12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013 |
- //===- CFLAliasAnalysis.cpp - CFL-Based Alias Analysis Implementation ------==//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements a CFL-based context-insensitive alias analysis
- // algorithm. It does not depend on types. The algorithm is a mixture of the one
- // described in "Demand-driven alias analysis for C" by Xin Zheng and Radu
- // Rugina, and "Fast algorithms for Dyck-CFL-reachability with applications to
- // Alias Analysis" by Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the
- // papers, we build a graph of the uses of a variable, where each node is a
- // memory location, and each edge is an action that happened on that memory
- // location. The "actions" can be one of Dereference, Reference, Assign, or
- // Assign.
- //
- // Two variables are considered as aliasing iff you can reach one value's node
- // from the other value's node and the language formed by concatenating all of
- // the edge labels (actions) conforms to a context-free grammar.
- //
- // Because this algorithm requires a graph search on each query, we execute the
- // algorithm outlined in "Fast algorithms..." (mentioned above)
- // in order to transform the graph into sets of variables that may alias in
- // ~nlogn time (n = number of variables.), which makes queries take constant
- // time.
- //===----------------------------------------------------------------------===//
- #include "StratifiedSets.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/Passes.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/InstVisitor.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Allocator.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/ErrorHandling.h"
- #include <algorithm>
- #include <cassert>
- #include <forward_list>
- #include <tuple>
- using namespace llvm;
- // Try to go from a Value* to a Function*. Never returns nullptr.
- static Optional<Function *> parentFunctionOfValue(Value *);
- // Returns possible functions called by the Inst* into the given
- // SmallVectorImpl. Returns true if targets found, false otherwise.
- // This is templated because InvokeInst/CallInst give us the same
- // set of functions that we care about, and I don't like repeating
- // myself.
- template <typename Inst>
- static bool getPossibleTargets(Inst *, SmallVectorImpl<Function *> &);
- // Some instructions need to have their users tracked. Instructions like
- // `add` require you to get the users of the Instruction* itself, other
- // instructions like `store` require you to get the users of the first
- // operand. This function gets the "proper" value to track for each
- // type of instruction we support.
- static Optional<Value *> getTargetValue(Instruction *);
- // There are certain instructions (i.e. FenceInst, etc.) that we ignore.
- // This notes that we should ignore those.
- static bool hasUsefulEdges(Instruction *);
- const StratifiedIndex StratifiedLink::SetSentinel =
- std::numeric_limits<StratifiedIndex>::max();
- namespace {
- // StratifiedInfo Attribute things.
- typedef unsigned StratifiedAttr;
- LLVM_CONSTEXPR unsigned MaxStratifiedAttrIndex = NumStratifiedAttrs;
- LLVM_CONSTEXPR unsigned AttrAllIndex = 0;
- LLVM_CONSTEXPR unsigned AttrGlobalIndex = 1;
- LLVM_CONSTEXPR unsigned AttrFirstArgIndex = 2;
- LLVM_CONSTEXPR unsigned AttrLastArgIndex = MaxStratifiedAttrIndex;
- LLVM_CONSTEXPR unsigned AttrMaxNumArgs = AttrLastArgIndex - AttrFirstArgIndex;
- LLVM_CONSTEXPR StratifiedAttr AttrNone = 0;
- LLVM_CONSTEXPR StratifiedAttr AttrAll = ~AttrNone;
- // \brief StratifiedSets call for knowledge of "direction", so this is how we
- // represent that locally.
- enum class Level { Same, Above, Below };
- // \brief Edges can be one of four "weights" -- each weight must have an inverse
- // weight (Assign has Assign; Reference has Dereference).
- enum class EdgeType {
- // The weight assigned when assigning from or to a value. For example, in:
- // %b = getelementptr %a, 0
- // ...The relationships are %b assign %a, and %a assign %b. This used to be
- // two edges, but having a distinction bought us nothing.
- Assign,
- // The edge used when we have an edge going from some handle to a Value.
