123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760 |
- //===- ValueTracking.cpp - Walk computations to compute properties --------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains routines that help analyze properties that chains of
- // computations have.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/GlobalAlias.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/MathExtras.h"
- #include <cstring>
- using namespace llvm;
- using namespace llvm::PatternMatch;
- const unsigned MaxDepth = 6;
- /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
- /// 0). For vector types, returns the element type's bitwidth.
- static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
- if (unsigned BitWidth = Ty->getScalarSizeInBits())
- return BitWidth;
- return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
- }
- // Many of these functions have internal versions that take an assumption
- // exclusion set. This is because of the potential for mutual recursion to
- // cause computeKnownBits to repeatedly visit the same assume intrinsic. The
- // classic case of this is assume(x = y), which will attempt to determine
- // bits in x from bits in y, which will attempt to determine bits in y from
- // bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
- // isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
- // isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
- typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
- namespace {
- // Simplifying using an assume can only be done in a particular control-flow
- // context (the context instruction provides that context). If an assume and
- // the context instruction are not in the same block then the DT helps in
- // figuring out if we can use it.
- struct Query {
- ExclInvsSet ExclInvs;
- AssumptionCache *AC;
- const Instruction *CxtI;
- const DominatorTree *DT;
- Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr)
- : AC(AC), CxtI(CxtI), DT(DT) {}
- Query(const Query &Q, const Value *NewExcl)
- : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) {
- ExclInvs.insert(NewExcl);
- }
- };
- } // end anonymous namespace
- // Given the provided Value and, potentially, a context instruction, return
- // the preferred context instruction (if any).
- static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
- // If we've been provided with a context instruction, then use that (provided
- // it has been inserted).
- if (CxtI && CxtI->getParent())
- return CxtI;
- // If the value is really an already-inserted instruction, then use that.
- CxtI = dyn_cast<Instruction>(V);
- if (CxtI && CxtI->getParent())
- return CxtI;
- return nullptr;
- }
- static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const DataLayout *TD, unsigned Depth,
- const Query &Q);
- void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const DataLayout *TD, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT) {
- ::computeKnownBits(V, KnownZero, KnownOne, TD, Depth,
- Query(AC, safeCxtI(V, CxtI), DT));
- }
- static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
- const DataLayout *TD, unsigned Depth,
- const Query &Q);
- void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
- const DataLayout *TD, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT) {
- ::ComputeSignBit(V, KnownZero, KnownOne, TD, Depth,
- Query(AC, safeCxtI(V, CxtI), DT));
- }
- static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
- const Query &Q);
- bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT) {
- return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
- Query(AC, safeCxtI(V, CxtI), DT));
- }
- static bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
- const Query &Q);
- bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT) {
- return ::isKnownNonZero(V, TD, Depth, Query(AC, safeCxtI(V, CxtI), DT));
- }
- static bool MaskedValueIsZero(Value *V, const APInt &Mask,
- const DataLayout *TD, unsigned Depth,
- const Query &Q);
- bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout *TD,
- unsigned Depth, AssumptionCache *AC,
- const Instruction *CxtI, const DominatorTree *DT) {
- return ::MaskedValueIsZero(V, Mask, TD, Depth,
- Query(AC, safeCxtI(V, CxtI), DT));
- }
- static unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
- unsigned Depth, const Query &Q);
- unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
- unsigned Depth, AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- return ::ComputeNumSignBits(V, TD, Depth, Query(AC, safeCxtI(V, CxtI), DT));
- }
- static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
- APInt &KnownZero, APInt &KnownOne,
- APInt &KnownZero2, APInt &KnownOne2,
- const DataLayout *TD, unsigned Depth,
- const Query &Q) {
- if (!Add) {
- if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
- // We know that the top bits of C-X are clear if X contains less bits
- // than C (i.e. no wrap-around can happen). For example, 20-X is
- // positive if we can prove that X is >= 0 and < 16.
- if (!CLHS->getValue().isNegative()) {
- unsigned BitWidth = KnownZero.getBitWidth();
- unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
- // NLZ can't be BitWidth with no sign bit
- APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
- computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
- // If all of the MaskV bits are known to be zero, then we know the
- // output top bits are zero, because we now know that the output is
- // from [0-C].
- if ((KnownZero2 & MaskV) == MaskV) {
- unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
- // Top bits known zero.
- KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
- }
- }
- }
- }
- unsigned BitWidth = KnownZero.getBitWidth();
- // If an initial sequence of bits in the result is not needed, the
- // corresponding bits in the operands are not needed.
- APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1, Q);
- computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
- // Carry in a 1 for a subtract, rather than a 0.
- APInt CarryIn(BitWidth, 0);
- if (!Add) {
- // Sum = LHS + ~RHS + 1
- std::swap(KnownZero2, KnownOne2);
- CarryIn.setBit(0);
- }
- APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
- APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
- // Compute known bits of the carry.
- APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
- APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
- // Compute set of known bits (where all three relevant bits are known).
- APInt LHSKnown = LHSKnownZero | LHSKnownOne;
- APInt RHSKnown = KnownZero2 | KnownOne2;
- APInt CarryKnown = CarryKnownZero | CarryKnownOne;
- APInt Known = LHSKnown & RHSKnown & CarryKnown;
- assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
- "known bits of sum differ");
- // Compute known bits of the result.
- KnownZero = ~PossibleSumOne & Known;
- KnownOne = PossibleSumOne & Known;
- // Are we still trying to solve for the sign bit?
- if (!Known.isNegative()) {
- if (NSW) {
- // Adding two non-negative numbers, or subtracting a negative number from
- // a non-negative one, can't wrap into negative.
- if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
- KnownZero |= APInt::getSignBit(BitWidth);
- // Adding two negative numbers, or subtracting a non-negative number from
- // a negative one, can't wrap into non-negative.
- else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
- KnownOne |= APInt::getSignBit(BitWidth);
- }
- }
- }
- static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
- APInt &KnownZero, APInt &KnownOne,
- APInt &KnownZero2, APInt &KnownOne2,
- const DataLayout *TD, unsigned Depth,
- const Query &Q) {
- unsigned BitWidth = KnownZero.getBitWidth();
- computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1, Q);
- computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1, Q);
- bool isKnownNegative = false;
- bool isKnownNonNegative = false;
- // If the multiplication is known not to overflow, compute the sign bit.
- if (NSW) {
- if (Op0 == Op1) {
- // The product of a number with itself is non-negative.
- isKnownNonNegative = true;
- } else {
- bool isKnownNonNegativeOp1 = KnownZero.isNegative();
- bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
- bool isKnownNegativeOp1 = KnownOne.isNegative();
- bool isKnownNegativeOp0 = KnownOne2.isNegative();
- // The product of two numbers with the same sign is non-negative.
- isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
- (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
- // The product of a negative number and a non-negative number is either
- // negative or zero.
- if (!isKnownNonNegative)
- isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
- isKnownNonZero(Op0, TD, Depth, Q)) ||
- (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
- isKnownNonZero(Op1, TD, Depth, Q));
- }
- }
- // If low bits are zero in either operand, output low known-0 bits.
- // Also compute a conserative estimate for high known-0 bits.
- // More trickiness is possible, but this is sufficient for the
- // interesting case of alignment computation.
- KnownOne.clearAllBits();
- unsigned TrailZ = KnownZero.countTrailingOnes() +
- KnownZero2.countTrailingOnes();
- unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
- KnownZero2.countLeadingOnes(),
- BitWidth) - BitWidth;
- TrailZ = std::min(TrailZ, BitWidth);
- LeadZ = std::min(LeadZ, BitWidth);
- KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
- APInt::getHighBitsSet(BitWidth, LeadZ);
- // Only make use of no-wrap flags if we failed to compute the sign bit
- // directly. This matters if the multiplication always overflows, in
- // which case we prefer to follow the result of the direct computation,
- // though as the program is invoking undefined behaviour we can choose
- // whatever we like here.
- if (isKnownNonNegative && !KnownOne.isNegative())
- KnownZero.setBit(BitWidth - 1);
- else if (isKnownNegative && !KnownZero.isNegative())
- KnownOne.setBit(BitWidth - 1);
- }
- void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
- APInt &KnownZero) {
- unsigned BitWidth = KnownZero.getBitWidth();
- unsigned NumRanges = Ranges.getNumOperands() / 2;
- assert(NumRanges >= 1);
- // Use the high end of the ranges to find leading zeros.
- unsigned MinLeadingZeros = BitWidth;
- for (unsigned i = 0; i < NumRanges; ++i) {
- ConstantInt *Lower =
- mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
- ConstantInt *Upper =
- mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
- ConstantRange Range(Lower->getValue(), Upper->getValue());
- if (Range.isWrappedSet())
- MinLeadingZeros = 0; // -1 has no zeros
- unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
- MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
- }
- KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
- }
- static bool isEphemeralValueOf(Instruction *I, const Value *E) {
- SmallVector<const Value *, 16> WorkSet(1, I);
- SmallPtrSet<const Value *, 32> Visited;
- SmallPtrSet<const Value *, 16> EphValues;
- while (!WorkSet.empty()) {
- const Value *V = WorkSet.pop_back_val();
- if (!Visited.insert(V).second)
- continue;
- // If all uses of this value are ephemeral, then so is this value.
- bool FoundNEUse = false;
- for (const User *I : V->users())
- if (!EphValues.count(I)) {
- FoundNEUse = true;
- break;
- }
- if (!FoundNEUse) {
- if (V == E)
- return true;
- EphValues.insert(V);
- if (const User *U = dyn_cast<User>(V))
- for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
- J != JE; ++J) {
- if (isSafeToSpeculativelyExecute(*J))
- WorkSet.push_back(*J);
- }
- }
- }
- return false;
- }
- // Is this an intrinsic that cannot be speculated but also cannot trap?
