1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066 |
- //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the common interface used by the various execution engine
- // subclasses.
- //
- //===----------------------------------------------------------------------===//
- #define DEBUG_TYPE "jit"
- #include "llvm/ExecutionEngine/ExecutionEngine.h"
- #include "llvm/Constants.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/Module.h"
- #include "llvm/ModuleProvider.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Config/alloca.h"
- #include "llvm/ExecutionEngine/GenericValue.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MutexGuard.h"
- #include "llvm/Support/ValueHandle.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/System/DynamicLibrary.h"
- #include "llvm/System/Host.h"
- #include "llvm/Target/TargetData.h"
- #include <cmath>
- #include <cstring>
- using namespace llvm;
- STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
- STATISTIC(NumGlobals , "Number of global vars initialized");
- ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP,
- std::string *ErrorStr,
- JITMemoryManager *JMM,
- CodeGenOpt::Level OptLevel,
- bool GVsWithCode) = 0;
- ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP,
- std::string *ErrorStr) = 0;
- ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0;
- ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) {
- LazyCompilationDisabled = false;
- GVCompilationDisabled = false;
- SymbolSearchingDisabled = false;
- DlsymStubsEnabled = false;
- Modules.push_back(P);
- assert(P && "ModuleProvider is null?");
- }
- ExecutionEngine::~ExecutionEngine() {
- clearAllGlobalMappings();
- for (unsigned i = 0, e = Modules.size(); i != e; ++i)
- delete Modules[i];
- }
- char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) {
- const Type *ElTy = GV->getType()->getElementType();
- size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
- return new char[GVSize];
- }
- /// removeModuleProvider - Remove a ModuleProvider from the list of modules.
- /// Relases the Module from the ModuleProvider, materializing it in the
- /// process, and returns the materialized Module.
- Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P,
- std::string *ErrInfo) {
- for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
- E = Modules.end(); I != E; ++I) {
- ModuleProvider *MP = *I;
- if (MP == P) {
- Modules.erase(I);
- clearGlobalMappingsFromModule(MP->getModule());
- return MP->releaseModule(ErrInfo);
- }
- }
- return NULL;
- }
- /// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
- /// and deletes the ModuleProvider and owned Module. Avoids materializing
- /// the underlying module.
- void ExecutionEngine::deleteModuleProvider(ModuleProvider *P,
- std::string *ErrInfo) {
- for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
- E = Modules.end(); I != E; ++I) {
- ModuleProvider *MP = *I;
- if (MP == P) {
- Modules.erase(I);
- clearGlobalMappingsFromModule(MP->getModule());
- delete MP;
- return;
- }
- }
- }
- /// FindFunctionNamed - Search all of the active modules to find the one that
- /// defines FnName. This is very slow operation and shouldn't be used for
- /// general code.
- Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
- for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
- if (Function *F = Modules[i]->getModule()->getFunction(FnName))
- return F;
- }
- return 0;
- }
- /// addGlobalMapping - Tell the execution engine that the specified global is
- /// at the specified location. This is used internally as functions are JIT'd
- /// and as global variables are laid out in memory. It can and should also be
- /// used by clients of the EE that want to have an LLVM global overlay
- /// existing data in memory.
- void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
- MutexGuard locked(lock);
- DEBUG(errs() << "JIT: Map \'" << GV->getName()
- << "\' to [" << Addr << "]\n";);
- void *&CurVal = state.getGlobalAddressMap(locked)[GV];
- assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
- CurVal = Addr;
-
- // If we are using the reverse mapping, add it too
- if (!state.getGlobalAddressReverseMap(locked).empty()) {
- AssertingVH<const GlobalValue> &V =
- state.getGlobalAddressReverseMap(locked)[Addr];
- assert((V == 0 || GV == 0) && "GlobalMapping already established!");
- V = GV;
- }
- }
- /// clearAllGlobalMappings - Clear all global mappings and start over again
- /// use in dynamic compilation scenarios when you want to move globals
- void ExecutionEngine::clearAllGlobalMappings() {
- MutexGuard locked(lock);
-
- state.getGlobalAddressMap(locked).clear();
- state.getGlobalAddressReverseMap(locked).clear();
- }
- /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
- /// particular module, because it has been removed from the JIT.
