12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535 |
- //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements basic block placement transformations using the CFG
- // structure and branch probability estimates.
- //
- // The pass strives to preserve the structure of the CFG (that is, retain
- // a topological ordering of basic blocks) in the absence of a *strong* signal
- // to the contrary from probabilities. However, within the CFG structure, it
- // attempts to choose an ordering which favors placing more likely sequences of
- // blocks adjacent to each other.
- //
- // The algorithm works from the inner-most loop within a function outward, and
- // at each stage walks through the basic blocks, trying to coalesce them into
- // sequential chains where allowed by the CFG (or demanded by heavy
- // probabilities). Finally, it walks the blocks in topological order, and the
- // first time it reaches a chain of basic blocks, it schedules them in the
- // function in-order.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
- #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
- #include "llvm/CodeGen/MachineDominators.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineLoopInfo.h"
- #include "llvm/CodeGen/MachineModuleInfo.h"
- #include "llvm/Support/Allocator.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/Target/TargetSubtargetInfo.h"
- #include <algorithm>
- using namespace llvm;
- #define DEBUG_TYPE "block-placement"
- STATISTIC(NumCondBranches, "Number of conditional branches");
- STATISTIC(NumUncondBranches, "Number of unconditional branches");
- STATISTIC(CondBranchTakenFreq,
- "Potential frequency of taking conditional branches");
- STATISTIC(UncondBranchTakenFreq,
- "Potential frequency of taking unconditional branches");
- static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
- cl::desc("Force the alignment of all "
- "blocks in the function."),
- cl::init(0), cl::Hidden);
- static cl::opt<unsigned> AlignAllNonFallThruBlocks(
- "align-all-nofallthru-blocks",
- cl::desc("Force the alignment of all "
- "blocks that have no fall-through predecessors (i.e. don't add "
- "nops that are executed)."),
- cl::init(0), cl::Hidden);
- // FIXME: Find a good default for this flag and remove the flag.
- static cl::opt<unsigned> ExitBlockBias(
- "block-placement-exit-block-bias",
- cl::desc("Block frequency percentage a loop exit block needs "
- "over the original exit to be considered the new exit."),
- cl::init(0), cl::Hidden);
- static cl::opt<bool> OutlineOptionalBranches(
- "outline-optional-branches",
- cl::desc("Put completely optional branches, i.e. branches with a common "
- "post dominator, out of line."),
- cl::init(false), cl::Hidden);
- static cl::opt<unsigned> OutlineOptionalThreshold(
- "outline-optional-threshold",
- cl::desc("Don't outline optional branches that are a single block with an "
- "instruction count below this threshold"),
- cl::init(4), cl::Hidden);
- static cl::opt<unsigned> LoopToColdBlockRatio(
- "loop-to-cold-block-ratio",
- cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
- "(frequency of block) is greater than this ratio"),
- cl::init(5), cl::Hidden);
- static cl::opt<bool>
- PreciseRotationCost("precise-rotation-cost",
- cl::desc("Model the cost of loop rotation more "
- "precisely by using profile data."),
- cl::init(false), cl::Hidden);
- static cl::opt<unsigned> MisfetchCost(
- "misfetch-cost",
- cl::desc("Cost that models the probablistic risk of an instruction "
- "misfetch due to a jump comparing to falling through, whose cost "
- "is zero."),
- cl::init(1), cl::Hidden);
- static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
- cl::desc("Cost of jump instructions."),
- cl::init(1), cl::Hidden);
- namespace {
- class BlockChain;
- /// \brief Type for our function-wide basic block -> block chain mapping.
- typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
- }
- namespace {
- /// \brief A chain of blocks which will be laid out contiguously.
- ///
- /// This is the datastructure representing a chain of consecutive blocks that
- /// are profitable to layout together in order to maximize fallthrough
- /// probabilities and code locality. We also can use a block chain to represent
- /// a sequence of basic blocks which have some external (correctness)
- /// requirement for sequential layout.
- ///
- /// Chains can be built around a single basic block and can be merged to grow
- /// them. They participate in a block-to-chain mapping, which is updated
- /// automatically as chains are merged together.
- class BlockChain {
- /// \brief The sequence of blocks belonging to this chain.
- ///
- /// This is the sequence of blocks for a particular chain. These will be laid
- /// out in-order within the function.
- SmallVector<MachineBasicBlock *, 4> Blocks;
- /// \brief A handle to the function-wide basic block to block chain mapping.
- ///
- /// This is retained in each block chain to simplify the computation of child
- /// block chains for SCC-formation and iteration. We store the edges to child
- /// basic blocks, and map them back to their associated chains using this
- /// structure.
- BlockToChainMapType &BlockToChain;
- public:
- /// \brief Construct a new BlockChain.
- ///
- /// This builds a new block chain representing a single basic block in the
- /// function. It also registers itself as the chain that block participates
- /// in with the BlockToChain mapping.
- BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
- : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) {
- assert(BB && "Cannot create a chain with a null basic block");
- BlockToChain[BB] = this;
- }
- /// \brief Iterator over blocks within the chain.
- typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
- /// \brief Beginning of blocks within the chain.
- iterator begin() { return Blocks.begin(); }
- /// \brief End of blocks within the chain.
- iterator end() { return Blocks.end(); }
- /// \brief Merge a block chain into this one.
- ///
- /// This routine merges a block chain into this one. It takes care of forming
- /// a contiguous sequence of basic blocks, updating the edge list, and
- /// updating the block -> chain mapping. It does not free or tear down the
- /// old chain, but the old chain's block list is no longer valid.
- void merge(MachineBasicBlock *BB, BlockChain *Chain) {
- assert(BB);
- assert(!Blocks.empty());
- // Fast path in case we don't have a chain already.
- if (!Chain) {
- assert(!BlockToChain[BB]);
- Blocks.push_back(BB);
- BlockToChain[BB] = this;
- return;
- }
- assert(BB == *Chain->begin());
- assert(Chain->begin() != Chain->end());
- // Update the incoming blocks to point to this chain, and add them to the
- // chain structure.
- for (MachineBasicBlock *ChainBB : *Chain) {
- Blocks.push_back(ChainBB);
- assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
- BlockToChain[ChainBB] = this;
- }
- }
- #ifndef NDEBUG
- /// \brief Dump the blocks in this chain.