- static bool isAssumeLikeIntrinsic(const Instruction *I) {
- if (const CallInst *CI = dyn_cast<CallInst>(I))
- if (Function *F = CI->getCalledFunction())
- switch (F->getIntrinsicID()) {
- default: break;
- // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
- case Intrinsic::assume:
- case Intrinsic::dbg_declare:
- case Intrinsic::dbg_value:
- case Intrinsic::invariant_start:
- case Intrinsic::invariant_end:
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- case Intrinsic::objectsize:
- case Intrinsic::ptr_annotation:
- case Intrinsic::var_annotation:
- return true;
- }
- return false;
- }
- static bool isValidAssumeForContext(Value *V, const Query &Q,
- const DataLayout *DL) {
- Instruction *Inv = cast<Instruction>(V);
- // There are two restrictions on the use of an assume:
- // 1. The assume must dominate the context (or the control flow must
- // reach the assume whenever it reaches the context).
- // 2. The context must not be in the assume's set of ephemeral values
- // (otherwise we will use the assume to prove that the condition
- // feeding the assume is trivially true, thus causing the removal of
- // the assume).
- if (Q.DT) {
- if (Q.DT->dominates(Inv, Q.CxtI)) {
- return true;
- } else if (Inv->getParent() == Q.CxtI->getParent()) {
- // The context comes first, but they're both in the same block. Make sure
- // there is nothing in between that might interrupt the control flow.
- for (BasicBlock::const_iterator I =
- std::next(BasicBlock::const_iterator(Q.CxtI)),
- IE(Inv); I != IE; ++I)
- if (!isSafeToSpeculativelyExecute(I, DL) &&
- !isAssumeLikeIntrinsic(I))
- return false;
- return !isEphemeralValueOf(Inv, Q.CxtI);
- }
- return false;
- }
- // When we don't have a DT, we do a limited search...
- if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
- return true;
- } else if (Inv->getParent() == Q.CxtI->getParent()) {
- // Search forward from the assume until we reach the context (or the end
- // of the block); the common case is that the assume will come first.
- for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
- IE = Inv->getParent()->end(); I != IE; ++I)
- if (I == Q.CxtI)
- return true;
- // The context must come first...
- for (BasicBlock::const_iterator I =
- std::next(BasicBlock::const_iterator(Q.CxtI)),
- IE(Inv); I != IE; ++I)
- if (!isSafeToSpeculativelyExecute(I, DL) &&
- !isAssumeLikeIntrinsic(I))
- return false;
- return !isEphemeralValueOf(Inv, Q.CxtI);
- }
- return false;
- }
- bool llvm::isValidAssumeForContext(const Instruction *I,
- const Instruction *CxtI,
- const DataLayout *DL,
- const DominatorTree *DT) {
- return ::isValidAssumeForContext(const_cast<Instruction*>(I),
- Query(nullptr, CxtI, DT), DL);
- }
- template<typename LHS, typename RHS>
- inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
- CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
- m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
- return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
- }
- template<typename LHS, typename RHS>
- inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
- BinaryOp_match<RHS, LHS, Instruction::And>>
- m_c_And(const LHS &L, const RHS &R) {
- return m_CombineOr(m_And(L, R), m_And(R, L));
- }
- template<typename LHS, typename RHS>
- inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
- BinaryOp_match<RHS, LHS, Instruction::Or>>
- m_c_Or(const LHS &L, const RHS &R) {
- return m_CombineOr(m_Or(L, R), m_Or(R, L));
- }
- template<typename LHS, typename RHS>
- inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
- BinaryOp_match<RHS, LHS, Instruction::Xor>>
- m_c_Xor(const LHS &L, const RHS &R) {
- return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
- }
- static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
- APInt &KnownOne,
- const DataLayout *DL,
- unsigned Depth, const Query &Q) {
- // Use of assumptions is context-sensitive. If we don't have a context, we
- // cannot use them!
- if (!Q.AC || !Q.CxtI)
- return;
- unsigned BitWidth = KnownZero.getBitWidth();
- for (auto &AssumeVH : Q.AC->assumptions()) {
- if (!AssumeVH)
- continue;
- CallInst *I = cast<CallInst>(AssumeVH);
- assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
- "Got assumption for the wrong function!");
- if (Q.ExclInvs.count(I))
- continue;
- // Warning: This loop can end up being somewhat performance sensetive.
- // We're running this loop for once for each value queried resulting in a
- // runtime of ~O(#assumes * #values).
- assert(isa<IntrinsicInst>(I) &&
- dyn_cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::assume &&
- "must be an assume intrinsic");
-
- Value *Arg = I->getArgOperand(0);
- if (Arg == V &&
- isValidAssumeForContext(I, Q, DL)) {
- assert(BitWidth == 1 && "assume operand is not i1?");
- KnownZero.clearAllBits();
- KnownOne.setAllBits();
- return;
- }
- // The remaining tests are all recursive, so bail out if we hit the limit.
- if (Depth == MaxDepth)
- continue;
- Value *A, *B;
- auto m_V = m_CombineOr(m_Specific(V),
- m_CombineOr(m_PtrToInt(m_Specific(V)),
- m_BitCast(m_Specific(V))));
- CmpInst::Predicate Pred;
- ConstantInt *C;
- // assume(v = a)
- if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- KnownZero |= RHSKnownZero;
- KnownOne |= RHSKnownOne;
- // assume(v & b = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
- computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in the mask that are known to be one, we can propagate
- // known bits from the RHS to V.
- KnownZero |= RHSKnownZero & MaskKnownOne;
- KnownOne |= RHSKnownOne & MaskKnownOne;
- // assume(~(v & b) = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
- computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in the mask that are known to be one, we can propagate
- // inverted known bits from the RHS to V.
- KnownZero |= RHSKnownOne & MaskKnownOne;
- KnownOne |= RHSKnownZero & MaskKnownOne;
- // assume(v | b = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
- computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in B that are known to be zero, we can propagate known
- // bits from the RHS to V.
- KnownZero |= RHSKnownZero & BKnownZero;
- KnownOne |= RHSKnownOne & BKnownZero;
- // assume(~(v | b) = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
- computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in B that are known to be zero, we can propagate
- // inverted known bits from the RHS to V.
- KnownZero |= RHSKnownOne & BKnownZero;
- KnownOne |= RHSKnownZero & BKnownZero;
- // assume(v ^ b = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
- computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in B that are known to be zero, we can propagate known
- // bits from the RHS to V. For those bits in B that are known to be one,
- // we can propagate inverted known bits from the RHS to V.
- KnownZero |= RHSKnownZero & BKnownZero;
- KnownOne |= RHSKnownOne & BKnownZero;
- KnownZero |= RHSKnownOne & BKnownOne;
- KnownOne |= RHSKnownZero & BKnownOne;
- // assume(~(v ^ b) = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
- computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in B that are known to be zero, we can propagate
- // inverted known bits from the RHS to V. For those bits in B that are
- // known to be one, we can propagate known bits from the RHS to V.
- KnownZero |= RHSKnownOne & BKnownZero;
- KnownOne |= RHSKnownZero & BKnownZero;
- KnownZero |= RHSKnownZero & BKnownOne;
- KnownOne |= RHSKnownOne & BKnownOne;
- // assume(v << c = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in RHS that are known, we can propagate them to known
- // bits in V shifted to the right by C.
- KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
- KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
- // assume(~(v << c) = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in RHS that are known, we can propagate them inverted
- // to known bits in V shifted to the right by C.
- KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
- KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
- // assume(v >> c = a)
- } else if (match(Arg,
- m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
- m_AShr(m_V,
- m_ConstantInt(C))),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in RHS that are known, we can propagate them to known
- // bits in V shifted to the right by C.
- KnownZero |= RHSKnownZero << C->getZExtValue();
- KnownOne |= RHSKnownOne << C->getZExtValue();
- // assume(~(v >> c) = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
- m_LShr(m_V, m_ConstantInt(C)),
- m_AShr(m_V, m_ConstantInt(C)))),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in RHS that are known, we can propagate them inverted
- // to known bits in V shifted to the right by C.
- KnownZero |= RHSKnownOne << C->getZExtValue();
- KnownOne |= RHSKnownZero << C->getZExtValue();
- // assume(v >=_s c) where c is non-negative
- } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SGE &&
- isValidAssumeForContext(I, Q, DL)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- if (RHSKnownZero.isNegative()) {
- // We know that the sign bit is zero.
- KnownZero |= APInt::getSignBit(BitWidth);
- }
- // assume(v >_s c) where c is at least -1.
- } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SGT &&
- isValidAssumeForContext(I, Q, DL)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
- // We know that the sign bit is zero.
- KnownZero |= APInt::getSignBit(BitWidth);
- }
- // assume(v <=_s c) where c is negative
- } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SLE &&
- isValidAssumeForContext(I, Q, DL)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- if (RHSKnownOne.isNegative()) {
- // We know that the sign bit is one.
- KnownOne |= APInt::getSignBit(BitWidth);
- }
- // assume(v <_s c) where c is non-positive
- } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SLT &&
- isValidAssumeForContext(I, Q, DL)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
- // We know that the sign bit is one.
- KnownOne |= APInt::getSignBit(BitWidth);
- }
- // assume(v <=_u c)
- } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_ULE &&
- isValidAssumeForContext(I, Q, DL)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- // Whatever high bits in c are zero are known to be zero.
- KnownZero |=
- APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
- // assume(v <_u c)
- } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_ULT &&
- isValidAssumeForContext(I, Q, DL)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- // Whatever high bits in c are zero are known to be zero (if c is a power
- // of 2, then one more).
