BitcodeWriter.cpp 77 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045
  1. //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // Bitcode writer implementation.
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #include "llvm/Bitcode/ReaderWriter.h"
  14. #include "ValueEnumerator.h"
  15. #include "llvm/ADT/Triple.h"
  16. #include "llvm/Bitcode/BitstreamWriter.h"
  17. #include "llvm/Bitcode/LLVMBitCodes.h"
  18. #include "llvm/IR/Constants.h"
  19. #include "llvm/IR/DerivedTypes.h"
  20. #include "llvm/IR/InlineAsm.h"
  21. #include "llvm/IR/Instructions.h"
  22. #include "llvm/IR/Module.h"
  23. #include "llvm/IR/Operator.h"
  24. #include "llvm/IR/ValueSymbolTable.h"
  25. #include "llvm/Support/CommandLine.h"
  26. #include "llvm/Support/ErrorHandling.h"
  27. #include "llvm/Support/MathExtras.h"
  28. #include "llvm/Support/Program.h"
  29. #include "llvm/Support/raw_ostream.h"
  30. #include <cctype>
  31. #include <map>
  32. using namespace llvm;
  33. static cl::opt<bool>
  34. EnablePreserveUseListOrdering("enable-bc-uselist-preserve",
  35. cl::desc("Turn on experimental support for "
  36. "use-list order preservation."),
  37. cl::init(false), cl::Hidden);
  38. /// These are manifest constants used by the bitcode writer. They do not need to
  39. /// be kept in sync with the reader, but need to be consistent within this file.
  40. enum {
  41. // VALUE_SYMTAB_BLOCK abbrev id's.
  42. VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  43. VST_ENTRY_7_ABBREV,
  44. VST_ENTRY_6_ABBREV,
  45. VST_BBENTRY_6_ABBREV,
  46. // CONSTANTS_BLOCK abbrev id's.
  47. CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  48. CONSTANTS_INTEGER_ABBREV,
  49. CONSTANTS_CE_CAST_Abbrev,
  50. CONSTANTS_NULL_Abbrev,
  51. // FUNCTION_BLOCK abbrev id's.
  52. FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  53. FUNCTION_INST_BINOP_ABBREV,
  54. FUNCTION_INST_BINOP_FLAGS_ABBREV,
  55. FUNCTION_INST_CAST_ABBREV,
  56. FUNCTION_INST_RET_VOID_ABBREV,
  57. FUNCTION_INST_RET_VAL_ABBREV,
  58. FUNCTION_INST_UNREACHABLE_ABBREV
  59. };
  60. static unsigned GetEncodedCastOpcode(unsigned Opcode) {
  61. switch (Opcode) {
  62. default: llvm_unreachable("Unknown cast instruction!");
  63. case Instruction::Trunc : return bitc::CAST_TRUNC;
  64. case Instruction::ZExt : return bitc::CAST_ZEXT;
  65. case Instruction::SExt : return bitc::CAST_SEXT;
  66. case Instruction::FPToUI : return bitc::CAST_FPTOUI;
  67. case Instruction::FPToSI : return bitc::CAST_FPTOSI;
  68. case Instruction::UIToFP : return bitc::CAST_UITOFP;
  69. case Instruction::SIToFP : return bitc::CAST_SITOFP;
  70. case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
  71. case Instruction::FPExt : return bitc::CAST_FPEXT;
  72. case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
  73. case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
  74. case Instruction::BitCast : return bitc::CAST_BITCAST;
  75. case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
  76. }
  77. }
  78. static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
  79. switch (Opcode) {
  80. default: llvm_unreachable("Unknown binary instruction!");
  81. case Instruction::Add:
  82. case Instruction::FAdd: return bitc::BINOP_ADD;
  83. case Instruction::Sub:
  84. case Instruction::FSub: return bitc::BINOP_SUB;
  85. case Instruction::Mul:
  86. case Instruction::FMul: return bitc::BINOP_MUL;
  87. case Instruction::UDiv: return bitc::BINOP_UDIV;
  88. case Instruction::FDiv:
  89. case Instruction::SDiv: return bitc::BINOP_SDIV;
  90. case Instruction::URem: return bitc::BINOP_UREM;
  91. case Instruction::FRem:
  92. case Instruction::SRem: return bitc::BINOP_SREM;
  93. case Instruction::Shl: return bitc::BINOP_SHL;
  94. case Instruction::LShr: return bitc::BINOP_LSHR;
  95. case Instruction::AShr: return bitc::BINOP_ASHR;
  96. case Instruction::And: return bitc::BINOP_AND;
  97. case Instruction::Or: return bitc::BINOP_OR;
  98. case Instruction::Xor: return bitc::BINOP_XOR;
  99. }
  100. }
  101. static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
  102. switch (Op) {
  103. default: llvm_unreachable("Unknown RMW operation!");
  104. case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
  105. case AtomicRMWInst::Add: return bitc::RMW_ADD;
  106. case AtomicRMWInst::Sub: return bitc::RMW_SUB;
  107. case AtomicRMWInst::And: return bitc::RMW_AND;
  108. case AtomicRMWInst::Nand: return bitc::RMW_NAND;
  109. case AtomicRMWInst::Or: return bitc::RMW_OR;
  110. case AtomicRMWInst::Xor: return bitc::RMW_XOR;
  111. case AtomicRMWInst::Max: return bitc::RMW_MAX;
  112. case AtomicRMWInst::Min: return bitc::RMW_MIN;
  113. case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
  114. case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
  115. }
  116. }
  117. static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
  118. switch (Ordering) {
  119. case NotAtomic: return bitc::ORDERING_NOTATOMIC;
  120. case Unordered: return bitc::ORDERING_UNORDERED;
  121. case Monotonic: return bitc::ORDERING_MONOTONIC;
  122. case Acquire: return bitc::ORDERING_ACQUIRE;
  123. case Release: return bitc::ORDERING_RELEASE;
  124. case AcquireRelease: return bitc::ORDERING_ACQREL;
  125. case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
  126. }
  127. llvm_unreachable("Invalid ordering");
  128. }
  129. static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
  130. switch (SynchScope) {
  131. case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
  132. case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
  133. }
  134. llvm_unreachable("Invalid synch scope");
  135. }
  136. static void WriteStringRecord(unsigned Code, StringRef Str,
  137. unsigned AbbrevToUse, BitstreamWriter &Stream) {
  138. SmallVector<unsigned, 64> Vals;
  139. // Code: [strchar x N]
  140. for (unsigned i = 0, e = Str.size(); i != e; ++i) {
  141. if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
  142. AbbrevToUse = 0;
  143. Vals.push_back(Str[i]);
  144. }
  145. // Emit the finished record.