- LLVM_DUMP_METHOD void dump() {
- for (MachineBasicBlock *MBB : *this)
- MBB->dump();
- }
- #endif // NDEBUG
- /// \brief Count of predecessors of any block within the chain which have not
- /// yet been scheduled. In general, we will delay scheduling this chain
- /// until those predecessors are scheduled (or we find a sufficiently good
- /// reason to override this heuristic.) Note that when forming loop chains,
- /// blocks outside the loop are ignored and treated as if they were already
- /// scheduled.
- ///
- /// Note: This field is reinitialized multiple times - once for each loop,
- /// and then once for the function as a whole.
- unsigned UnscheduledPredecessors;
- };
- }
- namespace {
- class MachineBlockPlacement : public MachineFunctionPass {
- /// \brief A typedef for a block filter set.
- typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
- /// \brief A handle to the branch probability pass.
- const MachineBranchProbabilityInfo *MBPI;
- /// \brief A handle to the function-wide block frequency pass.
- const MachineBlockFrequencyInfo *MBFI;
- /// \brief A handle to the loop info.
- const MachineLoopInfo *MLI;
- /// \brief A handle to the target's instruction info.
- const TargetInstrInfo *TII;
- /// \brief A handle to the target's lowering info.
- const TargetLoweringBase *TLI;
- /// \brief A handle to the post dominator tree.
- MachineDominatorTree *MDT;
- /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
- /// all terminators of the MachineFunction.
- SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
- /// \brief Allocator and owner of BlockChain structures.
- ///
- /// We build BlockChains lazily while processing the loop structure of
- /// a function. To reduce malloc traffic, we allocate them using this
- /// slab-like allocator, and destroy them after the pass completes. An
- /// important guarantee is that this allocator produces stable pointers to
- /// the chains.
- SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
- /// \brief Function wide BasicBlock to BlockChain mapping.
- ///
- /// This mapping allows efficiently moving from any given basic block to the
- /// BlockChain it participates in, if any. We use it to, among other things,
- /// allow implicitly defining edges between chains as the existing edges
- /// between basic blocks.
- DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
- void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
- SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
- SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
- const BlockFilterSet *BlockFilter = nullptr);
- MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
- BlockChain &Chain,
- const BlockFilterSet *BlockFilter);
- MachineBasicBlock *
- selectBestCandidateBlock(BlockChain &Chain,
- SmallVectorImpl<MachineBasicBlock *> &WorkList);
- MachineBasicBlock *
- getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain,
- MachineFunction::iterator &PrevUnplacedBlockIt,
- const BlockFilterSet *BlockFilter);
- /// \brief Add a basic block to the work list if it is apropriate.
- ///
- /// If the optional parameter BlockFilter is provided, only MBB
- /// present in the set will be added to the worklist. If nullptr
- /// is provided, no filtering occurs.
- void fillWorkLists(MachineBasicBlock *MBB,
- SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
- SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
- SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
- const BlockFilterSet *BlockFilter);
- void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
- SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
- SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
- const BlockFilterSet *BlockFilter = nullptr);
- MachineBasicBlock *findBestLoopTop(MachineLoop &L,
- const BlockFilterSet &LoopBlockSet);
- MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L,
- const BlockFilterSet &LoopBlockSet);
- BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L);
- void buildLoopChains(MachineFunction &F, MachineLoop &L);
- void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
- const BlockFilterSet &LoopBlockSet);
- void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L,
- const BlockFilterSet &LoopBlockSet);
- void buildCFGChains(MachineFunction &F);
- public:
- static char ID; // Pass identification, replacement for typeid
- MachineBlockPlacement() : MachineFunctionPass(ID) {
- initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
- }
- bool runOnMachineFunction(MachineFunction &F) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<MachineBranchProbabilityInfo>();
- AU.addRequired<MachineBlockFrequencyInfo>();
- AU.addRequired<MachineDominatorTree>();
- AU.addRequired<MachineLoopInfo>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- };
- }
- char MachineBlockPlacement::ID = 0;
- char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
- INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
- "Branch Probability Basic Block Placement", false, false)
- INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
- INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
- INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
- INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
- INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
- "Branch Probability Basic Block Placement", false, false)
- #ifndef NDEBUG
- /// \brief Helper to print the name of a MBB.
- ///
- /// Only used by debug logging.
- static std::string getBlockName(MachineBasicBlock *BB) {
- std::string Result;
- raw_string_ostream OS(Result);
- OS << "BB#" << BB->getNumber();
- OS << " ('" << BB->getName() << "')";
- OS.flush();
- return Result;
- }
- #endif
- /// \brief Mark a chain's successors as having one fewer preds.
- ///
- /// When a chain is being merged into the "placed" chain, this routine will
- /// quickly walk the successors of each block in the chain and mark them as
- /// having one fewer active predecessor. It also adds any successors of this
- /// chain which reach the zero-predecessor state to the worklist passed in.
- void MachineBlockPlacement::markChainSuccessors(
- BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
- SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
- SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
- const BlockFilterSet *BlockFilter) {
- // Walk all the blocks in this chain, marking their successors as having
- // a predecessor placed.
- for (MachineBasicBlock *MBB : Chain) {
- // Add any successors for which this is the only un-placed in-loop
- // predecessor to the worklist as a viable candidate for CFG-neutral
- // placement. No subsequent placement of this block will violate the CFG
- // shape, so we get to use heuristics to choose a favorable placement.
- for (MachineBasicBlock *Succ : MBB->successors()) {
- if (BlockFilter && !BlockFilter->count(Succ))
- continue;
- BlockChain &SuccChain = *BlockToChain[Succ];
- // Disregard edges within a fixed chain, or edges to the loop header.
- if (&Chain == &SuccChain || Succ == LoopHeaderBB)
- continue;
- // This is a cross-chain edge that is within the loop, so decrement the
- // loop predecessor count of the destination chain.
- if (SuccChain.UnscheduledPredecessors == 0 ||
- --SuccChain.UnscheduledPredecessors > 0)
- continue;
- auto *MBB = *SuccChain.begin();
- if (MBB->isEHPad())
- EHPadWorkList.push_back(MBB);
- else
- BlockWorkList.push_back(MBB);
- }
- }
- }
- /// \brief Select the best successor for a block.
- ///
- /// This looks across all successors of a particular block and attempts to
- /// select the "best" one to be the layout successor. It only considers direct
- /// successors which also pass the block filter. It will attempt to avoid
- /// breaking CFG structure, but cave and break such structures in the case of
- /// very hot successor edges.