- void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
- MutexGuard locked(lock);
-
- for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
- state.getGlobalAddressMap(locked).erase(&*FI);
- state.getGlobalAddressReverseMap(locked).erase(&*FI);
- }
- for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
- GI != GE; ++GI) {
- state.getGlobalAddressMap(locked).erase(&*GI);
- state.getGlobalAddressReverseMap(locked).erase(&*GI);
- }
- }
- /// updateGlobalMapping - Replace an existing mapping for GV with a new
- /// address. This updates both maps as required. If "Addr" is null, the
- /// entry for the global is removed from the mappings.
- void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
- MutexGuard locked(lock);
- std::map<AssertingVH<const GlobalValue>, void *> &Map =
- state.getGlobalAddressMap(locked);
- // Deleting from the mapping?
- if (Addr == 0) {
- std::map<AssertingVH<const GlobalValue>, void *>::iterator I = Map.find(GV);
- void *OldVal;
- if (I == Map.end())
- OldVal = 0;
- else {
- OldVal = I->second;
- Map.erase(I);
- }
-
- if (!state.getGlobalAddressReverseMap(locked).empty())
- state.getGlobalAddressReverseMap(locked).erase(OldVal);
- return OldVal;
- }
-
- void *&CurVal = Map[GV];
- void *OldVal = CurVal;
- if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
- state.getGlobalAddressReverseMap(locked).erase(CurVal);
- CurVal = Addr;
-
- // If we are using the reverse mapping, add it too
- if (!state.getGlobalAddressReverseMap(locked).empty()) {
- AssertingVH<const GlobalValue> &V =
- state.getGlobalAddressReverseMap(locked)[Addr];
- assert((V == 0 || GV == 0) && "GlobalMapping already established!");
- V = GV;
- }
- return OldVal;
- }
- /// getPointerToGlobalIfAvailable - This returns the address of the specified
- /// global value if it is has already been codegen'd, otherwise it returns null.
- ///
- void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
- MutexGuard locked(lock);
-
- std::map<AssertingVH<const GlobalValue>, void*>::iterator I =
- state.getGlobalAddressMap(locked).find(GV);
- return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
- }
- /// getGlobalValueAtAddress - Return the LLVM global value object that starts
- /// at the specified address.
- ///
- const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
- MutexGuard locked(lock);
- // If we haven't computed the reverse mapping yet, do so first.
- if (state.getGlobalAddressReverseMap(locked).empty()) {
- for (std::map<AssertingVH<const GlobalValue>, void *>::iterator
- I = state.getGlobalAddressMap(locked).begin(),
- E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
- state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
- I->first));
- }
- std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
- state.getGlobalAddressReverseMap(locked).find(Addr);
- return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
- }
- // CreateArgv - Turn a vector of strings into a nice argv style array of
- // pointers to null terminated strings.
- //
- static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE,
- const std::vector<std::string> &InputArgv) {
- unsigned PtrSize = EE->getTargetData()->getPointerSize();
- char *Result = new char[(InputArgv.size()+1)*PtrSize];
- DOUT << "JIT: ARGV = " << (void*)Result << "\n";
- const Type *SBytePtr = PointerType::getUnqual(Type::getInt8Ty(C));
- for (unsigned i = 0; i != InputArgv.size(); ++i) {
- unsigned Size = InputArgv[i].size()+1;
- char *Dest = new char[Size];
- DOUT << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n";
- std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
- Dest[Size-1] = 0;
- // Endian safe: Result[i] = (PointerTy)Dest;
- EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
- SBytePtr);
- }
- // Null terminate it
- EE->StoreValueToMemory(PTOGV(0),
- (GenericValue*)(Result+InputArgv.size()*PtrSize),
- SBytePtr);
- return Result;
- }
- /// runStaticConstructorsDestructors - This method is used to execute all of
- /// the static constructors or destructors for a module, depending on the
- /// value of isDtors.