  146. Stream.EmitRecord(Code, Vals, AbbrevToUse);
  147. }
  148. static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
  149. switch (Kind) {
  150. case Attribute::Alignment:
  151. return bitc::ATTR_KIND_ALIGNMENT;
  152. case Attribute::AlwaysInline:
  153. return bitc::ATTR_KIND_ALWAYS_INLINE;
  154. case Attribute::Builtin:
  155. return bitc::ATTR_KIND_BUILTIN;
  156. case Attribute::ByVal:
  157. return bitc::ATTR_KIND_BY_VAL;
  158. case Attribute::InAlloca:
  159. return bitc::ATTR_KIND_IN_ALLOCA;
  160. case Attribute::Cold:
  161. return bitc::ATTR_KIND_COLD;
  162. case Attribute::InlineHint:
  163. return bitc::ATTR_KIND_INLINE_HINT;
  164. case Attribute::InReg:
  165. return bitc::ATTR_KIND_IN_REG;
  166. case Attribute::MinSize:
  167. return bitc::ATTR_KIND_MIN_SIZE;
  168. case Attribute::Naked:
  169. return bitc::ATTR_KIND_NAKED;
  170. case Attribute::Nest:
  171. return bitc::ATTR_KIND_NEST;
  172. case Attribute::NoAlias:
  173. return bitc::ATTR_KIND_NO_ALIAS;
  174. case Attribute::NoBuiltin:
  175. return bitc::ATTR_KIND_NO_BUILTIN;
  176. case Attribute::NoCapture:
  177. return bitc::ATTR_KIND_NO_CAPTURE;
  178. case Attribute::NoDuplicate:
  179. return bitc::ATTR_KIND_NO_DUPLICATE;
  180. case Attribute::NoImplicitFloat:
  181. return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
  182. case Attribute::NoInline:
  183. return bitc::ATTR_KIND_NO_INLINE;
  184. case Attribute::NonLazyBind:
  185. return bitc::ATTR_KIND_NON_LAZY_BIND;
  186. case Attribute::NoRedZone:
  187. return bitc::ATTR_KIND_NO_RED_ZONE;
  188. case Attribute::NoReturn:
  189. return bitc::ATTR_KIND_NO_RETURN;
  190. case Attribute::NoUnwind:
  191. return bitc::ATTR_KIND_NO_UNWIND;
  192. case Attribute::OptimizeForSize:
  193. return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
  194. case Attribute::OptimizeNone:
  195. return bitc::ATTR_KIND_OPTIMIZE_NONE;
  196. case Attribute::ReadNone:
  197. return bitc::ATTR_KIND_READ_NONE;
  198. case Attribute::ReadOnly:
  199. return bitc::ATTR_KIND_READ_ONLY;
  200. case Attribute::Returned:
  201. return bitc::ATTR_KIND_RETURNED;
  202. case Attribute::ReturnsTwice:
  203. return bitc::ATTR_KIND_RETURNS_TWICE;
  204. case Attribute::SExt:
  205. return bitc::ATTR_KIND_S_EXT;
  206. case Attribute::StackAlignment:
  207. return bitc::ATTR_KIND_STACK_ALIGNMENT;
  208. case Attribute::StackProtect:
  209. return bitc::ATTR_KIND_STACK_PROTECT;
  210. case Attribute::StackProtectReq:
  211. return bitc::ATTR_KIND_STACK_PROTECT_REQ;
  212. case Attribute::StackProtectStrong:
  213. return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
  214. case Attribute::StructRet:
  215. return bitc::ATTR_KIND_STRUCT_RET;
  216. case Attribute::SanitizeAddress:
  217. return bitc::ATTR_KIND_SANITIZE_ADDRESS;
  218. case Attribute::SanitizeThread:
  219. return bitc::ATTR_KIND_SANITIZE_THREAD;
  220. case Attribute::SanitizeMemory:
  221. return bitc::ATTR_KIND_SANITIZE_MEMORY;
  222. case Attribute::UWTable:
  223. return bitc::ATTR_KIND_UW_TABLE;
  224. case Attribute::ZExt:
  225. return bitc::ATTR_KIND_Z_EXT;
  226. case Attribute::EndAttrKinds:
  227. llvm_unreachable("Can not encode end-attribute kinds marker.");
  228. case Attribute::None:
  229. llvm_unreachable("Can not encode none-attribute.");
  230. }
  231. llvm_unreachable("Trying to encode unknown attribute");
  232. }
  233. static void WriteAttributeGroupTable(const ValueEnumerator &VE,
  234. BitstreamWriter &Stream) {
  235. const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
  236. if (AttrGrps.empty()) return;
  237. Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
  238. SmallVector<uint64_t, 64> Record;
  239. for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
  240. AttributeSet AS = AttrGrps[i];
  241. for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
  242. AttributeSet A = AS.getSlotAttributes(i);
  243. Record.push_back(VE.getAttributeGroupID(A));
  244. Record.push_back(AS.getSlotIndex(i));
  245. for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
  246. I != E; ++I) {
  247. Attribute Attr = *I;
  248. if (Attr.isEnumAttribute()) {
  249. Record.push_back(0);
  250. Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
  251. } else if (Attr.isAlignAttribute()) {
  252. Record.push_back(1);
  253. Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
  254. Record.push_back(Attr.getValueAsInt());
  255. } else {
  256. StringRef Kind = Attr.getKindAsString();
  257. StringRef Val = Attr.getValueAsString();
  258. Record.push_back(Val.empty() ? 3 : 4);
  259. Record.append(Kind.begin(), Kind.end());
  260. Record.push_back(0);
  261. if (!Val.empty()) {
  262. Record.append(Val.begin(), Val.end());
  263. Record.push_back(0);
  264. }
  265. }
  266. }
  267. Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
  268. Record.clear();
  269. }
  270. }
  271. Stream.ExitBlock();
  272. }
  273. static void WriteAttributeTable(const ValueEnumerator &VE,
  274. BitstreamWriter &Stream) {
  275. const std::vector<AttributeSet> &Attrs = VE.getAttributes();
  276. if (Attrs.empty()) return;
  277. Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
  278. SmallVector<uint64_t, 64> Record;
  279. for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
  280. const AttributeSet &A = Attrs[i];
  281. for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
  282. Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
  283. Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
  284. Record.clear();
  285. }
  286. Stream.ExitBlock();
  287. }
  288. /// WriteTypeTable - Write out the type table for a module.
  289. static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  290. const ValueEnumerator::TypeList &TypeList = VE.getTypes();
  291. Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
  292. SmallVector<uint64_t, 64> TypeVals;
  293. uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
  294. // Abbrev for TYPE_CODE_POINTER.
  295. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  296. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
  297. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  298. Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
  299. unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
  300. // Abbrev for TYPE_CODE_FUNCTION.
  301. Abbv = new BitCodeAbbrev();
  302. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
  303. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
  304. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  305. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  306. unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
  307. // Abbrev for TYPE_CODE_STRUCT_ANON.
  308. Abbv = new BitCodeAbbrev();
  309. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
  310. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
  311. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  312. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  313. unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
  314. // Abbrev for TYPE_CODE_STRUCT_NAME.
  315. Abbv = new BitCodeAbbrev();
  316. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
  317. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  318. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  319. unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
  320. // Abbrev for TYPE_CODE_STRUCT_NAMED.
  321. Abbv = new BitCodeAbbrev();
  322. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
  323. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
  324. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  325. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  326. unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
  327. // Abbrev for TYPE_CODE_ARRAY.
  328. Abbv = new BitCodeAbbrev();
  329. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
  330. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
  331. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  332. unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
  333. // Emit an entry count so the reader can reserve space.
  334. TypeVals.push_back(TypeList.size());
  335. Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
  336. TypeVals.clear();
  337. // Loop over all of the types, emitting each in turn.
  338. for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
  339. Type *T = TypeList[i];
  340. int AbbrevToUse = 0;
  341. unsigned Code = 0;
  342. switch (T->getTypeID()) {
  343. case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
  344. case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
  345. case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
  346. case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
  347. case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
  348. case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
  349. case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
  350. case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
  351. case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
  352. case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
  353. case Type::IntegerTyID:
  354. // INTEGER: [width]
  355. Code = bitc::TYPE_CODE_INTEGER;
  356. TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
  357. break;
  358. case Type::PointerTyID: {
  359. PointerType *PTy = cast<PointerType>(T);
  360. // POINTER: [pointee type, address space]
  361. Code = bitc::TYPE_CODE_POINTER;
  362. TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
  363. unsigned AddressSpace = PTy->getAddressSpace();
  364. TypeVals.push_back(AddressSpace);
  365. if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
  366. break;
  367. }
  368. case Type::FunctionTyID: {
  369. FunctionType *FT = cast<FunctionType>(T);
  370. // FUNCTION: [isvararg, retty, paramty x N]
  371. Code = bitc::TYPE_CODE_FUNCTION;
  372. TypeVals.push_back(FT->isVarArg());
  373. TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
  374. for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
  375. TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
  376. AbbrevToUse = FunctionAbbrev;
  377. break;
  378. }
  379. case Type::StructTyID: {
  380. StructType *ST = cast<StructType>(T);
  381. // STRUCT: [ispacked, eltty x N]
  382. TypeVals.push_back(ST->isPacked());
  383. // Output all of the element types.
  384. for (StructType::element_iterator I = ST->element_begin(),
  385. E = ST->element_end(); I != E; ++I)
  386. TypeVals.push_back(VE.getTypeID(*I));
  387. if (ST->isLiteral()) {
  388. Code = bitc::TYPE_CODE_STRUCT_ANON;
  389. AbbrevToUse = StructAnonAbbrev;
  390. } else {
  391. if (ST->isOpaque()) {
  392. Code = bitc::TYPE_CODE_OPAQUE;
  393. } else {
  394. Code = bitc::TYPE_CODE_STRUCT_NAMED;
  395. AbbrevToUse = StructNamedAbbrev;
  396. }
  397. // Emit the name if it is present.
  398. if (!ST->getName().empty())
  399. WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
  400. StructNameAbbrev, Stream);
  401. }
  402. break;
  403. }
  404. case Type::ArrayTyID: {
  405. ArrayType *AT = cast<ArrayType>(T);
  406. // ARRAY: [numelts, eltty]
  407. Code = bitc::TYPE_CODE_ARRAY;
  408. TypeVals.push_back(AT->getNumElements());
  409. TypeVals.push_back(VE.getTypeID(AT->getElementType()));
  410. AbbrevToUse = ArrayAbbrev;
  411. break;
  412. }
  413. case Type::VectorTyID: {
  414. VectorType *VT = cast<VectorType>(T);
  415. // VECTOR [numelts, eltty]
  416. Code = bitc::TYPE_CODE_VECTOR;
  417. TypeVals.push_back(VT->getNumElements());
  418. TypeVals.push_back(VE.getTypeID(VT->getElementType()));
  419. break;
  420. }
  421. }
  422. // Emit the finished record.
  423. Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
  424. TypeVals.clear();
  425. }
  426. Stream.ExitBlock();
  427. }
  428. static unsigned getEncodedLinkage(const GlobalValue *GV) {
  429. switch (GV->getLinkage()) {
  430. case GlobalValue::ExternalLinkage: return 0;
  431. case GlobalValue::WeakAnyLinkage: return 1;
  432. case GlobalValue::AppendingLinkage: return 2;
  433. case GlobalValue::InternalLinkage: return 3;
  434. case GlobalValue::LinkOnceAnyLinkage: return 4;
  435. case GlobalValue::ExternalWeakLinkage: return 7;
  436. case GlobalValue::CommonLinkage: return 8;
  437. case GlobalValue::PrivateLinkage: return 9;
  438. case GlobalValue::WeakODRLinkage: return 10;
  439. case GlobalValue::LinkOnceODRLinkage: return 11;
  440. case GlobalValue::AvailableExternallyLinkage: return 12;
  441. }
  442. llvm_unreachable("Invalid linkage");
  443. }
  444. static unsigned getEncodedVisibility(const GlobalValue *GV) {
  445. switch (GV->getVisibility()) {
  446. case GlobalValue::DefaultVisibility: return 0;
  447. case GlobalValue::HiddenVisibility: return 1;
  448. case GlobalValue::ProtectedVisibility: return 2;
  449. }
  450. llvm_unreachable("Invalid visibility");
  451. }
  452. static unsigned getEncodedDLLStorageClass(const GlobalValue *GV) {
  453. switch (GV->getDLLStorageClass()) {
  454. case GlobalValue::DefaultStorageClass: return 0;
  455. case GlobalValue::DLLImportStorageClass: return 1;
  456. case GlobalValue::DLLExportStorageClass: return 2;
  457. }
  458. llvm_unreachable("Invalid DLL storage class");
  459. }
  460. static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) {
  461. switch (GV->getThreadLocalMode()) {
  462. case GlobalVariable::NotThreadLocal: return 0;
  463. case GlobalVariable::GeneralDynamicTLSModel: return 1;
  464. case GlobalVariable::LocalDynamicTLSModel: return 2;
  465. case GlobalVariable::InitialExecTLSModel: return 3;
  466. case GlobalVariable::LocalExecTLSModel: return 4;
  467. }
  468. llvm_unreachable("Invalid TLS model");
  469. }
  470. // Emit top-level description of module, including target triple, inline asm,
  471. // descriptors for global variables, and function prototype info.