- if (isKnownToBeAPowerOfTwo(A, false, Depth+1, Query(Q, I)))
- KnownZero |=
- APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
- else
- KnownZero |=
- APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
- }
- }
- }
- /// Determine which bits of V are known to be either zero or one and return
- /// them in the KnownZero/KnownOne bit sets.
- ///
- /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
- /// we cannot optimize based on the assumption that it is zero without changing
- /// it to be an explicit zero. If we don't change it to zero, other code could
- /// optimized based on the contradictory assumption that it is non-zero.
- /// Because instcombine aggressively folds operations with undef args anyway,
- /// this won't lose us code quality.
- ///
- /// This function is defined on values with integer type, values with pointer
- /// type (but only if TD is non-null), and vectors of integers. In the case
- /// where V is a vector, known zero, and known one values are the
- /// same width as the vector element, and the bit is set only if it is true
- /// for all of the elements in the vector.
- void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const DataLayout *TD, unsigned Depth,
- const Query &Q) {
- assert(V && "No Value?");
- assert(Depth <= MaxDepth && "Limit Search Depth");
- unsigned BitWidth = KnownZero.getBitWidth();
- assert((V->getType()->isIntOrIntVectorTy() ||
- V->getType()->getScalarType()->isPointerTy()) &&
- "Not integer or pointer type!");
- assert((!TD ||
- TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
- (!V->getType()->isIntOrIntVectorTy() ||
- V->getType()->getScalarSizeInBits() == BitWidth) &&
- KnownZero.getBitWidth() == BitWidth &&
- KnownOne.getBitWidth() == BitWidth &&
- "V, KnownOne and KnownZero should have same BitWidth");
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- // We know all of the bits for a constant!
- KnownOne = CI->getValue();
- KnownZero = ~KnownOne;
- return;
- }
- // Null and aggregate-zero are all-zeros.
- if (isa<ConstantPointerNull>(V) ||
- isa<ConstantAggregateZero>(V)) {
- KnownOne.clearAllBits();
- KnownZero = APInt::getAllOnesValue(BitWidth);
- return;
- }
- // Handle a constant vector by taking the intersection of the known bits of
- // each element. There is no real need to handle ConstantVector here, because
- // we don't handle undef in any particularly useful way.
- if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
- // We know that CDS must be a vector of integers. Take the intersection of
- // each element.
- KnownZero.setAllBits(); KnownOne.setAllBits();
- APInt Elt(KnownZero.getBitWidth(), 0);
- for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
- Elt = CDS->getElementAsInteger(i);
- KnownZero &= ~Elt;
- KnownOne &= Elt;
- }
- return;
- }
- // The address of an aligned GlobalValue has trailing zeros.
- if (auto *GO = dyn_cast<GlobalObject>(V)) {
- unsigned Align = GO->getAlignment();
- if (Align == 0 && TD) {
- if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
- Type *ObjectType = GVar->getType()->getElementType();
- if (ObjectType->isSized()) {
- // If the object is defined in the current Module, we'll be giving
- // it the preferred alignment. Otherwise, we have to assume that it
- // may only have the minimum ABI alignment.
- if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
- Align = TD->getPreferredAlignment(GVar);
- else
- Align = TD->getABITypeAlignment(ObjectType);
- }
- }
- }
- if (Align > 0)
- KnownZero = APInt::getLowBitsSet(BitWidth,
- countTrailingZeros(Align));
- else
- KnownZero.clearAllBits();
- KnownOne.clearAllBits();
- return;
- }
- if (Argument *A = dyn_cast<Argument>(V)) {
- unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
- if (!Align && TD && A->hasStructRetAttr()) {
- // An sret parameter has at least the ABI alignment of the return type.
- Type *EltTy = cast<PointerType>(A->getType())->getElementType();
- if (EltTy->isSized())
- Align = TD->getABITypeAlignment(EltTy);
- }
- if (Align)
- KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
- else
- KnownZero.clearAllBits();
- KnownOne.clearAllBits();
- // Don't give up yet... there might be an assumption that provides more
- // information...
- computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
- return;
- }
- // Start out not knowing anything.
- KnownZero.clearAllBits(); KnownOne.clearAllBits();
- // Limit search depth.
- // All recursive calls that increase depth must come after this.
- if (Depth == MaxDepth)
- return;
- // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
- // the bits of its aliasee.
- if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- if (!GA->mayBeOverridden())
- computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth + 1, Q);
- return;
- }
- // Check whether a nearby assume intrinsic can determine some known bits.
- computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
- Operator *I = dyn_cast<Operator>(V);
- if (!I) return;
- APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
- switch (I->getOpcode()) {
- default: break;
- case Instruction::Load:
- if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
- computeKnownBitsFromRangeMetadata(*MD, KnownZero);
- break;
- case Instruction::And: {
- // If either the LHS or the RHS are Zero, the result is zero.
- computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
- // Output known-1 bits are only known if set in both the LHS & RHS.
- KnownOne &= KnownOne2;
- // Output known-0 are known to be clear if zero in either the LHS | RHS.
- KnownZero |= KnownZero2;
- break;
- }
- case Instruction::Or: {
- computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
- // Output known-0 bits are only known if clear in both the LHS & RHS.
- KnownZero &= KnownZero2;
- // Output known-1 are known to be set if set in either the LHS | RHS.
- KnownOne |= KnownOne2;
- break;
- }
- case Instruction::Xor: {
- computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
- // Output known-0 bits are known if clear or set in both the LHS & RHS.
- APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
- // Output known-1 are known to be set if set in only one of the LHS, RHS.
- KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
- KnownZero = KnownZeroOut;
- break;
- }
- case Instruction::Mul: {
- bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
- computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
- KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
- Depth, Q);
- break;
- }
- case Instruction::UDiv: {
- // For the purposes of computing leading zeros we can conservatively
- // treat a udiv as a logical right shift by the power of 2 known to
- // be less than the denominator.
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
- unsigned LeadZ = KnownZero2.countLeadingOnes();
- KnownOne2.clearAllBits();
- KnownZero2.clearAllBits();
- computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
- unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
- if (RHSUnknownLeadingOnes != BitWidth)
- LeadZ = std::min(BitWidth,
- LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
- KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
- break;
- }
- case Instruction::Select:
- computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1, Q);
- computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
- // Only known if known in both the LHS and RHS.
- KnownOne &= KnownOne2;
- KnownZero &= KnownZero2;
- break;
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- break; // Can't work with floating point.
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::AddrSpaceCast: // Pointers could be different sizes.
- // We can't handle these if we don't know the pointer size.
- if (!TD) break;
- // FALL THROUGH and handle them the same as zext/trunc.
- case Instruction::ZExt:
- case Instruction::Trunc: {
- Type *SrcTy = I->getOperand(0)->getType();
- unsigned SrcBitWidth;
- // Note that we handle pointer operands here because of inttoptr/ptrtoint
- // which fall through here.
- if(TD) {
- SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
- } else {
- SrcBitWidth = SrcTy->getScalarSizeInBits();
- if (!SrcBitWidth) break;
- }
- assert(SrcBitWidth && "SrcBitWidth can't be zero");
- KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
- KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
- KnownZero = KnownZero.zextOrTrunc(BitWidth);
- KnownOne = KnownOne.zextOrTrunc(BitWidth);
- // Any top bits are known to be zero.
- if (BitWidth > SrcBitWidth)
- KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
- break;
- }
- case Instruction::BitCast: {
- Type *SrcTy = I->getOperand(0)->getType();
- if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
- // TODO: For now, not handling conversions like:
- // (bitcast i64 %x to <2 x i32>)
- !I->getType()->isVectorTy()) {
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
- break;
- }
- break;
- }
- case Instruction::SExt: {
- // Compute the bits in the result that are not present in the input.
- unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
- KnownZero = KnownZero.trunc(SrcBitWidth);
- KnownOne = KnownOne.trunc(SrcBitWidth);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
- KnownZero = KnownZero.zext(BitWidth);
- KnownOne = KnownOne.zext(BitWidth);
- // If the sign bit of the input is known set or clear, then we know the
- // top bits of the result.
- if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
- KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
- else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
- KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
- break;
- }
- case Instruction::Shl:
- // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
- if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
- uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
- KnownZero <<= ShiftAmt;
- KnownOne <<= ShiftAmt;
- KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
- }
- break;
- case Instruction::LShr:
- // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
- if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
- // Compute the new bits that are at the top now.
- uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
- // Unsigned shift right.
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
- KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
- KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
- // high bits known zero.
- KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
- }
- break;
- case Instruction::AShr:
- // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
- if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
- // Compute the new bits that are at the top now.
- uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
- // Signed shift right.
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
- KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
- KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
- APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
- if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
- KnownZero |= HighBits;
- else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
- KnownOne |= HighBits;
- }
- break;
- case Instruction::Sub: {
- bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
- computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
- KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
- Depth, Q);
- break;
- }
- case Instruction::Add: {
- bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
- computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
- KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
- Depth, Q);
- break;
- }
- case Instruction::SRem:
- if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
- APInt RA = Rem->getValue().abs();
- if (RA.isPowerOf2()) {
- APInt LowBits = RA - 1;
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD,
- Depth+1, Q);
- // The low bits of the first operand are unchanged by the srem.
- KnownZero = KnownZero2 & LowBits;
- KnownOne = KnownOne2 & LowBits;
- // If the first operand is non-negative or has all low bits zero, then
- // the upper bits are all zero.
- if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
- KnownZero |= ~LowBits;
- // If the first operand is negative and not all low bits are zero, then
- // the upper bits are all one.
- if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
- KnownOne |= ~LowBits;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- }
- }
- // The sign bit is the LHS's sign bit, except when the result of the
- // remainder is zero.