- void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) {
- const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
-
- // Execute global ctors/dtors for each module in the program.
-
- GlobalVariable *GV = module->getNamedGlobal(Name);
- // If this global has internal linkage, or if it has a use, then it must be
- // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
- // this is the case, don't execute any of the global ctors, __main will do
- // it.
- if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
-
- // Should be an array of '{ int, void ()* }' structs. The first value is
- // the init priority, which we ignore.
- ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
- if (!InitList) return;
- for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
- if (ConstantStruct *CS =
- dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
- if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
-
- Constant *FP = CS->getOperand(1);
- if (FP->isNullValue())
- break; // Found a null terminator, exit.
-
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
- if (CE->isCast())
- FP = CE->getOperand(0);
- if (Function *F = dyn_cast<Function>(FP)) {
- // Execute the ctor/dtor function!
- runFunction(F, std::vector<GenericValue>());
- }
- }
- }
- /// runStaticConstructorsDestructors - This method is used to execute all of
- /// the static constructors or destructors for a program, depending on the
- /// value of isDtors.
- void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
- // Execute global ctors/dtors for each module in the program.
- for (unsigned m = 0, e = Modules.size(); m != e; ++m)
- runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors);
- }
- #ifndef NDEBUG
- /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
- static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
- unsigned PtrSize = EE->getTargetData()->getPointerSize();
- for (unsigned i = 0; i < PtrSize; ++i)
- if (*(i + (uint8_t*)Loc))
- return false;
- return true;
- }
- #endif
- /// runFunctionAsMain - This is a helper function which wraps runFunction to
- /// handle the common task of starting up main with the specified argc, argv,
- /// and envp parameters.
- int ExecutionEngine::runFunctionAsMain(Function *Fn,
- const std::vector<std::string> &argv,
- const char * const * envp) {
- std::vector<GenericValue> GVArgs;
- GenericValue GVArgc;
- GVArgc.IntVal = APInt(32, argv.size());
- // Check main() type
- unsigned NumArgs = Fn->getFunctionType()->getNumParams();
- const FunctionType *FTy = Fn->getFunctionType();
- const Type* PPInt8Ty =
- PointerType::getUnqual(PointerType::getUnqual(
- Type::getInt8Ty(Fn->getContext())));
- switch (NumArgs) {
- case 3:
- if (FTy->getParamType(2) != PPInt8Ty) {
- llvm_report_error("Invalid type for third argument of main() supplied");
- }
- // FALLS THROUGH
- case 2:
- if (FTy->getParamType(1) != PPInt8Ty) {
- llvm_report_error("Invalid type for second argument of main() supplied");
- }
- // FALLS THROUGH
- case 1:
- if (FTy->getParamType(0) != Type::getInt32Ty(Fn->getContext())) {
- llvm_report_error("Invalid type for first argument of main() supplied");
- }
- // FALLS THROUGH
- case 0:
- if (!isa<IntegerType>(FTy->getReturnType()) &&
- FTy->getReturnType() != Type::getVoidTy(FTy->getContext())) {
- llvm_report_error("Invalid return type of main() supplied");
- }
- break;
- default:
- llvm_report_error("Invalid number of arguments of main() supplied");
- }
-
- if (NumArgs) {
- GVArgs.push_back(GVArgc); // Arg #0 = argc.
- if (NumArgs > 1) {
- // Arg #1 = argv.
- GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv)));
- assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
- "argv[0] was null after CreateArgv");
- if (NumArgs > 2) {
- std::vector<std::string> EnvVars;
- for (unsigned i = 0; envp[i]; ++i)
- EnvVars.push_back(envp[i]);
- // Arg #2 = envp.
- GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars)));
- }
- }
- }
- return runFunction(Fn, GVArgs).IntVal.getZExtValue();
- }
- /// If possible, create a JIT, unless the caller specifically requests an
- /// Interpreter or there's an error. If even an Interpreter cannot be created,
- /// NULL is returned.