  472. static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
  473. BitstreamWriter &Stream) {
  474. // Emit various pieces of data attached to a module.
  475. if (!M->getTargetTriple().empty())
  476. WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
  477. 0/*TODO*/, Stream);
  478. const std::string &DL = M->getDataLayoutStr();
  479. if (!DL.empty())
  480. WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
  481. if (!M->getModuleInlineAsm().empty())
  482. WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
  483. 0/*TODO*/, Stream);
  484. // Emit information about sections and GC, computing how many there are. Also
  485. // compute the maximum alignment value.
  486. std::map<std::string, unsigned> SectionMap;
  487. std::map<std::string, unsigned> GCMap;
  488. unsigned MaxAlignment = 0;
  489. unsigned MaxGlobalType = 0;
  490. for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
  491. GV != E; ++GV) {
  492. MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
  493. MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
  494. if (GV->hasSection()) {
  495. // Give section names unique ID's.
  496. unsigned &Entry = SectionMap[GV->getSection()];
  497. if (!Entry) {
  498. WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
  499. 0/*TODO*/, Stream);
  500. Entry = SectionMap.size();
  501. }
  502. }
  503. }
  504. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
  505. MaxAlignment = std::max(MaxAlignment, F->getAlignment());
  506. if (F->hasSection()) {
  507. // Give section names unique ID's.
  508. unsigned &Entry = SectionMap[F->getSection()];
  509. if (!Entry) {
  510. WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
  511. 0/*TODO*/, Stream);
  512. Entry = SectionMap.size();
  513. }
  514. }
  515. if (F->hasGC()) {
  516. // Same for GC names.
  517. unsigned &Entry = GCMap[F->getGC()];
  518. if (!Entry) {
  519. WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
  520. 0/*TODO*/, Stream);
  521. Entry = GCMap.size();
  522. }
  523. }
  524. }
  525. // Emit abbrev for globals, now that we know # sections and max alignment.
  526. unsigned SimpleGVarAbbrev = 0;
  527. if (!M->global_empty()) {
  528. // Add an abbrev for common globals with no visibility or thread localness.
  529. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  530. Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
  531. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  532. Log2_32_Ceil(MaxGlobalType+1)));
  533. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
  534. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
  535. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage.
  536. if (MaxAlignment == 0) // Alignment.
  537. Abbv->Add(BitCodeAbbrevOp(0));
  538. else {
  539. unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
  540. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  541. Log2_32_Ceil(MaxEncAlignment+1)));
  542. }
  543. if (SectionMap.empty()) // Section.
  544. Abbv->Add(BitCodeAbbrevOp(0));
  545. else
  546. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  547. Log2_32_Ceil(SectionMap.size()+1)));
  548. // Don't bother emitting vis + thread local.
  549. SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
  550. }
  551. // Emit the global variable information.
  552. SmallVector<unsigned, 64> Vals;
  553. for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
  554. GV != E; ++GV) {
  555. unsigned AbbrevToUse = 0;
  556. // GLOBALVAR: [type, isconst, initid,
  557. // linkage, alignment, section, visibility, threadlocal,
  558. // unnamed_addr, externally_initialized, dllstorageclass]
  559. Vals.push_back(VE.getTypeID(GV->getType()));
  560. Vals.push_back(GV->isConstant());
  561. Vals.push_back(GV->isDeclaration() ? 0 :
  562. (VE.getValueID(GV->getInitializer()) + 1));
  563. Vals.push_back(getEncodedLinkage(GV));
  564. Vals.push_back(Log2_32(GV->getAlignment())+1);
  565. Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
  566. if (GV->isThreadLocal() ||
  567. GV->getVisibility() != GlobalValue::DefaultVisibility ||
  568. GV->hasUnnamedAddr() || GV->isExternallyInitialized() ||
  569. GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
  570. Vals.push_back(getEncodedVisibility(GV));
  571. Vals.push_back(getEncodedThreadLocalMode(GV));
  572. Vals.push_back(GV->hasUnnamedAddr());
  573. Vals.push_back(GV->isExternallyInitialized());
  574. Vals.push_back(getEncodedDLLStorageClass(GV));
  575. } else {
  576. AbbrevToUse = SimpleGVarAbbrev;
  577. }
  578. Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
  579. Vals.clear();
  580. }
  581. // Emit the function proto information.
  582. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
  583. // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
  584. // section, visibility, gc, unnamed_addr, prefix]
  585. Vals.push_back(VE.getTypeID(F->getType()));
  586. Vals.push_back(F->getCallingConv());
  587. Vals.push_back(F->isDeclaration());
  588. Vals.push_back(getEncodedLinkage(F));
  589. Vals.push_back(VE.getAttributeID(F->getAttributes()));
  590. Vals.push_back(Log2_32(F->getAlignment())+1);
  591. Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
  592. Vals.push_back(getEncodedVisibility(F));
  593. Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
  594. Vals.push_back(F->hasUnnamedAddr());
  595. Vals.push_back(F->hasPrefixData() ? (VE.getValueID(F->getPrefixData()) + 1)
  596. : 0);
  597. Vals.push_back(getEncodedDLLStorageClass(F));
  598. unsigned AbbrevToUse = 0;
  599. Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
  600. Vals.clear();
  601. }
  602. // Emit the alias information.
  603. for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
  604. AI != E; ++AI) {
  605. // ALIAS: [alias type, aliasee val#, linkage, visibility]
  606. Vals.push_back(VE.getTypeID(AI->getType()));
  607. Vals.push_back(VE.getValueID(AI->getAliasee()));
  608. Vals.push_back(getEncodedLinkage(AI));
  609. Vals.push_back(getEncodedVisibility(AI));
  610. Vals.push_back(getEncodedDLLStorageClass(AI));
  611. unsigned AbbrevToUse = 0;
  612. Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
  613. Vals.clear();
  614. }
  615. }
  616. static uint64_t GetOptimizationFlags(const Value *V) {
  617. uint64_t Flags = 0;
  618. if (const OverflowingBinaryOperator *OBO =
  619. dyn_cast<OverflowingBinaryOperator>(V)) {
  620. if (OBO->hasNoSignedWrap())
  621. Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
  622. if (OBO->hasNoUnsignedWrap())
  623. Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
  624. } else if (const PossiblyExactOperator *PEO =
  625. dyn_cast<PossiblyExactOperator>(V)) {
  626. if (PEO->isExact())
  627. Flags |= 1 << bitc::PEO_EXACT;
  628. } else if (const FPMathOperator *FPMO =
  629. dyn_cast<const FPMathOperator>(V)) {
  630. if (FPMO->hasUnsafeAlgebra())
  631. Flags |= FastMathFlags::UnsafeAlgebra;
  632. if (FPMO->hasNoNaNs())
  633. Flags |= FastMathFlags::NoNaNs;
  634. if (FPMO->hasNoInfs())
  635. Flags |= FastMathFlags::NoInfs;
  636. if (FPMO->hasNoSignedZeros())
  637. Flags |= FastMathFlags::NoSignedZeros;
  638. if (FPMO->hasAllowReciprocal())
  639. Flags |= FastMathFlags::AllowReciprocal;
  640. }
  641. return Flags;
  642. }
  643. static void WriteMDNode(const MDNode *N,
  644. const ValueEnumerator &VE,
  645. BitstreamWriter &Stream,
  646. SmallVectorImpl<uint64_t> &Record) {
  647. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
  648. if (N->getOperand(i)) {
  649. Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
  650. Record.push_back(VE.getValueID(N->getOperand(i)));
  651. } else {
  652. Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
  653. Record.push_back(0);
  654. }
  655. }
  656. unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
  657. bitc::METADATA_NODE;
  658. Stream.EmitRecord(MDCode, Record, 0);
  659. Record.clear();
  660. }
  661. static void WriteModuleMetadata(const Module *M,
  662. const ValueEnumerator &VE,
  663. BitstreamWriter &Stream) {
  664. const ValueEnumerator::ValueList &Vals = VE.getMDValues();
  665. bool StartedMetadataBlock = false;
  666. unsigned MDSAbbrev = 0;
  667. SmallVector<uint64_t, 64> Record;
  668. for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
  669. if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
  670. if (!N->isFunctionLocal() || !N->getFunction()) {
  671. if (!StartedMetadataBlock) {
  672. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  673. StartedMetadataBlock = true;
  674. }
  675. WriteMDNode(N, VE, Stream, Record);
  676. }
  677. } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
  678. if (!StartedMetadataBlock) {
  679. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  680. // Abbrev for METADATA_STRING.