- if (KnownZero.isNonNegative()) {
- APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
- Depth+1, Q);
- // If it's known zero, our sign bit is also zero.
- if (LHSKnownZero.isNegative())
- KnownZero.setBit(BitWidth - 1);
- }
- break;
- case Instruction::URem: {
- if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
- APInt RA = Rem->getValue();
- if (RA.isPowerOf2()) {
- APInt LowBits = (RA - 1);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
- Depth+1, Q);
- KnownZero |= ~LowBits;
- KnownOne &= LowBits;
- break;
- }
- }
- // Since the result is less than or equal to either operand, any leading
- // zero bits in either operand must also exist in the result.
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
- computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
- unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
- KnownZero2.countLeadingOnes());
- KnownOne.clearAllBits();
- KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
- break;
- }
- case Instruction::Alloca: {
- AllocaInst *AI = cast<AllocaInst>(V);
- unsigned Align = AI->getAlignment();
- if (Align == 0 && TD)
- Align = TD->getABITypeAlignment(AI->getType()->getElementType());
- if (Align > 0)
- KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
- break;
- }
- case Instruction::GetElementPtr: {
- // Analyze all of the subscripts of this getelementptr instruction
- // to determine if we can prove known low zero bits.
- APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
- computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
- Depth+1, Q);
- unsigned TrailZ = LocalKnownZero.countTrailingOnes();
- gep_type_iterator GTI = gep_type_begin(I);
- for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
- Value *Index = I->getOperand(i);
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- // Handle struct member offset arithmetic.
- if (!TD) {
- TrailZ = 0;
- break;
- }
- // Handle case when index is vector zeroinitializer
- Constant *CIndex = cast<Constant>(Index);
- if (CIndex->isZeroValue())
- continue;
- if (CIndex->getType()->isVectorTy())
- Index = CIndex->getSplatValue();
- unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
- const StructLayout *SL = TD->getStructLayout(STy);
- uint64_t Offset = SL->getElementOffset(Idx);
- TrailZ = std::min<unsigned>(TrailZ,
- countTrailingZeros(Offset));
- } else {
- // Handle array index arithmetic.
- Type *IndexedTy = GTI.getIndexedType();
- if (!IndexedTy->isSized()) {
- TrailZ = 0;
- break;
- }
- unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
- uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
- LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
- computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1, Q);
- TrailZ = std::min(TrailZ,
- unsigned(countTrailingZeros(TypeSize) +
- LocalKnownZero.countTrailingOnes()));
- }
- }
- KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
- break;
- }
- case Instruction::PHI: {
- PHINode *P = cast<PHINode>(I);
- // Handle the case of a simple two-predecessor recurrence PHI.
- // There's a lot more that could theoretically be done here, but
- // this is sufficient to catch some interesting cases.
- if (P->getNumIncomingValues() == 2) {
- for (unsigned i = 0; i != 2; ++i) {
- Value *L = P->getIncomingValue(i);
- Value *R = P->getIncomingValue(!i);
- Operator *LU = dyn_cast<Operator>(L);
- if (!LU)
- continue;
- unsigned Opcode = LU->getOpcode();
- // Check for operations that have the property that if
- // both their operands have low zero bits, the result
- // will have low zero bits.
- if (Opcode == Instruction::Add ||
- Opcode == Instruction::Sub ||
- Opcode == Instruction::And ||
- Opcode == Instruction::Or ||
- Opcode == Instruction::Mul) {
- Value *LL = LU->getOperand(0);
- Value *LR = LU->getOperand(1);
- // Find a recurrence.
- if (LL == I)
- L = LR;
- else if (LR == I)
- L = LL;
- else
- break;
- // Ok, we have a PHI of the form L op= R. Check for low
- // zero bits.
- computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1, Q);
- // We need to take the minimum number of known bits
- APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
- computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1, Q);
- KnownZero = APInt::getLowBitsSet(BitWidth,
- std::min(KnownZero2.countTrailingOnes(),
- KnownZero3.countTrailingOnes()));
- break;
- }
- }
- }
- // Unreachable blocks may have zero-operand PHI nodes.
- if (P->getNumIncomingValues() == 0)
- break;
- // Otherwise take the unions of the known bit sets of the operands,
- // taking conservative care to avoid excessive recursion.
- if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
- // Skip if every incoming value references to ourself.
- if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
- break;
- KnownZero = APInt::getAllOnesValue(BitWidth);
- KnownOne = APInt::getAllOnesValue(BitWidth);
- for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
- // Skip direct self references.
- if (P->getIncomingValue(i) == P) continue;
- KnownZero2 = APInt(BitWidth, 0);
- KnownOne2 = APInt(BitWidth, 0);
- // Recurse, but cap the recursion to one level, because we don't
- // want to waste time spinning around in loops.
- computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
- MaxDepth-1, Q);
- KnownZero &= KnownZero2;
- KnownOne &= KnownOne2;
- // If all bits have been ruled out, there's no need to check
- // more operands.
- if (!KnownZero && !KnownOne)
- break;
- }
- }
- break;
- }
- case Instruction::Call:
- case Instruction::Invoke:
- if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
- computeKnownBitsFromRangeMetadata(*MD, KnownZero);
- // If a range metadata is attached to this IntrinsicInst, intersect the
- // explicit range specified by the metadata and the implicit range of
- // the intrinsic.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::ctlz:
- case Intrinsic::cttz: {
- unsigned LowBits = Log2_32(BitWidth)+1;
- // If this call is undefined for 0, the result will be less than 2^n.
- if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
- LowBits -= 1;
- KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
- break;
- }
- case Intrinsic::ctpop: {
- unsigned LowBits = Log2_32(BitWidth)+1;
- KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
- break;
- }
- case Intrinsic::x86_sse42_crc32_64_64:
- KnownZero |= APInt::getHighBitsSet(64, 32);
- break;
- }
- }
- break;
- case Instruction::ExtractValue:
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
- ExtractValueInst *EVI = cast<ExtractValueInst>(I);
- if (EVI->getNumIndices() != 1) break;
- if (EVI->getIndices()[0] == 0) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::sadd_with_overflow:
- computeKnownBitsAddSub(true, II->getArgOperand(0),
- II->getArgOperand(1), false, KnownZero,
- KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
- break;
- case Intrinsic::usub_with_overflow:
- case Intrinsic::ssub_with_overflow:
- computeKnownBitsAddSub(false, II->getArgOperand(0),
- II->getArgOperand(1), false, KnownZero,
- KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
- break;
- case Intrinsic::umul_with_overflow:
- case Intrinsic::smul_with_overflow:
- computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
- false, KnownZero, KnownOne,
- KnownZero2, KnownOne2, TD, Depth, Q);
- break;
- }
- }
- }
- }
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- }
- /// Determine whether the sign bit is known to be zero or one.
- /// Convenience wrapper around computeKnownBits.
- void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
- const DataLayout *TD, unsigned Depth,
- const Query &Q) {
- unsigned BitWidth = getBitWidth(V->getType(), TD);
- if (!BitWidth) {
- KnownZero = false;
- KnownOne = false;
- return;
- }
- APInt ZeroBits(BitWidth, 0);
- APInt OneBits(BitWidth, 0);
- computeKnownBits(V, ZeroBits, OneBits, TD, Depth, Q);
- KnownOne = OneBits[BitWidth - 1];
- KnownZero = ZeroBits[BitWidth - 1];
- }
- /// Return true if the given value is known to have exactly one
- /// bit set when defined. For vectors return true if every element is known to
- /// be a power of two when defined. Supports values with integer or pointer
- /// types and vectors of integers.
- bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
- const Query &Q) {
- if (Constant *C = dyn_cast<Constant>(V)) {
- if (C->isNullValue())
- return OrZero;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
- return CI->getValue().isPowerOf2();
- // TODO: Handle vector constants.
- }
- // 1 << X is clearly a power of two if the one is not shifted off the end. If
- // it is shifted off the end then the result is undefined.
- if (match(V, m_Shl(m_One(), m_Value())))
- return true;
- // (signbit) >>l X is clearly a power of two if the one is not shifted off the
- // bottom. If it is shifted off the bottom then the result is undefined.
- if (match(V, m_LShr(m_SignBit(), m_Value())))
- return true;
- // The remaining tests are all recursive, so bail out if we hit the limit.
- if (Depth++ == MaxDepth)
- return false;
- Value *X = nullptr, *Y = nullptr;
- // A shift of a power of two is a power of two or zero.
- if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
- match(V, m_Shr(m_Value(X), m_Value()))))
- return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q);
- if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
- return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
- if (SelectInst *SI = dyn_cast<SelectInst>(V))
- return
- isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
- isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
- if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
- // A power of two and'd with anything is a power of two or zero.
- if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q) ||
- isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth, Q))
- return true;
- // X & (-X) is always a power of two or zero.
- if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
- return true;
- return false;
- }
- // Adding a power-of-two or zero to the same power-of-two or zero yields
- // either the original power-of-two, a larger power-of-two or zero.
- if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
- OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
- if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
- if (match(X, m_And(m_Specific(Y), m_Value())) ||
- match(X, m_And(m_Value(), m_Specific(Y))))
- if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
- return true;
- if (match(Y, m_And(m_Specific(X), m_Value())) ||
- match(Y, m_And(m_Value(), m_Specific(X))))
- if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
- return true;
- unsigned BitWidth = V->getType()->getScalarSizeInBits();
- APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
- computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth, Q);
- APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
- computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth, Q);
- // If i8 V is a power of two or zero:
- // ZeroBits: 1 1 1 0 1 1 1 1
- // ~ZeroBits: 0 0 0 1 0 0 0 0
- if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
- // If OrZero isn't set, we cannot give back a zero result.
