12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786 |
- //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements the SelectionDAG class.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/Constants.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Function.h"
- #include "llvm/GlobalAlias.h"
- #include "llvm/GlobalVariable.h"
- #include "llvm/Intrinsics.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/Assembly/Writer.h"
- #include "llvm/CallingConv.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineConstantPool.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineModuleInfo.h"
- #include "llvm/CodeGen/PseudoSourceValue.h"
- #include "llvm/Target/TargetRegisterInfo.h"
- #include "llvm/Target/TargetData.h"
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/Target/TargetOptions.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/ManagedStatic.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/System/Mutex.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringExtras.h"
- #include <algorithm>
- #include <cmath>
- using namespace llvm;
- /// makeVTList - Return an instance of the SDVTList struct initialized with the
- /// specified members.
- static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
- SDVTList Res = {VTs, NumVTs};
- return Res;
- }
- static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
- switch (VT.getSimpleVT().SimpleTy) {
- default: llvm_unreachable("Unknown FP format");
- case MVT::f32: return &APFloat::IEEEsingle;
- case MVT::f64: return &APFloat::IEEEdouble;
- case MVT::f80: return &APFloat::x87DoubleExtended;
- case MVT::f128: return &APFloat::IEEEquad;
- case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
- }
- }
- SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
- //===----------------------------------------------------------------------===//
- // ConstantFPSDNode Class
- //===----------------------------------------------------------------------===//
- /// isExactlyValue - We don't rely on operator== working on double values, as
- /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
- /// As such, this method can be used to do an exact bit-for-bit comparison of
- /// two floating point values.
- bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
- return getValueAPF().bitwiseIsEqual(V);
- }
- bool ConstantFPSDNode::isValueValidForType(EVT VT,
- const APFloat& Val) {
- assert(VT.isFloatingPoint() && "Can only convert between FP types");
- // PPC long double cannot be converted to any other type.
- if (VT == MVT::ppcf128 ||
- &Val.getSemantics() == &APFloat::PPCDoubleDouble)
- return false;
- // convert modifies in place, so make a copy.
- APFloat Val2 = APFloat(Val);
- bool losesInfo;
- (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
- &losesInfo);
- return !losesInfo;
- }
- //===----------------------------------------------------------------------===//
- // ISD Namespace
- //===----------------------------------------------------------------------===//
- /// isBuildVectorAllOnes - Return true if the specified node is a
- /// BUILD_VECTOR where all of the elements are ~0 or undef.
- bool ISD::isBuildVectorAllOnes(const SDNode *N) {
- // Look through a bit convert.
- if (N->getOpcode() == ISD::BIT_CONVERT)
- N = N->getOperand(0).getNode();
- if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
- unsigned i = 0, e = N->getNumOperands();
- // Skip over all of the undef values.
- while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
- ++i;
- // Do not accept an all-undef vector.
- if (i == e) return false;
- // Do not accept build_vectors that aren't all constants or which have non-~0
- // elements.
- SDValue NotZero = N->getOperand(i);
- if (isa<ConstantSDNode>(NotZero)) {
- if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
- return false;
- } else if (isa<ConstantFPSDNode>(NotZero)) {
- if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
- bitcastToAPInt().isAllOnesValue())
- return false;
- } else
- return false;
- // Okay, we have at least one ~0 value, check to see if the rest match or are
- // undefs.
- for (++i; i != e; ++i)
- if (N->getOperand(i) != NotZero &&
- N->getOperand(i).getOpcode() != ISD::UNDEF)
- return false;
- return true;
- }
- /// isBuildVectorAllZeros - Return true if the specified node is a
- /// BUILD_VECTOR where all of the elements are 0 or undef.
- bool ISD::isBuildVectorAllZeros(const SDNode *N) {
- // Look through a bit convert.
- if (N->getOpcode() == ISD::BIT_CONVERT)
- N = N->getOperand(0).getNode();
- if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
- unsigned i = 0, e = N->getNumOperands();
- // Skip over all of the undef values.
- while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
- ++i;
- // Do not accept an all-undef vector.
- if (i == e) return false;
- // Do not accept build_vectors that aren't all constants or which have non-0
- // elements.
- SDValue Zero = N->getOperand(i);
- if (isa<ConstantSDNode>(Zero)) {
- if (!cast<ConstantSDNode>(Zero)->isNullValue())
- return false;
- } else if (isa<ConstantFPSDNode>(Zero)) {
- if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
- return false;
- } else
- return false;
- // Okay, we have at least one 0 value, check to see if the rest match or are
- // undefs.
- for (++i; i != e; ++i)
- if (N->getOperand(i) != Zero &&
- N->getOperand(i).getOpcode() != ISD::UNDEF)
- return false;
- return true;
- }
- /// isScalarToVector - Return true if the specified node is a
- /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
- /// element is not an undef.
- bool ISD::isScalarToVector(const SDNode *N) {
- if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
- return true;
- if (N->getOpcode() != ISD::BUILD_VECTOR)
- return false;
- if (N->getOperand(0).getOpcode() == ISD::UNDEF)
- return false;
- unsigned NumElems = N->getNumOperands();
- for (unsigned i = 1; i < NumElems; ++i) {
- SDValue V = N->getOperand(i);
- if (V.getOpcode() != ISD::UNDEF)
- return false;
- }
- return true;
- }
- /// isDebugLabel - Return true if the specified node represents a debug
- /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
- bool ISD::isDebugLabel(const SDNode *N) {
- SDValue Zero;
- if (N->getOpcode() == ISD::DBG_LABEL)
- return true;
- if (N->isMachineOpcode() &&
- N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
- return true;
- return false;
- }
- /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
- /// when given the operation for (X op Y).
- ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
- // To perform this operation, we just need to swap the L and G bits of the
- // operation.
- unsigned OldL = (Operation >> 2) & 1;
- unsigned OldG = (Operation >> 1) & 1;
- return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
- (OldL << 1) | // New G bit
- (OldG << 2)); // New L bit.
- }
- /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
- /// 'op' is a valid SetCC operation.
- ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
- unsigned Operation = Op;
- if (isInteger)
- Operation ^= 7; // Flip L, G, E bits, but not U.
- else
- Operation ^= 15; // Flip all of the condition bits.
- if (Operation > ISD::SETTRUE2)
- Operation &= ~8; // Don't let N and U bits get set.
- return ISD::CondCode(Operation);
- }
- /// isSignedOp - For an integer comparison, return 1 if the comparison is a
- /// signed operation and 2 if the result is an unsigned comparison. Return zero
- /// if the operation does not depend on the sign of the input (setne and seteq).
- static int isSignedOp(ISD::CondCode Opcode) {
- switch (Opcode) {
- default: llvm_unreachable("Illegal integer setcc operation!");
- case ISD::SETEQ:
- case ISD::SETNE: return 0;
- case ISD::SETLT:
- case ISD::SETLE:
- case ISD::SETGT:
- case ISD::SETGE: return 1;
- case ISD::SETULT:
- case ISD::SETULE:
- case ISD::SETUGT:
- case ISD::SETUGE: return 2;
- }
- }
- /// getSetCCOrOperation - Return the result of a logical OR between different
- /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
- /// returns SETCC_INVALID if it is not possible to represent the resultant
- /// comparison.
- ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
- bool isInteger) {
- if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
- // Cannot fold a signed integer setcc with an unsigned integer setcc.
- return ISD::SETCC_INVALID;
- unsigned Op = Op1 | Op2; // Combine all of the condition bits.
- // If the N and U bits get set then the resultant comparison DOES suddenly
- // care about orderedness, and is true when ordered.
- if (Op > ISD::SETTRUE2)
- Op &= ~16; // Clear the U bit if the N bit is set.
- // Canonicalize illegal integer setcc's.
- if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
- Op = ISD::SETNE;
- return ISD::CondCode(Op);
- }
- /// getSetCCAndOperation - Return the result of a logical AND between different
- /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
- /// function returns zero if it is not possible to represent the resultant
- /// comparison.
- ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
- bool isInteger) {
- if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
- // Cannot fold a signed setcc with an unsigned setcc.
- return ISD::SETCC_INVALID;
- // Combine all of the condition bits.
- ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
- // Canonicalize illegal integer setcc's.
- if (isInteger) {
- switch (Result) {
- default: break;
- case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
- case ISD::SETOEQ: // SETEQ & SETU[LG]E
- case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
- case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
- case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
- }
- }
- return Result;
- }
- const TargetMachine &SelectionDAG::getTarget() const {
- return MF->getTarget();
- }
- //===----------------------------------------------------------------------===//
- // SDNode Profile Support
- //===----------------------------------------------------------------------===//
- /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
- ///
- static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
- ID.AddInteger(OpC);
- }
- /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
- /// solely with their pointer.
- static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
- ID.AddPointer(VTList.VTs);
- }
- /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
- ///
- static void AddNodeIDOperands(FoldingSetNodeID &ID,
- const SDValue *Ops, unsigned NumOps) {
- for (; NumOps; --NumOps, ++Ops) {
- ID.AddPointer(Ops->getNode());
- ID.AddInteger(Ops->getResNo());
- }
- }
- /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
- ///
- static void AddNodeIDOperands(FoldingSetNodeID &ID,
- const SDUse *Ops, unsigned NumOps) {
- for (; NumOps; --NumOps, ++Ops) {
- ID.AddPointer(Ops->getNode());
- ID.AddInteger(Ops->getResNo());
- }
- }
- static void AddNodeIDNode(FoldingSetNodeID &ID,
- unsigned short OpC, SDVTList VTList,
- const SDValue *OpList, unsigned N) {
- AddNodeIDOpcode(ID, OpC);
- AddNodeIDValueTypes(ID, VTList);
- AddNodeIDOperands(ID, OpList, N);
- }
- /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
- /// the NodeID data.
- static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
- switch (N->getOpcode()) {
- case ISD::TargetExternalSymbol:
- case ISD::ExternalSymbol:
- llvm_unreachable("Should only be used on nodes with operands");
- default: break; // Normal nodes don't need extra info.
- case ISD::TargetConstant:
- case ISD::Constant:
- ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
- break;
- case ISD::TargetConstantFP:
- case ISD::ConstantFP: {
- ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
- break;
- }
- case ISD::TargetGlobalAddress:
- case ISD::GlobalAddress:
- case ISD::TargetGlobalTLSAddress:
- case ISD::GlobalTLSAddress: {
- const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
- ID.AddPointer(GA->getGlobal());
- ID.AddInteger(GA->getOffset());
- ID.AddInteger(GA->getTargetFlags());
- break;
- }
- case ISD::BasicBlock:
- ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
- break;
- case ISD::Register:
- ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
- break;
- case ISD::DBG_STOPPOINT: {
- const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
- ID.AddInteger(DSP->getLine());
- ID.AddInteger(DSP->getColumn());
- ID.AddPointer(DSP->getCompileUnit());
- break;
- }
- case ISD::SRCVALUE:
- ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
- break;
- case ISD::MEMOPERAND: {
- const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
- MO.Profile(ID);
- break;
- }
- case ISD::FrameIndex:
- case ISD::TargetFrameIndex:
- ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
- break;
- case ISD::JumpTable:
- case ISD::TargetJumpTable:
- ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
- ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
- break;
- case ISD::ConstantPool:
- case ISD::TargetConstantPool: {
- const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
- ID.AddInteger(CP->getAlignment());
- ID.AddInteger(CP->getOffset());
- if (CP->isMachineConstantPoolEntry())
- CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
- else
- ID.AddPointer(CP->getConstVal());
- ID.AddInteger(CP->getTargetFlags());
- break;
- }
- case ISD::LOAD: {
- const LoadSDNode *LD = cast<LoadSDNode>(N);
- ID.AddInteger(LD->getMemoryVT().getRawBits());
- ID.AddInteger(LD->getRawSubclassData());
- break;
- }
- case ISD::STORE: {
- const StoreSDNode *ST = cast<StoreSDNode>(N);
- ID.AddInteger(ST->getMemoryVT().getRawBits());
- ID.AddInteger(ST->getRawSubclassData());
- break;
- }
- case ISD::ATOMIC_CMP_SWAP:
- case ISD::ATOMIC_SWAP:
- case ISD::ATOMIC_LOAD_ADD:
- case ISD::ATOMIC_LOAD_SUB:
- case ISD::ATOMIC_LOAD_AND:
- case ISD::ATOMIC_LOAD_OR:
- case ISD::ATOMIC_LOAD_XOR:
- case ISD::ATOMIC_LOAD_NAND:
- case ISD::ATOMIC_LOAD_MIN:
- case ISD::ATOMIC_LOAD_MAX:
- case ISD::ATOMIC_LOAD_UMIN:
- case ISD::ATOMIC_LOAD_UMAX: {
- const AtomicSDNode *AT = cast<AtomicSDNode>(N);
- ID.AddInteger(AT->getMemoryVT().getRawBits());
- ID.AddInteger(AT->getRawSubclassData());
- break;
- }
- case ISD::VECTOR_SHUFFLE: {
- const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
- for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
- i != e; ++i)
- ID.AddInteger(SVN->getMaskElt(i));
- break;
- }
- } // end switch (N->getOpcode())
- }
- /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
- /// data.
- static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
- AddNodeIDOpcode(ID, N->getOpcode());
- // Add the return value info.
- AddNodeIDValueTypes(ID, N->getVTList());
- // Add the operand info.
- AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
- // Handle SDNode leafs with special info.
- AddNodeIDCustom(ID, N);
- }
- /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
- /// the CSE map that carries alignment, volatility, indexing mode, and
- /// extension/truncation information.
- ///
- static inline unsigned
- encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
- bool isVolatile, unsigned Alignment) {
- assert((ConvType & 3) == ConvType &&
- "ConvType may not require more than 2 bits!");
- assert((AM & 7) == AM &&
- "AM may not require more than 3 bits!");
- return ConvType |
- (AM << 2) |
- (isVolatile << 5) |
- ((Log2_32(Alignment) + 1) << 6);
- }
- //===----------------------------------------------------------------------===//
- // SelectionDAG Class
- //===----------------------------------------------------------------------===//
- /// doNotCSE - Return true if CSE should not be performed for this node.
- static bool doNotCSE(SDNode *N) {
- if (N->getValueType(0) == MVT::Flag)
- return true; // Never CSE anything that produces a flag.
- switch (N->getOpcode()) {
- default: break;
- case ISD::HANDLENODE:
- case ISD::DBG_LABEL:
- case ISD::DBG_STOPPOINT:
- case ISD::EH_LABEL:
- case ISD::DECLARE:
- return true; // Never CSE these nodes.
- }
- // Check that remaining values produced are not flags.
- for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
- if (N->getValueType(i) == MVT::Flag)
- return true; // Never CSE anything that produces a flag.
- return false;
- }
- /// RemoveDeadNodes - This method deletes all unreachable nodes in the
- /// SelectionDAG.
- void SelectionDAG::RemoveDeadNodes() {
- // Create a dummy node (which is not added to allnodes), that adds a reference
- // to the root node, preventing it from being deleted.
- HandleSDNode Dummy(getRoot());
- SmallVector<SDNode*, 128> DeadNodes;
- // Add all obviously-dead nodes to the DeadNodes worklist.
- for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
- if (I->use_empty())
- DeadNodes.push_back(I);
- RemoveDeadNodes(DeadNodes);
- // If the root changed (e.g. it was a dead load, update the root).
- setRoot(Dummy.getValue());
- }
- /// RemoveDeadNodes - This method deletes the unreachable nodes in the
- /// given list, and any nodes that become unreachable as a result.
- void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
- DAGUpdateListener *UpdateListener) {
- // Process the worklist, deleting the nodes and adding their uses to the
- // worklist.
- while (!DeadNodes.empty()) {
- SDNode *N = DeadNodes.pop_back_val();
- if (UpdateListener)
- UpdateListener->NodeDeleted(N, 0);
- // Take the node out of the appropriate CSE map.
- RemoveNodeFromCSEMaps(N);
- // Next, brutally remove the operand list. This is safe to do, as there are
- // no cycles in the graph.
- for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
- SDUse &Use = *I++;
- SDNode *Operand = Use.getNode();
- Use.set(SDValue());
- // Now that we removed this operand, see if there are no uses of it left.
- if (Operand->use_empty())
- DeadNodes.push_back(Operand);
- }
- DeallocateNode(N);
- }
- }
- void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
- SmallVector<SDNode*, 16> DeadNodes(1, N);
- RemoveDeadNodes(DeadNodes, UpdateListener);
- }
- void SelectionDAG::DeleteNode(SDNode *N) {
- // First take this out of the appropriate CSE map.
- RemoveNodeFromCSEMaps(N);
- // Finally, remove uses due to operands of this node, remove from the
- // AllNodes list, and delete the node.
- DeleteNodeNotInCSEMaps(N);
- }
- void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
- assert(N != AllNodes.begin() && "Cannot delete the entry node!");
- assert(N->use_empty() && "Cannot delete a node that is not dead!");
- // Drop all of the operands and decrement used node's use counts.
- N->DropOperands();
- DeallocateNode(N);
- }
- void SelectionDAG::DeallocateNode(SDNode *N) {
- if (N->OperandsNeedDelete)
- delete[] N->OperandList;
- // Set the opcode to DELETED_NODE to help catch bugs when node
- // memory is reallocated.
- N->NodeType = ISD::DELETED_NODE;
- NodeAllocator.Deallocate(AllNodes.remove(N));
- }
- /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
- /// correspond to it. This is useful when we're about to delete or repurpose
- /// the node. We don't want future request for structurally identical nodes
- /// to return N anymore.
- bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
- bool Erased = false;
- switch (N->getOpcode()) {
- case ISD::EntryToken:
- llvm_unreachable("EntryToken should not be in CSEMaps!");
- return false;
- case ISD::HANDLENODE: return false; // noop.
- case ISD::CONDCODE:
- assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
- "Cond code doesn't exist!");
- Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
- CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
- break;
- case ISD::ExternalSymbol:
- Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
- break;
- case ISD::TargetExternalSymbol: {
- ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
- Erased = TargetExternalSymbols.erase(
- std::pair<std::string,unsigned char>(ESN->getSymbol(),
- ESN->getTargetFlags()));
- break;
- }
- case ISD::VALUETYPE: {
- EVT VT = cast<VTSDNode>(N)->getVT();
- if (VT.isExtended()) {
- Erased = ExtendedValueTypeNodes.erase(VT);
- } else {
- Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
- ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
- }
- break;
- }
- default:
- // Remove it from the CSE Map.
- Erased = CSEMap.RemoveNode(N);
- break;
- }
- #ifndef NDEBUG
- // Verify that the node was actually in one of the CSE maps, unless it has a
- // flag result (which cannot be CSE'd) or is one of the special cases that are
- // not subject to CSE.
- if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
- !N->isMachineOpcode() && !doNotCSE(N)) {
- N->dump(this);
- cerr << "\n";
- llvm_unreachable("Node is not in map!");
- }
- #endif
- return Erased;
- }
- /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
- /// maps and modified in place. Add it back to the CSE maps, unless an identical
- /// node already exists, in which case transfer all its users to the existing
- /// node. This transfer can potentially trigger recursive merging.
- ///
- void
- SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
- DAGUpdateListener *UpdateListener) {
- // For node types that aren't CSE'd, just act as if no identical node
- // already exists.
- if (!doNotCSE(N)) {
- SDNode *Existing = CSEMap.GetOrInsertNode(N);
- if (Existing != N) {
- // If there was already an existing matching node, use ReplaceAllUsesWith
- // to replace the dead one with the existing one. This can cause
- // recursive merging of other unrelated nodes down the line.