  681. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  682. Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
  683. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  684. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  685. MDSAbbrev = Stream.EmitAbbrev(Abbv);
  686. StartedMetadataBlock = true;
  687. }
  688. // Code: [strchar x N]
  689. Record.append(MDS->begin(), MDS->end());
  690. // Emit the finished record.
  691. Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
  692. Record.clear();
  693. }
  694. }
  695. // Write named metadata.
  696. for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
  697. E = M->named_metadata_end(); I != E; ++I) {
  698. const NamedMDNode *NMD = I;
  699. if (!StartedMetadataBlock) {
  700. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  701. StartedMetadataBlock = true;
  702. }
  703. // Write name.
  704. StringRef Str = NMD->getName();
  705. for (unsigned i = 0, e = Str.size(); i != e; ++i)
  706. Record.push_back(Str[i]);
  707. Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
  708. Record.clear();
  709. // Write named metadata operands.
  710. for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
  711. Record.push_back(VE.getValueID(NMD->getOperand(i)));
  712. Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
  713. Record.clear();
  714. }
  715. if (StartedMetadataBlock)
  716. Stream.ExitBlock();
  717. }
  718. static void WriteFunctionLocalMetadata(const Function &F,
  719. const ValueEnumerator &VE,
  720. BitstreamWriter &Stream) {
  721. bool StartedMetadataBlock = false;
  722. SmallVector<uint64_t, 64> Record;
  723. const SmallVectorImpl<const MDNode *> &Vals = VE.getFunctionLocalMDValues();
  724. for (unsigned i = 0, e = Vals.size(); i != e; ++i)
  725. if (const MDNode *N = Vals[i])
  726. if (N->isFunctionLocal() && N->getFunction() == &F) {
  727. if (!StartedMetadataBlock) {
  728. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  729. StartedMetadataBlock = true;
  730. }
  731. WriteMDNode(N, VE, Stream, Record);
  732. }
  733. if (StartedMetadataBlock)
  734. Stream.ExitBlock();
  735. }
  736. static void WriteMetadataAttachment(const Function &F,
  737. const ValueEnumerator &VE,
  738. BitstreamWriter &Stream) {
  739. Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
  740. SmallVector<uint64_t, 64> Record;
  741. // Write metadata attachments
  742. // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
  743. SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
  744. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
  745. for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
  746. I != E; ++I) {
  747. MDs.clear();
  748. I->getAllMetadataOtherThanDebugLoc(MDs);
  749. // If no metadata, ignore instruction.
  750. if (MDs.empty()) continue;
  751. Record.push_back(VE.getInstructionID(I));
  752. for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
  753. Record.push_back(MDs[i].first);
  754. Record.push_back(VE.getValueID(MDs[i].second));
  755. }
  756. Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
  757. Record.clear();
  758. }
  759. Stream.ExitBlock();
  760. }
  761. static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
  762. SmallVector<uint64_t, 64> Record;
  763. // Write metadata kinds
  764. // METADATA_KIND - [n x [id, name]]
  765. SmallVector<StringRef, 8> Names;
  766. M->getMDKindNames(Names);
  767. if (Names.empty()) return;
  768. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  769. for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
  770. Record.push_back(MDKindID);
  771. StringRef KName = Names[MDKindID];
  772. Record.append(KName.begin(), KName.end());
  773. Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
  774. Record.clear();
  775. }
  776. Stream.ExitBlock();
  777. }
  778. static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
  779. if ((int64_t)V >= 0)
  780. Vals.push_back(V << 1);
  781. else
  782. Vals.push_back((-V << 1) | 1);
  783. }
  784. static void WriteConstants(unsigned FirstVal, unsigned LastVal,
  785. const ValueEnumerator &VE,
  786. BitstreamWriter &Stream, bool isGlobal) {
  787. if (FirstVal == LastVal) return;
  788. Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
  789. unsigned AggregateAbbrev = 0;
  790. unsigned String8Abbrev = 0;
  791. unsigned CString7Abbrev = 0;
  792. unsigned CString6Abbrev = 0;
  793. // If this is a constant pool for the module, emit module-specific abbrevs.
  794. if (isGlobal) {
  795. // Abbrev for CST_CODE_AGGREGATE.
  796. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  797. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
  798. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  799. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
  800. AggregateAbbrev = Stream.EmitAbbrev(Abbv);
  801. // Abbrev for CST_CODE_STRING.
  802. Abbv = new BitCodeAbbrev();
  803. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
  804. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  805. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  806. String8Abbrev = Stream.EmitAbbrev(Abbv);
  807. // Abbrev for CST_CODE_CSTRING.
  808. Abbv = new BitCodeAbbrev();
  809. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
  810. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  811. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
  812. CString7Abbrev = Stream.EmitAbbrev(Abbv);
  813. // Abbrev for CST_CODE_CSTRING.
  814. Abbv = new BitCodeAbbrev();
  815. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
  816. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  817. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  818. CString6Abbrev = Stream.EmitAbbrev(Abbv);
  819. }
  820. SmallVector<uint64_t, 64> Record;
  821. const ValueEnumerator::ValueList &Vals = VE.getValues();
  822. Type *LastTy = 0;
  823. for (unsigned i = FirstVal; i != LastVal; ++i) {
  824. const Value *V = Vals[i].first;
  825. // If we need to switch types, do so now.
  826. if (V->getType() != LastTy) {
  827. LastTy = V->getType();
  828. Record.push_back(VE.getTypeID(LastTy));
  829. Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
  830. CONSTANTS_SETTYPE_ABBREV);
  831. Record.clear();
  832. }
  833. if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
  834. Record.push_back(unsigned(IA->hasSideEffects()) |
  835. unsigned(IA->isAlignStack()) << 1 |
  836. unsigned(IA->getDialect()&1) << 2);
  837. // Add the asm string.
  838. const std::string &AsmStr = IA->getAsmString();
  839. Record.push_back(AsmStr.size());
  840. for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
  841. Record.push_back(AsmStr[i]);
  842. // Add the constraint string.
  843. const std::string &ConstraintStr = IA->getConstraintString();
  844. Record.push_back(ConstraintStr.size());
  845. for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
  846. Record.push_back(ConstraintStr[i]);
  847. Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
  848. Record.clear();
  849. continue;
  850. }
  851. const Constant *C = cast<Constant>(V);
  852. unsigned Code = -1U;
  853. unsigned AbbrevToUse = 0;
  854. if (C->isNullValue()) {
  855. Code = bitc::CST_CODE_NULL;
  856. } else if (isa<UndefValue>(C)) {
  857. Code = bitc::CST_CODE_UNDEF;
  858. } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
  859. if (IV->getBitWidth() <= 64) {
  860. uint64_t V = IV->getSExtValue();
  861. emitSignedInt64(Record, V);
  862. Code = bitc::CST_CODE_INTEGER;
  863. AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
  864. } else { // Wide integers, > 64 bits in size.
  865. // We have an arbitrary precision integer value to write whose
  866. // bit width is > 64. However, in canonical unsigned integer
  867. // format it is likely that the high bits are going to be zero.
  868. // So, we only write the number of active words.
  869. unsigned NWords = IV->getValue().getActiveWords();
  870. const uint64_t *RawWords = IV->getValue().getRawData();
  871. for (unsigned i = 0; i != NWords; ++i) {
  872. emitSignedInt64(Record, RawWords[i]);
  873. }
  874. Code = bitc::CST_CODE_WIDE_INTEGER;
  875. }
  876. } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
  877. Code = bitc::CST_CODE_FLOAT;
  878. Type *Ty = CFP->getType();
  879. if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
  880. Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
  881. } else if (Ty->isX86_FP80Ty()) {
  882. // api needed to prevent premature destruction
  883. // bits are not in the same order as a normal i80 APInt, compensate.
  884. APInt api = CFP->getValueAPF().bitcastToAPInt();
  885. const uint64_t *p = api.getRawData();
  886. Record.push_back((p[1] << 48) | (p[0] >> 16));
  887. Record.push_back(p[0] & 0xffffLL);
  888. } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
  889. APInt api = CFP->getValueAPF().bitcastToAPInt();
  890. const uint64_t *p = api.getRawData();
  891. Record.push_back(p[0]);
  892. Record.push_back(p[1]);
  893. } else {
  894. assert (0 && "Unknown FP type!");
  895. }
  896. } else if (isa<ConstantDataSequential>(C) &&
  897. cast<ConstantDataSequential>(C)->isString()) {
  898. const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
  899. // Emit constant strings specially.
  900. unsigned NumElts = Str->getNumElements();
  901. // If this is a null-terminated string, use the denser CSTRING encoding.
  902. if (Str->isCString()) {
  903. Code = bitc::CST_CODE_CSTRING;
  904. --NumElts; // Don't encode the null, which isn't allowed by char6.
