc());
- OperationData VectReductionData(ReductionData.getOpcode(),
- VectorizedTree, I,
- ReductionData.getKind());
- VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
- }
- for (auto &Pair : ExternallyUsedValues) {
- // Add each externally used value to the final reduction.
- for (auto *I : Pair.second) {
- Builder.SetCurrentDebugLocation(I->getDebugLoc());
- OperationData VectReductionData(ReductionData.getOpcode(),
- VectorizedTree, Pair.first,
- ReductionData.getKind());
- VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
- }
- }
- // Update users.
- ReductionRoot->replaceAllUsesWith(VectorizedTree);
- }
- return VectorizedTree != nullptr;
- }
- unsigned numReductionValues() const {
- return ReducedVals.size();
- }
- private:
- /// Calculate the cost of a reduction.
- int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
- unsigned ReduxWidth) {
- Type *ScalarTy = FirstReducedVal->getType();
- Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
- int PairwiseRdxCost;
- int SplittingRdxCost;
- switch (ReductionData.getKind()) {
- case RK_Arithmetic:
- PairwiseRdxCost =
- TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
- /*IsPairwiseForm=*/true);
- SplittingRdxCost =
- TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
- /*IsPairwiseForm=*/false);
- break;
- case RK_Min:
- case RK_Max:
- case RK_UMin:
- case RK_UMax: {
- Type *VecCondTy = CmpInst::makeCmpResultType(VecTy);
- bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
- ReductionData.getKind() == RK_UMax;
- PairwiseRdxCost =
- TTI->getMinMaxReductionCost(VecTy, VecCondTy,
- /*IsPairwiseForm=*/true, IsUnsigned);
- SplittingRdxCost =
- TTI->getMinMaxReductionCost(VecTy, VecCondTy,
- /*IsPairwiseForm=*/false, IsUnsigned);
- break;
- }
- case RK_None:
- llvm_unreachable("Expected arithmetic or min/max reduction operation");
- }
- IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
- int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
- int ScalarReduxCost;
- switch (ReductionData.getKind()) {
- case RK_Arithmetic:
- ScalarReduxCost =
- TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
- break;
- case RK_Min:
- case RK_Max:
- case RK_UMin:
- case RK_UMax:
- ScalarReduxCost =
- TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
- TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
- CmpInst::makeCmpResultType(ScalarTy));
- break;
- case RK_None:
- llvm_unreachable("Expected arithmetic or min/max reduction operation");
- }
- ScalarReduxCost *= (ReduxWidth - 1);
- LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
- << " for reduction that starts with " << *FirstReducedVal
- << " (It is a "
- << (IsPairwiseReduction ? "pairwise" : "splitting")
- << " reduction)\n");
- return VecReduxCost - ScalarReduxCost;
- }
- /// Emit a horizontal reduction of the vectorized value.
- Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
- unsigned ReduxWidth, const TargetTransformInfo *TTI) {
- assert(VectorizedValue && "Need to have a vectorized tree node");
- assert(isPowerOf2_32(ReduxWidth) &&
- "We only handle power-of-two reductions for now");
- if (!IsPairwiseReduction)
- return createSimpleTargetReduction(
- Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
- ReductionData.getFlags(), FastMathFlags::getFast(),
- ReductionOps.back());
- Value *TmpVec = VectorizedValue;
- for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
- Value *LeftMask =
- createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
- Value *RightMask =
- createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
- Value *LeftShuf = Builder.CreateShuffleVector(
- TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
- Value *RightShuf = Builder.CreateShuffleVector(
- TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
- "rdx.shuf.r");
- OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
- RightShuf, ReductionData.getKind());
- TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
- }
- // The result is in the first element of the vector.
- return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
- }
- };
- } // end anonymous namespace
- /// Recognize construction of vectors like
- /// %ra = insertelement <4 x float> undef, float %s0, i32 0
- /// %rb = insertelement <4 x float> %ra, float %s1, i32 1
- /// %rc = insertelement <4 x float> %rb, float %s2, i32 2
- /// %rd = insertelement <4 x float> %rc, float %s3, i32 3
- /// starting from the last insertelement instruction.