- ///
- ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
- bool ForceInterpreter,
- std::string *ErrorStr,
- CodeGenOpt::Level OptLevel,
- bool GVsWithCode) {
- return EngineBuilder(MP)
- .setEngineKind(ForceInterpreter
- ? EngineKind::Interpreter
- : EngineKind::JIT)
- .setErrorStr(ErrorStr)
- .setOptLevel(OptLevel)
- .setAllocateGVsWithCode(GVsWithCode)
- .create();
- }
- ExecutionEngine *ExecutionEngine::create(Module *M) {
- return EngineBuilder(M).create();
- }
- /// EngineBuilder - Overloaded constructor that automatically creates an
- /// ExistingModuleProvider for an existing module.
- EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) {
- InitEngine();
- }
- ExecutionEngine *EngineBuilder::create() {
- // Make sure we can resolve symbols in the program as well. The zero arg
- // to the function tells DynamicLibrary to load the program, not a library.
- if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
- return 0;
- // If the user specified a memory manager but didn't specify which engine to
- // create, we assume they only want the JIT, and we fail if they only want
- // the interpreter.
- if (JMM) {
- if (WhichEngine & EngineKind::JIT) {
- WhichEngine = EngineKind::JIT;
- } else {
- *ErrorStr = "Cannot create an interpreter with a memory manager.";
- }
- }
- ExecutionEngine *EE = 0;
- // Unless the interpreter was explicitly selected or the JIT is not linked,
- // try making a JIT.
- if (WhichEngine & EngineKind::JIT && ExecutionEngine::JITCtor) {
- EE = ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel,
- AllocateGVsWithCode);
- }
- // If we can't make a JIT and we didn't request one specifically, try making
- // an interpreter instead.
- if (WhichEngine & EngineKind::Interpreter && EE == 0 &&
- ExecutionEngine::InterpCtor) {
- EE = ExecutionEngine::InterpCtor(MP, ErrorStr);
- }
- return EE;
- }
- /// getPointerToGlobal - This returns the address of the specified global
- /// value. This may involve code generation if it's a function.
- ///
- void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
- if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
- return getPointerToFunction(F);
- MutexGuard locked(lock);
- void *p = state.getGlobalAddressMap(locked)[GV];
- if (p)
- return p;
- // Global variable might have been added since interpreter started.
- if (GlobalVariable *GVar =
- const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
- EmitGlobalVariable(GVar);
- else
- llvm_unreachable("Global hasn't had an address allocated yet!");
- return state.getGlobalAddressMap(locked)[GV];
- }
- /// This function converts a Constant* into a GenericValue. The interesting
- /// part is if C is a ConstantExpr.
- /// @brief Get a GenericValue for a Constant*
- GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
- // If its undefined, return the garbage.
- if (isa<UndefValue>(C))
- return GenericValue();
- // If the value is a ConstantExpr
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- Constant *Op0 = CE->getOperand(0);
- switch (CE->getOpcode()) {
- case Instruction::GetElementPtr: {
- // Compute the index
- GenericValue Result = getConstantValue(Op0);
- SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
- uint64_t Offset =
- TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
- char* tmp = (char*) Result.PointerVal;
- Result = PTOGV(tmp + Offset);
- return Result;
- }
- case Instruction::Trunc: {
- GenericValue GV = getConstantValue(Op0);
- uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
- GV.IntVal = GV.IntVal.trunc(BitWidth);
- return GV;
- }
- case Instruction::ZExt: {
- GenericValue GV = getConstantValue(Op0);
- uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
- GV.IntVal = GV.IntVal.zext(BitWidth);
- return GV;
- }
- case Instruction::SExt: {
- GenericValue GV = getConstantValue(Op0);
- uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
- GV.IntVal = GV.IntVal.sext(BitWidth);
- return GV;
- }
- case Instruction::FPTrunc: {
- // FIXME long double
- GenericValue GV = getConstantValue(Op0);
- GV.FloatVal = float(GV.DoubleVal);
- return GV;
- }
- case Instruction::FPExt:{
- // FIXME long double
- GenericValue GV = getConstantValue(Op0);
- GV.DoubleVal = double(GV.FloatVal);
- return GV;
- }
- case Instruction::UIToFP: {
- GenericValue GV = getConstantValue(Op0);