- // Examples of this include:
- // %b = load %a (%b Dereference %a)
- // %b = extractelement %a, 0 (%a Dereference %b)
- Dereference,
- // The edge used when our edge goes from a value to a handle that may have
- // contained it at some point. Examples:
- // %b = load %a (%a Reference %b)
- // %b = extractelement %a, 0 (%b Reference %a)
- Reference
- };
- // \brief Encodes the notion of a "use"
- struct Edge {
- // \brief Which value the edge is coming from
- Value *From;
- // \brief Which value the edge is pointing to
- Value *To;
- // \brief Edge weight
- EdgeType Weight;
- // \brief Whether we aliased any external values along the way that may be
- // invisible to the analysis (i.e. landingpad for exceptions, calls for
- // interprocedural analysis, etc.)
- StratifiedAttrs AdditionalAttrs;
- Edge(Value *From, Value *To, EdgeType W, StratifiedAttrs A)
- : From(From), To(To), Weight(W), AdditionalAttrs(A) {}
- };
- // \brief Information we have about a function and would like to keep around
- struct FunctionInfo {
- StratifiedSets<Value *> Sets;
- // Lots of functions have < 4 returns. Adjust as necessary.
- SmallVector<Value *, 4> ReturnedValues;
- FunctionInfo(StratifiedSets<Value *> &&S,
- SmallVector<Value *, 4> &&RV)
- : Sets(std::move(S)), ReturnedValues(std::move(RV)) {}
- };
- struct CFLAliasAnalysis;
- struct FunctionHandle : public CallbackVH {
- FunctionHandle(Function *Fn, CFLAliasAnalysis *CFLAA)
- : CallbackVH(Fn), CFLAA(CFLAA) {
- assert(Fn != nullptr);
- assert(CFLAA != nullptr);
- }
- virtual ~FunctionHandle() {}
- void deleted() override { removeSelfFromCache(); }
- void allUsesReplacedWith(Value *) override { removeSelfFromCache(); }
- private:
- CFLAliasAnalysis *CFLAA;
- void removeSelfFromCache();
- };
- struct CFLAliasAnalysis : public ImmutablePass, public AliasAnalysis {
- private:
- /// \brief Cached mapping of Functions to their StratifiedSets.
- /// If a function's sets are currently being built, it is marked
- /// in the cache as an Optional without a value. This way, if we
- /// have any kind of recursion, it is discernable from a function
- /// that simply has empty sets.
- DenseMap<Function *, Optional<FunctionInfo>> Cache;
- std::forward_list<FunctionHandle> Handles;
- public:
- static char ID;
- CFLAliasAnalysis() : ImmutablePass(ID) {
- initializeCFLAliasAnalysisPass(*PassRegistry::getPassRegistry());
- }
- virtual ~CFLAliasAnalysis() {}
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AliasAnalysis::getAnalysisUsage(AU);
- }
- void *getAdjustedAnalysisPointer(const void *ID) override {
- if (ID == &AliasAnalysis::ID)
- return (AliasAnalysis *)this;
- return this;
- }
- /// \brief Inserts the given Function into the cache.
- void scan(Function *Fn);
- void evict(Function *Fn) { Cache.erase(Fn); }
- /// \brief Ensures that the given function is available in the cache.
- /// Returns the appropriate entry from the cache.
- const Optional<FunctionInfo> &ensureCached(Function *Fn) {
- auto Iter = Cache.find(Fn);
- if (Iter == Cache.end()) {
- scan(Fn);
- Iter = Cache.find(Fn);
- assert(Iter != Cache.end());
- assert(Iter->second.hasValue());
- }
- return Iter->second;
- }
- AliasResult query(const Location &LocA, const Location &LocB);
- AliasResult alias(const Location &LocA, const Location &LocB) override {
- if (LocA.Ptr == LocB.Ptr) {
- if (LocA.Size == LocB.Size) {
- return MustAlias;
- } else {
- return PartialAlias;
- }
- }
- // Comparisons between global variables and other constants should be
- // handled by BasicAA.