- ///
- /// Returns true if it matches
- static bool findBuildVector(InsertElementInst *LastInsertElem,
- TargetTransformInfo *TTI,
- SmallVectorImpl<Value *> &BuildVectorOpds,
- int &UserCost) {
- UserCost = 0;
- Value *V = nullptr;
- do {
- if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) {
- UserCost += TTI->getVectorInstrCost(Instruction::InsertElement,
- LastInsertElem->getType(),
- CI->getZExtValue());
- }
- BuildVectorOpds.push_back(LastInsertElem->getOperand(1));
- V = LastInsertElem->getOperand(0);
- if (isa<UndefValue>(V))
- break;
- LastInsertElem = dyn_cast<InsertElementInst>(V);
- if (!LastInsertElem || !LastInsertElem->hasOneUse())
- return false;
- } while (true);
- std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
- return true;
- }
- /// Like findBuildVector, but looks for construction of aggregate.
- ///
- /// \return true if it matches.
- static bool findBuildAggregate(InsertValueInst *IV,
- SmallVectorImpl<Value *> &BuildVectorOpds) {
- Value *V;
- do {
- BuildVectorOpds.push_back(IV->getInsertedValueOperand());
- V = IV->getAggregateOperand();
- if (isa<UndefValue>(V))
- break;
- IV = dyn_cast<InsertValueInst>(V);
- if (!IV || !IV->hasOneUse())
- return false;
- } while (true);
- std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
- return true;
- }
- static bool PhiTypeSorterFunc(Value *V, Value *V2) {
- return V->getType() < V2->getType();
- }
- /// Try and get a reduction value from a phi node.
- ///
- /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
- /// if they come from either \p ParentBB or a containing loop latch.
- ///
- /// \returns A candidate reduction value if possible, or \code nullptr \endcode
- /// if not possible.
- static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
- BasicBlock *ParentBB, LoopInfo *LI) {
- // There are situations where the reduction value is not dominated by the
- // reduction phi. Vectorizing such cases has been reported to cause
- // miscompiles. See PR25787.
- auto DominatedReduxValue = [&](Value *R) {
- return isa<Instruction>(R) &&
- DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
- };
- Value *Rdx = nullptr;
- // Return the incoming value if it comes from the same BB as the phi node.
- if (P->getIncomingBlock(0) == ParentBB) {
- Rdx = P->getIncomingValue(0);
- } else if (P->getIncomingBlock(1) == ParentBB) {
- Rdx = P->getIncomingValue(1);
- }
- if (Rdx && DominatedReduxValue(Rdx))
- return Rdx;
- // Otherwise, check whether we have a loop latch to look at.
- Loop *BBL = LI->getLoopFor(ParentBB);
- if (!BBL)
- return nullptr;
- BasicBlock *BBLatch = BBL->getLoopLatch();
- if (!BBLatch)
- return nullptr;
- // There is a loop latch, return the incoming value if it comes from
- // that. This reduction pattern occasionally turns up.
- if (P->getIncomingBlock(0) == BBLatch) {
- Rdx = P->getIncomingValue(0);
- } else if (P->getIncomingBlock(1) == BBLatch) {
- Rdx = P->getIncomingValue(1);
- }
- if (Rdx && DominatedReduxValue(Rdx))
- return Rdx;
- return nullptr;
- }
- /// Attempt to reduce a horizontal reduction.
- /// If it is legal to match a horizontal reduction feeding the phi node \a P
- /// with reduction operators \a Root (or one of its operands) in a basic block
- /// \a BB, then check if it can be done. If horizontal reduction is not found
- /// and root instruction is a binary operation, vectorization of the operands is
- /// attempted.
- /// \returns true if a horizontal reduction was matched and reduced or operands
- /// of one of the binary instruction were vectorized.
- /// \returns false if a horizontal reduction was not matched (or not possible)
- /// or no vectorization of any binary operation feeding \a Root instruction was
- /// performed.