- if (CE->getType() == Type::getFloatTy(CE->getContext()))
- GV.FloatVal = float(GV.IntVal.roundToDouble());
- else if (CE->getType() == Type::getDoubleTy(CE->getContext()))
- GV.DoubleVal = GV.IntVal.roundToDouble();
- else if (CE->getType() == Type::getX86_FP80Ty(Op0->getContext())) {
- const uint64_t zero[] = {0, 0};
- APFloat apf = APFloat(APInt(80, 2, zero));
- (void)apf.convertFromAPInt(GV.IntVal,
- false,
- APFloat::rmNearestTiesToEven);
- GV.IntVal = apf.bitcastToAPInt();
- }
- return GV;
- }
- case Instruction::SIToFP: {
- GenericValue GV = getConstantValue(Op0);
- if (CE->getType() == Type::getFloatTy(CE->getContext()))
- GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
- else if (CE->getType() == Type::getDoubleTy(CE->getContext()))
- GV.DoubleVal = GV.IntVal.signedRoundToDouble();
- else if (CE->getType() == Type::getX86_FP80Ty(CE->getContext())) {
- const uint64_t zero[] = { 0, 0};
- APFloat apf = APFloat(APInt(80, 2, zero));
- (void)apf.convertFromAPInt(GV.IntVal,
- true,
- APFloat::rmNearestTiesToEven);
- GV.IntVal = apf.bitcastToAPInt();
- }
- return GV;
- }
- case Instruction::FPToUI: // double->APInt conversion handles sign
- case Instruction::FPToSI: {
- GenericValue GV = getConstantValue(Op0);
- uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
- if (Op0->getType() == Type::getFloatTy(Op0->getContext()))
- GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
- else if (Op0->getType() == Type::getDoubleTy(Op0->getContext()))
- GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
- else if (Op0->getType() == Type::getX86_FP80Ty(Op0->getContext())) {
- APFloat apf = APFloat(GV.IntVal);
- uint64_t v;
- bool ignored;
- (void)apf.convertToInteger(&v, BitWidth,
- CE->getOpcode()==Instruction::FPToSI,
- APFloat::rmTowardZero, &ignored);
- GV.IntVal = v; // endian?
- }
- return GV;
- }
- case Instruction::PtrToInt: {
- GenericValue GV = getConstantValue(Op0);
- uint32_t PtrWidth = TD->getPointerSizeInBits();
- GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
- return GV;
- }
- case Instruction::IntToPtr: {
- GenericValue GV = getConstantValue(Op0);
- uint32_t PtrWidth = TD->getPointerSizeInBits();
- if (PtrWidth != GV.IntVal.getBitWidth())
- GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
- assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
- GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
- return GV;
- }
- case Instruction::BitCast: {
- GenericValue GV = getConstantValue(Op0);
- const Type* DestTy = CE->getType();
- switch (Op0->getType()->getTypeID()) {
- default: llvm_unreachable("Invalid bitcast operand");
- case Type::IntegerTyID:
- assert(DestTy->isFloatingPoint() && "invalid bitcast");
- if (DestTy == Type::getFloatTy(Op0->getContext()))
- GV.FloatVal = GV.IntVal.bitsToFloat();
- else if (DestTy == Type::getDoubleTy(DestTy->getContext()))
- GV.DoubleVal = GV.IntVal.bitsToDouble();
- break;
- case Type::FloatTyID:
- assert(DestTy == Type::getInt32Ty(DestTy->getContext()) &&
- "Invalid bitcast");
- GV.IntVal.floatToBits(GV.FloatVal);
- break;
- case Type::DoubleTyID:
- assert(DestTy == Type::getInt64Ty(DestTy->getContext()) &&
- "Invalid bitcast");
- GV.IntVal.doubleToBits(GV.DoubleVal);
- break;
- case Type::PointerTyID:
- assert(isa<PointerType>(DestTy) && "Invalid bitcast");
- break; // getConstantValue(Op0) above already converted it
- }
- return GV;
- }
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- GenericValue LHS = getConstantValue(Op0);
- GenericValue RHS = getConstantValue(CE->getOperand(1));
- GenericValue GV;
- switch (CE->getOperand(0)->getType()->getTypeID()) {
- default: llvm_unreachable("Bad add type!");
- case Type::IntegerTyID:
- switch (CE->getOpcode()) {
- default: llvm_unreachable("Invalid integer opcode");
- case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
- case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
- case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
- case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
- case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
- case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
- case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
- case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
- case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
- case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