- ReplaceAllUsesWith(N, Existing, UpdateListener);
- // N is now dead. Inform the listener if it exists and delete it.
- if (UpdateListener)
- UpdateListener->NodeDeleted(N, Existing);
- DeleteNodeNotInCSEMaps(N);
- return;
- }
- }
- // If the node doesn't already exist, we updated it. Inform a listener if
- // it exists.
- if (UpdateListener)
- UpdateListener->NodeUpdated(N);
- }
- /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
- /// were replaced with those specified. If this node is never memoized,
- /// return null, otherwise return a pointer to the slot it would take. If a
- /// node already exists with these operands, the slot will be non-null.
- SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
- void *&InsertPos) {
- if (doNotCSE(N))
- return 0;
- SDValue Ops[] = { Op };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
- AddNodeIDCustom(ID, N);
- return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
- }
- /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
- /// were replaced with those specified. If this node is never memoized,
- /// return null, otherwise return a pointer to the slot it would take. If a
- /// node already exists with these operands, the slot will be non-null.
- SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
- SDValue Op1, SDValue Op2,
- void *&InsertPos) {
- if (doNotCSE(N))
- return 0;
- SDValue Ops[] = { Op1, Op2 };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
- AddNodeIDCustom(ID, N);
- return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
- }
- /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
- /// were replaced with those specified. If this node is never memoized,
- /// return null, otherwise return a pointer to the slot it would take. If a
- /// node already exists with these operands, the slot will be non-null.
- SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
- const SDValue *Ops,unsigned NumOps,
- void *&InsertPos) {
- if (doNotCSE(N))
- return 0;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
- AddNodeIDCustom(ID, N);
- return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
- }
- /// VerifyNode - Sanity check the given node. Aborts if it is invalid.
- void SelectionDAG::VerifyNode(SDNode *N) {
- switch (N->getOpcode()) {
- default:
- break;
- case ISD::BUILD_PAIR: {
- EVT VT = N->getValueType(0);
- assert(N->getNumValues() == 1 && "Too many results!");
- assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
- "Wrong return type!");
- assert(N->getNumOperands() == 2 && "Wrong number of operands!");
- assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
- "Mismatched operand types!");
- assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
- "Wrong operand type!");
- assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
- "Wrong return type size");
- break;
- }
- case ISD::BUILD_VECTOR: {
- assert(N->getNumValues() == 1 && "Too many results!");
- assert(N->getValueType(0).isVector() && "Wrong return type!");
- assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
- "Wrong number of operands!");
- EVT EltVT = N->getValueType(0).getVectorElementType();
- for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
- assert((I->getValueType() == EltVT ||
- (EltVT.isInteger() && I->getValueType().isInteger() &&
- EltVT.bitsLE(I->getValueType()))) &&
- "Wrong operand type!");
- break;
- }
- }
- }
- /// getEVTAlignment - Compute the default alignment value for the
- /// given type.
- ///
- unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
- const Type *Ty = VT == MVT::iPTR ?
- PointerType::get(Type::getInt8Ty(*getContext()), 0) :
- VT.getTypeForEVT(*getContext());
- return TLI.getTargetData()->getABITypeAlignment(Ty);
- }
- // EntryNode could meaningfully have debug info if we can find it...
- SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
- : TLI(tli), FLI(fli), DW(0),
- EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
- getVTList(MVT::Other)), Root(getEntryNode()) {
- AllNodes.push_back(&EntryNode);
- }
- void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
- DwarfWriter *dw) {
- MF = &mf;
- MMI = mmi;
- DW = dw;
- Context = &mf.getFunction()->getContext();
- }
- SelectionDAG::~SelectionDAG() {
- allnodes_clear();
- }
- void SelectionDAG::allnodes_clear() {
- assert(&*AllNodes.begin() == &EntryNode);
- AllNodes.remove(AllNodes.begin());
- while (!AllNodes.empty())
- DeallocateNode(AllNodes.begin());
- }
- void SelectionDAG::clear() {
- allnodes_clear();
- OperandAllocator.Reset();
- CSEMap.clear();
- ExtendedValueTypeNodes.clear();
- ExternalSymbols.clear();
- TargetExternalSymbols.clear();
- std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
- static_cast<CondCodeSDNode*>(0));
- std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
- static_cast<SDNode*>(0));
- EntryNode.UseList = 0;
- AllNodes.push_back(&EntryNode);
- Root = getEntryNode();
- }
- SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
- if (Op.getValueType() == VT) return Op;
- APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
- VT.getSizeInBits());
- return getNode(ISD::AND, DL, Op.getValueType(), Op,
- getConstant(Imm, Op.getValueType()));
- }
- /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
- ///
- SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
- EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
- SDValue NegOne =
- getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
- return getNode(ISD::XOR, DL, VT, Val, NegOne);
- }
- SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
- EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
- assert((EltVT.getSizeInBits() >= 64 ||
- (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
- "getConstant with a uint64_t value that doesn't fit in the type!");
- return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
- }
- SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
- return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
- }
- SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
- assert(VT.isInteger() && "Cannot create FP integer constant!");
- EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
- assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
- "APInt size does not match type size!");
- unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
- ID.AddPointer(&Val);
- void *IP = 0;
- SDNode *N = NULL;
- if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
- if (!VT.isVector())
- return SDValue(N, 0);
- if (!N) {
- N = NodeAllocator.Allocate<ConstantSDNode>();
- new (N) ConstantSDNode(isT, &Val, EltVT);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- }
- SDValue Result(N, 0);
- if (VT.isVector()) {
- SmallVector<SDValue, 8> Ops;
- Ops.assign(VT.getVectorNumElements(), Result);
- Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
- VT, &Ops[0], Ops.size());
- }
- return Result;
- }
- SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
- return getConstant(Val, TLI.getPointerTy(), isTarget);
- }
- SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
- return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
- }
- SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
- assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
- EVT EltVT =
- VT.isVector() ? VT.getVectorElementType() : VT;
- // Do the map lookup using the actual bit pattern for the floating point
- // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
- // we don't have issues with SNANs.
- unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
- ID.AddPointer(&V);
- void *IP = 0;
- SDNode *N = NULL;
- if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
- if (!VT.isVector())
- return SDValue(N, 0);
- if (!N) {
- N = NodeAllocator.Allocate<ConstantFPSDNode>();
- new (N) ConstantFPSDNode(isTarget, &V, EltVT);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- }
- SDValue Result(N, 0);
- if (VT.isVector()) {
- SmallVector<SDValue, 8> Ops;
- Ops.assign(VT.getVectorNumElements(), Result);
- // FIXME DebugLoc info might be appropriate here
- Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
- VT, &Ops[0], Ops.size());
- }
- return Result;
- }
- SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
- EVT EltVT =
- VT.isVector() ? VT.getVectorElementType() : VT;
- if (EltVT==MVT::f32)
- return getConstantFP(APFloat((float)Val), VT, isTarget);
- else
- return getConstantFP(APFloat(Val), VT, isTarget);
- }
- SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
- EVT VT, int64_t Offset,
- bool isTargetGA,
- unsigned char TargetFlags) {
- assert((TargetFlags == 0 || isTargetGA) &&
- "Cannot set target flags on target-independent globals");
-
- // Truncate (with sign-extension) the offset value to the pointer size.
- EVT PTy = TLI.getPointerTy();
- unsigned BitWidth = PTy.getSizeInBits();
- if (BitWidth < 64)
- Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
- const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
- if (!GVar) {
- // If GV is an alias then use the aliasee for determining thread-localness.
- if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
- GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
- }
- unsigned Opc;
- if (GVar && GVar->isThreadLocal())
- Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
- else
- Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
- ID.AddPointer(GV);
- ID.AddInteger(Offset);
- ID.AddInteger(TargetFlags);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
- new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
- unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
- ID.AddInteger(FI);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
- new (N) FrameIndexSDNode(FI, VT, isTarget);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
- unsigned char TargetFlags) {
- assert((TargetFlags == 0 || isTarget) &&
- "Cannot set target flags on target-independent jump tables");
- unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
- ID.AddInteger(JTI);
- ID.AddInteger(TargetFlags);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
- new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
- unsigned Alignment, int Offset,
- bool isTarget,
- unsigned char TargetFlags) {
- assert((TargetFlags == 0 || isTarget) &&
- "Cannot set target flags on target-independent globals");
- if (Alignment == 0)
- Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
- unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
- ID.AddInteger(Alignment);
- ID.AddInteger(Offset);
- ID.AddPointer(C);
- ID.AddInteger(TargetFlags);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
- new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
- unsigned Alignment, int Offset,
- bool isTarget,
- unsigned char TargetFlags) {
- assert((TargetFlags == 0 || isTarget) &&
- "Cannot set target flags on target-independent globals");
- if (Alignment == 0)
- Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
- unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
- ID.AddInteger(Alignment);
- ID.AddInteger(Offset);
- C->AddSelectionDAGCSEId(ID);
- ID.AddInteger(TargetFlags);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
- new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
- ID.AddPointer(MBB);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
- new (N) BasicBlockSDNode(MBB);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getValueType(EVT VT) {
- if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
- ValueTypeNodes.size())
- ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
- SDNode *&N = VT.isExtended() ?
- ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
- if (N) return SDValue(N, 0);
- N = NodeAllocator.Allocate<VTSDNode>();
- new (N) VTSDNode(VT);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
- SDNode *&N = ExternalSymbols[Sym];
- if (N) return SDValue(N, 0);
- N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
- new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
- unsigned char TargetFlags) {
- SDNode *&N =
- TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
- TargetFlags)];
- if (N) return SDValue(N, 0);
- N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
- new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
- if ((unsigned)Cond >= CondCodeNodes.size())
- CondCodeNodes.resize(Cond+1);
- if (CondCodeNodes[Cond] == 0) {
- CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
- new (N) CondCodeSDNode(Cond);
- CondCodeNodes[Cond] = N;
- AllNodes.push_back(N);
- }
- return SDValue(CondCodeNodes[Cond], 0);
- }
- // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
- // the shuffle mask M that point at N1 to point at N2, and indices that point
- // N2 to point at N1.
- static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
- std::swap(N1, N2);
- int NElts = M.size();
- for (int i = 0; i != NElts; ++i) {
- if (M[i] >= NElts)
- M[i] -= NElts;
- else if (M[i] >= 0)
- M[i] += NElts;
- }
- }
- SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
- SDValue N2, const int *Mask) {
- assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
- assert(VT.isVector() && N1.getValueType().isVector() &&
- "Vector Shuffle VTs must be a vectors");
- assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
- && "Vector Shuffle VTs must have same element type");
- // Canonicalize shuffle undef, undef -> undef
- if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
- return getUNDEF(VT);
- // Validate that all indices in Mask are within the range of the elements
- // input to the shuffle.
- unsigned NElts = VT.getVectorNumElements();
- SmallVector<int, 8> MaskVec;
- for (unsigned i = 0; i != NElts; ++i) {
- assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
- MaskVec.push_back(Mask[i]);
- }
-
- // Canonicalize shuffle v, v -> v, undef
- if (N1 == N2) {
- N2 = getUNDEF(VT);
- for (unsigned i = 0; i != NElts; ++i)
- if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
- }
-
- // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
- if (N1.getOpcode() == ISD::UNDEF)
- commuteShuffle(N1, N2, MaskVec);
-
- // Canonicalize all index into lhs, -> shuffle lhs, undef
- // Canonicalize all index into rhs, -> shuffle rhs, undef
- bool AllLHS = true, AllRHS = true;
- bool N2Undef = N2.getOpcode() == ISD::UNDEF;
- for (unsigned i = 0; i != NElts; ++i) {
- if (MaskVec[i] >= (int)NElts) {
- if (N2Undef)
- MaskVec[i] = -1;
- else
- AllLHS = false;
- } else if (MaskVec[i] >= 0) {
- AllRHS = false;
- }
- }
- if (AllLHS && AllRHS)
- return getUNDEF(VT);
- if (AllLHS && !N2Undef)
- N2 = getUNDEF(VT);
- if (AllRHS) {
- N1 = getUNDEF(VT);
- commuteShuffle(N1, N2, MaskVec);
- }
-
- // If Identity shuffle, or all shuffle in to undef, return that node.
- bool AllUndef = true;
- bool Identity = true;
- for (unsigned i = 0; i != NElts; ++i) {
- if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
- if (MaskVec[i] >= 0) AllUndef = false;
- }
- if (Identity && NElts == N1.getValueType().getVectorNumElements())
- return N1;
- if (AllUndef)
- return getUNDEF(VT);
- FoldingSetNodeID ID;
- SDValue Ops[2] = { N1, N2 };
- AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
- for (unsigned i = 0; i != NElts; ++i)
- ID.AddInteger(MaskVec[i]);
-
- void* IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
-
- // Allocate the mask array for the node out of the BumpPtrAllocator, since
- // SDNode doesn't have access to it. This memory will be "leaked" when
- // the node is deallocated, but recovered when the NodeAllocator is released.
- int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
- memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
-
- ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
- new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
- SDValue Val, SDValue DTy,
- SDValue STy, SDValue Rnd, SDValue Sat,
- ISD::CvtCode Code) {
- // If the src and dest types are the same and the conversion is between
- // integer types of the same sign or two floats, no conversion is necessary.
- if (DTy == STy &&
- (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
- return Val;
- FoldingSetNodeID ID;
- void* IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
- SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
- new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
- ID.AddInteger(RegNo);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
- new (N) RegisterSDNode(RegNo, VT);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getDbgStopPoint(DebugLoc DL, SDValue Root,
- unsigned Line, unsigned Col,
- Value *CU) {
- SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
- new (N) DbgStopPointSDNode(Root, Line, Col, CU);
- N->setDebugLoc(DL);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
- SDValue Root,
- unsigned LabelID) {
- FoldingSetNodeID ID;
- SDValue Ops[] = { Root };
- AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
- ID.AddInteger(LabelID);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
- new (N) LabelSDNode(Opcode, dl, Root, LabelID);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getSrcValue(const Value *V) {
- assert((!V || isa<PointerType>(V->getType())) &&
- "SrcValue is not a pointer?");
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
- ID.AddPointer(V);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
- new (N) SrcValueSDNode(V);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
- #ifndef NDEBUG
- const Value *v = MO.getValue();
- assert((!v || isa<PointerType>(v->getType())) &&
- "SrcValue is not a pointer?");
- #endif
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
- MO.Profile(ID);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
- new (N) MemOperandSDNode(MO);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- /// getShiftAmountOperand - Return the specified value casted to
- /// the target's desired shift amount type.
- SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
- EVT OpTy = Op.getValueType();
- MVT ShTy = TLI.getShiftAmountTy();
- if (OpTy == ShTy || OpTy.isVector()) return Op;
- ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
- return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
- }
- /// CreateStackTemporary - Create a stack temporary, suitable for holding the
- /// specified value type.
- SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
- MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
- unsigned ByteSize = VT.getStoreSizeInBits()/8;
- const Type *Ty = VT.getTypeForEVT(*getContext());
- unsigned StackAlign =
- std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
- int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
- return getFrameIndex(FrameIdx, TLI.getPointerTy());
- }
- /// CreateStackTemporary - Create a stack temporary suitable for holding
- /// either of the specified value types.
- SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
- unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
- VT2.getStoreSizeInBits())/8;
- const Type *Ty1 = VT1.getTypeForEVT(*getContext());
- const Type *Ty2 = VT2.getTypeForEVT(*getContext());
- const TargetData *TD = TLI.getTargetData();
- unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
- TD->getPrefTypeAlignment(Ty2));
- MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
- int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
- return getFrameIndex(FrameIdx, TLI.getPointerTy());
- }
- SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
- SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
- // These setcc operations always fold.
- switch (Cond) {
- default: break;
- case ISD::SETFALSE:
- case ISD::SETFALSE2: return getConstant(0, VT);
- case ISD::SETTRUE:
- case ISD::SETTRUE2: return getConstant(1, VT);
- case ISD::SETOEQ:
- case ISD::SETOGT:
- case ISD::SETOGE:
- case ISD::SETOLT:
- case ISD::SETOLE:
- case ISD::SETONE:
- case ISD::SETO:
- case ISD::SETUO:
- case ISD::SETUEQ:
- case ISD::SETUNE:
- assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
- break;
- }
- if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
- const APInt &C2 = N2C->getAPIntValue();
- if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
- const APInt &C1 = N1C->getAPIntValue();
- switch (Cond) {
- default: llvm_unreachable("Unknown integer setcc!");
- case ISD::SETEQ: return getConstant(C1 == C2, VT);
- case ISD::SETNE: return getConstant(C1 != C2, VT);
- case ISD::SETULT: return getConstant(C1.ult(C2), VT);
- case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
- case ISD::SETULE: return getConstant(C1.ule(C2), VT);
- case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
- case ISD::SETLT: return getConstant(C1.slt(C2), VT);
- case ISD::SETGT: return getConstant(C1.sgt(C2), VT);
- case ISD::SETLE: return getConstant(C1.sle(C2), VT);
- case ISD::SETGE: return getConstant(C1.sge(C2), VT);
- }
- }
- }
- if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
- if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
- // No compile time operations on this type yet.
- if (N1C->getValueType(0) == MVT::ppcf128)
- return SDValue();
- APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
- switch (Cond) {
- default: break;
- case ISD::SETEQ: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- // fall through
- case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
- case ISD::SETNE: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- // fall through
- case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
- R==APFloat::cmpLessThan, VT);
- case ISD::SETLT: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- // fall through
- case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
- case ISD::SETGT: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- // fall through
- case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
- case ISD::SETLE: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- // fall through
- case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
- R==APFloat::cmpEqual, VT);
- case ISD::SETGE: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- // fall through
- case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
- R==APFloat::cmpEqual, VT);
- case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
- case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
- case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
- R==APFloat::cmpEqual, VT);
- case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
- case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
- R==APFloat::cmpLessThan, VT);
- case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
- R==APFloat::cmpUnordered, VT);
- case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
- case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
- }
- } else {
- // Ensure that the constant occurs on the RHS.
- return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
- }
- }
- // Could not fold it.
- return SDValue();
- }
- /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
- /// use this predicate to simplify operations downstream.
- bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
- // This predicate is not safe for vector operations.
- if (Op.getValueType().isVector())
- return false;
-
- unsigned BitWidth = Op.getValueSizeInBits();
- return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
- }
- /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
- /// this predicate to simplify operations downstream. Mask is known to be zero
- /// for bits that V cannot have.
- bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
- unsigned Depth) const {
- APInt KnownZero, KnownOne;
- ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- return (KnownZero & Mask) == Mask;
- }
- /// ComputeMaskedBits - Determine which of the bits specified in Mask are
- /// known to be either zero or one and return them in the KnownZero/KnownOne
- /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
- /// processing.
- void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
- APInt &KnownZero, APInt &KnownOne,
- unsigned Depth) const {
- unsigned BitWidth = Mask.getBitWidth();
- assert(BitWidth == Op.getValueType().getSizeInBits() &&
- "Mask size mismatches value type size!");
- KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
- if (Depth == 6 || Mask == 0)
- return; // Limit search depth.
- APInt KnownZero2, KnownOne2;
- switch (Op.getOpcode()) {
- case ISD::Constant:
- // We know all of the bits for a constant!
- KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
- KnownZero = ~KnownOne & Mask;
- return;
- case ISD::AND:
- // If either the LHS or the RHS are Zero, the result is zero.
- ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
- ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
- KnownZero2, KnownOne2, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- // Output known-1 bits are only known if set in both the LHS & RHS.
- KnownOne &= KnownOne2;
- // Output known-0 are known to be clear if zero in either the LHS | RHS.
- KnownZero |= KnownZero2;
- return;
- case ISD::OR:
- ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
- ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
- KnownZero2, KnownOne2, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- // Output known-0 bits are only known if clear in both the LHS & RHS.
- KnownZero &= KnownZero2;
- // Output known-1 are known to be set if set in either the LHS | RHS.
- KnownOne |= KnownOne2;
- return;
- case ISD::XOR: {
- ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
- ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- // Output known-0 bits are known if clear or set in both the LHS & RHS.
- APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
- // Output known-1 are known to be set if set in only one of the LHS, RHS.
- KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
- KnownZero = KnownZeroOut;
- return;
- }
- case ISD::MUL: {
- APInt Mask2 = APInt::getAllOnesValue(BitWidth);
- ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
- ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- // If low bits are zero in either operand, output low known-0 bits.
- // Also compute a conserative estimate for high known-0 bits.
- // More trickiness is possible, but this is sufficient for the
- // interesting case of alignment computation.
- KnownOne.clear();
- unsigned TrailZ = KnownZero.countTrailingOnes() +
- KnownZero2.countTrailingOnes();
- unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
- KnownZero2.countLeadingOnes(),
- BitWidth) - BitWidth;
- TrailZ = std::min(TrailZ, BitWidth);
- LeadZ = std::min(LeadZ, BitWidth);
- KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
- APInt::getHighBitsSet(BitWidth, LeadZ);
- KnownZero &= Mask;
- return;
- }
- case ISD::UDIV: {
- // For the purposes of computing leading zeros we can conservatively
- // treat a udiv as a logical right shift by the power of 2 known to
- // be less than the denominator.
- APInt AllOnes = APInt::getAllOnesValue(BitWidth);
- ComputeMaskedBits(Op.getOperand(0),
- AllOnes, KnownZero2, KnownOne2, Depth+1);
- unsigned LeadZ = KnownZero2.countLeadingOnes();
- KnownOne2.clear();
- KnownZero2.clear();
- ComputeMaskedBits(Op.getOperand(1),
- AllOnes, KnownZero2, KnownOne2, Depth+1);
- unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
- if (RHSUnknownLeadingOnes != BitWidth)
- LeadZ = std::min(BitWidth,
- LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
- KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
- return;
- }
- case ISD::SELECT:
- ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
- ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- // Only known if known in both the LHS and RHS.
- KnownOne &= KnownOne2;
- KnownZero &= KnownZero2;
- return;
- case ISD::SELECT_CC:
- ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
- ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- // Only known if known in both the LHS and RHS.
- KnownOne &= KnownOne2;
- KnownZero &= KnownZero2;
- return;
- case ISD::SADDO:
- case ISD::UADDO:
- case ISD::SSUBO:
- case ISD::USUBO:
- case ISD::SMULO:
- case ISD::UMULO:
- if (Op.getResNo() != 1)
- return;
- // The boolean result conforms to getBooleanContents. Fall through.
- case ISD::SETCC:
- // If we know the result of a setcc has the top bits zero, use this info.
- if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
- BitWidth > 1)
- KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
- return;
- case ISD::SHL:
- // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
- if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- unsigned ShAmt = SA->getZExtValue();
- // If the shift count is an invalid immediate, don't do anything.
- if (ShAmt >= BitWidth)
- return;
- ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
- KnownZero, KnownOne, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero <<= ShAmt;
- KnownOne <<= ShAmt;
- // low bits known zero.
- KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
- }
- return;
- case ISD::SRL:
- // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
- if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- unsigned ShAmt = SA->getZExtValue();
- // If the shift count is an invalid immediate, don't do anything.
- if (ShAmt >= BitWidth)
- return;
- ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
- KnownZero, KnownOne, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero = KnownZero.lshr(ShAmt);
- KnownOne = KnownOne.lshr(ShAmt);
- APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
- KnownZero |= HighBits; // High bits known zero.
- }
- return;
- case ISD::SRA:
- if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- unsigned ShAmt = SA->getZExtValue();
- // If the shift count is an invalid immediate, don't do anything.
- if (ShAmt >= BitWidth)
- return;
- APInt InDemandedMask = (Mask << ShAmt);
- // If any of the demanded bits are produced by the sign extension, we also
- // demand the input sign bit.
- APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
- if (HighBits.getBoolValue())
- InDemandedMask |= APInt::getSignBit(BitWidth);
- ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
- Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero = KnownZero.lshr(ShAmt);
- KnownOne = KnownOne.lshr(ShAmt);
- // Handle the sign bits.
- APInt SignBit = APInt::getSignBit(BitWidth);
- SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask.
- if (KnownZero.intersects(SignBit)) {
- KnownZero |= HighBits; // New bits are known zero.
- } else if (KnownOne.intersects(SignBit)) {
- KnownOne |= HighBits; // New bits are known one.
- }
- }
- return;
- case ISD::SIGN_EXTEND_INREG: {
- EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- unsigned EBits = EVT.getSizeInBits();
- // Sign extension. Compute the demanded bits in the result that are not
- // present in the input.
- APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
- APInt InSignBit = APInt::getSignBit(EBits);
- APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
- // If the sign extended bits are demanded, we know that the sign
- // bit is demanded.
- InSignBit.zext(BitWidth);
- if (NewBits.getBoolValue())
- InputDemandedBits |= InSignBit;
- ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
- KnownZero, KnownOne, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- // If the sign bit of the input is known set or clear, then we know the
- // top bits of the result.
- if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear
- KnownZero |= NewBits;
- KnownOne &= ~NewBits;
- } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
- KnownOne |= NewBits;
- KnownZero &= ~NewBits;
- } else { // Input sign bit unknown
- KnownZero &= ~NewBits;
- KnownOne &= ~NewBits;
- }
- return;
- }
- case ISD::CTTZ:
- case ISD::CTLZ:
- case ISD::CTPOP: {
- unsigned LowBits = Log2_32(BitWidth)+1;
- KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
- KnownOne.clear();
- return;
- }
- case ISD::LOAD: {
- if (ISD::isZEXTLoad(Op.getNode())) {
- LoadSDNode *LD = cast<LoadSDNode>(Op);
- EVT VT = LD->getMemoryVT();
- unsigned MemBits = VT.getSizeInBits();
- KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
- }
- return;
- }
- case ISD::ZERO_EXTEND: {
- EVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getSizeInBits();
- APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
- APInt InMask = Mask;
- InMask.trunc(InBits);
- KnownZero.trunc(InBits);
- KnownOne.trunc(InBits);
- ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
- KnownZero.zext(BitWidth);
- KnownOne.zext(BitWidth);
- KnownZero |= NewBits;
- return;
- }
- case ISD::SIGN_EXTEND: {
- EVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getSizeInBits();
- APInt InSignBit = APInt::getSignBit(InBits);
- APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
- APInt InMask = Mask;
- InMask.trunc(InBits);
- // If any of the sign extended bits are demanded, we know that the sign
- // bit is demanded. Temporarily set this bit in the mask for our callee.
- if (NewBits.getBoolValue())
- InMask |= InSignBit;
- KnownZero.trunc(InBits);
- KnownOne.trunc(InBits);
- ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
- // Note if the sign bit is known to be zero or one.
- bool SignBitKnownZero = KnownZero.isNegative();
- bool SignBitKnownOne = KnownOne.isNegative();
- assert(!(SignBitKnownZero && SignBitKnownOne) &&
- "Sign bit can't be known to be both zero and one!");
- // If the sign bit wasn't actually demanded by our caller, we don't
- // want it set in the KnownZero and KnownOne result values. Reset the
- // mask and reapply it to the result values.
- InMask = Mask;
- InMask.trunc(InBits);
- KnownZero &= InMask;
- KnownOne &= InMask;
- KnownZero.zext(BitWidth);
- KnownOne.zext(BitWidth);
- // If the sign bit is known zero or one, the top bits match.
- if (SignBitKnownZero)
- KnownZero |= NewBits;
- else if (SignBitKnownOne)
- KnownOne |= NewBits;
- return;
- }
- case ISD::ANY_EXTEND: {
- EVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getSizeInBits();
- APInt InMask = Mask;
- InMask.trunc(InBits);
- KnownZero.trunc(InBits);
- KnownOne.trunc(InBits);
- ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
- KnownZero.zext(BitWidth);
- KnownOne.zext(BitWidth);
- return;
- }
- case ISD::TRUNCATE: {
- EVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getSizeInBits();
- APInt InMask = Mask;
- InMask.zext(InBits);
- KnownZero.zext(InBits);
- KnownOne.zext(InBits);
- ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero.trunc(BitWidth);
- KnownOne.trunc(BitWidth);
- break;
- }
- case ISD::AssertZext: {
- EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
- ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
- KnownOne, Depth+1);
- KnownZero |= (~InMask) & Mask;
- return;
- }
- case ISD::FGETSIGN:
- // All bits are zero except the low bit.
- KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
- return;
- case ISD::SUB: {
- if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
- // We know that the top bits of C-X are clear if X contains less bits
- // than C (i.e. no wrap-around can happen). For example, 20-X is
- // positive if we can prove that X is >= 0 and < 16.
- if (CLHS->getAPIntValue().isNonNegative()) {
- unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
- // NLZ can't be BitWidth with no sign bit
- APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
- ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
- Depth+1);
- // If all of the MaskV bits are known to be zero, then we know the
- // output top bits are zero, because we now know that the output is
- // from [0-C].
- if ((KnownZero2 & MaskV) == MaskV) {
- unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
- // Top bits known zero.
- KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
- }
- }
- }
- }
- // fall through
- case ISD::ADD: {
- // Output known-0 bits are known if clear or set in both the low clear bits
- // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
- // low 3 bits clear.
- APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
- ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
- ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- KnownZeroOut = std::min(KnownZeroOut,
- KnownZero2.countTrailingOnes());
- KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
- return;
- }
- case ISD::SREM:
- if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- const APInt &RA = Rem->getAPIntValue();
- if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
- APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
- APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
- ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
- // If the sign bit of the first operand is zero, the sign bit of
- // the result is zero. If the first operand has no one bits below
- // the second operand's single 1 bit, its sign will be zero.
- if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
- KnownZero2 |= ~LowBits;
- KnownZero |= KnownZero2 & Mask;
- assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
- }
- }
- return;
- case ISD::UREM: {
- if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- const APInt &RA = Rem->getAPIntValue();
- if (RA.isPowerOf2()) {
- APInt LowBits = (RA - 1);
- APInt Mask2 = LowBits & Mask;
- KnownZero |= ~LowBits & Mask;
- ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
- assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
- break;
- }
- }
- // Since the result is less than or equal to either operand, any leading
- // zero bits in either operand must also exist in the result.
- APInt AllOnes = APInt::getAllOnesValue(BitWidth);
- ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
- Depth+1);
- ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
- Depth+1);
- uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
- KnownZero2.countLeadingOnes());
- KnownOne.clear();
- KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
- return;
- }
- default:
- // Allow the target to implement this method for its nodes.
- if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
- case ISD::INTRINSIC_WO_CHAIN:
- case ISD::INTRINSIC_W_CHAIN:
- case ISD::INTRINSIC_VOID:
- TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
- Depth);
- }
- return;
- }
- }
- /// ComputeNumSignBits - Return the number of times the sign bit of the
- /// register is replicated into the other bits. We know that at least 1 bit
- /// is always equal to the sign bit (itself), but other cases can give us
- /// information. For example, immediately after an "SRA X, 2", we know that
- /// the top 3 bits are all equal to each other, so we return 3.
- unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
- EVT VT = Op.getValueType();
- assert(VT.isInteger() && "Invalid VT!");
- unsigned VTBits = VT.getSizeInBits();
- unsigned Tmp, Tmp2;
- unsigned FirstAnswer = 1;
- if (Depth == 6)
- return 1; // Limit search depth.
- switch (Op.getOpcode()) {
- default: break;
- case ISD::AssertSext:
- Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
- return VTBits-Tmp+1;
- case ISD::AssertZext:
- Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
- return VTBits-Tmp;
- case ISD::Constant: {
- const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
- // If negative, return # leading ones.
- if (Val.isNegative())
- return Val.countLeadingOnes();
- // Return # leading zeros.
- return Val.countLeadingZeros();
- }
- case ISD::SIGN_EXTEND:
- Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
- return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
- case ISD::SIGN_EXTEND_INREG:
- // Max of the input and what this extends.
- Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
- Tmp = VTBits-Tmp+1;
- Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- return std::max(Tmp, Tmp2);
- case ISD::SRA:
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- // SRA X, C -> adds C sign bits.
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- Tmp += C->getZExtValue();
- if (Tmp > VTBits) Tmp = VTBits;
- }
- return Tmp;
- case ISD::SHL:
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- // shl destroys sign bits.
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- if (C->getZExtValue() >= VTBits || // Bad shift.
- C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
- return Tmp - C->getZExtValue();
- }
- break;
- case ISD::AND:
- case ISD::OR:
- case ISD::XOR: // NOT is handled here.
- // Logical binary ops preserve the number of sign bits at the worst.
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- if (Tmp != 1) {
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
- FirstAnswer = std::min(Tmp, Tmp2);
- // We computed what we know about the sign bits as our first
- // answer. Now proceed to the generic code that uses
- // ComputeMaskedBits, and pick whichever answer is better.
- }
- break;
- case ISD::SELECT:
- Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
- if (Tmp == 1) return 1; // Early out.
- Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
- return std::min(Tmp, Tmp2);
- case ISD::SADDO:
- case ISD::UADDO:
- case ISD::SSUBO:
- case ISD::USUBO:
- case ISD::SMULO:
- case ISD::UMULO:
- if (Op.getResNo() != 1)
- break;
- // The boolean result conforms to getBooleanContents. Fall through.
- case ISD::SETCC:
- // If setcc returns 0/-1, all bits are sign bits.
- if (TLI.getBooleanContents() ==
- TargetLowering::ZeroOrNegativeOneBooleanContent)
- return VTBits;
- break;
- case ISD::ROTL:
- case ISD::ROTR:
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- unsigned RotAmt = C->getZExtValue() & (VTBits-1);
- // Handle rotate right by N like a rotate left by 32-N.
- if (Op.getOpcode() == ISD::ROTR)
- RotAmt = (VTBits-RotAmt) & (VTBits-1);
- // If we aren't rotating out all of the known-in sign bits, return the
- // number that are left. This handles rotl(sext(x), 1) for example.
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- if (Tmp > RotAmt+1) return Tmp-RotAmt;
- }
- break;
- case ISD::ADD:
- // Add can have at most one carry bit. Thus we know that the output
- // is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- if (Tmp == 1) return 1; // Early out.
- // Special case decrementing a value (ADD X, -1):
- if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
- if (CRHS->isAllOnesValue()) {
- APInt KnownZero, KnownOne;
- APInt Mask = APInt::getAllOnesValue(VTBits);
- ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
- // If the input is known to be 0 or 1, the output is 0/-1, which is all
- // sign bits set.
- if ((KnownZero | APInt(VTBits, 1)) == Mask)
- return VTBits;
- // If we are subtracting one from a positive number, there is no carry
- // out of the result.
- if (KnownZero.isNegative())
- return Tmp;
- }
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
- if (Tmp2 == 1) return 1;
- return std::min(Tmp, Tmp2)-1;
- break;
- case ISD::SUB:
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
- if (Tmp2 == 1) return 1;
- // Handle NEG.
- if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
- if (CLHS->isNullValue()) {
- APInt KnownZero, KnownOne;
- APInt Mask = APInt::getAllOnesValue(VTBits);
- ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
- // If the input is known to be 0 or 1, the output is 0/-1, which is all
- // sign bits set.
- if ((KnownZero | APInt(VTBits, 1)) == Mask)
- return VTBits;
- // If the input is known to be positive (the sign bit is known clear),
- // the output of the NEG has the same number of sign bits as the input.
- if (KnownZero.isNegative())
- return Tmp2;
- // Otherwise, we treat this like a SUB.
- }
- // Sub can have at most one carry bit. Thus we know that the output
- // is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- if (Tmp == 1) return 1; // Early out.
- return std::min(Tmp, Tmp2)-1;
- break;
- case ISD::TRUNCATE:
- // FIXME: it's tricky to do anything useful for this, but it is an important
- // case for targets like X86.
- break;
- }
- // Handle LOADX separately here. EXTLOAD case will fallthrough.
- if (Op.getOpcode() == ISD::LOAD) {
- LoadSDNode *LD = cast<LoadSDNode>(Op);
- unsigned ExtType = LD->getExtensionType();
- switch (ExtType) {
- default: break;
- case ISD::SEXTLOAD: // '17' bits known
- Tmp = LD->getMemoryVT().getSizeInBits();
- return VTBits-Tmp+1;
- case ISD::ZEXTLOAD: // '16' bits known
- Tmp = LD->getMemoryVT().getSizeInBits();
- return VTBits-Tmp;
- }
- }
- // Allow the target to implement this method for its nodes.
- if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) {
- unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
- if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
- }
- // Finally, if we can prove that the top bits of the result are 0's or 1's,
- // use this information.
- APInt KnownZero, KnownOne;
- APInt Mask = APInt::getAllOnesValue(VTBits);
- ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
- if (KnownZero.isNegative()) { // sign bit is 0
- Mask = KnownZero;
- } else if (KnownOne.isNegative()) { // sign bit is 1;
- Mask = KnownOne;
- } else {
- // Nothing known.
- return FirstAnswer;
- }
- // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
- // the number of identical bits in the top of the input value.
- Mask = ~Mask;
- Mask <<= Mask.getBitWidth()-VTBits;
- // Return # leading zeros. We use 'min' here in case Val was zero before
- // shifting. We don't want to return '64' as for an i32 "0".
- return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
- }
- bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
- GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
- if (!GA) return false;
- if (GA->getOffset() != 0) return false;
- GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
- if (!GV) return false;
- MachineModuleInfo *MMI = getMachineModuleInfo();
- return MMI && MMI->hasDebugInfo();
- }
- /// getShuffleScalarElt - Returns the scalar element that will make up the ith
- /// element of the result of the vector shuffle.
- SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
- unsigned i) {
- EVT VT = N->getValueType(0);
- DebugLoc dl = N->getDebugLoc();
- if (N->getMaskElt(i) < 0)
- return getUNDEF(VT.getVectorElementType());
- unsigned Index = N->getMaskElt(i);
- unsigned NumElems = VT.getVectorNumElements();
- SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
- Index %= NumElems;
- if (V.getOpcode() == ISD::BIT_CONVERT) {
- V = V.getOperand(0);
- EVT VVT = V.getValueType();
- if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
- return SDValue();
- }
- if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
- return (Index == 0) ? V.getOperand(0)
- : getUNDEF(VT.getVectorElementType());
- if (V.getOpcode() == ISD::BUILD_VECTOR)
- return V.getOperand(Index);
- if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
- return getShuffleScalarElt(SVN, Index);
- return SDValue();
- }
- /// getNode - Gets or creates the specified node.
- ///
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = NodeAllocator.Allocate<SDNode>();
- new (N) SDNode(Opcode, DL, getVTList(VT));
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- #ifndef NDEBUG
- VerifyNode(N);
- #endif
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
- EVT VT, SDValue Operand) {
- // Constant fold unary operations with an integer constant operand.