  905. } else {
  906. Code = bitc::CST_CODE_STRING;
  907. AbbrevToUse = String8Abbrev;
  908. }
  909. bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
  910. bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
  911. for (unsigned i = 0; i != NumElts; ++i) {
  912. unsigned char V = Str->getElementAsInteger(i);
  913. Record.push_back(V);
  914. isCStr7 &= (V & 128) == 0;
  915. if (isCStrChar6)
  916. isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
  917. }
  918. if (isCStrChar6)
  919. AbbrevToUse = CString6Abbrev;
  920. else if (isCStr7)
  921. AbbrevToUse = CString7Abbrev;
  922. } else if (const ConstantDataSequential *CDS =
  923. dyn_cast<ConstantDataSequential>(C)) {
  924. Code = bitc::CST_CODE_DATA;
  925. Type *EltTy = CDS->getType()->getElementType();
  926. if (isa<IntegerType>(EltTy)) {
  927. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
  928. Record.push_back(CDS->getElementAsInteger(i));
  929. } else if (EltTy->isFloatTy()) {
  930. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
  931. union { float F; uint32_t I; };
  932. F = CDS->getElementAsFloat(i);
  933. Record.push_back(I);
  934. }
  935. } else {
  936. assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
  937. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
  938. union { double F; uint64_t I; };
  939. F = CDS->getElementAsDouble(i);
  940. Record.push_back(I);
  941. }
  942. }
  943. } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
  944. isa<ConstantVector>(C)) {
  945. Code = bitc::CST_CODE_AGGREGATE;
  946. for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
  947. Record.push_back(VE.getValueID(C->getOperand(i)));
  948. AbbrevToUse = AggregateAbbrev;
  949. } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
  950. switch (CE->getOpcode()) {
  951. default:
  952. if (Instruction::isCast(CE->getOpcode())) {
  953. Code = bitc::CST_CODE_CE_CAST;
  954. Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
  955. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  956. Record.push_back(VE.getValueID(C->getOperand(0)));
  957. AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
  958. } else {
  959. assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
  960. Code = bitc::CST_CODE_CE_BINOP;
  961. Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
  962. Record.push_back(VE.getValueID(C->getOperand(0)));
  963. Record.push_back(VE.getValueID(C->getOperand(1)));
  964. uint64_t Flags = GetOptimizationFlags(CE);
  965. if (Flags != 0)
  966. Record.push_back(Flags);
  967. }
  968. break;
  969. case Instruction::GetElementPtr:
  970. Code = bitc::CST_CODE_CE_GEP;
  971. if (cast<GEPOperator>(C)->isInBounds())
  972. Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
  973. for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
  974. Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
  975. Record.push_back(VE.getValueID(C->getOperand(i)));
  976. }
  977. break;
  978. case Instruction::Select:
  979. Code = bitc::CST_CODE_CE_SELECT;
  980. Record.push_back(VE.getValueID(C->getOperand(0)));
  981. Record.push_back(VE.getValueID(C->getOperand(1)));
  982. Record.push_back(VE.getValueID(C->getOperand(2)));
  983. break;
  984. case Instruction::ExtractElement:
  985. Code = bitc::CST_CODE_CE_EXTRACTELT;
  986. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  987. Record.push_back(VE.getValueID(C->getOperand(0)));
  988. Record.push_back(VE.getValueID(C->getOperand(1)));
  989. break;
  990. case Instruction::InsertElement:
  991. Code = bitc::CST_CODE_CE_INSERTELT;
  992. Record.push_back(VE.getValueID(C->getOperand(0)));
  993. Record.push_back(VE.getValueID(C->getOperand(1)));
  994. Record.push_back(VE.getValueID(C->getOperand(2)));
  995. break;
  996. case Instruction::ShuffleVector:
  997. // If the return type and argument types are the same, this is a
  998. // standard shufflevector instruction. If the types are different,
  999. // then the shuffle is widening or truncating the input vectors, and
  1000. // the argument type must also be encoded.
  1001. if (C->getType() == C->getOperand(0)->getType()) {
  1002. Code = bitc::CST_CODE_CE_SHUFFLEVEC;
  1003. } else {
  1004. Code = bitc::CST_CODE_CE_SHUFVEC_EX;
  1005. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1006. }
  1007. Record.push_back(VE.getValueID(C->getOperand(0)));
  1008. Record.push_back(VE.getValueID(C->getOperand(1)));
  1009. Record.push_back(VE.getValueID(C->getOperand(2)));
  1010. break;
  1011. case Instruction::ICmp:
  1012. case Instruction::FCmp:
  1013. Code = bitc::CST_CODE_CE_CMP;
  1014. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1015. Record.push_back(VE.getValueID(C->getOperand(0)));
  1016. Record.push_back(VE.getValueID(C->getOperand(1)));
  1017. Record.push_back(CE->getPredicate());
  1018. break;
  1019. }
  1020. } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
  1021. Code = bitc::CST_CODE_BLOCKADDRESS;
  1022. Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
  1023. Record.push_back(VE.getValueID(BA->getFunction()));
  1024. Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
  1025. } else {
  1026. #ifndef NDEBUG
  1027. C->dump();
  1028. #endif
  1029. llvm_unreachable("Unknown constant!");
  1030. }
  1031. Stream.EmitRecord(Code, Record, AbbrevToUse);
  1032. Record.clear();
  1033. }
  1034. Stream.ExitBlock();
  1035. }
  1036. static void WriteModuleConstants(const ValueEnumerator &VE,
  1037. BitstreamWriter &Stream) {
  1038. const ValueEnumerator::ValueList &Vals = VE.getValues();
  1039. // Find the first constant to emit, which is the first non-globalvalue value.
  1040. // We know globalvalues have been emitted by WriteModuleInfo.
  1041. for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
  1042. if (!isa<GlobalValue>(Vals[i].first)) {
  1043. WriteConstants(i, Vals.size(), VE, Stream, true);
  1044. return;
  1045. }
  1046. }
  1047. }
  1048. /// PushValueAndType - The file has to encode both the value and type id for
  1049. /// many values, because we need to know what type to create for forward
  1050. /// references. However, most operands are not forward references, so this type
  1051. /// field is not needed.
  1052. ///
  1053. /// This function adds V's value ID to Vals. If the value ID is higher than the
  1054. /// instruction ID, then it is a forward reference, and it also includes the
  1055. /// type ID. The value ID that is written is encoded relative to the InstID.
  1056. static bool PushValueAndType(const Value *V, unsigned InstID,
  1057. SmallVectorImpl<unsigned> &Vals,
  1058. ValueEnumerator &VE) {
  1059. unsigned ValID = VE.getValueID(V);
  1060. // Make encoding relative to the InstID.
  1061. Vals.push_back(InstID - ValID);
  1062. if (ValID >= InstID) {
  1063. Vals.push_back(VE.getTypeID(V->getType()));
  1064. return true;
  1065. }
  1066. return false;
  1067. }
  1068. /// pushValue - Like PushValueAndType, but where the type of the value is
  1069. /// omitted (perhaps it was already encoded in an earlier operand).
  1070. static void pushValue(const Value *V, unsigned InstID,
  1071. SmallVectorImpl<unsigned> &Vals,
  1072. ValueEnumerator &VE) {
  1073. unsigned ValID = VE.getValueID(V);
  1074. Vals.push_back(InstID - ValID);
  1075. }
  1076. static void pushValueSigned(const Value *V, unsigned InstID,
  1077. SmallVectorImpl<uint64_t> &Vals,
  1078. ValueEnumerator &VE) {
  1079. unsigned ValID = VE.getValueID(V);
  1080. int64_t diff = ((int32_t)InstID - (int32_t)ValID);
  1081. emitSignedInt64(Vals, diff);
  1082. }
  1083. /// WriteInstruction - Emit an instruction to the specified stream.