- ///
- /// \returns The best successor block found, or null if none are viable.
- MachineBasicBlock *
- MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
- BlockChain &Chain,
- const BlockFilterSet *BlockFilter) {
- const BranchProbability HotProb(4, 5); // 80%
- MachineBasicBlock *BestSucc = nullptr;
- auto BestProb = BranchProbability::getZero();
- // Adjust edge probabilities by excluding edges pointing to blocks that is
- // either not in BlockFilter or is already in the current chain. Consider the
- // following CFG:
- //
- // --->A
- // | / \
- // | B C
- // | \ / \
- // ----D E
- //
- // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
- // A->C is chosen as a fall-through, D won't be selected as a successor of C
- // due to CFG constraint (the probability of C->D is not greater than
- // HotProb). If we exclude E that is not in BlockFilter when calculating the
- // probability of C->D, D will be selected and we will get A C D B as the
- // layout of this loop.
- auto AdjustedSumProb = BranchProbability::getOne();
- SmallVector<MachineBasicBlock *, 4> Successors;
- for (MachineBasicBlock *Succ : BB->successors()) {
- bool SkipSucc = false;
- if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
- SkipSucc = true;
- } else {
- BlockChain *SuccChain = BlockToChain[Succ];
- if (SuccChain == &Chain) {
- SkipSucc = true;
- } else if (Succ != *SuccChain->begin()) {
- DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n");
- continue;
- }
- }
- if (SkipSucc)
- AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
- else
- Successors.push_back(Succ);
- }
- DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
- for (MachineBasicBlock *Succ : Successors) {
- BranchProbability SuccProb;
- uint32_t SuccProbN = MBPI->getEdgeProbability(BB, Succ).getNumerator();
- uint32_t SuccProbD = AdjustedSumProb.getNumerator();
- if (SuccProbN >= SuccProbD)
- SuccProb = BranchProbability::getOne();
- else
- SuccProb = BranchProbability(SuccProbN, SuccProbD);
- // If we outline optional branches, look whether Succ is unavoidable, i.e.
- // dominates all terminators of the MachineFunction. If it does, other
- // successors must be optional. Don't do this for cold branches.
- if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() &&
- UnavoidableBlocks.count(Succ) > 0) {
- auto HasShortOptionalBranch = [&]() {
- for (MachineBasicBlock *Pred : Succ->predecessors()) {
- // Check whether there is an unplaced optional branch.
- if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
- BlockToChain[Pred] == &Chain)
- continue;
- // Check whether the optional branch has exactly one BB.
- if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
- continue;
- // Check whether the optional branch is small.
- if (Pred->size() < OutlineOptionalThreshold)
- return true;
- }
- return false;
- };
- if (!HasShortOptionalBranch())
- return Succ;
- }
- // Only consider successors which are either "hot", or wouldn't violate
- // any CFG constraints.
- BlockChain &SuccChain = *BlockToChain[Succ];
- if (SuccChain.UnscheduledPredecessors != 0) {
- if (SuccProb < HotProb) {
- DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
- << " (prob) (CFG conflict)\n");
- continue;
- }
- // Make sure that a hot successor doesn't have a globally more
- // important predecessor.
- auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
- BlockFrequency CandidateEdgeFreq =
- MBFI->getBlockFreq(BB) * RealSuccProb * HotProb.getCompl();
- bool BadCFGConflict = false;
- for (MachineBasicBlock *Pred : Succ->predecessors()) {
- if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
- (BlockFilter && !BlockFilter->count(Pred)) ||
- BlockToChain[Pred] == &Chain)
- continue;
- BlockFrequency PredEdgeFreq =
- MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
- if (PredEdgeFreq >= CandidateEdgeFreq) {
- BadCFGConflict = true;
- break;
- }
- }
- if (BadCFGConflict) {
- DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
- << " (prob) (non-cold CFG conflict)\n");
- continue;
- }
- }
- DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
- << " (prob)"
- << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
- << "\n");
- if (BestSucc && BestProb >= SuccProb)
- continue;
- BestSucc = Succ;
- BestProb = SuccProb;
- }
- return BestSucc;
- }
- /// \brief Select the best block from a worklist.
- ///
- /// This looks through the provided worklist as a list of candidate basic
- /// blocks and select the most profitable one to place. The definition of
- /// profitable only really makes sense in the context of a loop. This returns
- /// the most frequently visited block in the worklist, which in the case of
- /// a loop, is the one most desirable to be physically close to the rest of the
- /// loop body in order to improve icache behavior.
- ///
- /// \returns The best block found, or null if none are viable.
- MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
- BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
- // Once we need to walk the worklist looking for a candidate, cleanup the
- // worklist of already placed entries.
- // FIXME: If this shows up on profiles, it could be folded (at the cost of
- // some code complexity) into the loop below.
- WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
- [&](MachineBasicBlock *BB) {
- return BlockToChain.lookup(BB) == &Chain;
- }),
- WorkList.end());
- if (WorkList.empty())
- return nullptr;
- bool IsEHPad = WorkList[0]->isEHPad();
- MachineBasicBlock *BestBlock = nullptr;
- BlockFrequency BestFreq;
- for (MachineBasicBlock *MBB : WorkList) {
- assert(MBB->isEHPad() == IsEHPad);
- BlockChain &SuccChain = *BlockToChain[MBB];
- if (&SuccChain == &Chain)
- continue;
- assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block");
- BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
- DEBUG(dbgs() << " " << getBlockName(MBB) << " -> ";
- MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
- // For ehpad, we layout the least probable first as to avoid jumping back
- // from least probable landingpads to more probable ones.
- //
- // FIXME: Using probability is probably (!) not the best way to achieve
- // this. We should probably have a more principled approach to layout
- // cleanup code.
- //
- // The goal is to get:
- //
- // +--------------------------+
- // | V
- // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume
- //
- // Rather than:
- //
- // +-------------------------------------+
- // V |
- // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup
- if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
- continue;
- BestBlock = MBB;
- BestFreq = CandidateFreq;
- }
- return BestBlock;
- }
- /// \brief Retrieve the first unplaced basic block.
- ///
- /// This routine is called when we are unable to use the CFG to walk through
- /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
- /// We walk through the function's blocks in order, starting from the
- /// LastUnplacedBlockIt. We update this iterator on each call to avoid
- /// re-scanning the entire sequence on repeated calls to this routine.
- MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
- MachineFunction &F, const BlockChain &PlacedChain,
- MachineFunction::iterator &PrevUnplacedBlockIt,
- const BlockFilterSet *BlockFilter) {
- for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
- ++I) {
- if (BlockFilter && !BlockFilter->count(&*I))
- continue;
- if (BlockToChain[&*I] != &PlacedChain) {
- PrevUnplacedBlockIt = I;
- // Now select the head of the chain to which the unplaced block belongs
- // as the block to place. This will force the entire chain to be placed,
- // and satisfies the requirements of merging chains.
- return *BlockToChain[&*I]->begin();
- }
- }
- return nullptr;
- }
- void MachineBlockPlacement::fillWorkLists(
- MachineBasicBlock *MBB,
- SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
- SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
- SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
- const BlockFilterSet *BlockFilter = nullptr) {
- BlockChain &Chain = *BlockToChain[MBB];
- if (!UpdatedPreds.insert(&Chain).second)
- return;
- assert(Chain.UnscheduledPredecessors == 0);
- for (MachineBasicBlock *ChainBB : Chain) {
- assert(BlockToChain[ChainBB] == &Chain);
- for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
- if (BlockFilter && !BlockFilter->count(Pred))
- continue;
- if (BlockToChain[Pred] == &Chain)
- continue;
- ++Chain.UnscheduledPredecessors;
- }
- }
- if (Chain.UnscheduledPredecessors != 0)
- return;
- MBB = *Chain.begin();
- if (MBB->isEHPad())
- EHPadWorkList.push_back(MBB);
- else
- BlockWorkList.push_back(MBB);
- }
- void MachineBlockPlacement::buildChain(
- MachineBasicBlock *BB, BlockChain &Chain,
- SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
- SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
- const BlockFilterSet *BlockFilter) {
- assert(BB);
- assert(BlockToChain[BB] == &Chain);
- MachineFunction &F = *BB->getParent();
- MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
- MachineBasicBlock *LoopHeaderBB = BB;
- markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, EHPadWorkList,
- BlockFilter);
- BB = *std::prev(Chain.end());
- for (;;) {
- assert(BB);
- assert(BlockToChain[BB] == &Chain);
- assert(*std::prev(Chain.end()) == BB);
- // Look for the best viable successor if there is one to place immediately
- // after this block.
- MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
- // If an immediate successor isn't available, look for the best viable
- // block among those we've identified as not violating the loop's CFG at
- // this point. This won't be a fallthrough, but it will increase locality.
- if (!BestSucc)
- BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
- if (!BestSucc)
- BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
- if (!BestSucc) {
- BestSucc =
- getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter);
- if (!BestSucc)
- break;
- DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
- "layout successor until the CFG reduces\n");
- }
- // Place this block, updating the datastructures to reflect its placement.
- BlockChain &SuccChain = *BlockToChain[BestSucc];
- // Zero out UnscheduledPredecessors for the successor we're about to merge in case
- // we selected a successor that didn't fit naturally into the CFG.
- SuccChain.UnscheduledPredecessors = 0;
- DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
- << getBlockName(BestSucc) << "\n");
- markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, EHPadWorkList,
- BlockFilter);
- Chain.merge(BestSucc, &SuccChain);
- BB = *std::prev(Chain.end());
- }
- DEBUG(dbgs() << "Finished forming chain for header block "
- << getBlockName(*Chain.begin()) << "\n");
- }
- /// \brief Find the best loop top block for layout.
- ///
- /// Look for a block which is strictly better than the loop header for laying
- /// out at the top of the loop. This looks for one and only one pattern:
- /// a latch block with no conditional exit. This block will cause a conditional
- /// jump around it or will be the bottom of the loop if we lay it out in place,
- /// but if it it doesn't end up at the bottom of the loop for any reason,
- /// rotation alone won't fix it. Because such a block will always result in an
- /// unconditional jump (for the backedge) rotating it in front of the loop
- /// header is always profitable.
- MachineBasicBlock *
- MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
- const BlockFilterSet &LoopBlockSet) {
- // Check that the header hasn't been fused with a preheader block due to
- // crazy branches. If it has, we need to start with the header at the top to
- // prevent pulling the preheader into the loop body.
- BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
- if (!LoopBlockSet.count(*HeaderChain.begin()))
- return L.getHeader();
- DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
- << "\n");
- BlockFrequency BestPredFreq;
- MachineBasicBlock *BestPred = nullptr;
- for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
- if (!LoopBlockSet.count(Pred))
- continue;
- DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", "
- << Pred->succ_size() << " successors, ";
- MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
- if (Pred->succ_size() > 1)
- continue;
- BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
- if (!BestPred || PredFreq > BestPredFreq ||
- (!(PredFreq < BestPredFreq) &&
- Pred->isLayoutSuccessor(L.getHeader()))) {
- BestPred = Pred;
- BestPredFreq = PredFreq;
- }
- }
- // If no direct predecessor is fine, just use the loop header.
- if (!BestPred) {
- DEBUG(dbgs() << " final top unchanged\n");
- return L.getHeader();
- }
- // Walk backwards through any straight line of predecessors.
- while (BestPred->pred_size() == 1 &&
- (*BestPred->pred_begin())->succ_size() == 1 &&
- *BestPred->pred_begin() != L.getHeader())
- BestPred = *BestPred->pred_begin();
- DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
- return BestPred;
- }
- /// \brief Find the best loop exiting block for layout.
- ///
- /// This routine implements the logic to analyze the loop looking for the best
- /// block to layout at the top of the loop. Typically this is done to maximize
- /// fallthrough opportunities.
- MachineBasicBlock *
- MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L,
- const BlockFilterSet &LoopBlockSet) {
- // We don't want to layout the loop linearly in all cases. If the loop header
- // is just a normal basic block in the loop, we want to look for what block
- // within the loop is the best one to layout at the top. However, if the loop
- // header has be pre-merged into a chain due to predecessors not having
- // analyzable branches, *and* the predecessor it is merged with is *not* part
- // of the loop, rotating the header into the middle of the loop will create
- // a non-contiguous range of blocks which is Very Bad. So start with the
- // header and only rotate if safe.
- BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
- if (!LoopBlockSet.count(*HeaderChain.begin()))
- return nullptr;
- BlockFrequency BestExitEdgeFreq;
- unsigned BestExitLoopDepth = 0;
- MachineBasicBlock *ExitingBB = nullptr;
- // If there are exits to outer loops, loop rotation can severely limit
- // fallthrough opportunites unless it selects such an exit. Keep a set of
- // blocks where rotating to exit with that block will reach an outer loop.
- SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
- DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
- << "\n");
- for (MachineBasicBlock *MBB : L.getBlocks()) {
- BlockChain &Chain = *BlockToChain[MBB];
- // Ensure that this block is at the end of a chain; otherwise it could be
- // mid-way through an inner loop or a successor of an unanalyzable branch.
- if (MBB != *std::prev(Chain.end()))
- continue;
- // Now walk the successors. We need to establish whether this has a viable
- // exiting successor and whether it has a viable non-exiting successor.
- // We store the old exiting state and restore it if a viable looping
- // successor isn't found.
- MachineBasicBlock *OldExitingBB = ExitingBB;
- BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
- bool HasLoopingSucc = false;
- for (MachineBasicBlock *Succ : MBB->successors()) {
- if (Succ->isEHPad())
- continue;
- if (Succ == MBB)
- continue;
- BlockChain &SuccChain = *BlockToChain[Succ];
- // Don't split chains, either this chain or the successor's chain.
- if (&Chain == &SuccChain) {
- DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
- << getBlockName(Succ) << " (chain conflict)\n");
- continue;
- }
- auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
- if (LoopBlockSet.count(Succ)) {
- DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> "
- << getBlockName(Succ) << " (" << SuccProb << ")\n");
- HasLoopingSucc = true;
- continue;
- }
- unsigned SuccLoopDepth = 0;
- if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
- SuccLoopDepth = ExitLoop->getLoopDepth();
- if (ExitLoop->contains(&L))
- BlocksExitingToOuterLoop.insert(MBB);
- }
- BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
- DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
- << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
- MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
- // Note that we bias this toward an existing layout successor to retain
- // incoming order in the absence of better information. The exit must have
- // a frequency higher than the current exit before we consider breaking
- // the layout.
- BranchProbability Bias(100 - ExitBlockBias, 100);
- if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
- ExitEdgeFreq > BestExitEdgeFreq ||
- (MBB->isLayoutSuccessor(Succ) &&
- !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
- BestExitEdgeFreq = ExitEdgeFreq;
- ExitingBB = MBB;
- }
- }
- if (!HasLoopingSucc) {
- // Restore the old exiting state, no viable looping successor was found.
- ExitingBB = OldExitingBB;
- BestExitEdgeFreq = OldBestExitEdgeFreq;
- }
- }
- // Without a candidate exiting block or with only a single block in the
- // loop, just use the loop header to layout the loop.
- if (!ExitingBB || L.getNumBlocks() == 1)
- return nullptr;
- // Also, if we have exit blocks which lead to outer loops but didn't select
- // one of them as the exiting block we are rotating toward, disable loop
- // rotation altogether.
- if (!BlocksExitingToOuterLoop.empty() &&
- !BlocksExitingToOuterLoop.count(ExitingBB))
- return nullptr;
- DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n");
- return ExitingBB;
- }
- /// \brief Attempt to rotate an exiting block to the bottom of the loop.
- ///
- /// Once we have built a chain, try to rotate it to line up the hot exit block
- /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
- /// branches. For example, if the loop has fallthrough into its header and out
- /// of its bottom already, don't rotate it.
- void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
- MachineBasicBlock *ExitingBB,
- const BlockFilterSet &LoopBlockSet) {
- if (!ExitingBB)
- return;
- MachineBasicBlock *Top = *LoopChain.begin();
- bool ViableTopFallthrough = false;
- for (MachineBasicBlock *Pred : Top->predecessors()) {
- BlockChain *PredChain = BlockToChain[Pred];
- if (!LoopBlockSet.count(Pred) &&
- (!PredChain || Pred == *std::prev(PredChain->end()))) {
- ViableTopFallthrough = true;
- break;
- }
- }
- // If the header has viable fallthrough, check whether the current loop
- // bottom is a viable exiting block. If so, bail out as rotating will
- // introduce an unnecessary branch.
- if (ViableTopFallthrough) {
- MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
- for (MachineBasicBlock *Succ : Bottom->successors()) {
- BlockChain *SuccChain = BlockToChain[Succ];
- if (!LoopBlockSet.count(Succ) &&
- (!SuccChain || Succ == *SuccChain->begin()))
- return;
- }
- }
- BlockChain::iterator ExitIt =
- std::find(LoopChain.begin(), LoopChain.end(), ExitingBB);
- if (ExitIt == LoopChain.end())
- return;
- std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
- }
- /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
- ///
- /// With profile data, we can determine the cost in terms of missed fall through
- /// opportunities when rotating a loop chain and select the best rotation.
- /// Basically, there are three kinds of cost to consider for each rotation:
- /// 1. The possibly missed fall through edge (if it exists) from BB out of
- /// the loop to the loop header.
- /// 2. The possibly missed fall through edges (if they exist) from the loop
- /// exits to BB out of the loop.
- /// 3. The missed fall through edge (if it exists) from the last BB to the
- /// first BB in the loop chain.
- /// Therefore, the cost for a given rotation is the sum of costs listed above.
- /// We select the best rotation with the smallest cost.
- void MachineBlockPlacement::rotateLoopWithProfile(
- BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) {
- auto HeaderBB = L.getHeader();
- auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB);
- auto RotationPos = LoopChain.end();
- BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
- // A utility lambda that scales up a block frequency by dividing it by a
- // branch probability which is the reciprocal of the scale.
- auto ScaleBlockFrequency = [](BlockFrequency Freq,
- unsigned Scale) -> BlockFrequency {
- if (Scale == 0)
- return 0;
- // Use operator / between BlockFrequency and BranchProbability to implement
- // saturating multiplication.
- return Freq / BranchProbability(1, Scale);
- };
- // Compute the cost of the missed fall-through edge to the loop header if the
- // chain head is not the loop header. As we only consider natural loops with
- // single header, this computation can be done only once.
- BlockFrequency HeaderFallThroughCost(0);
- for (auto *Pred : HeaderBB->predecessors()) {
- BlockChain *PredChain = BlockToChain[Pred];
- if (!LoopBlockSet.count(Pred) &&
- (!PredChain || Pred == *std::prev(PredChain->end()))) {
- auto EdgeFreq =
- MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
- auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
- // If the predecessor has only an unconditional jump to the header, we
- // need to consider the cost of this jump.