- // Make sure either the LHS or RHS has a bit set.
- if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
- return true;
- }
- }
- // An exact divide or right shift can only shift off zero bits, so the result
- // is a power of two only if the first operand is a power of two and not
- // copying a sign bit (sdiv int_min, 2).
- if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
- match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
- return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
- Depth, Q);
- }
- return false;
- }
- /// \brief Test whether a GEP's result is known to be non-null.
- ///
- /// Uses properties inherent in a GEP to try to determine whether it is known
- /// to be non-null.
- ///
- /// Currently this routine does not support vector GEPs.
- static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
- unsigned Depth, const Query &Q) {
- if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
- return false;
- // FIXME: Support vector-GEPs.
- assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
- // If the base pointer is non-null, we cannot walk to a null address with an
- // inbounds GEP in address space zero.
- if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
- return true;
- // Past this, if we don't have DataLayout, we can't do much.
- if (!DL)
- return false;
- // Walk the GEP operands and see if any operand introduces a non-zero offset.
- // If so, then the GEP cannot produce a null pointer, as doing so would
- // inherently violate the inbounds contract within address space zero.
- for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
- GTI != GTE; ++GTI) {
- // Struct types are easy -- they must always be indexed by a constant.
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
- unsigned ElementIdx = OpC->getZExtValue();
- const StructLayout *SL = DL->getStructLayout(STy);
- uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
- if (ElementOffset > 0)
- return true;
- continue;
- }
- // If we have a zero-sized type, the index doesn't matter. Keep looping.
- if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
- continue;
- // Fast path the constant operand case both for efficiency and so we don't
- // increment Depth when just zipping down an all-constant GEP.
- if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
- if (!OpC->isZero())
- return true;
- continue;
- }
- // We post-increment Depth here because while isKnownNonZero increments it
- // as well, when we pop back up that increment won't persist. We don't want
- // to recurse 10k times just because we have 10k GEP operands. We don't
- // bail completely out because we want to handle constant GEPs regardless
- // of depth.
- if (Depth++ >= MaxDepth)
- continue;
- if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
- return true;
- }
- return false;
- }
- /// Does the 'Range' metadata (which must be a valid MD_range operand list)
- /// ensure that the value it's attached to is never Value? 'RangeType' is
- /// is the type of the value described by the range.
- static bool rangeMetadataExcludesValue(MDNode* Ranges,
- const APInt& Value) {
- const unsigned NumRanges = Ranges->getNumOperands() / 2;
- assert(NumRanges >= 1);
- for (unsigned i = 0; i < NumRanges; ++i) {
- ConstantInt *Lower =
- mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
- ConstantInt *Upper =
- mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
- ConstantRange Range(Lower->getValue(), Upper->getValue());
- if (Range.contains(Value))
- return false;
- }
- return true;
- }
- /// Return true if the given value is known to be non-zero when defined.
- /// For vectors return true if every element is known to be non-zero when
- /// defined. Supports values with integer or pointer type and vectors of
- /// integers.
- bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
- const Query &Q) {
- if (Constant *C = dyn_cast<Constant>(V)) {
- if (C->isNullValue())
- return false;
- if (isa<ConstantInt>(C))
- // Must be non-zero due to null test above.
- return true;
- // TODO: Handle vectors
- return false;
- }
- if (Instruction* I = dyn_cast<Instruction>(V)) {
- if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
- // If the possible ranges don't contain zero, then the value is
- // definitely non-zero.
- if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
- const APInt ZeroValue(Ty->getBitWidth(), 0);
- if (rangeMetadataExcludesValue(Ranges, ZeroValue))
- return true;
- }
- }
- }
- // The remaining tests are all recursive, so bail out if we hit the limit.
- if (Depth++ >= MaxDepth)
- return false;
- // Check for pointer simplifications.
- if (V->getType()->isPointerTy()) {
- if (isKnownNonNull(V))
- return true;
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
- if (isGEPKnownNonNull(GEP, TD, Depth, Q))
- return true;
- }
- unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
- // X | Y != 0 if X != 0 or Y != 0.
- Value *X = nullptr, *Y = nullptr;
- if (match(V, m_Or(m_Value(X), m_Value(Y))))
- return isKnownNonZero(X, TD, Depth, Q) ||
- isKnownNonZero(Y, TD, Depth, Q);
- // ext X != 0 if X != 0.
- if (isa<SExtInst>(V) || isa<ZExtInst>(V))
- return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth, Q);
- // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
- // if the lowest bit is shifted off the end.
- if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
- // shl nuw can't remove any non-zero bits.
- OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
- if (BO->hasNoUnsignedWrap())
- return isKnownNonZero(X, TD, Depth, Q);
- APInt KnownZero(BitWidth, 0);
- APInt KnownOne(BitWidth, 0);
- computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
- if (KnownOne[0])
- return true;
- }
- // shr X, Y != 0 if X is negative. Note that the value of the shift is not
- // defined if the sign bit is shifted off the end.
- else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
- // shr exact can only shift out zero bits.
- PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
- if (BO->isExact())
- return isKnownNonZero(X, TD, Depth, Q);
- bool XKnownNonNegative, XKnownNegative;
- ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
- if (XKnownNegative)
- return true;
- }
- // div exact can only produce a zero if the dividend is zero.
- else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
- return isKnownNonZero(X, TD, Depth, Q);
- }
- // X + Y.
- else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
- bool XKnownNonNegative, XKnownNegative;
- bool YKnownNonNegative, YKnownNegative;
- ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
- ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth, Q);
- // If X and Y are both non-negative (as signed values) then their sum is not
- // zero unless both X and Y are zero.
- if (XKnownNonNegative && YKnownNonNegative)
- if (isKnownNonZero(X, TD, Depth, Q) ||
- isKnownNonZero(Y, TD, Depth, Q))
- return true;
- // If X and Y are both negative (as signed values) then their sum is not
- // zero unless both X and Y equal INT_MIN.
- if (BitWidth && XKnownNegative && YKnownNegative) {
- APInt KnownZero(BitWidth, 0);
- APInt KnownOne(BitWidth, 0);
- APInt Mask = APInt::getSignedMaxValue(BitWidth);
- // The sign bit of X is set. If some other bit is set then X is not equal
- // to INT_MIN.
- computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
- if ((KnownOne & Mask) != 0)
- return true;
- // The sign bit of Y is set. If some other bit is set then Y is not equal
- // to INT_MIN.
- computeKnownBits(Y, KnownZero, KnownOne, TD, Depth, Q);
- if ((KnownOne & Mask) != 0)
- return true;
- }
- // The sum of a non-negative number and a power of two is not zero.
- if (XKnownNonNegative &&
- isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth, Q))
- return true;
- if (YKnownNonNegative &&
- isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth, Q))
- return true;
- }
- // X * Y.
- else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
- OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
- // If X and Y are non-zero then so is X * Y as long as the multiplication
- // does not overflow.
- if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
- isKnownNonZero(X, TD, Depth, Q) &&
- isKnownNonZero(Y, TD, Depth, Q))
- return true;
- }
- // (C ? X : Y) != 0 if X != 0 and Y != 0.
- else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
- if (isKnownNonZero(SI->getTrueValue(), TD, Depth, Q) &&
- isKnownNonZero(SI->getFalseValue(), TD, Depth, Q))
- return true;
- }
- if (!BitWidth) return false;
- APInt KnownZero(BitWidth, 0);
- APInt KnownOne(BitWidth, 0);
- computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
- return KnownOne != 0;
- }
- /// Return true if 'V & Mask' is known to be zero. We use this predicate to
- /// simplify operations downstream. Mask is known to be zero for bits that V
- /// cannot have.
- ///
- /// This function is defined on values with integer type, values with pointer
- /// type (but only if TD is non-null), and vectors of integers. In the case
- /// where V is a vector, the mask, known zero, and known one values are the
- /// same width as the vector element, and the bit is set only if it is true
- /// for all of the elements in the vector.
- bool MaskedValueIsZero(Value *V, const APInt &Mask,
- const DataLayout *TD, unsigned Depth,
- const Query &Q) {
- APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
- computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
- return (KnownZero & Mask) == Mask;
- }
- /// Return the number of times the sign bit of the register is replicated into
- /// the other bits. We know that at least 1 bit is always equal to the sign bit
- /// (itself), but other cases can give us information. For example, immediately
- /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
- /// other, so we return 3.
- ///
- /// 'Op' must have a scalar integer type.
- ///
- unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
- unsigned Depth, const Query &Q) {
- assert((TD || V->getType()->isIntOrIntVectorTy()) &&
- "ComputeNumSignBits requires a DataLayout object to operate "
- "on non-integer values!");
- Type *Ty = V->getType();
- unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
- Ty->getScalarSizeInBits();
- unsigned Tmp, Tmp2;
- unsigned FirstAnswer = 1;
- // Note that ConstantInt is handled by the general computeKnownBits case
- // below.
- if (Depth == 6)
- return 1; // Limit search depth.
- Operator *U = dyn_cast<Operator>(V);
- switch (Operator::getOpcode(V)) {
- default: break;
- case Instruction::SExt:
- Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
- return ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q) + Tmp;
- case Instruction::AShr: {
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
- // ashr X, C -> adds C sign bits. Vectors too.
- const APInt *ShAmt;
- if (match(U->getOperand(1), m_APInt(ShAmt))) {
- Tmp += ShAmt->getZExtValue();
- if (Tmp > TyBits) Tmp = TyBits;
- }
- return Tmp;
- }
- case Instruction::Shl: {
- const APInt *ShAmt;
- if (match(U->getOperand(1), m_APInt(ShAmt))) {
- // shl destroys sign bits.
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
- Tmp2 = ShAmt->getZExtValue();
- if (Tmp2 >= TyBits || // Bad shift.