  1084. static void WriteInstruction(const Instruction &I, unsigned InstID,
  1085. ValueEnumerator &VE, BitstreamWriter &Stream,
  1086. SmallVectorImpl<unsigned> &Vals) {
  1087. unsigned Code = 0;
  1088. unsigned AbbrevToUse = 0;
  1089. VE.setInstructionID(&I);
  1090. switch (I.getOpcode()) {
  1091. default:
  1092. if (Instruction::isCast(I.getOpcode())) {
  1093. Code = bitc::FUNC_CODE_INST_CAST;
  1094. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1095. AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
  1096. Vals.push_back(VE.getTypeID(I.getType()));
  1097. Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
  1098. } else {
  1099. assert(isa<BinaryOperator>(I) && "Unknown instruction!");
  1100. Code = bitc::FUNC_CODE_INST_BINOP;
  1101. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1102. AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
  1103. pushValue(I.getOperand(1), InstID, Vals, VE);
  1104. Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
  1105. uint64_t Flags = GetOptimizationFlags(&I);
  1106. if (Flags != 0) {
  1107. if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
  1108. AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
  1109. Vals.push_back(Flags);
  1110. }
  1111. }
  1112. break;
  1113. case Instruction::GetElementPtr:
  1114. Code = bitc::FUNC_CODE_INST_GEP;
  1115. if (cast<GEPOperator>(&I)->isInBounds())
  1116. Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
  1117. for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
  1118. PushValueAndType(I.getOperand(i), InstID, Vals, VE);
  1119. break;
  1120. case Instruction::ExtractValue: {
  1121. Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
  1122. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1123. const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
  1124. for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
  1125. Vals.push_back(*i);
  1126. break;
  1127. }
  1128. case Instruction::InsertValue: {
  1129. Code = bitc::FUNC_CODE_INST_INSERTVAL;
  1130. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1131. PushValueAndType(I.getOperand(1), InstID, Vals, VE);
  1132. const InsertValueInst *IVI = cast<InsertValueInst>(&I);
  1133. for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
  1134. Vals.push_back(*i);
  1135. break;
  1136. }
  1137. case Instruction::Select:
  1138. Code = bitc::FUNC_CODE_INST_VSELECT;
  1139. PushValueAndType(I.getOperand(1), InstID, Vals, VE);
  1140. pushValue(I.getOperand(2), InstID, Vals, VE);
  1141. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1142. break;
  1143. case Instruction::ExtractElement:
  1144. Code = bitc::FUNC_CODE_INST_EXTRACTELT;
  1145. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1146. pushValue(I.getOperand(1), InstID, Vals, VE);
  1147. break;
  1148. case Instruction::InsertElement:
  1149. Code = bitc::FUNC_CODE_INST_INSERTELT;
  1150. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1151. pushValue(I.getOperand(1), InstID, Vals, VE);
  1152. pushValue(I.getOperand(2), InstID, Vals, VE);
  1153. break;
  1154. case Instruction::ShuffleVector:
  1155. Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
  1156. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1157. pushValue(I.getOperand(1), InstID, Vals, VE);
  1158. pushValue(I.getOperand(2), InstID, Vals, VE);
  1159. break;
  1160. case Instruction::ICmp:
  1161. case Instruction::FCmp:
  1162. // compare returning Int1Ty or vector of Int1Ty
  1163. Code = bitc::FUNC_CODE_INST_CMP2;
  1164. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1165. pushValue(I.getOperand(1), InstID, Vals, VE);
  1166. Vals.push_back(cast<CmpInst>(I).getPredicate());
  1167. break;
  1168. case Instruction::Ret:
  1169. {
  1170. Code = bitc::FUNC_CODE_INST_RET;
  1171. unsigned NumOperands = I.getNumOperands();
  1172. if (NumOperands == 0)
  1173. AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
  1174. else if (NumOperands == 1) {
  1175. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1176. AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
  1177. } else {
  1178. for (unsigned i = 0, e = NumOperands; i != e; ++i)
  1179. PushValueAndType(I.getOperand(i), InstID, Vals, VE);
  1180. }
  1181. }
  1182. break;
  1183. case Instruction::Br:
  1184. {
  1185. Code = bitc::FUNC_CODE_INST_BR;
  1186. const BranchInst &II = cast<BranchInst>(I);
  1187. Vals.push_back(VE.getValueID(II.getSuccessor(0)));
  1188. if (II.isConditional()) {
  1189. Vals.push_back(VE.getValueID(II.getSuccessor(1)));
  1190. pushValue(II.getCondition(), InstID, Vals, VE);
  1191. }
  1192. }
  1193. break;
  1194. case Instruction::Switch:
  1195. {
  1196. Code = bitc::FUNC_CODE_INST_SWITCH;
  1197. const SwitchInst &SI = cast<SwitchInst>(I);
  1198. Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
  1199. pushValue(SI.getCondition(), InstID, Vals, VE);
  1200. Vals.push_back(VE.getValueID(SI.getDefaultDest()));
  1201. for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
  1202. i != e; ++i) {
  1203. Vals.push_back(VE.getValueID(i.getCaseValue()));
  1204. Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
  1205. }
  1206. }
  1207. break;
  1208. case Instruction::IndirectBr:
  1209. Code = bitc::FUNC_CODE_INST_INDIRECTBR;
  1210. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
  1211. // Encode the address operand as relative, but not the basic blocks.
  1212. pushValue(I.getOperand(0), InstID, Vals, VE);
  1213. for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
  1214. Vals.push_back(VE.getValueID(I.getOperand(i)));
  1215. break;
  1216. case Instruction::Invoke: {
  1217. const InvokeInst *II = cast<InvokeInst>(&I);
  1218. const Value *Callee(II->getCalledValue());
  1219. PointerType *PTy = cast<PointerType>(Callee->getType());
  1220. FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
  1221. Code = bitc::FUNC_CODE_INST_INVOKE;
  1222. Vals.push_back(VE.getAttributeID(II->getAttributes()));
  1223. Vals.push_back(II->getCallingConv());
  1224. Vals.push_back(VE.getValueID(II->getNormalDest()));
  1225. Vals.push_back(VE.getValueID(II->getUnwindDest()));
  1226. PushValueAndType(Callee, InstID, Vals, VE);
  1227. // Emit value #'s for the fixed parameters.
  1228. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
  1229. pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param.
  1230. // Emit type/value pairs for varargs params.
  1231. if (FTy->isVarArg()) {
  1232. for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
  1233. i != e; ++i)
  1234. PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
  1235. }
  1236. break;
  1237. }
  1238. case Instruction::Resume:
  1239. Code = bitc::FUNC_CODE_INST_RESUME;
  1240. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1241. break;
  1242. case Instruction::Unreachable:
  1243. Code = bitc::FUNC_CODE_INST_UNREACHABLE;
  1244. AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
  1245. break;
  1246. case Instruction::PHI: {
  1247. const PHINode &PN = cast<PHINode>(I);
  1248. Code = bitc::FUNC_CODE_INST_PHI;
  1249. // With the newer instruction encoding, forward references could give
  1250. // negative valued IDs. This is most common for PHIs, so we use
  1251. // signed VBRs.
  1252. SmallVector<uint64_t, 128> Vals64;
  1253. Vals64.push_back(VE.getTypeID(PN.getType()));
  1254. for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
  1255. pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
  1256. Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
  1257. }
  1258. // Emit a Vals64 vector and exit.
  1259. Stream.EmitRecord(Code, Vals64, AbbrevToUse);
  1260. Vals64.clear();
  1261. return;
  1262. }
  1263. case Instruction::LandingPad: {
  1264. const LandingPadInst &LP = cast<LandingPadInst>(I);
  1265. Code = bitc::FUNC_CODE_INST_LANDINGPAD;
  1266. Vals.push_back(VE.getTypeID(LP.getType()));
  1267. PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
  1268. Vals.push_back(LP.isCleanup());
  1269. Vals.push_back(LP.getNumClauses());
  1270. for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
  1271. if (LP.isCatch(I))
  1272. Vals.push_back(LandingPadInst::Catch);
  1273. else
  1274. Vals.push_back(LandingPadInst::Filter);
  1275. PushValueAndType(LP.getClause(I), InstID, Vals, VE);
  1276. }
  1277. break;
  1278. }
  1279. case Instruction::Alloca:
  1280. Code = bitc::FUNC_CODE_INST_ALLOCA;
  1281. Vals.push_back(VE.getTypeID(I.getType()));
  1282. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
  1283. Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
  1284. Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
  1285. break;
  1286. case Instruction::Load:
  1287. if (cast<LoadInst>(I).isAtomic()) {
  1288. Code = bitc::FUNC_CODE_INST_LOADATOMIC;
  1289. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1290. } else {
  1291. Code = bitc::FUNC_CODE_INST_LOAD;
  1292. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
  1293. AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
  1294. }
  1295. Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
  1296. Vals.push_back(cast<LoadInst>(I).isVolatile());
  1297. if (cast<LoadInst>(I).isAtomic()) {
  1298. Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
  1299. Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
  1300. }
  1301. break;
  1302. case Instruction::Store:
  1303. if (cast<StoreInst>(I).isAtomic())
  1304. Code = bitc::FUNC_CODE_INST_STOREATOMIC;
  1305. else
  1306. Code = bitc::FUNC_CODE_INST_STORE;
  1307. PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
  1308. pushValue(I.getOperand(0), InstID, Vals, VE); // val.
  1309. Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
  1310. Vals.push_back(cast<StoreInst>(I).isVolatile());
  1311. if (cast<StoreInst>(I).isAtomic()) {
  1312. Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
  1313. Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
  1314. }
  1315. break;
  1316. case Instruction::AtomicCmpXchg:
  1317. Code = bitc::FUNC_CODE_INST_CMPXCHG;
  1318. PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
  1319. pushValue(I.getOperand(1), InstID, Vals, VE); // cmp.
  1320. pushValue(I.getOperand(2), InstID, Vals, VE); // newval.
  1321. Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
  1322. Vals.push_back(GetEncodedOrdering(
  1323. cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
  1324. Vals.push_back(GetEncodedSynchScope(
  1325. cast<AtomicCmpXchgInst>(I).getSynchScope()));
  1326. Vals.push_back(GetEncodedOrdering(
  1327. cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
  1328. break;
  1329. case Instruction::AtomicRMW:
  1330. Code = bitc::FUNC_CODE_INST_ATOMICRMW;
  1331. PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
  1332. pushValue(I.getOperand(1), InstID, Vals, VE); // val.
  1333. Vals.push_back(GetEncodedRMWOperation(
  1334. cast<AtomicRMWInst>(I).getOperation()));
  1335. Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
  1336. Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
  1337. Vals.push_back(GetEncodedSynchScope(
  1338. cast<AtomicRMWInst>(I).getSynchScope()));
  1339. break;
  1340. case Instruction::Fence:
  1341. Code = bitc::FUNC_CODE_INST_FENCE;
  1342. Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
  1343. Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
  1344. break;
  1345. case Instruction::Call: {
  1346. const CallInst &CI = cast<CallInst>(I);
  1347. PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
  1348. FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
  1349. Code = bitc::FUNC_CODE_INST_CALL;
  1350. Vals.push_back(VE.getAttributeID(CI.getAttributes()));
  1351. Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
  1352. PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
  1353. // Emit value #'s for the fixed parameters.
  1354. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
  1355. // Check for labels (can happen with asm labels).
  1356. if (FTy->getParamType(i)->isLabelTy())
  1357. Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
  1358. else
  1359. pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param.
  1360. }
  1361. // Emit type/value pairs for varargs params.