- if (Pred->succ_size() == 1)
- FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
- HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
- }
- }
- // Here we collect all exit blocks in the loop, and for each exit we find out
- // its hottest exit edge. For each loop rotation, we define the loop exit cost
- // as the sum of frequencies of exit edges we collect here, excluding the exit
- // edge from the tail of the loop chain.
- SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
- for (auto BB : LoopChain) {
- auto LargestExitEdgeProb = BranchProbability::getZero();
- for (auto *Succ : BB->successors()) {
- BlockChain *SuccChain = BlockToChain[Succ];
- if (!LoopBlockSet.count(Succ) &&
- (!SuccChain || Succ == *SuccChain->begin())) {
- auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
- LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
- }
- }
- if (LargestExitEdgeProb > BranchProbability::getZero()) {
- auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
- ExitsWithFreq.emplace_back(BB, ExitFreq);
- }
- }
- // In this loop we iterate every block in the loop chain and calculate the
- // cost assuming the block is the head of the loop chain. When the loop ends,
- // we should have found the best candidate as the loop chain's head.
- for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
- EndIter = LoopChain.end();
- Iter != EndIter; Iter++, TailIter++) {
- // TailIter is used to track the tail of the loop chain if the block we are
- // checking (pointed by Iter) is the head of the chain.
- if (TailIter == LoopChain.end())
- TailIter = LoopChain.begin();
- auto TailBB = *TailIter;
- // Calculate the cost by putting this BB to the top.
- BlockFrequency Cost = 0;
- // If the current BB is the loop header, we need to take into account the
- // cost of the missed fall through edge from outside of the loop to the
- // header.
- if (Iter != HeaderIter)
- Cost += HeaderFallThroughCost;
- // Collect the loop exit cost by summing up frequencies of all exit edges
- // except the one from the chain tail.
- for (auto &ExitWithFreq : ExitsWithFreq)
- if (TailBB != ExitWithFreq.first)
- Cost += ExitWithFreq.second;
- // The cost of breaking the once fall-through edge from the tail to the top
- // of the loop chain. Here we need to consider three cases:
- // 1. If the tail node has only one successor, then we will get an
- // additional jmp instruction. So the cost here is (MisfetchCost +
- // JumpInstCost) * tail node frequency.
- // 2. If the tail node has two successors, then we may still get an
- // additional jmp instruction if the layout successor after the loop
- // chain is not its CFG successor. Note that the more frequently executed
- // jmp instruction will be put ahead of the other one. Assume the
- // frequency of those two branches are x and y, where x is the frequency
- // of the edge to the chain head, then the cost will be
- // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
- // 3. If the tail node has more than two successors (this rarely happens),
- // we won't consider any additional cost.
- if (TailBB->isSuccessor(*Iter)) {
- auto TailBBFreq = MBFI->getBlockFreq(TailBB);
- if (TailBB->succ_size() == 1)
- Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
- MisfetchCost + JumpInstCost);
- else if (TailBB->succ_size() == 2) {
- auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
- auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
- auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
- ? TailBBFreq * TailToHeadProb.getCompl()
- : TailToHeadFreq;
- Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
- ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
- }
- }
- DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter)
- << " to the top: " << Cost.getFrequency() << "\n");
- if (Cost < SmallestRotationCost) {
- SmallestRotationCost = Cost;
- RotationPos = Iter;
- }
- }
- if (RotationPos != LoopChain.end()) {
- DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
- << " to the top\n");
- std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
- }
- }
- /// \brief Collect blocks in the given loop that are to be placed.
- ///
- /// When profile data is available, exclude cold blocks from the returned set;
- /// otherwise, collect all blocks in the loop.
- MachineBlockPlacement::BlockFilterSet
- MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) {
- BlockFilterSet LoopBlockSet;
- // Filter cold blocks off from LoopBlockSet when profile data is available.
- // Collect the sum of frequencies of incoming edges to the loop header from
- // outside. If we treat the loop as a super block, this is the frequency of
- // the loop. Then for each block in the loop, we calculate the ratio between
- // its frequency and the frequency of the loop block. When it is too small,
- // don't add it to the loop chain. If there are outer loops, then this block
- // will be merged into the first outer loop chain for which this block is not
- // cold anymore. This needs precise profile data and we only do this when
- // profile data is available.
- if (F.getFunction()->getEntryCount()) {
- BlockFrequency LoopFreq(0);
- for (auto LoopPred : L.getHeader()->predecessors())
- if (!L.contains(LoopPred))
- LoopFreq += MBFI->getBlockFreq(LoopPred) *
- MBPI->getEdgeProbability(LoopPred, L.getHeader());
- for (MachineBasicBlock *LoopBB : L.getBlocks()) {
- auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
- if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
- continue;
- LoopBlockSet.insert(LoopBB);
- }
- } else
- LoopBlockSet.insert(L.block_begin(), L.block_end());
- return LoopBlockSet;
- }
- /// \brief Forms basic block chains from the natural loop structures.
- ///
- /// These chains are designed to preserve the existing *structure* of the code
- /// as much as possible. We can then stitch the chains together in a way which
- /// both preserves the topological structure and minimizes taken conditional
- /// branches.
- void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
- MachineLoop &L) {
- // First recurse through any nested loops, building chains for those inner
- // loops.
- for (MachineLoop *InnerLoop : L)
- buildLoopChains(F, *InnerLoop);
- SmallVector<MachineBasicBlock *, 16> BlockWorkList;
- SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
- BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L);
- // Check if we have profile data for this function. If yes, we will rotate
- // this loop by modeling costs more precisely which requires the profile data
- // for better layout.
- bool RotateLoopWithProfile =
- PreciseRotationCost && F.getFunction()->getEntryCount();
- // First check to see if there is an obviously preferable top block for the
- // loop. This will default to the header, but may end up as one of the
- // predecessors to the header if there is one which will result in strictly
- // fewer branches in the loop body.
- // When we use profile data to rotate the loop, this is unnecessary.
- MachineBasicBlock *LoopTop =
- RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
- // If we selected just the header for the loop top, look for a potentially
- // profitable exit block in the event that rotating the loop can eliminate
- // branches by placing an exit edge at the bottom.
- MachineBasicBlock *ExitingBB = nullptr;
- if (!RotateLoopWithProfile && LoopTop == L.getHeader())
- ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
- BlockChain &LoopChain = *BlockToChain[LoopTop];
- // FIXME: This is a really lame way of walking the chains in the loop: we
- // walk the blocks, and use a set to prevent visiting a particular chain
- // twice.