- static bool tryToVectorizeHorReductionOrInstOperands(
- PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
- TargetTransformInfo *TTI,
- const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
- if (!ShouldVectorizeHor)
- return false;
- if (!Root)
- return false;
- if (Root->getParent() != BB || isa<PHINode>(Root))
- return false;
- // Start analysis starting from Root instruction. If horizontal reduction is
- // found, try to vectorize it. If it is not a horizontal reduction or
- // vectorization is not possible or not effective, and currently analyzed
- // instruction is a binary operation, try to vectorize the operands, using
- // pre-order DFS traversal order. If the operands were not vectorized, repeat
- // the same procedure considering each operand as a possible root of the
- // horizontal reduction.
- // Interrupt the process if the Root instruction itself was vectorized or all
- // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
- SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0});
- SmallPtrSet<Value *, 8> VisitedInstrs;
- bool Res = false;
- while (!Stack.empty()) {
- Value *V;
- unsigned Level;
- std::tie(V, Level) = Stack.pop_back_val();
- if (!V)
- continue;
- auto *Inst = dyn_cast<Instruction>(V);
- if (!Inst)
- continue;
- auto *BI = dyn_cast<BinaryOperator>(Inst);
- auto *SI = dyn_cast<SelectInst>(Inst);
- if (BI || SI) {
- HorizontalReduction HorRdx;
- if (HorRdx.matchAssociativeReduction(P, Inst)) {
- if (HorRdx.tryToReduce(R, TTI)) {
- Res = true;
- // Set P to nullptr to avoid re-analysis of phi node in
- // matchAssociativeReduction function unless this is the root node.
- P = nullptr;
- continue;
- }
- }
- if (P && BI) {
- Inst = dyn_cast<Instruction>(BI->getOperand(0));
- if (Inst == P)
- Inst = dyn_cast<Instruction>(BI->getOperand(1));
- if (!Inst) {
- // Set P to nullptr to avoid re-analysis of phi node in
- // matchAssociativeReduction function unless this is the root node.
- P = nullptr;
- continue;
- }
- }
- }
- // Set P to nullptr to avoid re-analysis of phi node in
- // matchAssociativeReduction function unless this is the root node.
- P = nullptr;
- if (Vectorize(Inst, R)) {
- Res = true;
- continue;
- }
- // Try to vectorize operands.
- // Continue analysis for the instruction from the same basic block only to
- // save compile time.
- if (++Level < RecursionMaxDepth)
- for (auto *Op : Inst->operand_values())
- if (VisitedInstrs.insert(Op).second)
- if (auto *I = dyn_cast<Instruction>(Op))
- if (!isa<PHINode>(I) && I->getParent() == BB)
- Stack.emplace_back(Op, Level);
- }
- return Res;
- }
- bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
- BasicBlock *BB, BoUpSLP &R,
- TargetTransformInfo *TTI) {
- if (!V)
- return false;
- auto *I = dyn_cast<Instruction>(V);
- if (!I)
- return false;
- if (!isa<BinaryOperator>(I))
- P = nullptr;
- // Try to match and vectorize a horizontal reduction.
- auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
- return tryToVectorize(I, R);
- };
- return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
- ExtraVectorization);
- }
- bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
- BasicBlock *BB, BoUpSLP &R) {
- const DataLayout &DL = BB->getModule()->getDataLayout();
- if (!R.canMapToVector(IVI->getType(), DL))
- return false;
- SmallVector<Value *, 16> BuildVectorOpds;
- if (!findBuildAggregate(IVI, BuildVectorOpds))
- return false;
- LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
- // Aggregate value is unlikely to be processed in vector register, we need to
- // extract scalars into scalar registers, so NeedExtraction is set true.
- return tryToVectorizeList(BuildVectorOpds, R);
- }
- bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
- BasicBlock *BB, BoUpSLP &R) {
- int UserCost;
- SmallVector<Value *, 16> BuildVectorOpds;
- if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) ||
- (llvm::all_of(BuildVectorOpds,
- [](Value *V) { return isa<ExtractElementInst>(V); }) &&
- isShuffle(BuildVectorOpds)))
- return false;
- // Vectorize starting with the build vector operands ignoring the BuildVector
- // instructions for the purpose of scheduling and user extraction.
