12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367 |
- //===-- Execution.cpp - Implement code to simulate the program ------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains the actual instruction interpreter.
- //
- //===----------------------------------------------------------------------===//
- #define DEBUG_TYPE "interpreter"
- #include "Interpreter.h"
- #include "llvm/Constants.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/Instructions.h"
- #include "llvm/CodeGen/IntrinsicLowering.h"
- #include "llvm/Support/GetElementPtrTypeIterator.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include <algorithm>
- #include <cmath>
- #include <cstring>
- using namespace llvm;
- STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
- static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
- cl::desc("make the interpreter print every volatile load and store"));
- //===----------------------------------------------------------------------===//
- // Various Helper Functions
- //===----------------------------------------------------------------------===//
- static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
- SF.Values[V] = Val;
- }
- //===----------------------------------------------------------------------===//
- // Binary Instruction Implementations
- //===----------------------------------------------------------------------===//
- #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
- case Type::TY##TyID: \
- Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
- break
- static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, const Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_BINARY_OPERATOR(+, Float);
- IMPLEMENT_BINARY_OPERATOR(+, Double);
- default:
- cerr << "Unhandled type for FAdd instruction: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- }
- static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, const Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_BINARY_OPERATOR(-, Float);
- IMPLEMENT_BINARY_OPERATOR(-, Double);
- default:
- cerr << "Unhandled type for FSub instruction: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- }
- static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, const Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_BINARY_OPERATOR(*, Float);
- IMPLEMENT_BINARY_OPERATOR(*, Double);
- default:
- cerr << "Unhandled type for FMul instruction: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- }
- static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, const Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_BINARY_OPERATOR(/, Float);
- IMPLEMENT_BINARY_OPERATOR(/, Double);
- default:
- cerr << "Unhandled type for FDiv instruction: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- }
- static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, const Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::FloatTyID:
- Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
- break;
- case Type::DoubleTyID:
- Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
- break;
- default:
- cerr << "Unhandled type for Rem instruction: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- }
- #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
- case Type::IntegerTyID: \
- Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
- break;
- // Handle pointers specially because they must be compared with only as much
- // width as the host has. We _do not_ want to be comparing 64 bit values when
- // running on a 32-bit target, otherwise the upper 32 bits might mess up
- // comparisons if they contain garbage.
- #define IMPLEMENT_POINTER_ICMP(OP) \
- case Type::PointerTyID: \
- Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
- (void*)(intptr_t)Src2.PointerVal); \
- break;
- static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(eq,Ty);
- IMPLEMENT_POINTER_ICMP(==);
- default:
- cerr << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- return Dest;
- }
- static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ne,Ty);
- IMPLEMENT_POINTER_ICMP(!=);
- default:
- cerr << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- return Dest;
- }
- static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ult,Ty);
- IMPLEMENT_POINTER_ICMP(<);
- default:
- cerr << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- return Dest;
- }
- static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(slt,Ty);
- IMPLEMENT_POINTER_ICMP(<);
- default:
- cerr << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- return Dest;
- }
- static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ugt,Ty);
- IMPLEMENT_POINTER_ICMP(>);
- default:
- cerr << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- return Dest;
- }
- static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(sgt,Ty);
- IMPLEMENT_POINTER_ICMP(>);
- default:
- cerr << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- return Dest;
- }
- static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ule,Ty);
- IMPLEMENT_POINTER_ICMP(<=);
- default:
- cerr << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- return Dest;
- }
- static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(sle,Ty);
- IMPLEMENT_POINTER_ICMP(<=);
- default:
- cerr << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- return Dest;
- }
- static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(uge,Ty);
- IMPLEMENT_POINTER_ICMP(>=);
- default:
- cerr << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- return Dest;
- }
- static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(sge,Ty);
- IMPLEMENT_POINTER_ICMP(>=);
- default:
- cerr << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- return Dest;
- }
- void Interpreter::visitICmpInst(ICmpInst &I) {
- ExecutionContext &SF = ECStack.back();
- const Type *Ty = I.getOperand(0)->getType();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue R; // Result
-
- switch (I.getPredicate()) {
- case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
- default:
- cerr << "Don't know how to handle this ICmp predicate!\n-->" << I;
- llvm_unreachable(0);
- }
-
- SetValue(&I, R, SF);
- }
- #define IMPLEMENT_FCMP(OP, TY) \
- case Type::TY##TyID: \
- Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
- break
- static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(==, Float);
- IMPLEMENT_FCMP(==, Double);
- default:
- cerr << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- return Dest;
- }
- static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(!=, Float);
- IMPLEMENT_FCMP(!=, Double);
- default:
- cerr << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- return Dest;
- }