- SmallPtrSet<BlockChain *, 4> UpdatedPreds;
- assert(LoopChain.UnscheduledPredecessors == 0);
- UpdatedPreds.insert(&LoopChain);
- for (MachineBasicBlock *LoopBB : LoopBlockSet)
- fillWorkLists(LoopBB, UpdatedPreds, BlockWorkList, EHPadWorkList,
- &LoopBlockSet);
- buildChain(LoopTop, LoopChain, BlockWorkList, EHPadWorkList, &LoopBlockSet);
- if (RotateLoopWithProfile)
- rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
- else
- rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
- DEBUG({
- // Crash at the end so we get all of the debugging output first.
- bool BadLoop = false;
- if (LoopChain.UnscheduledPredecessors) {
- BadLoop = true;
- dbgs() << "Loop chain contains a block without its preds placed!\n"
- << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
- << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
- }
- for (MachineBasicBlock *ChainBB : LoopChain) {
- dbgs() << " ... " << getBlockName(ChainBB) << "\n";
- if (!LoopBlockSet.erase(ChainBB)) {
- // We don't mark the loop as bad here because there are real situations
- // where this can occur. For example, with an unanalyzable fallthrough
- // from a loop block to a non-loop block or vice versa.
- dbgs() << "Loop chain contains a block not contained by the loop!\n"
- << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
- << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
- << " Bad block: " << getBlockName(ChainBB) << "\n";
- }
- }
- if (!LoopBlockSet.empty()) {
- BadLoop = true;
- for (MachineBasicBlock *LoopBB : LoopBlockSet)
- dbgs() << "Loop contains blocks never placed into a chain!\n"
- << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
- << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
- << " Bad block: " << getBlockName(LoopBB) << "\n";
- }
- assert(!BadLoop && "Detected problems with the placement of this loop.");
- });
- }
- void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
- // Ensure that every BB in the function has an associated chain to simplify
- // the assumptions of the remaining algorithm.
- SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
- for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
- MachineBasicBlock *BB = &*FI;
- BlockChain *Chain =
- new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
- // Also, merge any blocks which we cannot reason about and must preserve
- // the exact fallthrough behavior for.
- for (;;) {
- Cond.clear();
- MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
- if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
- break;
- MachineFunction::iterator NextFI = std::next(FI);
- MachineBasicBlock *NextBB = &*NextFI;
- // Ensure that the layout successor is a viable block, as we know that
- // fallthrough is a possibility.
- assert(NextFI != FE && "Can't fallthrough past the last block.");
- DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
- << getBlockName(BB) << " -> " << getBlockName(NextBB)
- << "\n");
- Chain->merge(NextBB, nullptr);
- FI = NextFI;
- BB = NextBB;
- }
- }
- if (OutlineOptionalBranches) {
- // Find the nearest common dominator of all of F's terminators.
- MachineBasicBlock *Terminator = nullptr;
- for (MachineBasicBlock &MBB : F) {
- if (MBB.succ_size() == 0) {
- if (Terminator == nullptr)
- Terminator = &MBB;
- else
- Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
- }
- }
- // MBBs dominating this common dominator are unavoidable.
- UnavoidableBlocks.clear();
- for (MachineBasicBlock &MBB : F) {
- if (MDT->dominates(&MBB, Terminator)) {
- UnavoidableBlocks.insert(&MBB);
- }
- }
- }
- // Build any loop-based chains.
- for (MachineLoop *L : *MLI)
- buildLoopChains(F, *L);
- SmallVector<MachineBasicBlock *, 16> BlockWorkList;
- SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
- SmallPtrSet<BlockChain *, 4> UpdatedPreds;
- for (MachineBasicBlock &MBB : F)
- fillWorkLists(&MBB, UpdatedPreds, BlockWorkList, EHPadWorkList);
- BlockChain &FunctionChain = *BlockToChain[&F.front()];
- buildChain(&F.front(), FunctionChain, BlockWorkList, EHPadWorkList);
- #ifndef NDEBUG
- typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
- #endif
- DEBUG({
- // Crash at the end so we get all of the debugging output first.
- bool BadFunc = false;
- FunctionBlockSetType FunctionBlockSet;
- for (MachineBasicBlock &MBB : F)
- FunctionBlockSet.insert(&MBB);
- for (MachineBasicBlock *ChainBB : FunctionChain)
- if (!FunctionBlockSet.erase(ChainBB)) {
- BadFunc = true;
- dbgs() << "Function chain contains a block not in the function!\n"
- << " Bad block: " << getBlockName(ChainBB) << "\n";
- }
- if (!FunctionBlockSet.empty()) {
- BadFunc = true;
- for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
- dbgs() << "Function contains blocks never placed into a chain!\n"
- << " Bad block: " << getBlockName(RemainingBB) << "\n";
- }
- assert(!BadFunc && "Detected problems with the block placement.");
- });
- // Splice the blocks into place.
- MachineFunction::iterator InsertPos = F.begin();
- for (MachineBasicBlock *ChainBB : FunctionChain) {
- DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
- : " ... ")
- << getBlockName(ChainBB) << "\n");
- if (InsertPos != MachineFunction::iterator(ChainBB))
- F.splice(InsertPos, ChainBB);
- else
- ++InsertPos;
- // Update the terminator of the previous block.
- if (ChainBB == *FunctionChain.begin())
- continue;
- MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
- // FIXME: It would be awesome of updateTerminator would just return rather
- // than assert when the branch cannot be analyzed in order to remove this
- // boiler plate.
- Cond.clear();
- MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
- if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
- // The "PrevBB" is not yet updated to reflect current code layout, so,
- // o. it may fall-through to a block without explict "goto" instruction
- // before layout, and no longer fall-through it after layout; or
- // o. just opposite.
- //
- // AnalyzeBranch() may return erroneous value for FBB when these two
- // situations take place. For the first scenario FBB is mistakenly set
- // NULL; for the 2nd scenario, the FBB, which is expected to be NULL,
- // is mistakenly pointing to "*BI".
- //
- bool needUpdateBr = true;
- if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
- PrevBB->updateTerminator();
- needUpdateBr = false;
- Cond.clear();
- TBB = FBB = nullptr;
- if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
- // FIXME: This should never take place.