- }
- break;
- case Type::FloatTyID:
- switch (CE->getOpcode()) {
- default: llvm_unreachable("Invalid float opcode");
- case Instruction::FAdd:
- GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
- case Instruction::FSub:
- GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
- case Instruction::FMul:
- GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
- case Instruction::FDiv:
- GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
- case Instruction::FRem:
- GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
- }
- break;
- case Type::DoubleTyID:
- switch (CE->getOpcode()) {
- default: llvm_unreachable("Invalid double opcode");
- case Instruction::FAdd:
- GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
- case Instruction::FSub:
- GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
- case Instruction::FMul:
- GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
- case Instruction::FDiv:
- GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
- case Instruction::FRem:
- GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
- }
- break;
- case Type::X86_FP80TyID:
- case Type::PPC_FP128TyID:
- case Type::FP128TyID: {
- APFloat apfLHS = APFloat(LHS.IntVal);
- switch (CE->getOpcode()) {
- default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0);
- case Instruction::FAdd:
- apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
- GV.IntVal = apfLHS.bitcastToAPInt();
- break;
- case Instruction::FSub:
- apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
- GV.IntVal = apfLHS.bitcastToAPInt();
- break;
- case Instruction::FMul:
- apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
- GV.IntVal = apfLHS.bitcastToAPInt();
- break;
- case Instruction::FDiv:
- apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
- GV.IntVal = apfLHS.bitcastToAPInt();
- break;
- case Instruction::FRem:
- apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
- GV.IntVal = apfLHS.bitcastToAPInt();
- break;
- }
- }
- break;
- }
- return GV;
- }
- default:
- break;
- }
- std::string msg;
- raw_string_ostream Msg(msg);
- Msg << "ConstantExpr not handled: " << *CE;
- llvm_report_error(Msg.str());
- }
- GenericValue Result;
- switch (C->getType()->getTypeID()) {
- case Type::FloatTyID:
- Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
- break;
- case Type::DoubleTyID:
- Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
- break;
- case Type::X86_FP80TyID:
- case Type::FP128TyID:
- case Type::PPC_FP128TyID:
- Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
- break;
- case Type::IntegerTyID:
- Result.IntVal = cast<ConstantInt>(C)->getValue();
- break;
- case Type::PointerTyID:
- if (isa<ConstantPointerNull>(C))
- Result.PointerVal = 0;
- else if (const Function *F = dyn_cast<Function>(C))
- Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
- else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
- Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
- else
- llvm_unreachable("Unknown constant pointer type!");
- break;
- default:
- std::string msg;
- raw_string_ostream Msg(msg);
- Msg << "ERROR: Constant unimplemented for type: " << *C->getType();
- llvm_report_error(Msg.str());
- }
- return Result;
- }
- /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
- /// with the integer held in IntVal.
- static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
- unsigned StoreBytes) {
- assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
- uint8_t *Src = (uint8_t *)IntVal.getRawData();
- if (sys::isLittleEndianHost())
- // Little-endian host - the source is ordered from LSB to MSB. Order the
- // destination from LSB to MSB: Do a straight copy.
- memcpy(Dst, Src, StoreBytes);
- else {
- // Big-endian host - the source is an array of 64 bit words ordered from
- // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
- // from MSB to LSB: Reverse the word order, but not the bytes in a word.
- while (StoreBytes > sizeof(uint64_t)) {
- StoreBytes -= sizeof(uint64_t);
- // May not be aligned so use memcpy.
- memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
- Src += sizeof(uint64_t);
- }
- memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
- }
- }
- /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
- /// is the address of the memory at which to store Val, cast to GenericValue *.