- static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(<=, Float);
- IMPLEMENT_FCMP(<=, Double);
- default:
- cerr << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- return Dest;
- }
- static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(>=, Float);
- IMPLEMENT_FCMP(>=, Double);
- default:
- cerr << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- return Dest;
- }
- static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(<, Float);
- IMPLEMENT_FCMP(<, Double);
- default:
- cerr << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- return Dest;
- }
- static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(>, Float);
- IMPLEMENT_FCMP(>, Double);
- default:
- cerr << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- return Dest;
- }
- #define IMPLEMENT_UNORDERED(TY, X,Y) \
- if (TY == Type::getFloatTy(Ty->getContext())) { \
- if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
- Dest.IntVal = APInt(1,true); \
- return Dest; \
- } \
- } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
- Dest.IntVal = APInt(1,true); \
- return Dest; \
- }
- static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- return executeFCMP_OEQ(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- return executeFCMP_ONE(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- return executeFCMP_OLE(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- return executeFCMP_OGE(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- return executeFCMP_OLT(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- return executeFCMP_OGT(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- if (Ty == Type::getFloatTy(Ty->getContext()))
- Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
- Src2.FloatVal == Src2.FloatVal));
- else
- Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
- Src2.DoubleVal == Src2.DoubleVal));
- return Dest;
- }
- static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- if (Ty == Type::getFloatTy(Ty->getContext()))
- Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
- Src2.FloatVal != Src2.FloatVal));
- else
- Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
- Src2.DoubleVal != Src2.DoubleVal));
- return Dest;
- }
- void Interpreter::visitFCmpInst(FCmpInst &I) {
- ExecutionContext &SF = ECStack.back();
- const Type *Ty = I.getOperand(0)->getType();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue R; // Result
-
- switch (I.getPredicate()) {
- case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break;
- case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break;
- case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
- default:
- cerr << "Don't know how to handle this FCmp predicate!\n-->" << I;
- llvm_unreachable(0);
- }
-
- SetValue(&I, R, SF);
- }
- static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
- GenericValue Src2, const Type *Ty) {
- GenericValue Result;
- switch (predicate) {
- case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
- case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
- case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
- case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
- case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
- case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
- case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
- case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
- case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
- case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
- case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
- case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
- case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
- case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
- case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
- case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
- case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
- case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
- case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
- case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
- case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
- case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
- case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
- case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
- case FCmpInst::FCMP_FALSE: {
- GenericValue Result;
- Result.IntVal = APInt(1, false);
- return Result;
- }
- case FCmpInst::FCMP_TRUE: {
- GenericValue Result;
- Result.IntVal = APInt(1, true);
- return Result;
- }
- default:
- cerr << "Unhandled Cmp predicate\n";
- llvm_unreachable(0);
- }
- }
- void Interpreter::visitBinaryOperator(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- const Type *Ty = I.getOperand(0)->getType();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue R; // Result
- switch (I.getOpcode()) {
- case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
- case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
- case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
- case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
- case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
- case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
- case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
- case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
- case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
- case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
- case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
- case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
- case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
- case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
- case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
- default:
- cerr << "Don't know how to handle this binary operator!\n-->" << I;
- llvm_unreachable(0);
- }
- SetValue(&I, R, SF);
- }
- static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
- GenericValue Src3) {
- return Src1.IntVal == 0 ? Src3 : Src2;
- }
- void Interpreter::visitSelectInst(SelectInst &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
- GenericValue R = executeSelectInst(Src1, Src2, Src3);
- SetValue(&I, R, SF);
- }
- //===----------------------------------------------------------------------===//
- // Terminator Instruction Implementations
- //===----------------------------------------------------------------------===//
- void Interpreter::exitCalled(GenericValue GV) {
- // runAtExitHandlers() assumes there are no stack frames, but
- // if exit() was called, then it had a stack frame. Blow away
- // the stack before interpreting atexit handlers.