- TBB = FBB = nullptr;
- }
- }
- // If PrevBB has a two-way branch, try to re-order the branches
- // such that we branch to the successor with higher probability first.
- if (TBB && !Cond.empty() && FBB &&
- MBPI->getEdgeProbability(PrevBB, FBB) >
- MBPI->getEdgeProbability(PrevBB, TBB) &&
- !TII->ReverseBranchCondition(Cond)) {
- DEBUG(dbgs() << "Reverse order of the two branches: "
- << getBlockName(PrevBB) << "\n");
- DEBUG(dbgs() << " Edge probability: "
- << MBPI->getEdgeProbability(PrevBB, FBB) << " vs "
- << MBPI->getEdgeProbability(PrevBB, TBB) << "\n");
- DebugLoc dl; // FIXME: this is nowhere
- TII->RemoveBranch(*PrevBB);
- TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
- needUpdateBr = true;
- }
- if (needUpdateBr)
- PrevBB->updateTerminator();
- }
- }
- // Fixup the last block.
- Cond.clear();
- MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
- if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
- F.back().updateTerminator();
- // Walk through the backedges of the function now that we have fully laid out
- // the basic blocks and align the destination of each backedge. We don't rely
- // exclusively on the loop info here so that we can align backedges in
- // unnatural CFGs and backedges that were introduced purely because of the
- // loop rotations done during this layout pass.
- // FIXME: Use Function::optForSize().
- if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
- return;
- if (FunctionChain.begin() == FunctionChain.end())
- return; // Empty chain.
- const BranchProbability ColdProb(1, 5); // 20%
- BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front());
- BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
- for (MachineBasicBlock *ChainBB : FunctionChain) {
- if (ChainBB == *FunctionChain.begin())
- continue;
- // Don't align non-looping basic blocks. These are unlikely to execute
- // enough times to matter in practice. Note that we'll still handle
- // unnatural CFGs inside of a natural outer loop (the common case) and
- // rotated loops.
- MachineLoop *L = MLI->getLoopFor(ChainBB);
- if (!L)
- continue;
- unsigned Align = TLI->getPrefLoopAlignment(L);
- if (!Align)
- continue; // Don't care about loop alignment.
- // If the block is cold relative to the function entry don't waste space
- // aligning it.
- BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
- if (Freq < WeightedEntryFreq)
- continue;
- // If the block is cold relative to its loop header, don't align it
- // regardless of what edges into the block exist.
- MachineBasicBlock *LoopHeader = L->getHeader();
- BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
- if (Freq < (LoopHeaderFreq * ColdProb))
- continue;
- // Check for the existence of a non-layout predecessor which would benefit
- // from aligning this block.
- MachineBasicBlock *LayoutPred =
- &*std::prev(MachineFunction::iterator(ChainBB));
- // Force alignment if all the predecessors are jumps. We already checked
- // that the block isn't cold above.
- if (!LayoutPred->isSuccessor(ChainBB)) {
- ChainBB->setAlignment(Align);
- continue;
- }
- // Align this block if the layout predecessor's edge into this block is
- // cold relative to the block. When this is true, other predecessors make up
- // all of the hot entries into the block and thus alignment is likely to be
- // important.
- BranchProbability LayoutProb =
- MBPI->getEdgeProbability(LayoutPred, ChainBB);
- BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
- if (LayoutEdgeFreq <= (Freq * ColdProb))
- ChainBB->setAlignment(Align);
- }
- }
- bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
- // Check for single-block functions and skip them.
- if (std::next(F.begin()) == F.end())
- return false;
- if (skipFunction(*F.getFunction()))
- return false;
- MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
- MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
- MLI = &getAnalysis<MachineLoopInfo>();
- TII = F.getSubtarget().getInstrInfo();
- TLI = F.getSubtarget().getTargetLowering();
- MDT = &getAnalysis<MachineDominatorTree>();
- assert(BlockToChain.empty());
- buildCFGChains(F);
- BlockToChain.clear();
- ChainAllocator.DestroyAll();
- if (AlignAllBlock)
- // Align all of the blocks in the function to a specific alignment.
- for (MachineBasicBlock &MBB : F)
- MBB.setAlignment(AlignAllBlock);
- else if (AlignAllNonFallThruBlocks) {
- // Align all of the blocks that have no fall-through predecessors to a
- // specific alignment.
- for (auto MBI = std::next(F.begin()), MBE = F.end(); MBI != MBE; ++MBI) {
- auto LayoutPred = std::prev(MBI);
- if (!LayoutPred->isSuccessor(&*MBI))
- MBI->setAlignment(AlignAllNonFallThruBlocks);
- }
- }
- // We always return true as we have no way to track whether the final order
- // differs from the original order.
- return true;
- }
- namespace {
- /// \brief A pass to compute block placement statistics.
- ///
- /// A separate pass to compute interesting statistics for evaluating block
- /// placement. This is separate from the actual placement pass so that they can
- /// be computed in the absence of any placement transformations or when using
- /// alternative placement strategies.
- class MachineBlockPlacementStats : public MachineFunctionPass {
- /// \brief A handle to the branch probability pass.
- const MachineBranchProbabilityInfo *MBPI;
- /// \brief A handle to the function-wide block frequency pass.
- const MachineBlockFrequencyInfo *MBFI;
- public:
- static char ID; // Pass identification, replacement for typeid
- MachineBlockPlacementStats() : MachineFunctionPass(ID) {
- initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
- }
- bool runOnMachineFunction(MachineFunction &F) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<MachineBranchProbabilityInfo>();
- AU.addRequired<MachineBlockFrequencyInfo>();
- AU.setPreservesAll();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- };
- }
- char MachineBlockPlacementStats::ID = 0;
- char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
- INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
- "Basic Block Placement Stats", false, false)
- INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
- INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
- INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
- "Basic Block Placement Stats", false, false)
- bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
- // Check for single-block functions and skip them.
- if (std::next(F.begin()) == F.end())
- return false;
- MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
- MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
- for (MachineBasicBlock &MBB : F) {
- BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
- Statistic &NumBranches =
- (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
- Statistic &BranchTakenFreq =
- (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
- for (MachineBasicBlock *Succ : MBB.successors()) {
- // Skip if this successor is a fallthrough.
- if (MBB.isLayoutSuccessor(Succ))
- continue;
- BlockFrequency EdgeFreq =
- BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
- ++NumBranches;
- BranchTakenFreq += EdgeFreq.getFrequency();
- }
- }
- return false;
- }
|