  1362. if (FTy->isVarArg()) {
  1363. for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
  1364. i != e; ++i)
  1365. PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
  1366. }
  1367. break;
  1368. }
  1369. case Instruction::VAArg:
  1370. Code = bitc::FUNC_CODE_INST_VAARG;
  1371. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
  1372. pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
  1373. Vals.push_back(VE.getTypeID(I.getType())); // restype.
  1374. break;
  1375. }
  1376. Stream.EmitRecord(Code, Vals, AbbrevToUse);
  1377. Vals.clear();
  1378. }
  1379. // Emit names for globals/functions etc.
  1380. static void WriteValueSymbolTable(const ValueSymbolTable &VST,
  1381. const ValueEnumerator &VE,
  1382. BitstreamWriter &Stream) {
  1383. if (VST.empty()) return;
  1384. Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
  1385. // FIXME: Set up the abbrev, we know how many values there are!
  1386. // FIXME: We know if the type names can use 7-bit ascii.
  1387. SmallVector<unsigned, 64> NameVals;
  1388. for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
  1389. SI != SE; ++SI) {
  1390. const ValueName &Name = *SI;
  1391. // Figure out the encoding to use for the name.
  1392. bool is7Bit = true;
  1393. bool isChar6 = true;
  1394. for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
  1395. C != E; ++C) {
  1396. if (isChar6)
  1397. isChar6 = BitCodeAbbrevOp::isChar6(*C);
  1398. if ((unsigned char)*C & 128) {
  1399. is7Bit = false;
  1400. break; // don't bother scanning the rest.
  1401. }
  1402. }
  1403. unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
  1404. // VST_ENTRY: [valueid, namechar x N]
  1405. // VST_BBENTRY: [bbid, namechar x N]
  1406. unsigned Code;
  1407. if (isa<BasicBlock>(SI->getValue())) {
  1408. Code = bitc::VST_CODE_BBENTRY;
  1409. if (isChar6)
  1410. AbbrevToUse = VST_BBENTRY_6_ABBREV;
  1411. } else {
  1412. Code = bitc::VST_CODE_ENTRY;
  1413. if (isChar6)
  1414. AbbrevToUse = VST_ENTRY_6_ABBREV;
  1415. else if (is7Bit)
  1416. AbbrevToUse = VST_ENTRY_7_ABBREV;
  1417. }
  1418. NameVals.push_back(VE.getValueID(SI->getValue()));
  1419. for (const char *P = Name.getKeyData(),
  1420. *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
  1421. NameVals.push_back((unsigned char)*P);
  1422. // Emit the finished record.
  1423. Stream.EmitRecord(Code, NameVals, AbbrevToUse);
  1424. NameVals.clear();
  1425. }
  1426. Stream.ExitBlock();
  1427. }
  1428. /// WriteFunction - Emit a function body to the module stream.
  1429. static void WriteFunction(const Function &F, ValueEnumerator &VE,
  1430. BitstreamWriter &Stream) {
  1431. Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
  1432. VE.incorporateFunction(F);
  1433. SmallVector<unsigned, 64> Vals;
  1434. // Emit the number of basic blocks, so the reader can create them ahead of
  1435. // time.
  1436. Vals.push_back(VE.getBasicBlocks().size());
  1437. Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
  1438. Vals.clear();
  1439. // If there are function-local constants, emit them now.
  1440. unsigned CstStart, CstEnd;
  1441. VE.getFunctionConstantRange(CstStart, CstEnd);
  1442. WriteConstants(CstStart, CstEnd, VE, Stream, false);
  1443. // If there is function-local metadata, emit it now.
  1444. WriteFunctionLocalMetadata(F, VE, Stream);
  1445. // Keep a running idea of what the instruction ID is.
  1446. unsigned InstID = CstEnd;
  1447. bool NeedsMetadataAttachment = false;
  1448. DebugLoc LastDL;
  1449. // Finally, emit all the instructions, in order.
  1450. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
  1451. for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
  1452. I != E; ++I) {
  1453. WriteInstruction(*I, InstID, VE, Stream, Vals);
  1454. if (!I->getType()->isVoidTy())
  1455. ++InstID;
  1456. // If the instruction has metadata, write a metadata attachment later.
  1457. NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
  1458. // If the instruction has a debug location, emit it.
  1459. DebugLoc DL = I->getDebugLoc();
  1460. if (DL.isUnknown()) {
  1461. // nothing todo.
  1462. } else if (DL == LastDL) {
  1463. // Just repeat the same debug loc as last time.
  1464. Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
  1465. } else {
  1466. MDNode *Scope, *IA;
  1467. DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
  1468. Vals.push_back(DL.getLine());
  1469. Vals.push_back(DL.getCol());
  1470. Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
  1471. Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
  1472. Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
  1473. Vals.clear();
  1474. LastDL = DL;
  1475. }
  1476. }
  1477. // Emit names for all the instructions etc.
  1478. WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
  1479. if (NeedsMetadataAttachment)
  1480. WriteMetadataAttachment(F, VE, Stream);
  1481. VE.purgeFunction();
  1482. Stream.ExitBlock();
  1483. }
  1484. // Emit blockinfo, which defines the standard abbreviations etc.
  1485. static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  1486. // We only want to emit block info records for blocks that have multiple
  1487. // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
  1488. // Other blocks can define their abbrevs inline.
  1489. Stream.EnterBlockInfoBlock(2);
  1490. { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
  1491. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1492. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
  1493. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1494. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1495. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  1496. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1497. Abbv) != VST_ENTRY_8_ABBREV)
  1498. llvm_unreachable("Unexpected abbrev ordering!");
  1499. }
  1500. { // 7-bit fixed width VST_ENTRY strings.
  1501. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1502. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
  1503. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1504. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1505. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
  1506. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1507. Abbv) != VST_ENTRY_7_ABBREV)
  1508. llvm_unreachable("Unexpected abbrev ordering!");
  1509. }
  1510. { // 6-bit char6 VST_ENTRY strings.
  1511. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1512. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
  1513. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1514. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1515. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  1516. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1517. Abbv) != VST_ENTRY_6_ABBREV)
  1518. llvm_unreachable("Unexpected abbrev ordering!");
  1519. }
  1520. { // 6-bit char6 VST_BBENTRY strings.
  1521. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1522. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
  1523. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1524. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1525. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  1526. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1527. Abbv) != VST_BBENTRY_6_ABBREV)
  1528. llvm_unreachable("Unexpected abbrev ordering!");
  1529. }
  1530. { // SETTYPE abbrev for CONSTANTS_BLOCK.
  1531. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1532. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
  1533. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  1534. Log2_32_Ceil(VE.getTypes().size()+1)));
  1535. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1536. Abbv) != CONSTANTS_SETTYPE_ABBREV)
  1537. llvm_unreachable("Unexpected abbrev ordering!");
  1538. }
  1539. { // INTEGER abbrev for CONSTANTS_BLOCK.
  1540. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1541. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
  1542. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1543. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1544. Abbv) != CONSTANTS_INTEGER_ABBREV)
  1545. llvm_unreachable("Unexpected abbrev ordering!");
  1546. }
  1547. { // CE_CAST abbrev for CONSTANTS_BLOCK.
  1548. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1549. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
  1550. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
  1551. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
  1552. Log2_32_Ceil(VE.getTypes().size()+1)));
  1553. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
  1554. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1555. Abbv) != CONSTANTS_CE_CAST_Abbrev)
  1556. llvm_unreachable("Unexpected abbrev ordering!");
  1557. }
  1558. { // NULL abbrev for CONSTANTS_BLOCK.
  1559. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1560. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
  1561. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1562. Abbv) != CONSTANTS_NULL_Abbrev)
  1563. llvm_unreachable("Unexpected abbrev ordering!");
  1564. }
  1565. // FIXME: This should only use space for first class types!
  1566. { // INST_LOAD abbrev for FUNCTION_BLOCK.
  1567. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1568. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
  1569. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
  1570. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
  1571. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
  1572. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1573. Abbv) != FUNCTION_INST_LOAD_ABBREV)
  1574. llvm_unreachable("Unexpected abbrev ordering!");
  1575. }
  1576. { // INST_BINOP abbrev for FUNCTION_BLOCK.
  1577. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1578. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
  1579. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
  1580. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
  1581. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  1582. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1583. Abbv) != FUNCTION_INST_BINOP_ABBREV)
  1584. llvm_unreachable("Unexpected abbrev ordering!");
  1585. }
  1586. { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
  1587. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1588. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
  1589. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
  1590. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
  1591. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  1592. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
  1593. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1594. Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
  1595. llvm_unreachable("Unexpected abbrev ordering!");
  1596. }
  1597. { // INST_CAST abbrev for FUNCTION_BLOCK.
  1598. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1599. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
  1600. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
  1601. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
  1602. Log2_32_Ceil(VE.getTypes().size()+1)));
  1603. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  1604. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1605. Abbv) != FUNCTION_INST_CAST_ABBREV)
  1606. llvm_unreachable("Unexpected abbrev ordering!");
  1607. }
  1608. { // INST_RET abbrev for FUNCTION_BLOCK.
  1609. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1610. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
  1611. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1612. Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
  1613. llvm_unreachable("Unexpected abbrev ordering!");
  1614. }
  1615. { // INST_RET abbrev for FUNCTION_BLOCK.
  1616. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1617. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
  1618. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
  1619. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1620. Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
  1621. llvm_unreachable("Unexpected abbrev ordering!");
  1622. }
  1623. { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
  1624. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1625. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
  1626. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1627. Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
  1628. llvm_unreachable("Unexpected abbrev ordering!");
  1629. }
  1630. Stream.ExitBlock();
  1631. }
  1632. // Sort the Users based on the order in which the reader parses the bitcode
  1633. // file.