- Tmp2 >= Tmp) break; // Shifted all sign bits out.
- return Tmp - Tmp2;
- }
- break;
- }
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: // NOT is handled here.
- // Logical binary ops preserve the number of sign bits at the worst.
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
- if (Tmp != 1) {
- Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
- FirstAnswer = std::min(Tmp, Tmp2);
- // We computed what we know about the sign bits as our first
- // answer. Now proceed to the generic code that uses
- // computeKnownBits, and pick whichever answer is better.
- }
- break;
- case Instruction::Select:
- Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
- if (Tmp == 1) return 1; // Early out.
- Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1, Q);
- return std::min(Tmp, Tmp2);
- case Instruction::Add:
- // Add can have at most one carry bit. Thus we know that the output
- // is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
- if (Tmp == 1) return 1; // Early out.
- // Special case decrementing a value (ADD X, -1):
- if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
- if (CRHS->isAllOnesValue()) {
- APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
- // If the input is known to be 0 or 1, the output is 0/-1, which is all
- // sign bits set.
- if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
- return TyBits;
- // If we are subtracting one from a positive number, there is no carry
- // out of the result.
- if (KnownZero.isNegative())
- return Tmp;
- }
- Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
- if (Tmp2 == 1) return 1;
- return std::min(Tmp, Tmp2)-1;
- case Instruction::Sub:
- Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
- if (Tmp2 == 1) return 1;
- // Handle NEG.
- if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
- if (CLHS->isNullValue()) {
- APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
- // If the input is known to be 0 or 1, the output is 0/-1, which is all
- // sign bits set.
- if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
- return TyBits;
- // If the input is known to be positive (the sign bit is known clear),
- // the output of the NEG has the same number of sign bits as the input.
- if (KnownZero.isNegative())
- return Tmp2;
- // Otherwise, we treat this like a SUB.
- }
- // Sub can have at most one carry bit. Thus we know that the output
- // is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
- if (Tmp == 1) return 1; // Early out.
- return std::min(Tmp, Tmp2)-1;
- case Instruction::PHI: {
- PHINode *PN = cast<PHINode>(U);
- unsigned NumIncomingValues = PN->getNumIncomingValues();
- // Don't analyze large in-degree PHIs.
- if (NumIncomingValues > 4) break;
- // Unreachable blocks may have zero-operand PHI nodes.
- if (NumIncomingValues == 0) break;
- // Take the minimum of all incoming values. This can't infinitely loop
- // because of our depth threshold.
- Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1, Q);
- for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
- if (Tmp == 1) return Tmp;
- Tmp = std::min(Tmp,
- ComputeNumSignBits(PN->getIncomingValue(i), TD,
- Depth+1, Q));
- }
- return Tmp;
- }
- case Instruction::Trunc:
- // FIXME: it's tricky to do anything useful for this, but it is an important
- // case for targets like X86.
- break;
- }
- // Finally, if we can prove that the top bits of the result are 0's or 1's,
- // use this information.
- APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- APInt Mask;
- computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
- if (KnownZero.isNegative()) { // sign bit is 0
- Mask = KnownZero;
- } else if (KnownOne.isNegative()) { // sign bit is 1;
- Mask = KnownOne;
- } else {
- // Nothing known.
- return FirstAnswer;
- }
- // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
- // the number of identical bits in the top of the input value.
- Mask = ~Mask;
- Mask <<= Mask.getBitWidth()-TyBits;
- // Return # leading zeros. We use 'min' here in case Val was zero before
- // shifting. We don't want to return '64' as for an i32 "0".
- return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
- }
- /// This function computes the integer multiple of Base that equals V.
- /// If successful, it returns true and returns the multiple in
- /// Multiple. If unsuccessful, it returns false. It looks
- /// through SExt instructions only if LookThroughSExt is true.
- bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
- bool LookThroughSExt, unsigned Depth) {
- const unsigned MaxDepth = 6;
- assert(V && "No Value?");
- assert(Depth <= MaxDepth && "Limit Search Depth");
- assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
- Type *T = V->getType();
- ConstantInt *CI = dyn_cast<ConstantInt>(V);
- if (Base == 0)
- return false;
- if (Base == 1) {
- Multiple = V;
- return true;
- }
- ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
- Constant *BaseVal = ConstantInt::get(T, Base);
- if (CO && CO == BaseVal) {
- // Multiple is 1.
- Multiple = ConstantInt::get(T, 1);
- return true;
- }
- if (CI && CI->getZExtValue() % Base == 0) {
- Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
- return true;
- }
- if (Depth == MaxDepth) return false; // Limit search depth.
- Operator *I = dyn_cast<Operator>(V);
- if (!I) return false;
- switch (I->getOpcode()) {
- default: break;
- case Instruction::SExt:
- if (!LookThroughSExt) return false;
- // otherwise fall through to ZExt
- case Instruction::ZExt:
- return ComputeMultiple(I->getOperand(0), Base, Multiple,
- LookThroughSExt, Depth+1);
- case Instruction::Shl:
- case Instruction::Mul: {
- Value *Op0 = I->getOperand(0);
- Value *Op1 = I->getOperand(1);
- if (I->getOpcode() == Instruction::Shl) {
- ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
- if (!Op1CI) return false;
- // Turn Op0 << Op1 into Op0 * 2^Op1
- APInt Op1Int = Op1CI->getValue();
- uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
- APInt API(Op1Int.getBitWidth(), 0);
- API.setBit(BitToSet);
- Op1 = ConstantInt::get(V->getContext(), API);
- }
- Value *Mul0 = nullptr;
- if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
- if (Constant *Op1C = dyn_cast<Constant>(Op1))
- if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
- if (Op1C->getType()->getPrimitiveSizeInBits() <
- MulC->getType()->getPrimitiveSizeInBits())
- Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
- if (Op1C->getType()->getPrimitiveSizeInBits() >
- MulC->getType()->getPrimitiveSizeInBits())
- MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
- // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
- Multiple = ConstantExpr::getMul(MulC, Op1C);
- return true;
- }
- if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
- if (Mul0CI->getValue() == 1) {
- // V == Base * Op1, so return Op1
- Multiple = Op1;
- return true;
- }
- }
- Value *Mul1 = nullptr;
- if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
- if (Constant *Op0C = dyn_cast<Constant>(Op0))
- if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
- if (Op0C->getType()->getPrimitiveSizeInBits() <
- MulC->getType()->getPrimitiveSizeInBits())
- Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
- if (Op0C->getType()->getPrimitiveSizeInBits() >
- MulC->getType()->getPrimitiveSizeInBits())
- MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
- // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
- Multiple = ConstantExpr::getMul(MulC, Op0C);
- return true;
- }
- if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
- if (Mul1CI->getValue() == 1) {
- // V == Base * Op0, so return Op0
- Multiple = Op0;
- return true;
- }
- }
- }
- }
- // We could not determine if V is a multiple of Base.
- return false;
- }
- /// Return true if we can prove that the specified FP value is never equal to
- /// -0.0.
- ///
- /// NOTE: this function will need to be revisited when we support non-default
- /// rounding modes!
- ///
- bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
- return !CFP->getValueAPF().isNegZero();
- if (Depth == 6)
- return 1; // Limit search depth.
- const Operator *I = dyn_cast<Operator>(V);
- if (!I) return false;
- // Check if the nsz fast-math flag is set
- if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
- if (FPO->hasNoSignedZeros())
- return true;
- // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
- if (I->getOpcode() == Instruction::FAdd)
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
- if (CFP->isNullValue())
- return true;
- // sitofp and uitofp turn into +0.0 for zero.
- if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
- return true;
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
- // sqrt(-0.0) = -0.0, no other negative results are possible.
- if (II->getIntrinsicID() == Intrinsic::sqrt)
- return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
- if (const CallInst *CI = dyn_cast<CallInst>(I))
- if (const Function *F = CI->getCalledFunction()) {
- if (F->isDeclaration()) {
- // abs(x) != -0.0
- if (F->getName() == "abs") return true;
- // fabs[lf](x) != -0.0
- if (F->getName() == "fabs") return true;
- if (F->getName() == "fabsf") return true;
- if (F->getName() == "fabsl") return true;
- if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
- F->getName() == "sqrtl")
- return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
- }
- }
- return false;
- }
- /// If the specified value can be set by repeating the same byte in memory,
- /// return the i8 value that it is represented with. This is
- /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
- /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
- /// byte store (e.g. i16 0x1234), return null.
- Value *llvm::isBytewiseValue(Value *V) {
- // All byte-wide stores are splatable, even of arbitrary variables.
- if (V->getType()->isIntegerTy(8)) return V;
- // Handle 'null' ConstantArrayZero etc.
- if (Constant *C = dyn_cast<Constant>(V))
- if (C->isNullValue())
- return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
- // Constant float and double values can be handled as integer values if the
- // corresponding integer value is "byteable". An important case is 0.0.
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
- if (CFP->getType()->isFloatTy())
- V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
- if (CFP->getType()->isDoubleTy())
- V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
- // Don't handle long double formats, which have strange constraints.
- }
- // We can handle constant integers that are power of two in size and a
- // multiple of 8 bits.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- unsigned Width = CI->getBitWidth();
- if (isPowerOf2_32(Width) && Width > 8) {
- // We can handle this value if the recursive binary decomposition is the
- // same at all levels.
- APInt Val = CI->getValue();
- APInt Val2;
- while (Val.getBitWidth() != 8) {
- unsigned NextWidth = Val.getBitWidth()/2;
- Val2 = Val.lshr(NextWidth);
- Val2 = Val2.trunc(Val.getBitWidth()/2);
- Val = Val.trunc(Val.getBitWidth()/2);
- // If the top/bottom halves aren't the same, reject it.