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
- const APInt &Val = C->getAPIntValue();
- unsigned BitWidth = VT.getSizeInBits();
- switch (Opcode) {
- default: break;
- case ISD::SIGN_EXTEND:
- return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
- case ISD::ANY_EXTEND:
- case ISD::ZERO_EXTEND:
- case ISD::TRUNCATE:
- return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
- case ISD::UINT_TO_FP:
- case ISD::SINT_TO_FP: {
- const uint64_t zero[] = {0, 0};
- // No compile time operations on this type.
- if (VT==MVT::ppcf128)
- break;
- APFloat apf = APFloat(APInt(BitWidth, 2, zero));
- (void)apf.convertFromAPInt(Val,
- Opcode==ISD::SINT_TO_FP,
- APFloat::rmNearestTiesToEven);
- return getConstantFP(apf, VT);
- }
- case ISD::BIT_CONVERT:
- if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
- return getConstantFP(Val.bitsToFloat(), VT);
- else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
- return getConstantFP(Val.bitsToDouble(), VT);
- break;
- case ISD::BSWAP:
- return getConstant(Val.byteSwap(), VT);
- case ISD::CTPOP:
- return getConstant(Val.countPopulation(), VT);
- case ISD::CTLZ:
- return getConstant(Val.countLeadingZeros(), VT);
- case ISD::CTTZ:
- return getConstant(Val.countTrailingZeros(), VT);
- }
- }
- // Constant fold unary operations with a floating point constant operand.
- if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
- APFloat V = C->getValueAPF(); // make copy
- if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
- switch (Opcode) {
- case ISD::FNEG:
- V.changeSign();
- return getConstantFP(V, VT);
- case ISD::FABS:
- V.clearSign();
- return getConstantFP(V, VT);
- case ISD::FP_ROUND:
- case ISD::FP_EXTEND: {
- bool ignored;
- // This can return overflow, underflow, or inexact; we don't care.
- // FIXME need to be more flexible about rounding mode.
- (void)V.convert(*EVTToAPFloatSemantics(VT),
- APFloat::rmNearestTiesToEven, &ignored);
- return getConstantFP(V, VT);
- }
- case ISD::FP_TO_SINT:
- case ISD::FP_TO_UINT: {
- integerPart x[2];
- bool ignored;
- assert(integerPartWidth >= 64);
- // FIXME need to be more flexible about rounding mode.
- APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
- Opcode==ISD::FP_TO_SINT,
- APFloat::rmTowardZero, &ignored);
- if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
- break;
- APInt api(VT.getSizeInBits(), 2, x);
- return getConstant(api, VT);
- }
- case ISD::BIT_CONVERT:
- if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
- return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
- else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
- return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
- break;
- }
- }
- }
- unsigned OpOpcode = Operand.getNode()->getOpcode();
- switch (Opcode) {
- case ISD::TokenFactor:
- case ISD::MERGE_VALUES:
- case ISD::CONCAT_VECTORS:
- return Operand; // Factor, merge or concat of one node? No need.
- case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
- case ISD::FP_EXTEND:
- assert(VT.isFloatingPoint() &&
- Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
- if (Operand.getValueType() == VT) return Operand; // noop conversion.
- if (Operand.getOpcode() == ISD::UNDEF)
- return getUNDEF(VT);
- break;
- case ISD::SIGN_EXTEND:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid SIGN_EXTEND!");
- if (Operand.getValueType() == VT) return Operand; // noop extension
- assert(Operand.getValueType().bitsLT(VT)
- && "Invalid sext node, dst < src!");
- if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
- return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
- break;
- case ISD::ZERO_EXTEND:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid ZERO_EXTEND!");
- if (Operand.getValueType() == VT) return Operand; // noop extension
- assert(Operand.getValueType().bitsLT(VT)
- && "Invalid zext node, dst < src!");
- if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
- return getNode(ISD::ZERO_EXTEND, DL, VT,
- Operand.getNode()->getOperand(0));
- break;
- case ISD::ANY_EXTEND:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid ANY_EXTEND!");
- if (Operand.getValueType() == VT) return Operand; // noop extension
- assert(Operand.getValueType().bitsLT(VT)
- && "Invalid anyext node, dst < src!");
- if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
- // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
- return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
- break;
- case ISD::TRUNCATE:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid TRUNCATE!");
- if (Operand.getValueType() == VT) return Operand; // noop truncate
- assert(Operand.getValueType().bitsGT(VT)
- && "Invalid truncate node, src < dst!");
- if (OpOpcode == ISD::TRUNCATE)
- return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
- else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
- OpOpcode == ISD::ANY_EXTEND) {
- // If the source is smaller than the dest, we still need an extend.
- if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
- return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
- else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
- return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
- else
- return Operand.getNode()->getOperand(0);
- }
- break;
- case ISD::BIT_CONVERT:
- // Basic sanity checking.
- assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
- && "Cannot BIT_CONVERT between types of different sizes!");
- if (VT == Operand.getValueType()) return Operand; // noop conversion.
- if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
- return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- break;
- case ISD::SCALAR_TO_VECTOR:
- assert(VT.isVector() && !Operand.getValueType().isVector() &&
- (VT.getVectorElementType() == Operand.getValueType() ||
- (VT.getVectorElementType().isInteger() &&
- Operand.getValueType().isInteger() &&
- VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
- "Illegal SCALAR_TO_VECTOR node!");
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
- if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
- isa<ConstantSDNode>(Operand.getOperand(1)) &&
- Operand.getConstantOperandVal(1) == 0 &&
- Operand.getOperand(0).getValueType() == VT)
- return Operand.getOperand(0);
- break;
- case ISD::FNEG:
- // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
- if (UnsafeFPMath && OpOpcode == ISD::FSUB)
- return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
- Operand.getNode()->getOperand(0));
- if (OpOpcode == ISD::FNEG) // --X -> X
- return Operand.getNode()->getOperand(0);
- break;
- case ISD::FABS:
- if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
- return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
- break;
- }
- SDNode *N;
- SDVTList VTs = getVTList(VT);
- if (VT != MVT::Flag) { // Don't CSE flag producing nodes
- FoldingSetNodeID ID;
- SDValue Ops[1] = { Operand };
- AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- N = NodeAllocator.Allocate<UnarySDNode>();
- new (N) UnarySDNode(Opcode, DL, VTs, Operand);
- CSEMap.InsertNode(N, IP);
- } else {
- N = NodeAllocator.Allocate<UnarySDNode>();
- new (N) UnarySDNode(Opcode, DL, VTs, Operand);
- }
- AllNodes.push_back(N);
- #ifndef NDEBUG
- VerifyNode(N);
- #endif
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
- EVT VT,
- ConstantSDNode *Cst1,
- ConstantSDNode *Cst2) {
- const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
- switch (Opcode) {
- case ISD::ADD: return getConstant(C1 + C2, VT);
- case ISD::SUB: return getConstant(C1 - C2, VT);
- case ISD::MUL: return getConstant(C1 * C2, VT);
- case ISD::UDIV:
- if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
- break;
- case ISD::UREM:
- if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
- break;
- case ISD::SDIV:
- if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
- break;
- case ISD::SREM:
- if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
- break;
- case ISD::AND: return getConstant(C1 & C2, VT);
- case ISD::OR: return getConstant(C1 | C2, VT);
- case ISD::XOR: return getConstant(C1 ^ C2, VT);
- case ISD::SHL: return getConstant(C1 << C2, VT);
- case ISD::SRL: return getConstant(C1.lshr(C2), VT);
- case ISD::SRA: return getConstant(C1.ashr(C2), VT);
- case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
- case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
- default: break;
- }
- return SDValue();
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
- SDValue N1, SDValue N2) {
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
- ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
- switch (Opcode) {
- default: break;
- case ISD::TokenFactor:
- assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
- N2.getValueType() == MVT::Other && "Invalid token factor!");
- // Fold trivial token factors.
- if (N1.getOpcode() == ISD::EntryToken) return N2;
- if (N2.getOpcode() == ISD::EntryToken) return N1;
- if (N1 == N2) return N1;
- break;
- case ISD::CONCAT_VECTORS:
- // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
- // one big BUILD_VECTOR.
- if (N1.getOpcode() == ISD::BUILD_VECTOR &&
- N2.getOpcode() == ISD::BUILD_VECTOR) {
- SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
- Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
- return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
- }
- break;
- case ISD::AND:
- assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
- // worth handling here.
- if (N2C && N2C->isNullValue())
- return N2;
- if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
- return N1;
- break;
- case ISD::OR:
- case ISD::XOR:
- case ISD::ADD:
- case ISD::SUB:
- assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
- // it's worth handling here.
- if (N2C && N2C->isNullValue())
- return N1;
- break;
- case ISD::UDIV:
- case ISD::UREM:
- case ISD::MULHU:
- case ISD::MULHS:
- case ISD::MUL:
- case ISD::SDIV:
- case ISD::SREM:
- assert(VT.isInteger() && "This operator does not apply to FP types!");
- // fall through
- case ISD::FADD:
- case ISD::FSUB:
- case ISD::FMUL:
- case ISD::FDIV:
- case ISD::FREM:
- if (UnsafeFPMath) {
- if (Opcode == ISD::FADD) {
- // 0+x --> x
- if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
- if (CFP->getValueAPF().isZero())
- return N2;
- // x+0 --> x
- if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
- if (CFP->getValueAPF().isZero())
- return N1;
- } else if (Opcode == ISD::FSUB) {
- // x-0 --> x
- if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
- if (CFP->getValueAPF().isZero())
- return N1;
- }
- }
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- break;
- case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
- assert(N1.getValueType() == VT &&
- N1.getValueType().isFloatingPoint() &&
- N2.getValueType().isFloatingPoint() &&
- "Invalid FCOPYSIGN!");
- break;
- case ISD::SHL:
- case ISD::SRA:
- case ISD::SRL:
- case ISD::ROTL:
- case ISD::ROTR:
- assert(VT == N1.getValueType() &&
- "Shift operators return type must be the same as their first arg");
- assert(VT.isInteger() && N2.getValueType().isInteger() &&
- "Shifts only work on integers");
- // Always fold shifts of i1 values so the code generator doesn't need to
- // handle them. Since we know the size of the shift has to be less than the
- // size of the value, the shift/rotate count is guaranteed to be zero.
- if (VT == MVT::i1)
- return N1;
- break;
- case ISD::FP_ROUND_INREG: {
- EVT EVT = cast<VTSDNode>(N2)->getVT();
- assert(VT == N1.getValueType() && "Not an inreg round!");
- assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
- "Cannot FP_ROUND_INREG integer types");
- assert(EVT.bitsLE(VT) && "Not rounding down!");
- if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
- break;
- }
- case ISD::FP_ROUND:
- assert(VT.isFloatingPoint() &&
- N1.getValueType().isFloatingPoint() &&
- VT.bitsLE(N1.getValueType()) &&
- isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
- if (N1.getValueType() == VT) return N1; // noop conversion.
- break;
- case ISD::AssertSext:
- case ISD::AssertZext: {
- EVT EVT = cast<VTSDNode>(N2)->getVT();
- assert(VT == N1.getValueType() && "Not an inreg extend!");
- assert(VT.isInteger() && EVT.isInteger() &&
- "Cannot *_EXTEND_INREG FP types");
- assert(EVT.bitsLE(VT) && "Not extending!");
- if (VT == EVT) return N1; // noop assertion.
- break;
- }
- case ISD::SIGN_EXTEND_INREG: {
- EVT EVT = cast<VTSDNode>(N2)->getVT();
- assert(VT == N1.getValueType() && "Not an inreg extend!");
- assert(VT.isInteger() && EVT.isInteger() &&
- "Cannot *_EXTEND_INREG FP types");
- assert(EVT.bitsLE(VT) && "Not extending!");
- if (EVT == VT) return N1; // Not actually extending
- if (N1C) {
- APInt Val = N1C->getAPIntValue();
- unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
- Val <<= Val.getBitWidth()-FromBits;
- Val = Val.ashr(Val.getBitWidth()-FromBits);
- return getConstant(Val, VT);
- }
- break;
- }
- case ISD::EXTRACT_VECTOR_ELT:
- // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
- if (N1.getOpcode() == ISD::UNDEF)
- return getUNDEF(VT);
- // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
- // expanding copies of large vectors from registers.
- if (N2C &&
- N1.getOpcode() == ISD::CONCAT_VECTORS &&
- N1.getNumOperands() > 0) {
- unsigned Factor =
- N1.getOperand(0).getValueType().getVectorNumElements();
- return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
- N1.getOperand(N2C->getZExtValue() / Factor),
- getConstant(N2C->getZExtValue() % Factor,
- N2.getValueType()));
- }
- // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
- // expanding large vector constants.
- if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
- SDValue Elt = N1.getOperand(N2C->getZExtValue());
- EVT VEltTy = N1.getValueType().getVectorElementType();
- if (Elt.getValueType() != VEltTy) {
- // If the vector element type is not legal, the BUILD_VECTOR operands
- // are promoted and implicitly truncated. Make that explicit here.
- Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
- }
- if (VT != VEltTy) {
- // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
- // result is implicitly extended.
- Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
- }
- return Elt;
- }
- // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
- // operations are lowered to scalars.
- if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
- // If the indices are the same, return the inserted element.
- if (N1.getOperand(2) == N2)
- return N1.getOperand(1);
- // If the indices are known different, extract the element from
- // the original vector.
- else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
- isa<ConstantSDNode>(N2))
- return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
- }
- break;
- case ISD::EXTRACT_ELEMENT:
- assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
- assert(!N1.getValueType().isVector() && !VT.isVector() &&
- (N1.getValueType().isInteger() == VT.isInteger()) &&
- "Wrong types for EXTRACT_ELEMENT!");
- // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
- // 64-bit integers into 32-bit parts. Instead of building the extract of
- // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
- if (N1.getOpcode() == ISD::BUILD_PAIR)
- return N1.getOperand(N2C->getZExtValue());
- // EXTRACT_ELEMENT of a constant int is also very common.
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
- unsigned ElementSize = VT.getSizeInBits();
- unsigned Shift = ElementSize * N2C->getZExtValue();
- APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
- return getConstant(ShiftedVal.trunc(ElementSize), VT);
- }
- break;
- case ISD::EXTRACT_SUBVECTOR:
- if (N1.getValueType() == VT) // Trivial extraction.
- return N1;
- break;
- }
- if (N1C) {
- if (N2C) {
- SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
- if (SV.getNode()) return SV;
- } else { // Cannonicalize constant to RHS if commutative
- if (isCommutativeBinOp(Opcode)) {
- std::swap(N1C, N2C);
- std::swap(N1, N2);
- }
- }
- }
- // Constant fold FP operations.
- ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
- ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
- if (N1CFP) {
- if (!N2CFP && isCommutativeBinOp(Opcode)) {
- // Cannonicalize constant to RHS if commutative
- std::swap(N1CFP, N2CFP);
- std::swap(N1, N2);
- } else if (N2CFP && VT != MVT::ppcf128) {
- APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
- APFloat::opStatus s;
- switch (Opcode) {
- case ISD::FADD:
- s = V1.add(V2, APFloat::rmNearestTiesToEven);
- if (s != APFloat::opInvalidOp)
- return getConstantFP(V1, VT);
- break;
- case ISD::FSUB:
- s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
- if (s!=APFloat::opInvalidOp)
- return getConstantFP(V1, VT);
- break;
- case ISD::FMUL:
- s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
- if (s!=APFloat::opInvalidOp)
- return getConstantFP(V1, VT);
- break;
- case ISD::FDIV:
- s = V1.divide(V2, APFloat::rmNearestTiesToEven);
- if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
- return getConstantFP(V1, VT);
- break;
- case ISD::FREM :
- s = V1.mod(V2, APFloat::rmNearestTiesToEven);
- if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
- return getConstantFP(V1, VT);
- break;
- case ISD::FCOPYSIGN:
- V1.copySign(V2);
- return getConstantFP(V1, VT);
- default: break;
- }
- }
- }
- // Canonicalize an UNDEF to the RHS, even over a constant.
- if (N1.getOpcode() == ISD::UNDEF) {
- if (isCommutativeBinOp(Opcode)) {
- std::swap(N1, N2);
- } else {
- switch (Opcode) {
- case ISD::FP_ROUND_INREG:
- case ISD::SIGN_EXTEND_INREG:
- case ISD::SUB:
- case ISD::FSUB:
- case ISD::FDIV:
- case ISD::FREM:
- case ISD::SRA:
- return N1; // fold op(undef, arg2) -> undef
- case ISD::UDIV:
- case ISD::SDIV:
- case ISD::UREM:
- case ISD::SREM:
- case ISD::SRL:
- case ISD::SHL:
- if (!VT.isVector())
- return getConstant(0, VT); // fold op(undef, arg2) -> 0
- // For vectors, we can't easily build an all zero vector, just return
- // the LHS.
- return N2;
- }
- }
- }
- // Fold a bunch of operators when the RHS is undef.
- if (N2.getOpcode() == ISD::UNDEF) {
- switch (Opcode) {
- case ISD::XOR:
- if (N1.getOpcode() == ISD::UNDEF)
- // Handle undef ^ undef -> 0 special case. This is a common
- // idiom (misuse).
- return getConstant(0, VT);
- // fallthrough
- case ISD::ADD:
- case ISD::ADDC:
- case ISD::ADDE:
- case ISD::SUB:
- case ISD::UDIV:
- case ISD::SDIV:
- case ISD::UREM:
- case ISD::SREM:
- return N2; // fold op(arg1, undef) -> undef
- case ISD::FADD:
- case ISD::FSUB:
- case ISD::FMUL:
- case ISD::FDIV:
- case ISD::FREM:
- if (UnsafeFPMath)
- return N2;
- break;
- case ISD::MUL:
- case ISD::AND:
- case ISD::SRL:
- case ISD::SHL:
- if (!VT.isVector())
- return getConstant(0, VT); // fold op(arg1, undef) -> 0
- // For vectors, we can't easily build an all zero vector, just return
- // the LHS.
- return N1;
- case ISD::OR:
- if (!VT.isVector())
- return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
- // For vectors, we can't easily build an all one vector, just return
- // the LHS.
- return N1;
- case ISD::SRA:
- return N1;
- }
- }
- // Memoize this node if possible.
- SDNode *N;
- SDVTList VTs = getVTList(VT);
- if (VT != MVT::Flag) {
- SDValue Ops[] = { N1, N2 };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- N = NodeAllocator.Allocate<BinarySDNode>();
- new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
- CSEMap.InsertNode(N, IP);
- } else {
- N = NodeAllocator.Allocate<BinarySDNode>();
- new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
- }
- AllNodes.push_back(N);
- #ifndef NDEBUG
- VerifyNode(N);
- #endif
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
- SDValue N1, SDValue N2, SDValue N3) {
- // Perform various simplifications.
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
- ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
- switch (Opcode) {
- case ISD::CONCAT_VECTORS:
- // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
- // one big BUILD_VECTOR.
- if (N1.getOpcode() == ISD::BUILD_VECTOR &&
- N2.getOpcode() == ISD::BUILD_VECTOR &&
- N3.getOpcode() == ISD::BUILD_VECTOR) {
- SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
- Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
- Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
- return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
- }
- break;
- case ISD::SETCC: {
- // Use FoldSetCC to simplify SETCC's.
- SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
- if (Simp.getNode()) return Simp;
- break;
- }
- case ISD::SELECT:
- if (N1C) {
- if (N1C->getZExtValue())
- return N2; // select true, X, Y -> X
- else
- return N3; // select false, X, Y -> Y
- }
- if (N2 == N3) return N2; // select C, X, X -> X
- break;
- case ISD::BRCOND:
- if (N2C) {
- if (N2C->getZExtValue()) // Unconditional branch
- return getNode(ISD::BR, DL, MVT::Other, N1, N3);
- else
- return N1; // Never-taken branch
- }
- break;
- case ISD::VECTOR_SHUFFLE:
- llvm_unreachable("should use getVectorShuffle constructor!");
- break;
- case ISD::BIT_CONVERT:
- // Fold bit_convert nodes from a type to themselves.
- if (N1.getValueType() == VT)
- return N1;
- break;
- }
- // Memoize node if it doesn't produce a flag.
- SDNode *N;
- SDVTList VTs = getVTList(VT);
- if (VT != MVT::Flag) {
- SDValue Ops[] = { N1, N2, N3 };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- N = NodeAllocator.Allocate<TernarySDNode>();
- new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
- CSEMap.InsertNode(N, IP);
- } else {
- N = NodeAllocator.Allocate<TernarySDNode>();
- new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
- }
- AllNodes.push_back(N);
- #ifndef NDEBUG
- VerifyNode(N);
- #endif
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
- SDValue N1, SDValue N2, SDValue N3,
- SDValue N4) {
- SDValue Ops[] = { N1, N2, N3, N4 };
- return getNode(Opcode, DL, VT, Ops, 4);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
- SDValue N1, SDValue N2, SDValue N3,
- SDValue N4, SDValue N5) {
- SDValue Ops[] = { N1, N2, N3, N4, N5 };
- return getNode(Opcode, DL, VT, Ops, 5);
- }
- /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
- /// the incoming stack arguments to be loaded from the stack.
- SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
- SmallVector<SDValue, 8> ArgChains;
- // Include the original chain at the beginning of the list. When this is
- // used by target LowerCall hooks, this helps legalize find the
- // CALLSEQ_BEGIN node.
- ArgChains.push_back(Chain);
- // Add a chain value for each stack argument.
- for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
- UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
- if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
- if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
- if (FI->getIndex() < 0)
- ArgChains.push_back(SDValue(L, 1));
- // Build a tokenfactor for all the chains.
- return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
- &ArgChains[0], ArgChains.size());
- }
- /// getMemsetValue - Vectorized representation of the memset value
- /// operand.
- static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
- DebugLoc dl) {
- unsigned NumBits = VT.isVector() ?
- VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
- APInt Val = APInt(NumBits, C->getZExtValue() & 255);
- unsigned Shift = 8;
- for (unsigned i = NumBits; i > 8; i >>= 1) {
- Val = (Val << Shift) | Val;
- Shift <<= 1;
- }
- if (VT.isInteger())
- return DAG.getConstant(Val, VT);
- return DAG.getConstantFP(APFloat(Val), VT);
- }
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
- unsigned Shift = 8;
- for (unsigned i = NumBits; i > 8; i >>= 1) {
- Value = DAG.getNode(ISD::OR, dl, VT,
- DAG.getNode(ISD::SHL, dl, VT, Value,
- DAG.getConstant(Shift,
- TLI.getShiftAmountTy())),
- Value);
- Shift <<= 1;
- }
- return Value;
- }
- /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
- /// used when a memcpy is turned into a memset when the source is a constant
- /// string ptr.
- static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
- const TargetLowering &TLI,
- std::string &Str, unsigned Offset) {
- // Handle vector with all elements zero.
- if (Str.empty()) {
- if (VT.isInteger())
- return DAG.getConstant(0, VT);
- unsigned NumElts = VT.getVectorNumElements();
- MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
- return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
- DAG.getConstant(0,
- EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
- }
- assert(!VT.isVector() && "Can't handle vector type here!");
- unsigned NumBits = VT.getSizeInBits();
- unsigned MSB = NumBits / 8;
- uint64_t Val = 0;
- if (TLI.isLittleEndian())
- Offset = Offset + MSB - 1;
- for (unsigned i = 0; i != MSB; ++i) {
- Val = (Val << 8) | (unsigned char)Str[Offset];
- Offset += TLI.isLittleEndian() ? -1 : 1;
- }
- return DAG.getConstant(Val, VT);
- }
- /// getMemBasePlusOffset - Returns base and offset node for the
- ///
- static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
- SelectionDAG &DAG) {
- EVT VT = Base.getValueType();
- return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
- VT, Base, DAG.getConstant(Offset, VT));
- }
- /// isMemSrcFromString - Returns true if memcpy source is a string constant.
- ///
- static bool isMemSrcFromString(SDValue Src, std::string &Str) {
- unsigned SrcDelta = 0;
- GlobalAddressSDNode *G = NULL;
- if (Src.getOpcode() == ISD::GlobalAddress)
- G = cast<GlobalAddressSDNode>(Src);
- else if (Src.getOpcode() == ISD::ADD &&
- Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
- Src.getOperand(1).getOpcode() == ISD::Constant) {
- G = cast<GlobalAddressSDNode>(Src.getOperand(0));
- SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
- }
- if (!G)
- return false;
- GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
- if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
- return true;
- return false;
- }
- /// MeetsMaxMemopRequirement - Determines if the number of memory ops required
- /// to replace the memset / memcpy is below the threshold. It also returns the
- /// types of the sequence of memory ops to perform memset / memcpy.
- static
- bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
- SDValue Dst, SDValue Src,
- unsigned Limit, uint64_t Size, unsigned &Align,
- std::string &Str, bool &isSrcStr,
- SelectionDAG &DAG,
- const TargetLowering &TLI) {
- isSrcStr = isMemSrcFromString(Src, Str);
- bool isSrcConst = isa<ConstantSDNode>(Src);
- bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
- EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
- if (VT != MVT::iAny) {
- unsigned NewAlign = (unsigned)
- TLI.getTargetData()->getABITypeAlignment(
- VT.getTypeForEVT(*DAG.getContext()));
- // If source is a string constant, this will require an unaligned load.
- if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
- if (Dst.getOpcode() != ISD::FrameIndex) {
- // Can't change destination alignment. It requires a unaligned store.
- if (AllowUnalign)
- VT = MVT::iAny;
- } else {
- int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
- MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
- if (MFI->isFixedObjectIndex(FI)) {
- // Can't change destination alignment. It requires a unaligned store.
- if (AllowUnalign)
- VT = MVT::iAny;
- } else {
- // Give the stack frame object a larger alignment if needed.
- if (MFI->getObjectAlignment(FI) < NewAlign)
- MFI->setObjectAlignment(FI, NewAlign);
- Align = NewAlign;
- }
- }
- }
- }
- if (VT == MVT::iAny) {
- if (AllowUnalign) {
- VT = MVT::i64;
- } else {
- switch (Align & 7) {
- case 0: VT = MVT::i64; break;
- case 4: VT = MVT::i32; break;
- case 2: VT = MVT::i16; break;
- default: VT = MVT::i8; break;
- }
- }
- MVT LVT = MVT::i64;
- while (!TLI.isTypeLegal(LVT))
- LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
- assert(LVT.isInteger());
- if (VT.bitsGT(LVT))
- VT = LVT;
- }
- unsigned NumMemOps = 0;
- while (Size != 0) {
- unsigned VTSize = VT.getSizeInBits() / 8;
- while (VTSize > Size) {
- // For now, only use non-vector load / store's for the left-over pieces.
- if (VT.isVector()) {
- VT = MVT::i64;
- while (!TLI.isTypeLegal(VT))
- VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
- VTSize = VT.getSizeInBits() / 8;
- } else {
- // This can result in a type that is not legal on the target, e.g.
- // 1 or 2 bytes on PPC.
- VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
- VTSize >>= 1;
- }
- }
- if (++NumMemOps > Limit)
- return false;
- MemOps.push_back(VT);
- Size -= VTSize;
- }
- return true;
- }
- static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
- SDValue Chain, SDValue Dst,
- SDValue Src, uint64_t Size,
- unsigned Align, bool AlwaysInline,
- const Value *DstSV, uint64_t DstSVOff,
- const Value *SrcSV, uint64_t SrcSVOff){
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // Expand memcpy to a series of load and store ops if the size operand falls
- // below a certain threshold.
- std::vector<EVT> MemOps;
- uint64_t Limit = -1ULL;
- if (!AlwaysInline)
- Limit = TLI.getMaxStoresPerMemcpy();
- unsigned DstAlign = Align; // Destination alignment can change.
- std::string Str;
- bool CopyFromStr;
- if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
- Str, CopyFromStr, DAG, TLI))
- return SDValue();
- bool isZeroStr = CopyFromStr && Str.empty();
- SmallVector<SDValue, 8> OutChains;
- unsigned NumMemOps = MemOps.size();
- uint64_t SrcOff = 0, DstOff = 0;
- for (unsigned i = 0; i < NumMemOps; i++) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- SDValue Value, Store;
- if (CopyFromStr && (isZeroStr || !VT.isVector())) {
- // It's unlikely a store of a vector immediate can be done in a single
- // instruction. It would require a load from a constantpool first.
- // We also handle store a vector with all zero's.
- // FIXME: Handle other cases where store of vector immediate is done in
- // a single instruction.
- Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
- Store = DAG.getStore(Chain, dl, Value,
- getMemBasePlusOffset(Dst, DstOff, DAG),
- DstSV, DstSVOff + DstOff, false, DstAlign);
- } else {
- // The type might not be legal for the target. This should only happen
- // if the type is smaller than a legal type, as on PPC, so the right
- // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
- // to Load/Store if NVT==VT.
- // FIXME does the case above also need this?
- EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
- assert(NVT.bitsGE(VT));
- Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
- getMemBasePlusOffset(Src, SrcOff, DAG),
- SrcSV, SrcSVOff + SrcOff, VT, false, Align);
- Store = DAG.getTruncStore(Chain, dl, Value,
- getMemBasePlusOffset(Dst, DstOff, DAG),
- DstSV, DstSVOff + DstOff, VT, false, DstAlign);
- }
- OutChains.push_back(Store);
- SrcOff += VTSize;
- DstOff += VTSize;
- }
- return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- &OutChains[0], OutChains.size());
- }
- static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
- SDValue Chain, SDValue Dst,
- SDValue Src, uint64_t Size,
- unsigned Align, bool AlwaysInline,
- const Value *DstSV, uint64_t DstSVOff,
- const Value *SrcSV, uint64_t SrcSVOff){
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // Expand memmove to a series of load and store ops if the size operand falls
- // below a certain threshold.
- std::vector<EVT> MemOps;
- uint64_t Limit = -1ULL;
- if (!AlwaysInline)
- Limit = TLI.getMaxStoresPerMemmove();
- unsigned DstAlign = Align; // Destination alignment can change.
- std::string Str;
- bool CopyFromStr;
- if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
- Str, CopyFromStr, DAG, TLI))
- return SDValue();
- uint64_t SrcOff = 0, DstOff = 0;
- SmallVector<SDValue, 8> LoadValues;
- SmallVector<SDValue, 8> LoadChains;
- SmallVector<SDValue, 8> OutChains;
- unsigned NumMemOps = MemOps.size();
- for (unsigned i = 0; i < NumMemOps; i++) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- SDValue Value, Store;
- Value = DAG.getLoad(VT, dl, Chain,
- getMemBasePlusOffset(Src, SrcOff, DAG),
- SrcSV, SrcSVOff + SrcOff, false, Align);
- LoadValues.push_back(Value);
- LoadChains.push_back(Value.getValue(1));
- SrcOff += VTSize;
- }
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- &LoadChains[0], LoadChains.size());
- OutChains.clear();
- for (unsigned i = 0; i < NumMemOps; i++) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- SDValue Value, Store;
- Store = DAG.getStore(Chain, dl, LoadValues[i],
- getMemBasePlusOffset(Dst, DstOff, DAG),
- DstSV, DstSVOff + DstOff, false, DstAlign);
- OutChains.push_back(Store);
- DstOff += VTSize;
- }
- return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- &OutChains[0], OutChains.size());
- }
- static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
- SDValue Chain, SDValue Dst,
- SDValue Src, uint64_t Size,
- unsigned Align,
- const Value *DstSV, uint64_t DstSVOff) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // Expand memset to a series of load/store ops if the size operand
- // falls below a certain threshold.
- std::vector<EVT> MemOps;
- std::string Str;
- bool CopyFromStr;
- if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
- Size, Align, Str, CopyFromStr, DAG, TLI))
- return SDValue();
- SmallVector<SDValue, 8> OutChains;
- uint64_t DstOff = 0;
- unsigned NumMemOps = MemOps.size();
- for (unsigned i = 0; i < NumMemOps; i++) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- SDValue Value = getMemsetValue(Src, VT, DAG, dl);
- SDValue Store = DAG.getStore(Chain, dl, Value,
- getMemBasePlusOffset(Dst, DstOff, DAG),
- DstSV, DstSVOff + DstOff);
- OutChains.push_back(Store);
- DstOff += VTSize;
- }
- return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- &OutChains[0], OutChains.size());
- }
- SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
- SDValue Src, SDValue Size,
- unsigned Align, bool AlwaysInline,
- const Value *DstSV, uint64_t DstSVOff,
- const Value *SrcSV, uint64_t SrcSVOff) {
- // Check to see if we should lower the memcpy to loads and stores first.
- // For cases within the target-specified limits, this is the best choice.
- ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
- if (ConstantSize) {
- // Memcpy with size zero? Just return the original chain.
- if (ConstantSize->isNullValue())
- return Chain;
- SDValue Result =
- getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
- ConstantSize->getZExtValue(),
- Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
- if (Result.getNode())
- return Result;
- }
- // Then check to see if we should lower the memcpy with target-specific
- // code. If the target chooses to do this, this is the next best.
- SDValue Result =
- TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
- AlwaysInline,
- DstSV, DstSVOff, SrcSV, SrcSVOff);
- if (Result.getNode())
- return Result;
- // If we really need inline code and the target declined to provide it,
- // use a (potentially long) sequence of loads and stores.
- if (AlwaysInline) {
- assert(ConstantSize && "AlwaysInline requires a constant size!");
- return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
- ConstantSize->getZExtValue(), Align, true,
- DstSV, DstSVOff, SrcSV, SrcSVOff);
- }
- // Emit a library call.
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
- Entry.Node = Dst; Args.push_back(Entry);
- Entry.Node = Src; Args.push_back(Entry);
- Entry.Node = Size; Args.push_back(Entry);
- // FIXME: pass in DebugLoc
- std::pair<SDValue,SDValue> CallResult =
- TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
- false, false, false, false, 0, CallingConv::C, false,
- /*isReturnValueUsed=*/false,
- getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
- TLI.getPointerTy()),
- Args, *this, dl);
- return CallResult.second;
- }
- SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
- SDValue Src, SDValue Size,
- unsigned Align,
- const Value *DstSV, uint64_t DstSVOff,
- const Value *SrcSV, uint64_t SrcSVOff) {
- // Check to see if we should lower the memmove to loads and stores first.
- // For cases within the target-specified limits, this is the best choice.
- ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
- if (ConstantSize) {
- // Memmove with size zero? Just return the original chain.
- if (ConstantSize->isNullValue())
- return Chain;
- SDValue Result =
- getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
- ConstantSize->getZExtValue(),
- Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
- if (Result.getNode())
- return Result;
- }
- // Then check to see if we should lower the memmove with target-specific
- // code. If the target chooses to do this, this is the next best.
- SDValue Result =
- TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
- DstSV, DstSVOff, SrcSV, SrcSVOff);
- if (Result.getNode())
- return Result;
- // Emit a library call.
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
- Entry.Node = Dst; Args.push_back(Entry);
- Entry.Node = Src; Args.push_back(Entry);
- Entry.Node = Size; Args.push_back(Entry);
- // FIXME: pass in DebugLoc
- std::pair<SDValue,SDValue> CallResult =
- TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
- false, false, false, false, 0, CallingConv::C, false,
- /*isReturnValueUsed=*/false,
- getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
- TLI.getPointerTy()),
- Args, *this, dl);
- return CallResult.second;
- }
- SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
- SDValue Src, SDValue Size,
- unsigned Align,
- const Value *DstSV, uint64_t DstSVOff) {
- // Check to see if we should lower the memset to stores first.
- // For cases within the target-specified limits, this is the best choice.
- ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
- if (ConstantSize) {
- // Memset with size zero? Just return the original chain.
- if (ConstantSize->isNullValue())
- return Chain;
- SDValue Result =
- getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
- Align, DstSV, DstSVOff);
- if (Result.getNode())
- return Result;
- }
- // Then check to see if we should lower the memset with target-specific
- // code. If the target chooses to do this, this is the next best.
- SDValue Result =
- TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
- DstSV, DstSVOff);
- if (Result.getNode())
- return Result;
- // Emit a library call.
- const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Node = Dst; Entry.Ty = IntPtrTy;
- Args.push_back(Entry);
- // Extend or truncate the argument to be an i32 value for the call.
- if (Src.getValueType().bitsGT(MVT::i32))
- Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
- else
- Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
- Entry.Node = Src;
- Entry.Ty = Type::getInt32Ty(*getContext());
- Entry.isSExt = true;
- Args.push_back(Entry);
- Entry.Node = Size;
- Entry.Ty = IntPtrTy;
- Entry.isSExt = false;
- Args.push_back(Entry);
- // FIXME: pass in DebugLoc
- std::pair<SDValue,SDValue> CallResult =
- TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
- false, false, false, false, 0, CallingConv::C, false,
- /*isReturnValueUsed=*/false,
- getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
- TLI.getPointerTy()),
- Args, *this, dl);
- return CallResult.second;
- }
- SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
- SDValue Chain,
- SDValue Ptr, SDValue Cmp,
- SDValue Swp, const Value* PtrVal,
- unsigned Alignment) {
- assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
- assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
- EVT VT = Cmp.getValueType();
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(MemVT);
- SDVTList VTs = getVTList(VT, MVT::Other);
- FoldingSetNodeID ID;
- ID.AddInteger(MemVT.getRawBits());
- SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
- AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
- void* IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
- new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
- Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
- SDValue Chain,
- SDValue Ptr, SDValue Val,
- const Value* PtrVal,
- unsigned Alignment) {
- assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
- Opcode == ISD::ATOMIC_LOAD_SUB ||
- Opcode == ISD::ATOMIC_LOAD_AND ||
- Opcode == ISD::ATOMIC_LOAD_OR ||
- Opcode == ISD::ATOMIC_LOAD_XOR ||
- Opcode == ISD::ATOMIC_LOAD_NAND ||
- Opcode == ISD::ATOMIC_LOAD_MIN ||
- Opcode == ISD::ATOMIC_LOAD_MAX ||
- Opcode == ISD::ATOMIC_LOAD_UMIN ||
- Opcode == ISD::ATOMIC_LOAD_UMAX ||
- Opcode == ISD::ATOMIC_SWAP) &&
- "Invalid Atomic Op");
- EVT VT = Val.getValueType();
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(MemVT);
- SDVTList VTs = getVTList(VT, MVT::Other);
- FoldingSetNodeID ID;
- ID.AddInteger(MemVT.getRawBits());
- SDValue Ops[] = {Chain, Ptr, Val};
- AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
- void* IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
- new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
- Chain, Ptr, Val, PtrVal, Alignment);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- /// getMergeValues - Create a MERGE_VALUES node from the given operands.
- /// Allowed to return something different (and simpler) if Simplify is true.
- SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
- DebugLoc dl) {
- if (NumOps == 1)
- return Ops[0];
- SmallVector<EVT, 4> VTs;
- VTs.reserve(NumOps);
- for (unsigned i = 0; i < NumOps; ++i)
- VTs.push_back(Ops[i].getValueType());
- return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
- Ops, NumOps);
- }
- SDValue
- SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
- const EVT *VTs, unsigned NumVTs,
- const SDValue *Ops, unsigned NumOps,
- EVT MemVT, const Value *srcValue, int SVOff,
- unsigned Align, bool Vol,
- bool ReadMem, bool WriteMem) {
- return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
- MemVT, srcValue, SVOff, Align, Vol,
- ReadMem, WriteMem);
- }
- SDValue
- SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
- const SDValue *Ops, unsigned NumOps,
- EVT MemVT, const Value *srcValue, int SVOff,
- unsigned Align, bool Vol,
- bool ReadMem, bool WriteMem) {
- // Memoize the node unless it returns a flag.
- MemIntrinsicSDNode *N;
- if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
- new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
- srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
- CSEMap.InsertNode(N, IP);
- } else {
- N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
- new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
- srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
- }
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue
- SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
- ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
- SDValue Ptr, SDValue Offset,
- const Value *SV, int SVOffset, EVT EVT,
- bool isVolatile, unsigned Alignment) {
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(VT);
- if (VT == EVT) {
- ExtType = ISD::NON_EXTLOAD;
- } else if (ExtType == ISD::NON_EXTLOAD) {
- assert(VT == EVT && "Non-extending load from different memory type!");
- } else {
- // Extending load.
- if (VT.isVector())
- assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
- "Invalid vector extload!");
- else
- assert(EVT.bitsLT(VT) &&
- "Should only be an extending load, not truncating!");
- assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
- "Cannot sign/zero extend a FP/Vector load!");
- assert(VT.isInteger() == EVT.isInteger() &&
- "Cannot convert from FP to Int or Int -> FP!");
- }
- bool Indexed = AM != ISD::UNINDEXED;
- assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
- "Unindexed load with an offset!");
- SDVTList VTs = Indexed ?
- getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
- SDValue Ops[] = { Chain, Ptr, Offset };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
- ID.AddInteger(EVT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
- new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
- Alignment, isVolatile);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
- SDValue Chain, SDValue Ptr,
- const Value *SV, int SVOffset,
- bool isVolatile, unsigned Alignment) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
- SV, SVOffset, VT, isVolatile, Alignment);
- }
- SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
- SDValue Chain, SDValue Ptr,
- const Value *SV,
- int SVOffset, EVT EVT,
- bool isVolatile, unsigned Alignment) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
- SV, SVOffset, EVT, isVolatile, Alignment);
- }
- SDValue
- SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
- SDValue Offset, ISD::MemIndexedMode AM) {
- LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
- assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
- "Load is already a indexed load!");
- return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
- LD->getChain(), Base, Offset, LD->getSrcValue(),
- LD->getSrcValueOffset(), LD->getMemoryVT(),
- LD->isVolatile(), LD->getAlignment());
- }
- SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
- SDValue Ptr, const Value *SV, int SVOffset,
- bool isVolatile, unsigned Alignment) {
- EVT VT = Val.getValueType();
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(VT);
- SDVTList VTs = getVTList(MVT::Other);
- SDValue Undef = getUNDEF(Ptr.getValueType());
- SDValue Ops[] = { Chain, Val, Ptr, Undef };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
- ID.AddInteger(VT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
- isVolatile, Alignment));
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
- new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
- VT, SV, SVOffset, Alignment, isVolatile);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
- SDValue Ptr, const Value *SV,
- int SVOffset, EVT SVT,
- bool isVolatile, unsigned Alignment) {
- EVT VT = Val.getValueType();
- if (VT == SVT)
- return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
- assert(VT.bitsGT(SVT) && "Not a truncation?");
- assert(VT.isInteger() == SVT.isInteger() &&
- "Can't do FP-INT conversion!");
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(VT);
- SDVTList VTs = getVTList(MVT::Other);
- SDValue Undef = getUNDEF(Ptr.getValueType());
- SDValue Ops[] = { Chain, Val, Ptr, Undef };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
- ID.AddInteger(SVT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
- isVolatile, Alignment));
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
- new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
- SVT, SV, SVOffset, Alignment, isVolatile);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue
- SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
- SDValue Offset, ISD::MemIndexedMode AM) {
- StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
- assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
- "Store is already a indexed store!");
- SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
- SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
- ID.AddInteger(ST->getMemoryVT().getRawBits());
- ID.AddInteger(ST->getRawSubclassData());
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
- new (N) StoreSDNode(Ops, dl, VTs, AM,
- ST->isTruncatingStore(), ST->getMemoryVT(),
- ST->getSrcValue(), ST->getSrcValueOffset(),
- ST->getAlignment(), ST->isVolatile());
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
- SDValue Chain, SDValue Ptr,
- SDValue SV) {
- SDValue Ops[] = { Chain, Ptr, SV };
- return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
- const SDUse *Ops, unsigned NumOps) {
- switch (NumOps) {
- case 0: return getNode(Opcode, DL, VT);
- case 1: return getNode(Opcode, DL, VT, Ops[0]);
- case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
- case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
- default: break;
- }
- // Copy from an SDUse array into an SDValue array for use with
- // the regular getNode logic.
- SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
- return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
- const SDValue *Ops, unsigned NumOps) {
- switch (NumOps) {
- case 0: return getNode(Opcode, DL, VT);
- case 1: return getNode(Opcode, DL, VT, Ops[0]);
- case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
- case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
- default: break;
- }
- switch (Opcode) {
- default: break;
- case ISD::SELECT_CC: {
- assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
- assert(Ops[0].getValueType() == Ops[1].getValueType() &&
- "LHS and RHS of condition must have same type!");
- assert(Ops[2].getValueType() == Ops[3].getValueType() &&
- "True and False arms of SelectCC must have same type!");
- assert(Ops[2].getValueType() == VT &&
- "select_cc node must be of same type as true and false value!");
- break;
- }
- case ISD::BR_CC: {
- assert(NumOps == 5 && "BR_CC takes 5 operands!");
- assert(Ops[2].getValueType() == Ops[3].getValueType() &&
- "LHS/RHS of comparison should match types!");
- break;
- }
- }
- // Memoize nodes.
- SDNode *N;
- SDVTList VTs = getVTList(VT);
- if (VT != MVT::Flag) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- N = NodeAllocator.Allocate<SDNode>();
- new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
- CSEMap.InsertNode(N, IP);
- } else {
- N = NodeAllocator.Allocate<SDNode>();
- new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
- }
- AllNodes.push_back(N);
- #ifndef NDEBUG
- VerifyNode(N);
- #endif
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
- const std::vector<EVT> &ResultTys,
- const SDValue *Ops, unsigned NumOps) {
- return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
- Ops, NumOps);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
- const EVT *VTs, unsigned NumVTs,
- const SDValue *Ops, unsigned NumOps) {
- if (NumVTs == 1)
- return getNode(Opcode, DL, VTs[0], Ops, NumOps);
- return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
- const SDValue *Ops, unsigned NumOps) {
- if (VTList.NumVTs == 1)
- return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
- #if 0
- switch (Opcode) {
- // FIXME: figure out how to safely handle things like
- // int foo(int x) { return 1 << (x & 255); }
- // int bar() { return foo(256); }
- case ISD::SRA_PARTS:
- case ISD::SRL_PARTS:
- case ISD::SHL_PARTS:
- if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
- cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
- return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
- else if (N3.getOpcode() == ISD::AND)
- if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
- // If the and is only masking out bits that cannot effect the shift,
- // eliminate the and.
- unsigned NumBits = VT.getSizeInBits()*2;
- if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
- return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
- }
- break;
- }
- #endif
- // Memoize the node unless it returns a flag.
- SDNode *N;
- if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- if (NumOps == 1) {
- N = NodeAllocator.Allocate<UnarySDNode>();
- new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
- } else if (NumOps == 2) {
- N = NodeAllocator.Allocate<BinarySDNode>();
- new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
- } else if (NumOps == 3) {
- N = NodeAllocator.Allocate<TernarySDNode>();
- new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
- } else {
- N = NodeAllocator.Allocate<SDNode>();
- new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
- }
- CSEMap.InsertNode(N, IP);
- } else {
- if (NumOps == 1) {
- N = NodeAllocator.Allocate<UnarySDNode>();
- new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
- } else if (NumOps == 2) {
- N = NodeAllocator.Allocate<BinarySDNode>();
- new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
- } else if (NumOps == 3) {
- N = NodeAllocator.Allocate<TernarySDNode>();
- new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
- } else {
- N = NodeAllocator.Allocate<SDNode>();
- new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
- }
- }
- AllNodes.push_back(N);
- #ifndef NDEBUG
- VerifyNode(N);
- #endif
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
- return getNode(Opcode, DL, VTList, 0, 0);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
- SDValue N1) {
- SDValue Ops[] = { N1 };
- return getNode(Opcode, DL, VTList, Ops, 1);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
- SDValue N1, SDValue N2) {
- SDValue Ops[] = { N1, N2 };
- return getNode(Opcode, DL, VTList, Ops, 2);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
- SDValue N1, SDValue N2, SDValue N3) {
- SDValue Ops[] = { N1, N2, N3 };
- return getNode(Opcode, DL, VTList, Ops, 3);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
- SDValue N1, SDValue N2, SDValue N3,
- SDValue N4) {
- SDValue Ops[] = { N1, N2, N3, N4 };
- return getNode(Opcode, DL, VTList, Ops, 4);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
- SDValue N1, SDValue N2, SDValue N3,
- SDValue N4, SDValue N5) {
- SDValue Ops[] = { N1, N2, N3, N4, N5 };
- return getNode(Opcode, DL, VTList, Ops, 5);
- }
- SDVTList SelectionDAG::getVTList(EVT VT) {
- return makeVTList(SDNode::getValueTypeList(VT), 1);
- }
- SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
- for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
- E = VTList.rend(); I != E; ++I)
- if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
- return *I;
- EVT *Array = Allocator.Allocate<EVT>(2);
- Array[0] = VT1;
- Array[1] = VT2;
- SDVTList Result = makeVTList(Array, 2);
- VTList.push_back(Result);
- return Result;
- }
- SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
- for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
- E = VTList.rend(); I != E; ++I)
- if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
- I->VTs[2] == VT3)
- return *I;
- EVT *Array = Allocator.Allocate<EVT>(3);
- Array[0] = VT1;
- Array[1] = VT2;
- Array[2] = VT3;
- SDVTList Result = makeVTList(Array, 3);
- VTList.push_back(Result);
- return Result;
- }
- SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
- for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
- E = VTList.rend(); I != E; ++I)
- if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
- I->VTs[2] == VT3 && I->VTs[3] == VT4)
- return *I;
- EVT *Array = Allocator.Allocate<EVT>(3);
- Array[0] = VT1;
- Array[1] = VT2;
- Array[2] = VT3;
- Array[3] = VT4;
- SDVTList Result = makeVTList(Array, 4);
- VTList.push_back(Result);
- return Result;
- }
- SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
- switch (NumVTs) {
- case 0: llvm_unreachable("Cannot have nodes without results!");
- case 1: return getVTList(VTs[0]);
- case 2: return getVTList(VTs[0], VTs[1]);
- case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
- default: break;
- }
- for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
- E = VTList.rend(); I != E; ++I) {
- if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
- continue;
- bool NoMatch = false;
- for (unsigned i = 2; i != NumVTs; ++i)
- if (VTs[i] != I->VTs[i]) {
- NoMatch = true;
- break;
- }
- if (!NoMatch)
- return *I;
- }
- EVT *Array = Allocator.Allocate<EVT>(NumVTs);
- std::copy(VTs, VTs+NumVTs, Array);
- SDVTList Result = makeVTList(Array, NumVTs);
- VTList.push_back(Result);
- return Result;
- }
- /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
- /// specified operands. If the resultant node already exists in the DAG,
- /// this does not modify the specified node, instead it returns the node that
- /// already exists. If the resultant node does not exist in the DAG, the
- /// input node is returned. As a degenerate case, if you specify the same
- /// input operands as the node already has, the input node is returned.
- SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
- SDNode *N = InN.getNode();
- assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
- // Check to see if there is no change.
- if (Op == N->getOperand(0)) return InN;
- // See if the modified node already exists.
- void *InsertPos = 0;
- if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
- return SDValue(Existing, InN.getResNo());
- // Nope it doesn't. Remove the node from its current place in the maps.
- if (InsertPos)
- if (!RemoveNodeFromCSEMaps(N))
- InsertPos = 0;
- // Now we update the operands.
- N->OperandList[0].set(Op);
- // If this gets put into a CSE map, add it.
- if (InsertPos) CSEMap.InsertNode(N, InsertPos);
- return InN;
- }
- SDValue SelectionDAG::
- UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
- SDNode *N = InN.getNode();
- assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
- // Check to see if there is no change.
- if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
- return InN; // No operands changed, just return the input node.
- // See if the modified node already exists.
- void *InsertPos = 0;
- if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
- return SDValue(Existing, InN.getResNo());
- // Nope it doesn't. Remove the node from its current place in the maps.
- if (InsertPos)
- if (!RemoveNodeFromCSEMaps(N))
- InsertPos = 0;
- // Now we update the operands.
- if (N->OperandList[0] != Op1)
- N->OperandList[0].set(Op1);
- if (N->OperandList[1] != Op2)
- N->OperandList[1].set(Op2);
- // If this gets put into a CSE map, add it.
- if (InsertPos) CSEMap.InsertNode(N, InsertPos);
- return InN;
- }
- SDValue SelectionDAG::
- UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
- SDValue Ops[] = { Op1, Op2, Op3 };
- return UpdateNodeOperands(N, Ops, 3);
- }
- SDValue SelectionDAG::
- UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
- SDValue Op3, SDValue Op4) {
- SDValue Ops[] = { Op1, Op2, Op3, Op4 };
- return UpdateNodeOperands(N, Ops, 4);
- }
- SDValue SelectionDAG::
- UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
- SDValue Op3, SDValue Op4, SDValue Op5) {
- SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
- return UpdateNodeOperands(N, Ops, 5);
- }
- SDValue SelectionDAG::
- UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
- SDNode *N = InN.getNode();
- assert(N->getNumOperands() == NumOps &&
- "Update with wrong number of operands");
- // Check to see if there is no change.
- bool AnyChange = false;
- for (unsigned i = 0; i != NumOps; ++i) {
- if (Ops[i] != N->getOperand(i)) {
- AnyChange = true;
- break;
- }
- }
- // No operands changed, just return the input node.
- if (!AnyChange) return InN;
- // See if the modified node already exists.
- void *InsertPos = 0;
- if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
- return SDValue(Existing, InN.getResNo());
- // Nope it doesn't. Remove the node from its current place in the maps.
- if (InsertPos)
- if (!RemoveNodeFromCSEMaps(N))
- InsertPos = 0;
- // Now we update the operands.
- for (unsigned i = 0; i != NumOps; ++i)
- if (N->OperandList[i] != Ops[i])
- N->OperandList[i].set(Ops[i]);
- // If this gets put into a CSE map, add it.
- if (InsertPos) CSEMap.InsertNode(N, InsertPos);
- return InN;
- }
- /// DropOperands - Release the operands and set this node to have
- /// zero operands.
- void SDNode::DropOperands() {
- // Unlike the code in MorphNodeTo that does this, we don't need to
- // watch for dead nodes here.
- for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
- SDUse &Use = *I++;
- Use.set(SDValue());
- }
- }
- /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
- /// machine opcode.
- ///
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT) {
- SDVTList VTs = getVTList(VT);
- return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, SDValue Op1) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, SDValue Op1,
- SDValue Op2) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, SDValue Op1,
- SDValue Op2, SDValue Op3) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, const SDValue *Ops,
- unsigned NumOps) {
- SDVTList VTs = getVTList(VT);
- return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2, const SDValue *Ops,
- unsigned NumOps) {
- SDVTList VTs = getVTList(VT1, VT2);
- return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2) {
- SDVTList VTs = getVTList(VT1, VT2);
- return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2, EVT VT3,
- const SDValue *Ops, unsigned NumOps) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2, EVT VT3, EVT VT4,
- const SDValue *Ops, unsigned NumOps) {
- SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
- return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2,
- SDValue Op1) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2,
- SDValue Op1, SDValue Op2) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2,
- SDValue Op1, SDValue Op2,
- SDValue Op3) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2, EVT VT3,
- SDValue Op1, SDValue Op2,
- SDValue Op3) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- SDVTList VTs, const SDValue *Ops,
- unsigned NumOps) {
- return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
- }
- SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- EVT VT) {
- SDVTList VTs = getVTList(VT);
- return MorphNodeTo(N, Opc, VTs, 0, 0);
- }
- SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- EVT VT, SDValue Op1) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1 };
- return MorphNodeTo(N, Opc, VTs, Ops, 1);
- }
- SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- EVT VT, SDValue Op1,
- SDValue Op2) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2 };
- return MorphNodeTo(N, Opc, VTs, Ops, 2);
- }
- SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- EVT VT, SDValue Op1,
- SDValue Op2, SDValue Op3) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return MorphNodeTo(N, Opc, VTs, Ops, 3);
- }
- SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- EVT VT, const SDValue *Ops,
- unsigned NumOps) {
- SDVTList VTs = getVTList(VT);
- return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
- }
- SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- EVT VT1, EVT VT2, const SDValue *Ops,
- unsigned NumOps) {
- SDVTList VTs = getVTList(VT1, VT2);
- return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
- }
- SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- EVT VT1, EVT VT2) {
- SDVTList VTs = getVTList(VT1, VT2);
- return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
- }
- SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- EVT VT1, EVT VT2, EVT VT3,
- const SDValue *Ops, unsigned NumOps) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
- }
- SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- EVT VT1, EVT VT2,
- SDValue Op1) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1 };
- return MorphNodeTo(N, Opc, VTs, Ops, 1);
- }
- SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- EVT VT1, EVT VT2,
- SDValue Op1, SDValue Op2) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2 };
- return MorphNodeTo(N, Opc, VTs, Ops, 2);
- }
- SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- EVT VT1, EVT VT2,
- SDValue Op1, SDValue Op2,
- SDValue Op3) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return MorphNodeTo(N, Opc, VTs, Ops, 3);
- }
- /// MorphNodeTo - These *mutate* the specified node to have the specified
- /// return type, opcode, and operands.
- ///
- /// Note that MorphNodeTo returns the resultant node. If there is already a
- /// node of the specified opcode and operands, it returns that node instead of
- /// the current one. Note that the DebugLoc need not be the same.
- ///
- /// Using MorphNodeTo is faster than creating a new node and swapping it in
- /// with ReplaceAllUsesWith both because it often avoids allocating a new
- /// node, and because it doesn't require CSE recalculation for any of
- /// the node's users.
- ///
- SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- SDVTList VTs, const SDValue *Ops,
- unsigned NumOps) {
- // If an identical node already exists, use it.
- void *IP = 0;
- if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
- if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
- return ON;
- }
- if (!RemoveNodeFromCSEMaps(N))
- IP = 0;
- // Start the morphing.
- N->NodeType = Opc;
- N->ValueList = VTs.VTs;
- N->NumValues = VTs.NumVTs;
- // Clear the operands list, updating used nodes to remove this from their
- // use list. Keep track of any operands that become dead as a result.