- ECStack.clear ();
- runAtExitHandlers ();
- exit (GV.IntVal.zextOrTrunc(32).getZExtValue());
- }
- /// Pop the last stack frame off of ECStack and then copy the result
- /// back into the result variable if we are not returning void. The
- /// result variable may be the ExitValue, or the Value of the calling
- /// CallInst if there was a previous stack frame. This method may
- /// invalidate any ECStack iterators you have. This method also takes
- /// care of switching to the normal destination BB, if we are returning
- /// from an invoke.
- ///
- void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy,
- GenericValue Result) {
- // Pop the current stack frame.
- ECStack.pop_back();
- if (ECStack.empty()) { // Finished main. Put result into exit code...
- if (RetTy && RetTy->isInteger()) { // Nonvoid return type?
- ExitValue = Result; // Capture the exit value of the program
- } else {
- memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
- }
- } else {
- // If we have a previous stack frame, and we have a previous call,
- // fill in the return value...
- ExecutionContext &CallingSF = ECStack.back();
- if (Instruction *I = CallingSF.Caller.getInstruction()) {
- // Save result...
- if (CallingSF.Caller.getType() != Type::getVoidTy(RetTy->getContext()))
- SetValue(I, Result, CallingSF);
- if (InvokeInst *II = dyn_cast<InvokeInst> (I))
- SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
- CallingSF.Caller = CallSite(); // We returned from the call...
- }
- }
- }
- void Interpreter::visitReturnInst(ReturnInst &I) {
- ExecutionContext &SF = ECStack.back();
- const Type *RetTy = Type::getVoidTy(I.getContext());
- GenericValue Result;
- // Save away the return value... (if we are not 'ret void')
- if (I.getNumOperands()) {
- RetTy = I.getReturnValue()->getType();
- Result = getOperandValue(I.getReturnValue(), SF);
- }
- popStackAndReturnValueToCaller(RetTy, Result);
- }
- void Interpreter::visitUnwindInst(UnwindInst &I) {
- // Unwind stack
- Instruction *Inst;
- do {
- ECStack.pop_back ();
- if (ECStack.empty ())
- llvm_report_error("Empty stack during unwind!");
- Inst = ECStack.back ().Caller.getInstruction ();
- } while (!(Inst && isa<InvokeInst> (Inst)));
- // Return from invoke
- ExecutionContext &InvokingSF = ECStack.back ();
- InvokingSF.Caller = CallSite ();
- // Go to exceptional destination BB of invoke instruction
- SwitchToNewBasicBlock(cast<InvokeInst>(Inst)->getUnwindDest(), InvokingSF);
- }
- void Interpreter::visitUnreachableInst(UnreachableInst &I) {
- llvm_report_error("Program executed an 'unreachable' instruction!");
- }
- void Interpreter::visitBranchInst(BranchInst &I) {
- ExecutionContext &SF = ECStack.back();
- BasicBlock *Dest;
- Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
- if (!I.isUnconditional()) {
- Value *Cond = I.getCondition();
- if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
- Dest = I.getSuccessor(1);
- }
- SwitchToNewBasicBlock(Dest, SF);
- }
- void Interpreter::visitSwitchInst(SwitchInst &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue CondVal = getOperandValue(I.getOperand(0), SF);
- const Type *ElTy = I.getOperand(0)->getType();
- // Check to see if any of the cases match...
- BasicBlock *Dest = 0;
- for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2)
- if (executeICMP_EQ(CondVal, getOperandValue(I.getOperand(i), SF), ElTy)
- .IntVal != 0) {
- Dest = cast<BasicBlock>(I.getOperand(i+1));
- break;
- }
- if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
- SwitchToNewBasicBlock(Dest, SF);
- }
- // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
- // This function handles the actual updating of block and instruction iterators
- // as well as execution of all of the PHI nodes in the destination block.
- //
- // This method does this because all of the PHI nodes must be executed
- // atomically, reading their inputs before any of the results are updated. Not
- // doing this can cause problems if the PHI nodes depend on other PHI nodes for
- // their inputs. If the input PHI node is updated before it is read, incorrect
- // results can happen. Thus we use a two phase approach.
- //
- void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
- BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
- SF.CurBB = Dest; // Update CurBB to branch destination
- SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
- if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
- // Loop over all of the PHI nodes in the current block, reading their inputs.
- std::vector<GenericValue> ResultValues;
- for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
- // Search for the value corresponding to this previous bb...
- int i = PN->getBasicBlockIndex(PrevBB);
- assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
- Value *IncomingValue = PN->getIncomingValue(i);
- // Save the incoming value for this PHI node...