- if (isa<Constant>(LocA.Ptr) && isa<Constant>(LocB.Ptr)) {
- return MayAlias;
- }
- return query(LocA, LocB);
- }
- void initializePass() override { InitializeAliasAnalysis(this); }
- };
- void FunctionHandle::removeSelfFromCache() {
- assert(CFLAA != nullptr);
- auto *Val = getValPtr();
- CFLAA->evict(cast<Function>(Val));
- setValPtr(nullptr);
- }
- // \brief Gets the edges our graph should have, based on an Instruction*
- class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
- CFLAliasAnalysis &AA;
- SmallVectorImpl<Edge> &Output;
- public:
- GetEdgesVisitor(CFLAliasAnalysis &AA, SmallVectorImpl<Edge> &Output)
- : AA(AA), Output(Output) {}
- void visitInstruction(Instruction &) {
- llvm_unreachable("Unsupported instruction encountered");
- }
- void visitCastInst(CastInst &Inst) {
- Output.push_back(Edge(&Inst, Inst.getOperand(0), EdgeType::Assign,
- AttrNone));
- }
- void visitBinaryOperator(BinaryOperator &Inst) {
- auto *Op1 = Inst.getOperand(0);
- auto *Op2 = Inst.getOperand(1);
- Output.push_back(Edge(&Inst, Op1, EdgeType::Assign, AttrNone));
- Output.push_back(Edge(&Inst, Op2, EdgeType::Assign, AttrNone));
- }
- void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
- auto *Ptr = Inst.getPointerOperand();
- auto *Val = Inst.getNewValOperand();
- Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
- }
- void visitAtomicRMWInst(AtomicRMWInst &Inst) {
- auto *Ptr = Inst.getPointerOperand();
- auto *Val = Inst.getValOperand();
- Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
- }
- void visitPHINode(PHINode &Inst) {
- for (unsigned I = 0, E = Inst.getNumIncomingValues(); I != E; ++I) {
- Value *Val = Inst.getIncomingValue(I);
- Output.push_back(Edge(&Inst, Val, EdgeType::Assign, AttrNone));
- }
- }
- void visitGetElementPtrInst(GetElementPtrInst &Inst) {
- auto *Op = Inst.getPointerOperand();
- Output.push_back(Edge(&Inst, Op, EdgeType::Assign, AttrNone));
- for (auto I = Inst.idx_begin(), E = Inst.idx_end(); I != E; ++I)
- Output.push_back(Edge(&Inst, *I, EdgeType::Assign, AttrNone));
- }
- void visitSelectInst(SelectInst &Inst) {
- auto *Condition = Inst.getCondition();
- Output.push_back(Edge(&Inst, Condition, EdgeType::Assign, AttrNone));
- auto *TrueVal = Inst.getTrueValue();
- Output.push_back(Edge(&Inst, TrueVal, EdgeType::Assign, AttrNone));
- auto *FalseVal = Inst.getFalseValue();
- Output.push_back(Edge(&Inst, FalseVal, EdgeType::Assign, AttrNone));
- }
- void visitAllocaInst(AllocaInst &) {}
- void visitLoadInst(LoadInst &Inst) {
- auto *Ptr = Inst.getPointerOperand();
- auto *Val = &Inst;
- Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
- }
- void visitStoreInst(StoreInst &Inst) {
- auto *Ptr = Inst.getPointerOperand();
- auto *Val = Inst.getValueOperand();
- Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
- }
- void visitVAArgInst(VAArgInst &Inst) {
- // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it does
- // two things:
- // 1. Loads a value from *((T*)*Ptr).
- // 2. Increments (stores to) *Ptr by some target-specific amount.
- // For now, we'll handle this like a landingpad instruction (by placing the
- // result in its own group, and having that group alias externals).
- auto *Val = &Inst;
- Output.push_back(Edge(Val, Val, EdgeType::Assign, AttrAll));
- }
- static bool isFunctionExternal(Function *Fn) {
- return Fn->isDeclaration() || !Fn->hasLocalLinkage();
- }
- // Gets whether the sets at Index1 above, below, or equal to the sets at
- // Index2. Returns None if they are not in the same set chain.
- static Optional<Level> getIndexRelation(const StratifiedSets<Value *> &Sets,
- StratifiedIndex Index1,
- StratifiedIndex Index2) {
- if (Index1 == Index2)
- return Level::Same;
- const auto *Current = &Sets.getLink(Index1);
- while (Current->hasBelow()) {
- if (Current->Below == Index2)
- return Level::Below;
- Current = &Sets.getLink(Current->Below);
- }
- Current = &Sets.getLink(Index1);
- while (Current->hasAbove()) {
- if (Current->Above == Index2)
- return Level::Above;
- Current = &Sets.getLink(Current->Above);
- }
- return NoneType();
- }
- bool
- tryInterproceduralAnalysis(const SmallVectorImpl<Function *> &Fns,
- Value *FuncValue,
- const iterator_range<User::op_iterator> &Args) {
- const unsigned ExpectedMaxArgs = 8;
- const unsigned MaxSupportedArgs = 50;
- assert(Fns.size() > 0);
- // I put this here to give us an upper bound on time taken by IPA. Is it
- // really (realistically) needed? Keep in mind that we do have an n^2 algo.