- SmallPtrSet<SDNode*, 16> DeadNodeSet;
- for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
- SDUse &Use = *I++;
- SDNode *Used = Use.getNode();
- Use.set(SDValue());
- if (Used->use_empty())
- DeadNodeSet.insert(Used);
- }
- // If NumOps is larger than the # of operands we currently have, reallocate
- // the operand list.
- if (NumOps > N->NumOperands) {
- if (N->OperandsNeedDelete)
- delete[] N->OperandList;
- if (N->isMachineOpcode()) {
- // We're creating a final node that will live unmorphed for the
- // remainder of the current SelectionDAG iteration, so we can allocate
- // the operands directly out of a pool with no recycling metadata.
- N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
- N->OperandsNeedDelete = false;
- } else {
- N->OperandList = new SDUse[NumOps];
- N->OperandsNeedDelete = true;
- }
- }
- // Assign the new operands.
- N->NumOperands = NumOps;
- for (unsigned i = 0, e = NumOps; i != e; ++i) {
- N->OperandList[i].setUser(N);
- N->OperandList[i].setInitial(Ops[i]);
- }
- // Delete any nodes that are still dead after adding the uses for the
- // new operands.
- SmallVector<SDNode *, 16> DeadNodes;
- for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
- E = DeadNodeSet.end(); I != E; ++I)
- if ((*I)->use_empty())
- DeadNodes.push_back(*I);
- RemoveDeadNodes(DeadNodes);
- if (IP)
- CSEMap.InsertNode(N, IP); // Memoize the new node.
- return N;
- }
- /// getTargetNode - These are used for target selectors to create a new node
- /// with specified return type(s), target opcode, and operands.
- ///
- /// Note that getTargetNode returns the resultant node. If there is already a
- /// node of the specified opcode and operands, it returns that node instead of
- /// the current one.
- SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT) {
- return getNode(~Opcode, dl, VT).getNode();
- }
- SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT,
- SDValue Op1) {
- return getNode(~Opcode, dl, VT, Op1).getNode();
- }
- SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT,
- SDValue Op1, SDValue Op2) {
- return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
- }
- SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT,
- SDValue Op1, SDValue Op2,
- SDValue Op3) {
- return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
- }
- SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT,
- const SDValue *Ops, unsigned NumOps) {
- return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
- }
- SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
- EVT VT1, EVT VT2) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Op;
- return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
- }
- SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT1,
- EVT VT2, SDValue Op1) {
- SDVTList VTs = getVTList(VT1, VT2);
- return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
- }
- SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT1,
- EVT VT2, SDValue Op1,
- SDValue Op2) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2 };
- return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
- }
- SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT1,
- EVT VT2, SDValue Op1,
- SDValue Op2, SDValue Op3) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
- }
- SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
- EVT VT1, EVT VT2,
- const SDValue *Ops, unsigned NumOps) {
- SDVTList VTs = getVTList(VT1, VT2);
- return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
- }
- SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
- EVT VT1, EVT VT2, EVT VT3,
- SDValue Op1, SDValue Op2) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- SDValue Ops[] = { Op1, Op2 };
- return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
- }
- SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
- EVT VT1, EVT VT2, EVT VT3,
- SDValue Op1, SDValue Op2,
- SDValue Op3) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
- }
- SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
- EVT VT1, EVT VT2, EVT VT3,
- const SDValue *Ops, unsigned NumOps) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
- }
- SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT1,
- EVT VT2, EVT VT3, EVT VT4,
- const SDValue *Ops, unsigned NumOps) {
- SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
- return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
- }
- SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
- const std::vector<EVT> &ResultTys,
- const SDValue *Ops, unsigned NumOps) {
- return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
- }
- /// getNodeIfExists - Get the specified node if it's already available, or
- /// else return NULL.
- SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
- const SDValue *Ops, unsigned NumOps) {
- if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return E;
- }
- return NULL;
- }
- /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
- /// This can cause recursive merging of nodes in the DAG.
- ///
- /// This version assumes From has a single result value.
- ///
- void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
- DAGUpdateListener *UpdateListener) {
- SDNode *From = FromN.getNode();
- assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
- "Cannot replace with this method!");
- assert(From != To.getNode() && "Cannot replace uses of with self");
- // Iterate over all the existing uses of From. New uses will be added
- // to the beginning of the use list, which we avoid visiting.
- // This specifically avoids visiting uses of From that arise while the
- // replacement is happening, because any such uses would be the result
- // of CSE: If an existing node looks like From after one of its operands
- // is replaced by To, we don't want to replace of all its users with To
- // too. See PR3018 for more info.
- SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
- while (UI != UE) {
- SDNode *User = *UI;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // A user can appear in a use list multiple times, and when this
- // happens the uses are usually next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- SDUse &Use = UI.getUse();
- ++UI;
- Use.set(To);
- } while (UI != UE && *UI == User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User, UpdateListener);
- }
- }
- /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
- /// This can cause recursive merging of nodes in the DAG.
- ///
- /// This version assumes that for each value of From, there is a
- /// corresponding value in To in the same position with the same type.
- ///
- void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
- DAGUpdateListener *UpdateListener) {
- #ifndef NDEBUG
- for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
- assert((!From->hasAnyUseOfValue(i) ||
- From->getValueType(i) == To->getValueType(i)) &&
- "Cannot use this version of ReplaceAllUsesWith!");
- #endif
- // Handle the trivial case.
- if (From == To)
- return;
- // Iterate over just the existing users of From. See the comments in
- // the ReplaceAllUsesWith above.
- SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
- while (UI != UE) {
- SDNode *User = *UI;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // A user can appear in a use list multiple times, and when this
- // happens the uses are usually next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- SDUse &Use = UI.getUse();
- ++UI;
- Use.setNode(To);
- } while (UI != UE && *UI == User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User, UpdateListener);
- }
- }
- /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
- /// This can cause recursive merging of nodes in the DAG.
- ///
- /// This version can replace From with any result values. To must match the
- /// number and types of values returned by From.
- void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
- const SDValue *To,
- DAGUpdateListener *UpdateListener) {
- if (From->getNumValues() == 1) // Handle the simple case efficiently.
- return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
- // Iterate over just the existing users of From. See the comments in
- // the ReplaceAllUsesWith above.
- SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
- while (UI != UE) {
- SDNode *User = *UI;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // A user can appear in a use list multiple times, and when this
- // happens the uses are usually next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- SDUse &Use = UI.getUse();
- const SDValue &ToOp = To[Use.getResNo()];
- ++UI;
- Use.set(ToOp);
- } while (UI != UE && *UI == User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User, UpdateListener);
- }
- }
- /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
- /// uses of other values produced by From.getNode() alone. The Deleted
- /// vector is handled the same way as for ReplaceAllUsesWith.
- void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
- DAGUpdateListener *UpdateListener){
- // Handle the really simple, really trivial case efficiently.
- if (From == To) return;
- // Handle the simple, trivial, case efficiently.
- if (From.getNode()->getNumValues() == 1) {
- ReplaceAllUsesWith(From, To, UpdateListener);
- return;
- }
- // Iterate over just the existing users of From. See the comments in
- // the ReplaceAllUsesWith above.
- SDNode::use_iterator UI = From.getNode()->use_begin(),
- UE = From.getNode()->use_end();
- while (UI != UE) {
- SDNode *User = *UI;
- bool UserRemovedFromCSEMaps = false;
- // A user can appear in a use list multiple times, and when this
- // happens the uses are usually next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- SDUse &Use = UI.getUse();
- // Skip uses of different values from the same node.
- if (Use.getResNo() != From.getResNo()) {
- ++UI;
- continue;
- }
- // If this node hasn't been modified yet, it's still in the CSE maps,
- // so remove its old self from the CSE maps.
- if (!UserRemovedFromCSEMaps) {
- RemoveNodeFromCSEMaps(User);
- UserRemovedFromCSEMaps = true;
- }
- ++UI;
- Use.set(To);
- } while (UI != UE && *UI == User);
- // We are iterating over all uses of the From node, so if a use
- // doesn't use the specific value, no changes are made.
- if (!UserRemovedFromCSEMaps)
- continue;
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User, UpdateListener);
- }
- }
- namespace {
- /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
- /// to record information about a use.
- struct UseMemo {
- SDNode *User;
- unsigned Index;
- SDUse *Use;
- };
- /// operator< - Sort Memos by User.
- bool operator<(const UseMemo &L, const UseMemo &R) {
- return (intptr_t)L.User < (intptr_t)R.User;
- }
- }
- /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
- /// uses of other values produced by From.getNode() alone. The same value
- /// may appear in both the From and To list. The Deleted vector is
- /// handled the same way as for ReplaceAllUsesWith.
- void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
- const SDValue *To,
- unsigned Num,
- DAGUpdateListener *UpdateListener){
- // Handle the simple, trivial case efficiently.
- if (Num == 1)
- return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
- // Read up all the uses and make records of them. This helps
- // processing new uses that are introduced during the
- // replacement process.
- SmallVector<UseMemo, 4> Uses;
- for (unsigned i = 0; i != Num; ++i) {
- unsigned FromResNo = From[i].getResNo();
- SDNode *FromNode = From[i].getNode();
- for (SDNode::use_iterator UI = FromNode->use_begin(),
- E = FromNode->use_end(); UI != E; ++UI) {
- SDUse &Use = UI.getUse();
- if (Use.getResNo() == FromResNo) {
- UseMemo Memo = { *UI, i, &Use };
- Uses.push_back(Memo);
- }
- }
- }
- // Sort the uses, so that all the uses from a given User are together.
- std::sort(Uses.begin(), Uses.end());
- for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
- UseIndex != UseIndexEnd; ) {
- // We know that this user uses some value of From. If it is the right
- // value, update it.
- SDNode *User = Uses[UseIndex].User;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // The Uses array is sorted, so all the uses for a given User
- // are next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- unsigned i = Uses[UseIndex].Index;
- SDUse &Use = *Uses[UseIndex].Use;
- ++UseIndex;
- Use.set(To[i]);
- } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User, UpdateListener);
- }
- }
- /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
- /// based on their topological order. It returns the maximum id and a vector
- /// of the SDNodes* in assigned order by reference.
- unsigned SelectionDAG::AssignTopologicalOrder() {
- unsigned DAGSize = 0;
- // SortedPos tracks the progress of the algorithm. Nodes before it are
- // sorted, nodes after it are unsorted. When the algorithm completes
- // it is at the end of the list.
- allnodes_iterator SortedPos = allnodes_begin();
- // Visit all the nodes. Move nodes with no operands to the front of
- // the list immediately. Annotate nodes that do have operands with their
- // operand count. Before we do this, the Node Id fields of the nodes
- // may contain arbitrary values. After, the Node Id fields for nodes
- // before SortedPos will contain the topological sort index, and the
- // Node Id fields for nodes At SortedPos and after will contain the
- // count of outstanding operands.
- for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
- SDNode *N = I++;
- unsigned Degree = N->getNumOperands();
- if (Degree == 0) {
- // A node with no uses, add it to the result array immediately.
- N->setNodeId(DAGSize++);
- allnodes_iterator Q = N;
- if (Q != SortedPos)
- SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
- ++SortedPos;
- } else {
- // Temporarily use the Node Id as scratch space for the degree count.
- N->setNodeId(Degree);
- }
- }
- // Visit all the nodes. As we iterate, moves nodes into sorted order,
- // such that by the time the end is reached all nodes will be sorted.
- for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
- SDNode *N = I;
- for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
- UI != UE; ++UI) {
- SDNode *P = *UI;
- unsigned Degree = P->getNodeId();
- --Degree;
- if (Degree == 0) {
- // All of P's operands are sorted, so P may sorted now.
- P->setNodeId(DAGSize++);
- if (P != SortedPos)
- SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
- ++SortedPos;
- } else {
- // Update P's outstanding operand count.
- P->setNodeId(Degree);
- }
- }
- }
- assert(SortedPos == AllNodes.end() &&
- "Topological sort incomplete!");
- assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
- "First node in topological sort is not the entry token!");
- assert(AllNodes.front().getNodeId() == 0 &&
- "First node in topological sort has non-zero id!");
- assert(AllNodes.front().getNumOperands() == 0 &&
- "First node in topological sort has operands!");
- assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
- "Last node in topologic sort has unexpected id!");
- assert(AllNodes.back().use_empty() &&
- "Last node in topologic sort has users!");
- assert(DAGSize == allnodes_size() && "Node count mismatch!");
- return DAGSize;
- }
- //===----------------------------------------------------------------------===//
- // SDNode Class
- //===----------------------------------------------------------------------===//
- HandleSDNode::~HandleSDNode() {
- DropOperands();
- }
- GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
- EVT VT, int64_t o, unsigned char TF)
- : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
- Offset(o), TargetFlags(TF) {
- TheGlobal = const_cast<GlobalValue*>(GA);
- }
- MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
- const Value *srcValue, int SVO,
- unsigned alignment, bool vol)
- : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
- SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
- assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
- assert(getAlignment() == alignment && "Alignment representation error!");
- assert(isVolatile() == vol && "Volatile representation error!");
- }
- MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
- const SDValue *Ops,
- unsigned NumOps, EVT memvt, const Value *srcValue,
- int SVO, unsigned alignment, bool vol)
- : SDNode(Opc, dl, VTs, Ops, NumOps),
- MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
- SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
- assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
- assert(getAlignment() == alignment && "Alignment representation error!");
- assert(isVolatile() == vol && "Volatile representation error!");
- }
- /// getMemOperand - Return a MachineMemOperand object describing the memory
- /// reference performed by this memory reference.
- MachineMemOperand MemSDNode::getMemOperand() const {
- int Flags = 0;
- if (isa<LoadSDNode>(this))
- Flags = MachineMemOperand::MOLoad;
- else if (isa<StoreSDNode>(this))
- Flags = MachineMemOperand::MOStore;
- else if (isa<AtomicSDNode>(this)) {
- Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
- }
- else {
- const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
- assert(MemIntrinNode && "Unknown MemSDNode opcode!");
- if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
- if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
- }
- int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
- if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
- // Check if the memory reference references a frame index
- const FrameIndexSDNode *FI =
- dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
- if (!getSrcValue() && FI)
- return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
- Flags, 0, Size, getAlignment());
- else
- return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
- Size, getAlignment());
- }
- /// Profile - Gather unique data for the node.
- ///
- void SDNode::Profile(FoldingSetNodeID &ID) const {
- AddNodeIDNode(ID, this);
- }
- static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
- static EVT VTs[MVT::LAST_VALUETYPE];
- static ManagedStatic<sys::SmartMutex<true> > VTMutex;
- /// getValueTypeList - Return a pointer to the specified value type.
- ///
- const EVT *SDNode::getValueTypeList(EVT VT) {
- sys::SmartScopedLock<true> Lock(*VTMutex);
- if (VT.isExtended()) {
- return &(*EVTs->insert(VT).first);
- } else {
- VTs[VT.getSimpleVT().SimpleTy] = VT;
- return &VTs[VT.getSimpleVT().SimpleTy];
- }
- }
- /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
- /// indicated value. This method ignores uses of other values defined by this
- /// operation.
- bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
- assert(Value < getNumValues() && "Bad value!");
- // TODO: Only iterate over uses of a given value of the node
- for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
- if (UI.getUse().getResNo() == Value) {
- if (NUses == 0)
- return false;
- --NUses;
- }
- }
- // Found exactly the right number of uses?
- return NUses == 0;
- }
- /// hasAnyUseOfValue - Return true if there are any use of the indicated
- /// value. This method ignores uses of other values defined by this operation.
- bool SDNode::hasAnyUseOfValue(unsigned Value) const {
- assert(Value < getNumValues() && "Bad value!");
- for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
- if (UI.getUse().getResNo() == Value)
- return true;
- return false;
- }
- /// isOnlyUserOf - Return true if this node is the only use of N.
- ///
- bool SDNode::isOnlyUserOf(SDNode *N) const {
- bool Seen = false;
- for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
- SDNode *User = *I;
- if (User == this)
- Seen = true;
- else
- return false;
- }
- return Seen;
- }
- /// isOperand - Return true if this node is an operand of N.
- ///
- bool SDValue::isOperandOf(SDNode *N) const {
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
- if (*this == N->getOperand(i))
- return true;
- return false;
- }
- bool SDNode::isOperandOf(SDNode *N) const {
- for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
- if (this == N->OperandList[i].getNode())
- return true;
- return false;
- }
- /// reachesChainWithoutSideEffects - Return true if this operand (which must
- /// be a chain) reaches the specified operand without crossing any
- /// side-effecting instructions. In practice, this looks through token
- /// factors and non-volatile loads. In order to remain efficient, this only
- /// looks a couple of nodes in, it does not do an exhaustive search.
- bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
- unsigned Depth) const {
- if (*this == Dest) return true;
- // Don't search too deeply, we just want to be able to see through
- // TokenFactor's etc.
- if (Depth == 0) return false;
- // If this is a token factor, all inputs to the TF happen in parallel. If any
- // of the operands of the TF reach dest, then we can do the xform.
- if (getOpcode() == ISD::TokenFactor) {
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
- if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
- return true;
- return false;
- }
- // Loads don't have side effects, look through them.
- if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
- if (!Ld->isVolatile())
- return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
- }
- return false;
- }
- static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
- SmallPtrSet<SDNode *, 32> &Visited) {
- if (found || !Visited.insert(N))
- return;
- for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
- SDNode *Op = N->getOperand(i).getNode();
- if (Op == P) {
- found = true;
- return;
- }
- findPredecessor(Op, P, found, Visited);
- }
- }
- /// isPredecessorOf - Return true if this node is a predecessor of N. This node
- /// is either an operand of N or it can be reached by recursively traversing
- /// up the operands.
- /// NOTE: this is an expensive method. Use it carefully.