- ResultValues.push_back(getOperandValue(IncomingValue, SF));
- }
- // Now loop over all of the PHI nodes setting their values...
- SF.CurInst = SF.CurBB->begin();
- for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
- PHINode *PN = cast<PHINode>(SF.CurInst);
- SetValue(PN, ResultValues[i], SF);
- }
- }
- //===----------------------------------------------------------------------===//
- // Memory Instruction Implementations
- //===----------------------------------------------------------------------===//
- void Interpreter::visitAllocationInst(AllocationInst &I) {
- ExecutionContext &SF = ECStack.back();
- const Type *Ty = I.getType()->getElementType(); // Type to be allocated
- // Get the number of elements being allocated by the array...
- unsigned NumElements =
- getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
- unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty);
- // Avoid malloc-ing zero bytes, use max()...
- unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
- // Allocate enough memory to hold the type...
- void *Memory = malloc(MemToAlloc);
- DOUT << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
- << NumElements << " (Total: " << MemToAlloc << ") at "
- << uintptr_t(Memory) << '\n';
- GenericValue Result = PTOGV(Memory);
- assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
- SetValue(&I, Result, SF);
- if (I.getOpcode() == Instruction::Alloca)
- ECStack.back().Allocas.add(Memory);
- }
- void Interpreter::visitFreeInst(FreeInst &I) {
- ExecutionContext &SF = ECStack.back();
- assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?");
- GenericValue Value = getOperandValue(I.getOperand(0), SF);
- // TODO: Check to make sure memory is allocated
- free(GVTOP(Value)); // Free memory
- }
- // getElementOffset - The workhorse for getelementptr.
- //
- GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
- gep_type_iterator E,
- ExecutionContext &SF) {
- assert(isa<PointerType>(Ptr->getType()) &&
- "Cannot getElementOffset of a nonpointer type!");
- uint64_t Total = 0;
- for (; I != E; ++I) {
- if (const StructType *STy = dyn_cast<StructType>(*I)) {
- const StructLayout *SLO = TD.getStructLayout(STy);
- const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
- unsigned Index = unsigned(CPU->getZExtValue());
- Total += SLO->getElementOffset(Index);
- } else {
- const SequentialType *ST = cast<SequentialType>(*I);
- // Get the index number for the array... which must be long type...
- GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
- int64_t Idx;
- unsigned BitWidth =
- cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
- if (BitWidth == 32)
- Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
- else {
- assert(BitWidth == 64 && "Invalid index type for getelementptr");
- Idx = (int64_t)IdxGV.IntVal.getZExtValue();
- }
- Total += TD.getTypeAllocSize(ST->getElementType())*Idx;
- }
- }
- GenericValue Result;
- Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
- DOUT << "GEP Index " << Total << " bytes.\n";
- return Result;
- }
- void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeGEPOperation(I.getPointerOperand(),
- gep_type_begin(I), gep_type_end(I), SF), SF);
- }
- void Interpreter::visitLoadInst(LoadInst &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
- GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
- GenericValue Result;
- LoadValueFromMemory(Result, Ptr, I.getType());
- SetValue(&I, Result, SF);
- if (I.isVolatile() && PrintVolatile)
- cerr << "Volatile load " << I;
- }
- void Interpreter::visitStoreInst(StoreInst &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Val = getOperandValue(I.getOperand(0), SF);
- GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
- StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
- I.getOperand(0)->getType());
- if (I.isVolatile() && PrintVolatile)
- cerr << "Volatile store: " << I;
- }
- //===----------------------------------------------------------------------===//
- // Miscellaneous Instruction Implementations
- //===----------------------------------------------------------------------===//
- void Interpreter::visitCallSite(CallSite CS) {
- ExecutionContext &SF = ECStack.back();
- // Check to see if this is an intrinsic function call...
- Function *F = CS.getCalledFunction();
- if (F && F->isDeclaration ())
- switch (F->getIntrinsicID()) {
- case Intrinsic::not_intrinsic:
- break;
- case Intrinsic::vastart: { // va_start
- GenericValue ArgIndex;
- ArgIndex.UIntPairVal.first = ECStack.size() - 1;
- ArgIndex.UIntPairVal.second = 0;
- SetValue(CS.getInstruction(), ArgIndex, SF);
- return;
- }
- case Intrinsic::vaend: // va_end is a noop for the interpreter
- return;
- case Intrinsic::vacopy: // va_copy: dest = src
- SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
- return;
- default:
- // If it is an unknown intrinsic function, use the intrinsic lowering
- // class to transform it into hopefully tasty LLVM code.