- /// It is not a pointer to a GenericValue containing the address at which to
- /// store Val.
- void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
- GenericValue *Ptr, const Type *Ty) {
- const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
- switch (Ty->getTypeID()) {
- case Type::IntegerTyID:
- StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
- break;
- case Type::FloatTyID:
- *((float*)Ptr) = Val.FloatVal;
- break;
- case Type::DoubleTyID:
- *((double*)Ptr) = Val.DoubleVal;
- break;
- case Type::X86_FP80TyID:
- memcpy(Ptr, Val.IntVal.getRawData(), 10);
- break;
- case Type::PointerTyID:
- // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
- if (StoreBytes != sizeof(PointerTy))
- memset(Ptr, 0, StoreBytes);
- *((PointerTy*)Ptr) = Val.PointerVal;
- break;
- default:
- cerr << "Cannot store value of type " << *Ty << "!\n";
- }
- if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
- // Host and target are different endian - reverse the stored bytes.
- std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
- }
- /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
- /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
- static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
- assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
- uint8_t *Dst = (uint8_t *)IntVal.getRawData();
- if (sys::isLittleEndianHost())
- // Little-endian host - the destination must be ordered from LSB to MSB.
- // The source is ordered from LSB to MSB: Do a straight copy.
- memcpy(Dst, Src, LoadBytes);
- else {
- // Big-endian - the destination is an array of 64 bit words ordered from
- // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
- // ordered from MSB to LSB: Reverse the word order, but not the bytes in
- // a word.
- while (LoadBytes > sizeof(uint64_t)) {
- LoadBytes -= sizeof(uint64_t);
- // May not be aligned so use memcpy.
- memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
- Dst += sizeof(uint64_t);
- }
- memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
- }
- }
- /// FIXME: document
- ///
- void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
- GenericValue *Ptr,
- const Type *Ty) {
- const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
- if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) {
- // Host and target are different endian - reverse copy the stored
- // bytes into a buffer, and load from that.
- uint8_t *Src = (uint8_t*)Ptr;
- uint8_t *Buf = (uint8_t*)alloca(LoadBytes);
- std::reverse_copy(Src, Src + LoadBytes, Buf);
- Ptr = (GenericValue*)Buf;
- }
- switch (Ty->getTypeID()) {
- case Type::IntegerTyID:
- // An APInt with all words initially zero.
- Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
- LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
- break;
- case Type::FloatTyID:
- Result.FloatVal = *((float*)Ptr);
- break;
- case Type::DoubleTyID:
- Result.DoubleVal = *((double*)Ptr);
- break;
- case Type::PointerTyID:
- Result.PointerVal = *((PointerTy*)Ptr);
- break;
- case Type::X86_FP80TyID: {
- // This is endian dependent, but it will only work on x86 anyway.
- // FIXME: Will not trap if loading a signaling NaN.
- uint64_t y[2];
- memcpy(y, Ptr, 10);
- Result.IntVal = APInt(80, 2, y);
- break;
- }
- default:
- std::string msg;
- raw_string_ostream Msg(msg);
- Msg << "Cannot load value of type " << *Ty << "!";
- llvm_report_error(Msg.str());
- }
- }
- // InitializeMemory - Recursive function to apply a Constant value into the
- // specified memory location...
- //
- void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
- DOUT << "JIT: Initializing " << Addr << " ";
- DEBUG(Init->dump());
- if (isa<UndefValue>(Init)) {
- return;
- } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
- unsigned ElementSize =
- getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
- for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
- InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
- return;
- } else if (isa<ConstantAggregateZero>(Init)) {
- memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
- return;
- } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
- unsigned ElementSize =
- getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
- for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
- InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
- return;
- } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
- const StructLayout *SL =
- getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
- for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
- InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
- return;
- } else if (Init->getType()->isFirstClassType()) {
- GenericValue Val = getConstantValue(Init);
- StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
- return;
- }
- cerr << "Bad Type: " << *Init->getType() << "\n";
- llvm_unreachable("Unknown constant type to initialize memory with!");
- }
- /// EmitGlobals - Emit all of the global variables to memory, storing their
- /// addresses into GlobalAddress. This must make sure to copy the contents of
- /// their initializers into the memory.