- if (Val != Val2)
- return nullptr;
- }
- return ConstantInt::get(V->getContext(), Val);
- }
- }
- // A ConstantDataArray/Vector is splatable if all its members are equal and
- // also splatable.
- if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
- Value *Elt = CA->getElementAsConstant(0);
- Value *Val = isBytewiseValue(Elt);
- if (!Val)
- return nullptr;
- for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
- if (CA->getElementAsConstant(I) != Elt)
- return nullptr;
- return Val;
- }
- // Conceptually, we could handle things like:
- // %a = zext i8 %X to i16
- // %b = shl i16 %a, 8
- // %c = or i16 %a, %b
- // but until there is an example that actually needs this, it doesn't seem
- // worth worrying about.
- return nullptr;
- }
- // This is the recursive version of BuildSubAggregate. It takes a few different
- // arguments. Idxs is the index within the nested struct From that we are
- // looking at now (which is of type IndexedType). IdxSkip is the number of
- // indices from Idxs that should be left out when inserting into the resulting
- // struct. To is the result struct built so far, new insertvalue instructions
- // build on that.
- static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
- SmallVectorImpl<unsigned> &Idxs,
- unsigned IdxSkip,
- Instruction *InsertBefore) {
- llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
- if (STy) {
- // Save the original To argument so we can modify it
- Value *OrigTo = To;
- // General case, the type indexed by Idxs is a struct
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- // Process each struct element recursively
- Idxs.push_back(i);
- Value *PrevTo = To;
- To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
- InsertBefore);
- Idxs.pop_back();
- if (!To) {
- // Couldn't find any inserted value for this index? Cleanup
- while (PrevTo != OrigTo) {
- InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
- PrevTo = Del->getAggregateOperand();
- Del->eraseFromParent();
- }
- // Stop processing elements
- break;
- }
- }
- // If we successfully found a value for each of our subaggregates
- if (To)
- return To;
- }
- // Base case, the type indexed by SourceIdxs is not a struct, or not all of
- // the struct's elements had a value that was inserted directly. In the latter
- // case, perhaps we can't determine each of the subelements individually, but
- // we might be able to find the complete struct somewhere.
- // Find the value that is at that particular spot
- Value *V = FindInsertedValue(From, Idxs);
- if (!V)
- return nullptr;
- // Insert the value in the new (sub) aggregrate
- return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
- "tmp", InsertBefore);
- }
- // This helper takes a nested struct and extracts a part of it (which is again a
- // struct) into a new value. For example, given the struct:
- // { a, { b, { c, d }, e } }
- // and the indices "1, 1" this returns
- // { c, d }.
- //
- // It does this by inserting an insertvalue for each element in the resulting
- // struct, as opposed to just inserting a single struct. This will only work if
- // each of the elements of the substruct are known (ie, inserted into From by an
- // insertvalue instruction somewhere).
- //
- // All inserted insertvalue instructions are inserted before InsertBefore
- static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
- Instruction *InsertBefore) {
- assert(InsertBefore && "Must have someplace to insert!");
- Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
- idx_range);
- Value *To = UndefValue::get(IndexedType);
- SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
- unsigned IdxSkip = Idxs.size();
- return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
- }
- /// Given an aggregrate and an sequence of indices, see if
- /// the scalar value indexed is already around as a register, for example if it
- /// were inserted directly into the aggregrate.
- ///
- /// If InsertBefore is not null, this function will duplicate (modified)
- /// insertvalues when a part of a nested struct is extracted.
- Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
- Instruction *InsertBefore) {
- // Nothing to index? Just return V then (this is useful at the end of our
- // recursion).
- if (idx_range.empty())
- return V;
- // We have indices, so V should have an indexable type.
- assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
- "Not looking at a struct or array?");
- assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
- "Invalid indices for type?");
- if (Constant *C = dyn_cast<Constant>(V)) {
- C = C->getAggregateElement(idx_range[0]);
- if (!C) return nullptr;
- return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
- }
- if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
- // Loop the indices for the insertvalue instruction in parallel with the
- // requested indices
- const unsigned *req_idx = idx_range.begin();
- for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
- i != e; ++i, ++req_idx) {
- if (req_idx == idx_range.end()) {
- // We can't handle this without inserting insertvalues
- if (!InsertBefore)
- return nullptr;
- // The requested index identifies a part of a nested aggregate. Handle
- // this specially. For example,
- // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
- // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
- // %C = extractvalue {i32, { i32, i32 } } %B, 1
- // This can be changed into
- // %A = insertvalue {i32, i32 } undef, i32 10, 0
- // %C = insertvalue {i32, i32 } %A, i32 11, 1
- // which allows the unused 0,0 element from the nested struct to be
- // removed.
- return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
- InsertBefore);
- }
- // This insert value inserts something else than what we are looking for.
- // See if the (aggregrate) value inserted into has the value we are
- // looking for, then.
- if (*req_idx != *i)
- return FindInsertedValue(I->getAggregateOperand(), idx_range,
- InsertBefore);
- }
- // If we end up here, the indices of the insertvalue match with those
- // requested (though possibly only partially). Now we recursively look at
- // the inserted value, passing any remaining indices.
- return FindInsertedValue(I->getInsertedValueOperand(),
- makeArrayRef(req_idx, idx_range.end()),
- InsertBefore);
- }
- if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
- // If we're extracting a value from an aggregrate that was extracted from
- // something else, we can extract from that something else directly instead.
- // However, we will need to chain I's indices with the requested indices.
- // Calculate the number of indices required
- unsigned size = I->getNumIndices() + idx_range.size();
- // Allocate some space to put the new indices in
- SmallVector<unsigned, 5> Idxs;
- Idxs.reserve(size);
- // Add indices from the extract value instruction
- Idxs.append(I->idx_begin(), I->idx_end());
- // Add requested indices
- Idxs.append(idx_range.begin(), idx_range.end());
- assert(Idxs.size() == size
- && "Number of indices added not correct?");
- return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
- }
- // Otherwise, we don't know (such as, extracting from a function return value
- // or load instruction)
- return nullptr;
- }
- /// Analyze the specified pointer to see if it can be expressed as a base
- /// pointer plus a constant offset. Return the base and offset to the caller.
- Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
- const DataLayout *DL) {
- // Without DataLayout, conservatively assume 64-bit offsets, which is
- // the widest we support.
- unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
- APInt ByteOffset(BitWidth, 0);
- while (1) {
- if (Ptr->getType()->isVectorTy())
- break;
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
- if (DL) {
- APInt GEPOffset(BitWidth, 0);
- if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
- break;
- ByteOffset += GEPOffset;
- }
- Ptr = GEP->getPointerOperand();
- } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
- Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
- Ptr = cast<Operator>(Ptr)->getOperand(0);
- } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
- if (GA->mayBeOverridden())
- break;
- Ptr = GA->getAliasee();
- } else {
- break;
- }
- }
- Offset = ByteOffset.getSExtValue();
- return Ptr;
- }
- /// This function computes the length of a null-terminated C string pointed to
- /// by V. If successful, it returns true and returns the string in Str.
- /// If unsuccessful, it returns false.
- bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
- uint64_t Offset, bool TrimAtNul) {
- assert(V);
- // Look through bitcast instructions and geps.
- V = V->stripPointerCasts();
- // If the value is a GEP instructionor constant expression, treat it as an
- // offset.
- if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
- // Make sure the GEP has exactly three arguments.
- if (GEP->getNumOperands() != 3)
- return false;
- // Make sure the index-ee is a pointer to array of i8.
- PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
- ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
- if (!AT || !AT->getElementType()->isIntegerTy(8))
- return false;
- // Check to make sure that the first operand of the GEP is an integer and
- // has value 0 so that we are sure we're indexing into the initializer.
- const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
- if (!FirstIdx || !FirstIdx->isZero())
- return false;
- // If the second index isn't a ConstantInt, then this is a variable index
- // into the array. If this occurs, we can't say anything meaningful about
- // the string.
- uint64_t StartIdx = 0;
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
- StartIdx = CI->getZExtValue();
- else
- return false;
- return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
- }
- // The GEP instruction, constant or instruction, must reference a global
- // variable that is a constant and is initialized. The referenced constant
- // initializer is the array that we'll use for optimization.
- const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
- if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
- return false;
- // Handle the all-zeros case
- if (GV->getInitializer()->isNullValue()) {
- // This is a degenerate case. The initializer is constant zero so the
- // length of the string must be zero.
- Str = "";
- return true;
- }
- // Must be a Constant Array
- const ConstantDataArray *Array =
- dyn_cast<ConstantDataArray>(GV->getInitializer());
- if (!Array || !Array->isString())
- return false;
- // Get the number of elements in the array
- uint64_t NumElts = Array->getType()->getArrayNumElements();
- // Start out with the entire array in the StringRef.
- Str = Array->getAsString();
- if (Offset > NumElts)
- return false;
- // Skip over 'offset' bytes.
- Str = Str.substr(Offset);
- if (TrimAtNul) {
- // Trim off the \0 and anything after it. If the array is not nul
- // terminated, we just return the whole end of string. The client may know
- // some other way that the string is length-bound.
- Str = Str.substr(0, Str.find('\0'));
- }
- return true;
- }
- // These next two are very similar to the above, but also look through PHI
- // nodes.
- // TODO: See if we can integrate these two together.
- /// If we can compute the length of the string pointed to by
- /// the specified pointer, return 'len+1'. If we can't, return 0.
- static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
- // Look through noop bitcast instructions.
- V = V->stripPointerCasts();
- // If this is a PHI node, there are two cases: either we have already seen it
- // or we haven't.
- if (PHINode *PN = dyn_cast<PHINode>(V)) {
- if (!PHIs.insert(PN).second)
- return ~0ULL; // already in the set.