- //
- BasicBlock::iterator me(CS.getInstruction());
- BasicBlock *Parent = CS.getInstruction()->getParent();
- bool atBegin(Parent->begin() == me);
- if (!atBegin)
- --me;
- IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
- // Restore the CurInst pointer to the first instruction newly inserted, if
- // any.
- if (atBegin) {
- SF.CurInst = Parent->begin();
- } else {
- SF.CurInst = me;
- ++SF.CurInst;
- }
- return;
- }
- SF.Caller = CS;
- std::vector<GenericValue> ArgVals;
- const unsigned NumArgs = SF.Caller.arg_size();
- ArgVals.reserve(NumArgs);
- uint16_t pNum = 1;
- for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
- e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
- Value *V = *i;
- ArgVals.push_back(getOperandValue(V, SF));
- // Promote all integral types whose size is < sizeof(i32) into i32.
- // We do this by zero or sign extending the value as appropriate
- // according to the parameter attributes
- const Type *Ty = V->getType();
- if (Ty->isInteger() && (ArgVals.back().IntVal.getBitWidth() < 32)) {
- if (CS.paramHasAttr(pNum, Attribute::ZExt))
- ArgVals.back().IntVal = ArgVals.back().IntVal.zext(32);
- else if (CS.paramHasAttr(pNum, Attribute::SExt))
- ArgVals.back().IntVal = ArgVals.back().IntVal.sext(32);
- }
- }
- // To handle indirect calls, we must get the pointer value from the argument
- // and treat it as a function pointer.
- GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
- callFunction((Function*)GVTOP(SRC), ArgVals);
- }
- void Interpreter::visitShl(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest;
- if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
- Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue());
- else
- Dest.IntVal = Src1.IntVal;
-
- SetValue(&I, Dest, SF);
- }
- void Interpreter::visitLShr(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest;
- if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
- Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue());
- else
- Dest.IntVal = Src1.IntVal;
-
- SetValue(&I, Dest, SF);
- }
- void Interpreter::visitAShr(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest;
- if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
- Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue());
- else
- Dest.IntVal = Src1.IntVal;
-
- SetValue(&I, Dest, SF);
- }
- GenericValue Interpreter::executeTruncInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- const IntegerType *DITy = cast<IntegerType>(DstTy);
- unsigned DBitWidth = DITy->getBitWidth();
- Dest.IntVal = Src.IntVal.trunc(DBitWidth);
- return Dest;
- }
- GenericValue Interpreter::executeSExtInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- const IntegerType *DITy = cast<IntegerType>(DstTy);
- unsigned DBitWidth = DITy->getBitWidth();
- Dest.IntVal = Src.IntVal.sext(DBitWidth);
- return Dest;
- }
- GenericValue Interpreter::executeZExtInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- const IntegerType *DITy = cast<IntegerType>(DstTy);
- unsigned DBitWidth = DITy->getBitWidth();
- Dest.IntVal = Src.IntVal.zext(DBitWidth);
- return Dest;
- }
- GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcVal->getType() == Type::getDoubleTy(SrcVal->getContext()) &&
- DstTy == Type::getFloatTy(SrcVal->getContext()) &&
- "Invalid FPTrunc instruction");
- Dest.FloatVal = (float) Src.DoubleVal;
- return Dest;
- }
- GenericValue Interpreter::executeFPExtInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcVal->getType() == Type::getFloatTy(SrcVal->getContext()) &&
- DstTy == Type::getDoubleTy(SrcVal->getContext()) &&
- "Invalid FPTrunc instruction");
- Dest.DoubleVal = (double) Src.FloatVal;
- return Dest;
- }
- GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- const Type *SrcTy = SrcVal->getType();
- uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcTy->isFloatingPoint() && "Invalid FPToUI instruction");
- if (SrcTy->getTypeID() == Type::FloatTyID)
- Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
- else
- Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
- return Dest;
- }
- GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- const Type *SrcTy = SrcVal->getType();
- uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcTy->isFloatingPoint() && "Invalid FPToSI instruction");
- if (SrcTy->getTypeID() == Type::FloatTyID)
- Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
- else
- Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
- return Dest;
- }
- GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(DstTy->isFloatingPoint() && "Invalid UIToFP instruction");
- if (DstTy->getTypeID() == Type::FloatTyID)
- Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
- else
- Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
- return Dest;
- }
- GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(DstTy->isFloatingPoint() && "Invalid SIToFP instruction");
- if (DstTy->getTypeID() == Type::FloatTyID)
- Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
- else
- Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