- return tryToVectorizeList(BuildVectorOpds, R, UserCost);
- }
- bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
- BoUpSLP &R) {
- if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
- return true;
- bool OpsChanged = false;
- for (int Idx = 0; Idx < 2; ++Idx) {
- OpsChanged |=
- vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
- }
- return OpsChanged;
- }
- bool SLPVectorizerPass::vectorizeSimpleInstructions(
- SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) {
- bool OpsChanged = false;
- for (auto &VH : reverse(Instructions)) {
- auto *I = dyn_cast_or_null<Instruction>(VH);
- if (!I)
- continue;
- if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
- OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
- else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
- OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
- else if (auto *CI = dyn_cast<CmpInst>(I))
- OpsChanged |= vectorizeCmpInst(CI, BB, R);
- }
- Instructions.clear();
- return OpsChanged;
- }
- bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
- bool Changed = false;
- SmallVector<Value *, 4> Incoming;
- SmallPtrSet<Value *, 16> VisitedInstrs;
- bool HaveVectorizedPhiNodes = true;
- while (HaveVectorizedPhiNodes) {
- HaveVectorizedPhiNodes = false;
- // Collect the incoming values from the PHIs.
- Incoming.clear();
- for (Instruction &I : *BB) {
- PHINode *P = dyn_cast<PHINode>(&I);
- if (!P)
- break;
- if (!VisitedInstrs.count(P))
- Incoming.push_back(P);
- }
- // Sort by type.
- llvm::stable_sort(Incoming, PhiTypeSorterFunc);
- // Try to vectorize elements base on their type.
- for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
- E = Incoming.end();
- IncIt != E;) {
- // Look for the next elements with the same type.
- SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
- while (SameTypeIt != E &&
- (*SameTypeIt)->getType() == (*IncIt)->getType()) {
- VisitedInstrs.insert(*SameTypeIt);
- ++SameTypeIt;
- }
- // Try to vectorize them.
- unsigned NumElts = (SameTypeIt - IncIt);
- LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
- << NumElts << ")\n");
- // The order in which the phi nodes appear in the program does not matter.
- // So allow tryToVectorizeList to reorder them if it is beneficial. This
- // is done when there are exactly two elements since tryToVectorizeList
- // asserts that there are only two values when AllowReorder is true.
- bool AllowReorder = NumElts == 2;
- if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
- /*UserCost=*/0, AllowReorder)) {
- // Success start over because instructions might have been changed.
- HaveVectorizedPhiNodes = true;
- Changed = true;
- break;
- }
- // Start over at the next instruction of a different type (or the end).
- IncIt = SameTypeIt;
- }
- }
- VisitedInstrs.clear();
- SmallVector<WeakVH, 8> PostProcessInstructions;
- SmallDenseSet<Instruction *, 4> KeyNodes;
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- // We may go through BB multiple times so skip the one we have checked.
- if (!VisitedInstrs.insert(&*it).second) {
- if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
- vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
- // We would like to start over since some instructions are deleted
- // and the iterator may become invalid value.
- Changed = true;
- it = BB->begin();
- e = BB->end();
- }
- continue;
- }
- if (isa<DbgInfoIntrinsic>(it))
- continue;
- // Try to vectorize reductions that use PHINodes.
- if (PHINode *P = dyn_cast<PHINode>(it)) {
- // Check that the PHI is a reduction PHI.
- if (P->getNumIncomingValues() != 2)
- return Changed;
- // Try to match and vectorize a horizontal reduction.
- if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
- TTI)) {
- Changed = true;
- it = BB->begin();
- e = BB->end();
- continue;
- }
- continue;
- }
- // Ran into an instruction without users, like terminator, or function call
- // with ignored return value, store. Ignore unused instructions (basing on
- // instruction type, except for CallInst and InvokeInst).
- if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
- isa<InvokeInst>(it))) {
- KeyNodes.insert(&*it);
- bool OpsChanged = false;
- if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
- for (auto *V : it->operand_values()) {
- // Try to match and vectorize a horizontal reduction.
- OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
- }
- }
- // Start vectorization of post-process list of instructions from the
- // top-tree instructions to try to vectorize as many instructions as
- // possible.
- OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
- if (OpsChanged) {
- // We would like to start over since some instructions are deleted
- // and the iterator may become invalid value.
- Changed = true;
- it = BB->begin();
- e = BB->end();
- continue;
- }
- }
- if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
- isa<InsertValueInst>(it))
- PostProcessInstructions.push_back(&*it);
- }
- return Changed;
- }
- bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
- auto Changed = false;
- for (auto &Entry : GEPs) {
- // If the getelementptr list has fewer than two elements, there's nothing
- // to do.
- if (Entry.second.size() < 2)
- continue;
- LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
- << Entry.second.size() << ".\n");
- // We process the getelementptr list in chunks of 16 (like we do for
- // stores) to minimize compile-time.
- for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) {
- auto Len = std::min<unsigned>(BE - BI, 16);
- auto GEPList = makeArrayRef(&Entry.second[BI], Len);
- // Initialize a set a candidate getelementptrs. Note that we use a
- // SetVector here to preserve program order. If the index computations
- // are vectorizable and begin with loads, we want to minimize the chance
- // of having to reorder them later.
- SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
- // Some of the candidates may have already been vectorized after we
- // initially collected them. If so, the WeakTrackingVHs will have
- // nullified the
- // values, so remove them from the set of candidates.
- Candidates.remove(nullptr);
- // Remove from the set of candidates all pairs of getelementptrs with
- // constant differences. Such getelementptrs are likely not good
- // candidates for vectorization in a bottom-up phase since one can be
- // computed from the other. We also ensure all candidate getelementptr
- // indices are unique.
- for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
- auto *GEPI = cast<GetElementPtrInst>(GEPList[I]);
- if (!Candidates.count(GEPI))
- continue;
- auto *SCEVI = SE->getSCEV(GEPList[I]);
- for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
- auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]);
- auto *SCEVJ = SE->getSCEV(GEPList[J]);
- if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
- Candidates.remove(GEPList[I]);
- Candidates.remove(GEPList[J]);
- } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
- Candidates.remove(GEPList[J]);
- }
- }
- }
- // We break out of the above computation as soon as we know there are
- // fewer than two candidates remaining.
- if (Candidates.size() < 2)
- continue;
- // Add the single, non-constant index of each candidate to the bundle. We
- // ensured the indices met these constraints when we originally collected
- // the getelementptrs.
- SmallVector<Value *, 16> Bundle(Candidates.size());
- auto BundleIndex = 0u;
- for (auto *V : Candidates) {
- auto *GEP = cast<GetElementPtrInst>(V);
- auto *GEPIdx = GEP->idx_begin()->get();
- assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
- Bundle[BundleIndex++] = GEPIdx;
- }
- // Try and vectorize the indices. We are currently only interested in
- // gather-like cases of the form:
- //
- // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
- //
- // where the loads of "a", the loads of "b", and the subtractions can be
- // performed in parallel. It's likely that detecting this pattern in a
- // bottom-up phase will be simpler and less costly than building a
- // full-blown top-down phase beginning at the consecutive loads.
- Changed |= tryToVectorizeList(Bundle, R);
- }
- }
- return Changed;
- }
- bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
- bool Changed = false;
- // Attempt to sort and vectorize each of the store-groups.
- for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
- ++it) {
- if (it->second.size() < 2)
- continue;
- LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
- << it->second.size() << ".\n");
- // Process the stores in chunks of 16.
- // TODO: The limit of 16 inhibits greater vectorization factors.
- // For example, AVX2 supports v32i8. Increasing this limit, however,
- // may cause a significant compile-time increase.
- for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) {
- unsigned Len = std::min<unsigned>(CE - CI, 16);
- Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R);
- }
- }
- return Changed;
- }
- char SLPVectorizer::ID = 0;
- static const char lv_name[] = "SLP Vectorizer";
- INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
- INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
- INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
- INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
- Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
|