- // If it was new, see if all the input strings are the same length.
- uint64_t LenSoFar = ~0ULL;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
- if (Len == 0) return 0; // Unknown length -> unknown.
- if (Len == ~0ULL) continue;
- if (Len != LenSoFar && LenSoFar != ~0ULL)
- return 0; // Disagree -> unknown.
- LenSoFar = Len;
- }
- // Success, all agree.
- return LenSoFar;
- }
- // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
- if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
- uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
- if (Len1 == 0) return 0;
- uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
- if (Len2 == 0) return 0;
- if (Len1 == ~0ULL) return Len2;
- if (Len2 == ~0ULL) return Len1;
- if (Len1 != Len2) return 0;
- return Len1;
- }
- // Otherwise, see if we can read the string.
- StringRef StrData;
- if (!getConstantStringInfo(V, StrData))
- return 0;
- return StrData.size()+1;
- }
- /// If we can compute the length of the string pointed to by
- /// the specified pointer, return 'len+1'. If we can't, return 0.
- uint64_t llvm::GetStringLength(Value *V) {
- if (!V->getType()->isPointerTy()) return 0;
- SmallPtrSet<PHINode*, 32> PHIs;
- uint64_t Len = GetStringLengthH(V, PHIs);
- // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
- // an empty string as a length.
- return Len == ~0ULL ? 1 : Len;
- }
- Value *
- llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
- if (!V->getType()->isPointerTy())
- return V;
- for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
- V = GEP->getPointerOperand();
- } else if (Operator::getOpcode(V) == Instruction::BitCast ||
- Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
- V = cast<Operator>(V)->getOperand(0);
- } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- if (GA->mayBeOverridden())
- return V;
- V = GA->getAliasee();
- } else {
- // See if InstructionSimplify knows any relevant tricks.
- if (Instruction *I = dyn_cast<Instruction>(V))
- // TODO: Acquire a DominatorTree and AssumptionCache and use them.
- if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
- V = Simplified;
- continue;
- }
- return V;
- }
- assert(V->getType()->isPointerTy() && "Unexpected operand type!");
- }
- return V;
- }
- void
- llvm::GetUnderlyingObjects(Value *V,
- SmallVectorImpl<Value *> &Objects,
- const DataLayout *TD,
- unsigned MaxLookup) {
- SmallPtrSet<Value *, 4> Visited;
- SmallVector<Value *, 4> Worklist;
- Worklist.push_back(V);
- do {
- Value *P = Worklist.pop_back_val();
- P = GetUnderlyingObject(P, TD, MaxLookup);
- if (!Visited.insert(P).second)
- continue;
- if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
- Worklist.push_back(SI->getTrueValue());
- Worklist.push_back(SI->getFalseValue());
- continue;
- }
- if (PHINode *PN = dyn_cast<PHINode>(P)) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- Worklist.push_back(PN->getIncomingValue(i));
- continue;
- }
- Objects.push_back(P);
- } while (!Worklist.empty());
- }
- /// Return true if the only users of this pointer are lifetime markers.
- bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
- for (const User *U : V->users()) {
- const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
- if (!II) return false;
- if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
- II->getIntrinsicID() != Intrinsic::lifetime_end)
- return false;
- }
- return true;
- }
- bool llvm::isSafeToSpeculativelyExecute(const Value *V,
- const DataLayout *TD) {
- const Operator *Inst = dyn_cast<Operator>(V);
- if (!Inst)
- return false;
- for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
- if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
- if (C->canTrap())
- return false;
- switch (Inst->getOpcode()) {
- default:
- return true;
- case Instruction::UDiv:
- case Instruction::URem: {
- // x / y is undefined if y == 0.
- const APInt *V;
- if (match(Inst->getOperand(1), m_APInt(V)))
- return *V != 0;
- return false;
- }
- case Instruction::SDiv:
- case Instruction::SRem: {
- // x / y is undefined if y == 0 or x == INT_MIN and y == -1
- const APInt *X, *Y;
- if (match(Inst->getOperand(1), m_APInt(Y))) {
- if (*Y != 0) {
- if (*Y == -1) {
- // The numerator can't be MinSignedValue if the denominator is -1.
- if (match(Inst->getOperand(0), m_APInt(X)))
- return !Y->isMinSignedValue();
- // The numerator *might* be MinSignedValue.
- return false;
- }
- // The denominator is not 0 or -1, it's safe to proceed.
- return true;
- }
- }
- return false;
- }
- case Instruction::Load: {
- const LoadInst *LI = cast<LoadInst>(Inst);
- if (!LI->isUnordered() ||
- // Speculative load may create a race that did not exist in the source.
- LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
- return false;
- return LI->getPointerOperand()->isDereferenceablePointer(TD);
- }
- case Instruction::Call: {
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
- switch (II->getIntrinsicID()) {
- // These synthetic intrinsics have no side-effects and just mark
- // information about their operands.
- // FIXME: There are other no-op synthetic instructions that potentially
- // should be considered at least *safe* to speculate...
- case Intrinsic::dbg_declare:
- case Intrinsic::dbg_value:
- return true;
- case Intrinsic::bswap:
- case Intrinsic::ctlz:
- case Intrinsic::ctpop:
- case Intrinsic::cttz:
- case Intrinsic::objectsize:
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::smul_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::umul_with_overflow:
- case Intrinsic::usub_with_overflow:
- return true;
- // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
- // errno like libm sqrt would.
- case Intrinsic::sqrt:
- case Intrinsic::fma:
- case Intrinsic::fmuladd:
- case Intrinsic::fabs:
- case Intrinsic::minnum:
- case Intrinsic::maxnum:
- return true;
- // TODO: some fp intrinsics are marked as having the same error handling
- // as libm. They're safe to speculate when they won't error.
- // TODO: are convert_{from,to}_fp16 safe?
- // TODO: can we list target-specific intrinsics here?
- default: break;
- }
- }
- return false; // The called function could have undefined behavior or
- // side-effects, even if marked readnone nounwind.
- }
- case Instruction::VAArg:
- case Instruction::Alloca:
- case Instruction::Invoke:
- case Instruction::PHI:
- case Instruction::Store:
- case Instruction::Ret:
- case Instruction::Br:
- case Instruction::IndirectBr:
- case Instruction::Switch:
- case Instruction::Unreachable:
- case Instruction::Fence:
- case Instruction::LandingPad:
- case Instruction::AtomicRMW:
- case Instruction::AtomicCmpXchg:
- case Instruction::Resume:
- return false; // Misc instructions which have effects
- }
- }
- /// Return true if we know that the specified value is never null.
- bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
- // Alloca never returns null, malloc might.
- if (isa<AllocaInst>(V)) return true;
- // A byval, inalloca, or nonnull argument is never null.
- if (const Argument *A = dyn_cast<Argument>(V))
- return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
- // Global values are not null unless extern weak.
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
- return !GV->hasExternalWeakLinkage();
- // A Load tagged w/nonnull metadata is never null.
- if (const LoadInst *LI = dyn_cast<LoadInst>(V))
- return LI->getMetadata(LLVMContext::MD_nonnull);
- if (ImmutableCallSite CS = V)
- if (CS.isReturnNonNull())
- return true;
- // operator new never returns null.
- if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
- return true;
- return false;
- }
- OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
- const DataLayout *DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- // Multiplying n * m significant bits yields a result of n + m significant
- // bits. If the total number of significant bits does not exceed the
- // result bit width (minus 1), there is no overflow.
- // This means if we have enough leading zero bits in the operands
- // we can guarantee that the result does not overflow.
- // Ref: "Hacker's Delight" by Henry Warren
- unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
- APInt LHSKnownZero(BitWidth, 0);
- APInt LHSKnownOne(BitWidth, 0);
- APInt RHSKnownZero(BitWidth, 0);
- APInt RHSKnownOne(BitWidth, 0);
- computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
- DT);
- computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
- DT);
- // Note that underestimating the number of zero bits gives a more
- // conservative answer.
- unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
- RHSKnownZero.countLeadingOnes();
- // First handle the easy case: if we have enough zero bits there's
- // definitely no overflow.
- if (ZeroBits >= BitWidth)
- return OverflowResult::NeverOverflows;
- // Get the largest possible values for each operand.
- APInt LHSMax = ~LHSKnownZero;
- APInt RHSMax = ~RHSKnownZero;
- // We know the multiply operation doesn't overflow if the maximum values for
- // each operand will not overflow after we multiply them together.
- bool MaxOverflow;
- LHSMax.umul_ov(RHSMax, MaxOverflow);
- if (!MaxOverflow)
- return OverflowResult::NeverOverflows;
- // We know it always overflows if multiplying the smallest possible values for
- // the operands also results in overflow.
- bool MinOverflow;
- LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
- if (MinOverflow)
- return OverflowResult::AlwaysOverflows;
- return OverflowResult::MayOverflow;
- }
- OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
- const DataLayout *DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- bool LHSKnownNonNegative, LHSKnownNegative;
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
- AC, CxtI, DT);
- if (LHSKnownNonNegative || LHSKnownNegative) {
- bool RHSKnownNonNegative, RHSKnownNegative;
- ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
- AC, CxtI, DT);
- if (LHSKnownNegative && RHSKnownNegative) {
- // The sign bit is set in both cases: this MUST overflow.
- // Create a simple add instruction, and insert it into the struct.
- return OverflowResult::AlwaysOverflows;
- }
- if (LHSKnownNonNegative && RHSKnownNonNegative) {
- // The sign bit is clear in both cases: this CANNOT overflow.
- // Create a simple add instruction, and insert it into the struct.
- return OverflowResult::NeverOverflows;
- }
- }
- return OverflowResult::MayOverflow;
- }
|