- ///
- void ExecutionEngine::emitGlobals() {
- // Loop over all of the global variables in the program, allocating the memory
- // to hold them. If there is more than one module, do a prepass over globals
- // to figure out how the different modules should link together.
- //
- std::map<std::pair<std::string, const Type*>,
- const GlobalValue*> LinkedGlobalsMap;
- if (Modules.size() != 1) {
- for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
- Module &M = *Modules[m]->getModule();
- for (Module::const_global_iterator I = M.global_begin(),
- E = M.global_end(); I != E; ++I) {
- const GlobalValue *GV = I;
- if (GV->hasLocalLinkage() || GV->isDeclaration() ||
- GV->hasAppendingLinkage() || !GV->hasName())
- continue;// Ignore external globals and globals with internal linkage.
-
- const GlobalValue *&GVEntry =
- LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
- // If this is the first time we've seen this global, it is the canonical
- // version.
- if (!GVEntry) {
- GVEntry = GV;
- continue;
- }
-
- // If the existing global is strong, never replace it.
- if (GVEntry->hasExternalLinkage() ||
- GVEntry->hasDLLImportLinkage() ||
- GVEntry->hasDLLExportLinkage())
- continue;
-
- // Otherwise, we know it's linkonce/weak, replace it if this is a strong
- // symbol. FIXME is this right for common?
- if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
- GVEntry = GV;
- }
- }
- }
-
- std::vector<const GlobalValue*> NonCanonicalGlobals;
- for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
- Module &M = *Modules[m]->getModule();
- for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I) {
- // In the multi-module case, see what this global maps to.
- if (!LinkedGlobalsMap.empty()) {
- if (const GlobalValue *GVEntry =
- LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
- // If something else is the canonical global, ignore this one.
- if (GVEntry != &*I) {
- NonCanonicalGlobals.push_back(I);
- continue;
- }
- }
- }
-
- if (!I->isDeclaration()) {
- addGlobalMapping(I, getMemoryForGV(I));
- } else {
- // External variable reference. Try to use the dynamic loader to
- // get a pointer to it.
- if (void *SymAddr =
- sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
- addGlobalMapping(I, SymAddr);
- else {
- llvm_report_error("Could not resolve external global address: "
- +I->getName());
- }
- }
- }
-
- // If there are multiple modules, map the non-canonical globals to their
- // canonical location.
- if (!NonCanonicalGlobals.empty()) {
- for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
- const GlobalValue *GV = NonCanonicalGlobals[i];
- const GlobalValue *CGV =
- LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
- void *Ptr = getPointerToGlobalIfAvailable(CGV);
- assert(Ptr && "Canonical global wasn't codegen'd!");
- addGlobalMapping(GV, Ptr);
- }
- }
-
- // Now that all of the globals are set up in memory, loop through them all
- // and initialize their contents.
- for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I) {
- if (!I->isDeclaration()) {
- if (!LinkedGlobalsMap.empty()) {
- if (const GlobalValue *GVEntry =
- LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
- if (GVEntry != &*I) // Not the canonical variable.
- continue;
- }
- EmitGlobalVariable(I);
- }
- }
- }
- }
- // EmitGlobalVariable - This method emits the specified global variable to the
- // address specified in GlobalAddresses, or allocates new memory if it's not
- // already in the map.
- void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
- void *GA = getPointerToGlobalIfAvailable(GV);
- if (GA == 0) {
- // If it's not already specified, allocate memory for the global.
- GA = getMemoryForGV(GV);
- addGlobalMapping(GV, GA);
- }
-
- // Don't initialize if it's thread local, let the client do it.
- if (!GV->isThreadLocal())
- InitializeMemory(GV->getInitializer(), GA);
-
- const Type *ElTy = GV->getType()->getElementType();
- size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
- NumInitBytes += (unsigned)GVSize;
- ++NumGlobals;
- }
|