  1634. static bool bitcodereader_order(const User *lhs, const User *rhs) {
  1635. // TODO: Implement.
  1636. return true;
  1637. }
  1638. static void WriteUseList(const Value *V, const ValueEnumerator &VE,
  1639. BitstreamWriter &Stream) {
  1640. // One or zero uses can't get out of order.
  1641. if (V->use_empty() || V->hasNUses(1))
  1642. return;
  1643. // Make a copy of the in-memory use-list for sorting.
  1644. SmallVector<const User*, 8> UserList(V->user_begin(), V->user_end());
  1645. // Sort the copy based on the order read by the BitcodeReader.
  1646. std::sort(UserList.begin(), UserList.end(), bitcodereader_order);
  1647. // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the
  1648. // sorted list (i.e., the expected BitcodeReader in-memory use-list).
  1649. // TODO: Emit the USELIST_CODE_ENTRYs.
  1650. }
  1651. static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE,
  1652. BitstreamWriter &Stream) {
  1653. VE.incorporateFunction(*F);
  1654. for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
  1655. AI != AE; ++AI)
  1656. WriteUseList(AI, VE, Stream);
  1657. for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE;
  1658. ++BB) {
  1659. WriteUseList(BB, VE, Stream);
  1660. for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
  1661. ++II) {
  1662. WriteUseList(II, VE, Stream);
  1663. for (User::const_op_iterator OI = II->op_begin(), E = II->op_end();
  1664. OI != E; ++OI) {
  1665. if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
  1666. isa<InlineAsm>(*OI))
  1667. WriteUseList(*OI, VE, Stream);
  1668. }
  1669. }
  1670. }
  1671. VE.purgeFunction();
  1672. }
  1673. // Emit use-lists.
  1674. static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE,
  1675. BitstreamWriter &Stream) {
  1676. Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
  1677. // XXX: this modifies the module, but in a way that should never change the
  1678. // behavior of any pass or codegen in LLVM. The problem is that GVs may
  1679. // contain entries in the use_list that do not exist in the Module and are
  1680. // not stored in the .bc file.
  1681. for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
  1682. I != E; ++I)
  1683. I->removeDeadConstantUsers();
  1684. // Write the global variables.
  1685. for (Module::const_global_iterator GI = M->global_begin(),
  1686. GE = M->global_end(); GI != GE; ++GI) {
  1687. WriteUseList(GI, VE, Stream);
  1688. // Write the global variable initializers.
  1689. if (GI->hasInitializer())
  1690. WriteUseList(GI->getInitializer(), VE, Stream);
  1691. }
  1692. // Write the functions.
  1693. for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
  1694. WriteUseList(FI, VE, Stream);
  1695. if (!FI->isDeclaration())
  1696. WriteFunctionUseList(FI, VE, Stream);
  1697. if (FI->hasPrefixData())
  1698. WriteUseList(FI->getPrefixData(), VE, Stream);
  1699. }
  1700. // Write the aliases.
  1701. for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end();
  1702. AI != AE; ++AI) {
  1703. WriteUseList(AI, VE, Stream);
  1704. WriteUseList(AI->getAliasee(), VE, Stream);
  1705. }
  1706. Stream.ExitBlock();
  1707. }
  1708. /// WriteModule - Emit the specified module to the bitstream.
  1709. static void WriteModule(const Module *M, BitstreamWriter &Stream) {
  1710. Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
  1711. SmallVector<unsigned, 1> Vals;
  1712. unsigned CurVersion = 1;
  1713. Vals.push_back(CurVersion);
  1714. Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
  1715. // Analyze the module, enumerating globals, functions, etc.
  1716. ValueEnumerator VE(M);
  1717. // Emit blockinfo, which defines the standard abbreviations etc.
  1718. WriteBlockInfo(VE, Stream);
  1719. // Emit information about attribute groups.
  1720. WriteAttributeGroupTable(VE, Stream);
  1721. // Emit information about parameter attributes.
  1722. WriteAttributeTable(VE, Stream);
  1723. // Emit information describing all of the types in the module.
  1724. WriteTypeTable(VE, Stream);
  1725. // Emit top-level description of module, including target triple, inline asm,
  1726. // descriptors for global variables, and function prototype info.
  1727. WriteModuleInfo(M, VE, Stream);
  1728. // Emit constants.
  1729. WriteModuleConstants(VE, Stream);
  1730. // Emit metadata.
  1731. WriteModuleMetadata(M, VE, Stream);
  1732. // Emit metadata.
  1733. WriteModuleMetadataStore(M, Stream);
  1734. // Emit names for globals/functions etc.
  1735. WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
  1736. // Emit use-lists.
  1737. if (EnablePreserveUseListOrdering)
  1738. WriteModuleUseLists(M, VE, Stream);
  1739. // Emit function bodies.
  1740. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
  1741. if (!F->isDeclaration())
  1742. WriteFunction(*F, VE, Stream);
  1743. Stream.ExitBlock();
  1744. }
  1745. /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
  1746. /// header and trailer to make it compatible with the system archiver. To do
  1747. /// this we emit the following header, and then emit a trailer that pads the
  1748. /// file out to be a multiple of 16 bytes.
  1749. ///
  1750. /// struct bc_header {
  1751. /// uint32_t Magic; // 0x0B17C0DE
  1752. /// uint32_t Version; // Version, currently always 0.
  1753. /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
  1754. /// uint32_t BitcodeSize; // Size of traditional bitcode file.
  1755. /// uint32_t CPUType; // CPU specifier.
  1756. /// ... potentially more later ...
  1757. /// };
  1758. enum {
  1759. DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
  1760. DarwinBCHeaderSize = 5*4
  1761. };
  1762. static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
  1763. uint32_t &Position) {
  1764. Buffer[Position + 0] = (unsigned char) (Value >> 0);
  1765. Buffer[Position + 1] = (unsigned char) (Value >> 8);
  1766. Buffer[Position + 2] = (unsigned char) (Value >> 16);
  1767. Buffer[Position + 3] = (unsigned char) (Value >> 24);
  1768. Position += 4;
  1769. }
  1770. static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
  1771. const Triple &TT) {
  1772. unsigned CPUType = ~0U;
  1773. // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
  1774. // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
  1775. // number from /usr/include/mach/machine.h. It is ok to reproduce the
  1776. // specific constants here because they are implicitly part of the Darwin ABI.
  1777. enum {
  1778. DARWIN_CPU_ARCH_ABI64 = 0x01000000,
  1779. DARWIN_CPU_TYPE_X86 = 7,
  1780. DARWIN_CPU_TYPE_ARM = 12,
  1781. DARWIN_CPU_TYPE_POWERPC = 18
  1782. };
  1783. Triple::ArchType Arch = TT.getArch();
  1784. if (Arch == Triple::x86_64)
  1785. CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
  1786. else if (Arch == Triple::x86)
  1787. CPUType = DARWIN_CPU_TYPE_X86;
  1788. else if (Arch == Triple::ppc)
  1789. CPUType = DARWIN_CPU_TYPE_POWERPC;
  1790. else if (Arch == Triple::ppc64)
  1791. CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
  1792. else if (Arch == Triple::arm || Arch == Triple::thumb)
  1793. CPUType = DARWIN_CPU_TYPE_ARM;
  1794. // Traditional Bitcode starts after header.
  1795. assert(Buffer.size() >= DarwinBCHeaderSize &&
  1796. "Expected header size to be reserved");
  1797. unsigned BCOffset = DarwinBCHeaderSize;
  1798. unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
  1799. // Write the magic and version.
  1800. unsigned Position = 0;
  1801. WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
  1802. WriteInt32ToBuffer(0 , Buffer, Position); // Version.
  1803. WriteInt32ToBuffer(BCOffset , Buffer, Position);
  1804. WriteInt32ToBuffer(BCSize , Buffer, Position);
  1805. WriteInt32ToBuffer(CPUType , Buffer, Position);
  1806. // If the file is not a multiple of 16 bytes, insert dummy padding.
  1807. while (Buffer.size() & 15)
  1808. Buffer.push_back(0);
  1809. }
  1810. /// WriteBitcodeToFile - Write the specified module to the specified output
  1811. /// stream.
  1812. void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
  1813. SmallVector<char, 0> Buffer;
  1814. Buffer.reserve(256*1024);
  1815. // If this is darwin or another generic macho target, reserve space for the
  1816. // header.
  1817. Triple TT(M->getTargetTriple());
  1818. if (TT.isOSDarwin())
  1819. Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
  1820. // Emit the module into the buffer.
  1821. {
  1822. BitstreamWriter Stream(Buffer);
  1823. // Emit the file header.
  1824. Stream.Emit((unsigned)'B', 8);
  1825. Stream.Emit((unsigned)'C', 8);
  1826. Stream.Emit(0x0, 4);
  1827. Stream.Emit(0xC, 4);
  1828. Stream.Emit(0xE, 4);
  1829. Stream.Emit(0xD, 4);
  1830. // Emit the module.
  1831. WriteModule(M, Stream);
  1832. }
  1833. if (TT.isOSDarwin())
  1834. EmitDarwinBCHeaderAndTrailer(Buffer, TT);
  1835. // Write the generated bitstream to "Out".
  1836. Out.write((char*)&Buffer.front(), Buffer.size());
  1837. }