- bool SDNode::isPredecessorOf(SDNode *N) const {
- SmallPtrSet<SDNode *, 32> Visited;
- bool found = false;
- findPredecessor(N, this, found, Visited);
- return found;
- }
- uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
- assert(Num < NumOperands && "Invalid child # of SDNode!");
- return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
- }
- std::string SDNode::getOperationName(const SelectionDAG *G) const {
- switch (getOpcode()) {
- default:
- if (getOpcode() < ISD::BUILTIN_OP_END)
- return "<<Unknown DAG Node>>";
- if (isMachineOpcode()) {
- if (G)
- if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
- if (getMachineOpcode() < TII->getNumOpcodes())
- return TII->get(getMachineOpcode()).getName();
- return "<<Unknown Machine Node>>";
- }
- if (G) {
- const TargetLowering &TLI = G->getTargetLoweringInfo();
- const char *Name = TLI.getTargetNodeName(getOpcode());
- if (Name) return Name;
- return "<<Unknown Target Node>>";
- }
- return "<<Unknown Node>>";
- #ifndef NDEBUG
- case ISD::DELETED_NODE:
- return "<<Deleted Node!>>";
- #endif
- case ISD::PREFETCH: return "Prefetch";
- case ISD::MEMBARRIER: return "MemBarrier";
- case ISD::ATOMIC_CMP_SWAP: return "AtomicCmpSwap";
- case ISD::ATOMIC_SWAP: return "AtomicSwap";
- case ISD::ATOMIC_LOAD_ADD: return "AtomicLoadAdd";
- case ISD::ATOMIC_LOAD_SUB: return "AtomicLoadSub";
- case ISD::ATOMIC_LOAD_AND: return "AtomicLoadAnd";
- case ISD::ATOMIC_LOAD_OR: return "AtomicLoadOr";
- case ISD::ATOMIC_LOAD_XOR: return "AtomicLoadXor";
- case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
- case ISD::ATOMIC_LOAD_MIN: return "AtomicLoadMin";
- case ISD::ATOMIC_LOAD_MAX: return "AtomicLoadMax";
- case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
- case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
- case ISD::PCMARKER: return "PCMarker";
- case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
- case ISD::SRCVALUE: return "SrcValue";
- case ISD::MEMOPERAND: return "MemOperand";
- case ISD::EntryToken: return "EntryToken";
- case ISD::TokenFactor: return "TokenFactor";
- case ISD::AssertSext: return "AssertSext";
- case ISD::AssertZext: return "AssertZext";
- case ISD::BasicBlock: return "BasicBlock";
- case ISD::VALUETYPE: return "ValueType";
- case ISD::Register: return "Register";
- case ISD::Constant: return "Constant";
- case ISD::ConstantFP: return "ConstantFP";
- case ISD::GlobalAddress: return "GlobalAddress";
- case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
- case ISD::FrameIndex: return "FrameIndex";
- case ISD::JumpTable: return "JumpTable";
- case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
- case ISD::RETURNADDR: return "RETURNADDR";
- case ISD::FRAMEADDR: return "FRAMEADDR";
- case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
- case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
- case ISD::LSDAADDR: return "LSDAADDR";
- case ISD::EHSELECTION: return "EHSELECTION";
- case ISD::EH_RETURN: return "EH_RETURN";
- case ISD::ConstantPool: return "ConstantPool";
- case ISD::ExternalSymbol: return "ExternalSymbol";
- case ISD::INTRINSIC_WO_CHAIN: {
- unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
- return Intrinsic::getName((Intrinsic::ID)IID);
- }
- case ISD::INTRINSIC_VOID:
- case ISD::INTRINSIC_W_CHAIN: {
- unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
- return Intrinsic::getName((Intrinsic::ID)IID);
- }
- case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
- case ISD::TargetConstant: return "TargetConstant";
- case ISD::TargetConstantFP:return "TargetConstantFP";
- case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
- case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
- case ISD::TargetFrameIndex: return "TargetFrameIndex";
- case ISD::TargetJumpTable: return "TargetJumpTable";
- case ISD::TargetConstantPool: return "TargetConstantPool";
- case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
- case ISD::CopyToReg: return "CopyToReg";
- case ISD::CopyFromReg: return "CopyFromReg";
- case ISD::UNDEF: return "undef";
- case ISD::MERGE_VALUES: return "merge_values";
- case ISD::INLINEASM: return "inlineasm";
- case ISD::DBG_LABEL: return "dbg_label";
- case ISD::EH_LABEL: return "eh_label";
- case ISD::DECLARE: return "declare";
- case ISD::HANDLENODE: return "handlenode";
- // Unary operators
- case ISD::FABS: return "fabs";
- case ISD::FNEG: return "fneg";
- case ISD::FSQRT: return "fsqrt";
- case ISD::FSIN: return "fsin";
- case ISD::FCOS: return "fcos";
- case ISD::FPOWI: return "fpowi";
- case ISD::FPOW: return "fpow";
- case ISD::FTRUNC: return "ftrunc";
- case ISD::FFLOOR: return "ffloor";
- case ISD::FCEIL: return "fceil";
- case ISD::FRINT: return "frint";
- case ISD::FNEARBYINT: return "fnearbyint";
- // Binary operators
- case ISD::ADD: return "add";
- case ISD::SUB: return "sub";
- case ISD::MUL: return "mul";
- case ISD::MULHU: return "mulhu";
- case ISD::MULHS: return "mulhs";
- case ISD::SDIV: return "sdiv";
- case ISD::UDIV: return "udiv";
- case ISD::SREM: return "srem";
- case ISD::UREM: return "urem";
- case ISD::SMUL_LOHI: return "smul_lohi";
- case ISD::UMUL_LOHI: return "umul_lohi";
- case ISD::SDIVREM: return "sdivrem";
- case ISD::UDIVREM: return "udivrem";
- case ISD::AND: return "and";
- case ISD::OR: return "or";
- case ISD::XOR: return "xor";
- case ISD::SHL: return "shl";
- case ISD::SRA: return "sra";
- case ISD::SRL: return "srl";
- case ISD::ROTL: return "rotl";
- case ISD::ROTR: return "rotr";
- case ISD::FADD: return "fadd";
- case ISD::FSUB: return "fsub";
- case ISD::FMUL: return "fmul";
- case ISD::FDIV: return "fdiv";
- case ISD::FREM: return "frem";
- case ISD::FCOPYSIGN: return "fcopysign";
- case ISD::FGETSIGN: return "fgetsign";
- case ISD::SETCC: return "setcc";
- case ISD::VSETCC: return "vsetcc";
- case ISD::SELECT: return "select";
- case ISD::SELECT_CC: return "select_cc";
- case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
- case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
- case ISD::CONCAT_VECTORS: return "concat_vectors";
- case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
- case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
- case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
- case ISD::CARRY_FALSE: return "carry_false";
- case ISD::ADDC: return "addc";
- case ISD::ADDE: return "adde";
- case ISD::SADDO: return "saddo";
- case ISD::UADDO: return "uaddo";
- case ISD::SSUBO: return "ssubo";
- case ISD::USUBO: return "usubo";
- case ISD::SMULO: return "smulo";
- case ISD::UMULO: return "umulo";
- case ISD::SUBC: return "subc";
- case ISD::SUBE: return "sube";
- case ISD::SHL_PARTS: return "shl_parts";
- case ISD::SRA_PARTS: return "sra_parts";
- case ISD::SRL_PARTS: return "srl_parts";
- // Conversion operators.
- case ISD::SIGN_EXTEND: return "sign_extend";
- case ISD::ZERO_EXTEND: return "zero_extend";
- case ISD::ANY_EXTEND: return "any_extend";
- case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
- case ISD::TRUNCATE: return "truncate";
- case ISD::FP_ROUND: return "fp_round";
- case ISD::FLT_ROUNDS_: return "flt_rounds";
- case ISD::FP_ROUND_INREG: return "fp_round_inreg";
- case ISD::FP_EXTEND: return "fp_extend";
- case ISD::SINT_TO_FP: return "sint_to_fp";
- case ISD::UINT_TO_FP: return "uint_to_fp";
- case ISD::FP_TO_SINT: return "fp_to_sint";
- case ISD::FP_TO_UINT: return "fp_to_uint";
- case ISD::BIT_CONVERT: return "bit_convert";
- case ISD::CONVERT_RNDSAT: {
- switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
- default: llvm_unreachable("Unknown cvt code!");
- case ISD::CVT_FF: return "cvt_ff";
- case ISD::CVT_FS: return "cvt_fs";
- case ISD::CVT_FU: return "cvt_fu";
- case ISD::CVT_SF: return "cvt_sf";
- case ISD::CVT_UF: return "cvt_uf";
- case ISD::CVT_SS: return "cvt_ss";
- case ISD::CVT_SU: return "cvt_su";
- case ISD::CVT_US: return "cvt_us";
- case ISD::CVT_UU: return "cvt_uu";
- }
- }
- // Control flow instructions
- case ISD::BR: return "br";
- case ISD::BRIND: return "brind";
- case ISD::BR_JT: return "br_jt";
- case ISD::BRCOND: return "brcond";
- case ISD::BR_CC: return "br_cc";
- case ISD::CALLSEQ_START: return "callseq_start";
- case ISD::CALLSEQ_END: return "callseq_end";
- // Other operators
- case ISD::LOAD: return "load";
- case ISD::STORE: return "store";
- case ISD::VAARG: return "vaarg";
- case ISD::VACOPY: return "vacopy";
- case ISD::VAEND: return "vaend";
- case ISD::VASTART: return "vastart";
- case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
- case ISD::EXTRACT_ELEMENT: return "extract_element";
- case ISD::BUILD_PAIR: return "build_pair";
- case ISD::STACKSAVE: return "stacksave";
- case ISD::STACKRESTORE: return "stackrestore";
- case ISD::TRAP: return "trap";
- // Bit manipulation
- case ISD::BSWAP: return "bswap";
- case ISD::CTPOP: return "ctpop";
- case ISD::CTTZ: return "cttz";
- case ISD::CTLZ: return "ctlz";
- // Debug info
- case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
- case ISD::DEBUG_LOC: return "debug_loc";
- // Trampolines
- case ISD::TRAMPOLINE: return "trampoline";
- case ISD::CONDCODE:
- switch (cast<CondCodeSDNode>(this)->get()) {
- default: llvm_unreachable("Unknown setcc condition!");
- case ISD::SETOEQ: return "setoeq";
- case ISD::SETOGT: return "setogt";
- case ISD::SETOGE: return "setoge";
- case ISD::SETOLT: return "setolt";
- case ISD::SETOLE: return "setole";
- case ISD::SETONE: return "setone";
- case ISD::SETO: return "seto";
- case ISD::SETUO: return "setuo";
- case ISD::SETUEQ: return "setue";
- case ISD::SETUGT: return "setugt";
- case ISD::SETUGE: return "setuge";
- case ISD::SETULT: return "setult";
- case ISD::SETULE: return "setule";
- case ISD::SETUNE: return "setune";
- case ISD::SETEQ: return "seteq";
- case ISD::SETGT: return "setgt";
- case ISD::SETGE: return "setge";
- case ISD::SETLT: return "setlt";
- case ISD::SETLE: return "setle";
- case ISD::SETNE: return "setne";
- }
- }
- }
- const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
- switch (AM) {
- default:
- return "";
- case ISD::PRE_INC:
- return "<pre-inc>";
- case ISD::PRE_DEC:
- return "<pre-dec>";
- case ISD::POST_INC:
- return "<post-inc>";
- case ISD::POST_DEC:
- return "<post-dec>";
- }
- }
- std::string ISD::ArgFlagsTy::getArgFlagsString() {
- std::string S = "< ";
- if (isZExt())
- S += "zext ";
- if (isSExt())
- S += "sext ";
- if (isInReg())
- S += "inreg ";
- if (isSRet())
- S += "sret ";
- if (isByVal())
- S += "byval ";
- if (isNest())
- S += "nest ";
- if (getByValAlign())
- S += "byval-align:" + utostr(getByValAlign()) + " ";
- if (getOrigAlign())
- S += "orig-align:" + utostr(getOrigAlign()) + " ";
- if (getByValSize())
- S += "byval-size:" + utostr(getByValSize()) + " ";
- return S + ">";
- }
- void SDNode::dump() const { dump(0); }
- void SDNode::dump(const SelectionDAG *G) const {
- print(errs(), G);
- }
- void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
- OS << (void*)this << ": ";
- for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
- if (i) OS << ",";
- if (getValueType(i) == MVT::Other)
- OS << "ch";
- else
- OS << getValueType(i).getEVTString();
- }
- OS << " = " << getOperationName(G);
- }
- void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
- if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
- const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(this);
- OS << "<";
- for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
- int Idx = SVN->getMaskElt(i);
- if (i) OS << ",";
- if (Idx < 0)
- OS << "u";
- else
- OS << Idx;
- }
- OS << ">";
- }
- if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
- OS << '<' << CSDN->getAPIntValue() << '>';
- } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
- if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
- OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
- else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
- OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
- else {
- OS << "<APFloat(";
- CSDN->getValueAPF().bitcastToAPInt().dump();
- OS << ")>";
- }
- } else if (const GlobalAddressSDNode *GADN =
- dyn_cast<GlobalAddressSDNode>(this)) {
- int64_t offset = GADN->getOffset();
- OS << '<';
- WriteAsOperand(OS, GADN->getGlobal());
- OS << '>';
- if (offset > 0)
- OS << " + " << offset;
- else
- OS << " " << offset;
- if (unsigned int TF = GADN->getTargetFlags())
- OS << " [TF=" << TF << ']';
- } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
- OS << "<" << FIDN->getIndex() << ">";
- } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
- OS << "<" << JTDN->getIndex() << ">";
- if (unsigned int TF = JTDN->getTargetFlags())
- OS << " [TF=" << TF << ']';
- } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
- int offset = CP->getOffset();
- if (CP->isMachineConstantPoolEntry())
- OS << "<" << *CP->getMachineCPVal() << ">";
- else
- OS << "<" << *CP->getConstVal() << ">";
- if (offset > 0)
- OS << " + " << offset;
- else
- OS << " " << offset;
- if (unsigned int TF = CP->getTargetFlags())
- OS << " [TF=" << TF << ']';
- } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
- OS << "<";
- const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
- if (LBB)
- OS << LBB->getName() << " ";
- OS << (const void*)BBDN->getBasicBlock() << ">";
- } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
- if (G && R->getReg() &&
- TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
- OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
- } else {
- OS << " #" << R->getReg();
- }
- } else if (const ExternalSymbolSDNode *ES =
- dyn_cast<ExternalSymbolSDNode>(this)) {
- OS << "'" << ES->getSymbol() << "'";
- if (unsigned int TF = ES->getTargetFlags())
- OS << " [TF=" << TF << ']';
- } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
- if (M->getValue())
- OS << "<" << M->getValue() << ">";
- else
- OS << "<null>";
- } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
- if (M->MO.getValue())
- OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
- else
- OS << "<null:" << M->MO.getOffset() << ">";
- } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
- OS << ":" << N->getVT().getEVTString();
- }
- else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
- const Value *SrcValue = LD->getSrcValue();
- int SrcOffset = LD->getSrcValueOffset();
- OS << " <";
- if (SrcValue)
- OS << SrcValue;
- else
- OS << "null";
- OS << ":" << SrcOffset << ">";
- bool doExt = true;
- switch (LD->getExtensionType()) {
- default: doExt = false; break;
- case ISD::EXTLOAD: OS << " <anyext "; break;
- case ISD::SEXTLOAD: OS << " <sext "; break;
- case ISD::ZEXTLOAD: OS << " <zext "; break;
- }
- if (doExt)
- OS << LD->getMemoryVT().getEVTString() << ">";
- const char *AM = getIndexedModeName(LD->getAddressingMode());
- if (*AM)
- OS << " " << AM;
- if (LD->isVolatile())
- OS << " <volatile>";
- OS << " alignment=" << LD->getAlignment();
- } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
- const Value *SrcValue = ST->getSrcValue();
- int SrcOffset = ST->getSrcValueOffset();
- OS << " <";
- if (SrcValue)
- OS << SrcValue;
- else
- OS << "null";
- OS << ":" << SrcOffset << ">";
- if (ST->isTruncatingStore())
- OS << " <trunc " << ST->getMemoryVT().getEVTString() << ">";
- const char *AM = getIndexedModeName(ST->getAddressingMode());
- if (*AM)
- OS << " " << AM;
- if (ST->isVolatile())
- OS << " <volatile>";
- OS << " alignment=" << ST->getAlignment();
- } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
- const Value *SrcValue = AT->getSrcValue();
- int SrcOffset = AT->getSrcValueOffset();
- OS << " <";
- if (SrcValue)
- OS << SrcValue;
- else
- OS << "null";
- OS << ":" << SrcOffset << ">";
- if (AT->isVolatile())
- OS << " <volatile>";
- OS << " alignment=" << AT->getAlignment();
- }
- }
- void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
- print_types(OS, G);
- OS << " ";
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
- if (i) OS << ", ";
- OS << (void*)getOperand(i).getNode();
- if (unsigned RN = getOperand(i).getResNo())
- OS << ":" << RN;
- }
- print_details(OS, G);
- }
- static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
- if (N->getOperand(i).getNode()->hasOneUse())
- DumpNodes(N->getOperand(i).getNode(), indent+2, G);
- else
- cerr << "\n" << std::string(indent+2, ' ')
- << (void*)N->getOperand(i).getNode() << ": <multiple use>";
- cerr << "\n" << std::string(indent, ' ');
- N->dump(G);
- }
- void SelectionDAG::dump() const {
- cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
- for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
- I != E; ++I) {
- const SDNode *N = I;
- if (!N->hasOneUse() && N != getRoot().getNode())
- DumpNodes(N, 2, this);
- }
- if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
- cerr << "\n\n";
- }
- void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
- print_types(OS, G);
- print_details(OS, G);
- }
- typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
- static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
- const SelectionDAG *G, VisitedSDNodeSet &once) {
- if (!once.insert(N)) // If we've been here before, return now.
- return;
- // Dump the current SDNode, but don't end the line yet.
- OS << std::string(indent, ' ');
- N->printr(OS, G);
- // Having printed this SDNode, walk the children:
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
- const SDNode *child = N->getOperand(i).getNode();
- if (i) OS << ",";
- OS << " ";
- if (child->getNumOperands() == 0) {
- // This child has no grandchildren; print it inline right here.
- child->printr(OS, G);
- once.insert(child);
- } else { // Just the address. FIXME: also print the child's opcode
- OS << (void*)child;
- if (unsigned RN = N->getOperand(i).getResNo())
- OS << ":" << RN;
- }
- }
- OS << "\n";
- // Dump children that have grandchildren on their own line(s).
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
- const SDNode *child = N->getOperand(i).getNode();
- DumpNodesr(OS, child, indent+2, G, once);
- }
- }
- void SDNode::dumpr() const {
- VisitedSDNodeSet once;
- DumpNodesr(errs(), this, 0, 0, once);
- }
- // getAddressSpace - Return the address space this GlobalAddress belongs to.
- unsigned GlobalAddressSDNode::getAddressSpace() const {
- return getGlobal()->getType()->getAddressSpace();
- }
- const Type *ConstantPoolSDNode::getType() const {
- if (isMachineConstantPoolEntry())
- return Val.MachineCPVal->getType();
- return Val.ConstVal->getType();
- }
- bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
- APInt &SplatUndef,
- unsigned &SplatBitSize,
- bool &HasAnyUndefs,
- unsigned MinSplatBits) {
- EVT VT = getValueType(0);
- assert(VT.isVector() && "Expected a vector type");
- unsigned sz = VT.getSizeInBits();
- if (MinSplatBits > sz)
- return false;
- SplatValue = APInt(sz, 0);
- SplatUndef = APInt(sz, 0);
- // Get the bits. Bits with undefined values (when the corresponding element
- // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
- // in SplatValue. If any of the values are not constant, give up and return
- // false.
- unsigned int nOps = getNumOperands();
- assert(nOps > 0 && "isConstantSplat has 0-size build vector");
- unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
- for (unsigned i = 0; i < nOps; ++i) {
- SDValue OpVal = getOperand(i);
- unsigned BitPos = i * EltBitSize;
- if (OpVal.getOpcode() == ISD::UNDEF)
- SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
- else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
- SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
- zextOrTrunc(sz) << BitPos);
- else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
- SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
- else
- return false;
- }
- // The build_vector is all constants or undefs. Find the smallest element
- // size that splats the vector.
- HasAnyUndefs = (SplatUndef != 0);
- while (sz > 8) {
- unsigned HalfSize = sz / 2;
- APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
- APInt LowValue = APInt(SplatValue).trunc(HalfSize);
- APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
- APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
- // If the two halves do not match (ignoring undef bits), stop here.
- if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
- MinSplatBits > HalfSize)
- break;
- SplatValue = HighValue | LowValue;
- SplatUndef = HighUndef & LowUndef;
-
- sz = HalfSize;
- }
- SplatBitSize = sz;
- return true;
- }
- bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
- // Find the first non-undef value in the shuffle mask.
- unsigned i, e;
- for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
- /* search */;
- assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
-
- // Make sure all remaining elements are either undef or the same as the first
- // non-undef value.
- for (int Idx = Mask[i]; i != e; ++i)
- if (Mask[i] >= 0 && Mask[i] != Idx)
- return false;
- return true;
- }
|