- return Dest;
- }
- GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(isa<PointerType>(SrcVal->getType()) && "Invalid PtrToInt instruction");
- Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
- return Dest;
- }
- GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(isa<PointerType>(DstTy) && "Invalid PtrToInt instruction");
- uint32_t PtrSize = TD.getPointerSizeInBits();
- if (PtrSize != Src.IntVal.getBitWidth())
- Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
- Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
- return Dest;
- }
- GenericValue Interpreter::executeBitCastInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
-
- const Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (isa<PointerType>(DstTy)) {
- assert(isa<PointerType>(SrcTy) && "Invalid BitCast");
- Dest.PointerVal = Src.PointerVal;
- } else if (DstTy->isInteger()) {
- if (SrcTy == Type::getFloatTy(SrcVal->getContext())) {
- Dest.IntVal.zext(sizeof(Src.FloatVal) * CHAR_BIT);
- Dest.IntVal.floatToBits(Src.FloatVal);
- } else if (SrcTy == Type::getDoubleTy(SrcVal->getContext())) {
- Dest.IntVal.zext(sizeof(Src.DoubleVal) * CHAR_BIT);
- Dest.IntVal.doubleToBits(Src.DoubleVal);
- } else if (SrcTy->isInteger()) {
- Dest.IntVal = Src.IntVal;
- } else
- llvm_unreachable("Invalid BitCast");
- } else if (DstTy == Type::getFloatTy(SrcVal->getContext())) {
- if (SrcTy->isInteger())
- Dest.FloatVal = Src.IntVal.bitsToFloat();
- else
- Dest.FloatVal = Src.FloatVal;
- } else if (DstTy == Type::getDoubleTy(SrcVal->getContext())) {
- if (SrcTy->isInteger())
- Dest.DoubleVal = Src.IntVal.bitsToDouble();
- else
- Dest.DoubleVal = Src.DoubleVal;
- } else
- llvm_unreachable("Invalid Bitcast");
- return Dest;
- }
- void Interpreter::visitTruncInst(TruncInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitSExtInst(SExtInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitZExtInst(ZExtInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitFPTruncInst(FPTruncInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitFPExtInst(FPExtInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitUIToFPInst(UIToFPInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitSIToFPInst(SIToFPInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitFPToUIInst(FPToUIInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitFPToSIInst(FPToSIInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitBitCastInst(BitCastInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
- }
- #define IMPLEMENT_VAARG(TY) \
- case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
- void Interpreter::visitVAArgInst(VAArgInst &I) {
- ExecutionContext &SF = ECStack.back();
- // Get the incoming valist parameter. LLI treats the valist as a
- // (ec-stack-depth var-arg-index) pair.
- GenericValue VAList = getOperandValue(I.getOperand(0), SF);
- GenericValue Dest;
- GenericValue Src = ECStack[VAList.UIntPairVal.first]
- .VarArgs[VAList.UIntPairVal.second];
- const Type *Ty = I.getType();
- switch (Ty->getTypeID()) {
- case Type::IntegerTyID: Dest.IntVal = Src.IntVal;
- IMPLEMENT_VAARG(Pointer);
- IMPLEMENT_VAARG(Float);
- IMPLEMENT_VAARG(Double);
- default:
- cerr << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- // Set the Value of this Instruction.
- SetValue(&I, Dest, SF);
- // Move the pointer to the next vararg.
- ++VAList.UIntPairVal.second;
- }
- GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
- ExecutionContext &SF) {
- switch (CE->getOpcode()) {
- case Instruction::Trunc:
- return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::ZExt:
- return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::SExt:
- return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPTrunc:
- return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPExt:
- return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::UIToFP:
- return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::SIToFP:
- return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPToUI:
- return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPToSI:
- return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::PtrToInt:
- return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::IntToPtr:
- return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::BitCast:
- return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::GetElementPtr:
- return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
- gep_type_end(CE), SF);
- case Instruction::FCmp:
- case Instruction::ICmp:
- return executeCmpInst(CE->getPredicate(),
- getOperandValue(CE->getOperand(0), SF),
- getOperandValue(CE->getOperand(1), SF),
- CE->getOperand(0)->getType());
- case Instruction::Select:
- return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
- getOperandValue(CE->getOperand(1), SF),
- getOperandValue(CE->getOperand(2), SF));
- default :
- break;
- }
- // The cases below here require a GenericValue parameter for the result
- // so we initialize one, compute it and then return it.
- GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
- GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
- GenericValue Dest;
- const Type * Ty = CE->getOperand(0)->getType();
- switch (CE->getOpcode()) {
- case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
- case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
- case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
- case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
- case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
- case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
- case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
- case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
- case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
- case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
- case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
- case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
- case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
- case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
- case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
- case Instruction::Shl:
- Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
- break;
- case Instruction::LShr:
- Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
- break;
- case Instruction::AShr:
- Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
- break;
- default:
- cerr << "Unhandled ConstantExpr: " << *CE << "\n";
- llvm_unreachable(0);
- return GenericValue();
- }
- return Dest;
- }
- GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- return getConstantExprValue(CE, SF);
- } else if (Constant *CPV = dyn_cast<Constant>(V)) {
- return getConstantValue(CPV);
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- return PTOGV(getPointerToGlobal(GV));
- } else {
- return SF.Values[V];
- }
- }
- //===----------------------------------------------------------------------===//
- // Dispatch and Execution Code
- //===----------------------------------------------------------------------===//
- //===----------------------------------------------------------------------===//
- // callFunction - Execute the specified function...
- //
- void Interpreter::callFunction(Function *F,
- const std::vector<GenericValue> &ArgVals) {
- assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
- ECStack.back().Caller.arg_size() == ArgVals.size()) &&
- "Incorrect number of arguments passed into function call!");
- // Make a new stack frame... and fill it in.
- ECStack.push_back(ExecutionContext());
- ExecutionContext &StackFrame = ECStack.back();
- StackFrame.CurFunction = F;
- // Special handling for external functions.
- if (F->isDeclaration()) {
- GenericValue Result = callExternalFunction (F, ArgVals);
- // Simulate a 'ret' instruction of the appropriate type.
- popStackAndReturnValueToCaller (F->getReturnType (), Result);
- return;
- }
- // Get pointers to first LLVM BB & Instruction in function.
- StackFrame.CurBB = F->begin();
- StackFrame.CurInst = StackFrame.CurBB->begin();
- // Run through the function arguments and initialize their values...
- assert((ArgVals.size() == F->arg_size() ||
- (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
- "Invalid number of values passed to function invocation!");
- // Handle non-varargs arguments...
- unsigned i = 0;
- for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
- AI != E; ++AI, ++i)
- SetValue(AI, ArgVals[i], StackFrame);
- // Handle varargs arguments...
- StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
- }
- void Interpreter::run() {
- while (!ECStack.empty()) {
- // Interpret a single instruction & increment the "PC".
- ExecutionContext &SF = ECStack.back(); // Current stack frame
- Instruction &I = *SF.CurInst++; // Increment before execute
- // Track the number of dynamic instructions executed.
- ++NumDynamicInsts;
- DOUT << "About to interpret: " << I;
- visit(I); // Dispatch to one of the visit* methods...
- #if 0
- // This is not safe, as visiting the instruction could lower it and free I.
- #ifndef NDEBUG
- if (!isa<CallInst>(I) && !isa<InvokeInst>(I) &&
- I.getType() != Type::VoidTy) {
- DOUT << " --> ";
- const GenericValue &Val = SF.Values[&I];
- switch (I.getType()->getTypeID()) {
- default: llvm_unreachable("Invalid GenericValue Type");
- case Type::VoidTyID: DOUT << "void"; break;
- case Type::FloatTyID: DOUT << "float " << Val.FloatVal; break;
- case Type::DoubleTyID: DOUT << "double " << Val.DoubleVal; break;
- case Type::PointerTyID: DOUT << "void* " << intptr_t(Val.PointerVal);
- break;
- case Type::IntegerTyID:
- DOUT << "i" << Val.IntVal.getBitWidth() << " "
- << Val.IntVal.toStringUnsigned(10)
- << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n";
- break;
- }
- }
- #endif
- #endif
- }
- }
|