- if (std::distance(Args.begin(), Args.end()) > (int) MaxSupportedArgs)
- return false;
- // Exit early if we'll fail anyway
- for (auto *Fn : Fns) {
- if (isFunctionExternal(Fn) || Fn->isVarArg())
- return false;
- auto &MaybeInfo = AA.ensureCached(Fn);
- if (!MaybeInfo.hasValue())
- return false;
- }
- SmallVector<Value *, ExpectedMaxArgs> Arguments(Args.begin(), Args.end());
- SmallVector<StratifiedInfo, ExpectedMaxArgs> Parameters;
- for (auto *Fn : Fns) {
- auto &Info = *AA.ensureCached(Fn);
- auto &Sets = Info.Sets;
- auto &RetVals = Info.ReturnedValues;
- Parameters.clear();
- for (auto &Param : Fn->args()) {
- auto MaybeInfo = Sets.find(&Param);
- // Did a new parameter somehow get added to the function/slip by?
- if (!MaybeInfo.hasValue())
- return false;
- Parameters.push_back(*MaybeInfo);
- }
- // Adding an edge from argument -> return value for each parameter that
- // may alias the return value
- for (unsigned I = 0, E = Parameters.size(); I != E; ++I) {
- auto &ParamInfo = Parameters[I];
- auto &ArgVal = Arguments[I];
- bool AddEdge = false;
- StratifiedAttrs Externals;
- for (unsigned X = 0, XE = RetVals.size(); X != XE; ++X) {
- auto MaybeInfo = Sets.find(RetVals[X]);
- if (!MaybeInfo.hasValue())
- return false;
- auto &RetInfo = *MaybeInfo;
- auto RetAttrs = Sets.getLink(RetInfo.Index).Attrs;
- auto ParamAttrs = Sets.getLink(ParamInfo.Index).Attrs;
- auto MaybeRelation =
- getIndexRelation(Sets, ParamInfo.Index, RetInfo.Index);
- if (MaybeRelation.hasValue()) {
- AddEdge = true;
- Externals |= RetAttrs | ParamAttrs;
- }
- }
- if (AddEdge)
- Output.push_back(Edge(FuncValue, ArgVal, EdgeType::Assign,
- StratifiedAttrs().flip()));
- }
- if (Parameters.size() != Arguments.size())
- return false;
- // Adding edges between arguments for arguments that may end up aliasing
- // each other. This is necessary for functions such as
- // void foo(int** a, int** b) { *a = *b; }
- // (Technically, the proper sets for this would be those below
- // Arguments[I] and Arguments[X], but our algorithm will produce
- // extremely similar, and equally correct, results either way)
- for (unsigned I = 0, E = Arguments.size(); I != E; ++I) {
- auto &MainVal = Arguments[I];
- auto &MainInfo = Parameters[I];
- auto &MainAttrs = Sets.getLink(MainInfo.Index).Attrs;
- for (unsigned X = I + 1; X != E; ++X) {
- auto &SubInfo = Parameters[X];
- auto &SubVal = Arguments[X];
- auto &SubAttrs = Sets.getLink(SubInfo.Index).Attrs;
- auto MaybeRelation =
- getIndexRelation(Sets, MainInfo.Index, SubInfo.Index);
- if (!MaybeRelation.hasValue())
- continue;
- auto NewAttrs = SubAttrs | MainAttrs;
- Output.push_back(Edge(MainVal, SubVal, EdgeType::Assign, NewAttrs));
- }
- }
- }
- return true;
- }
- template <typename InstT> void visitCallLikeInst(InstT &Inst) {
- SmallVector<Function *, 4> Targets;
- if (getPossibleTargets(&Inst, Targets)) {
- if (tryInterproceduralAnalysis(Targets, &Inst, Inst.arg_operands()))
- return;
- // Cleanup from interprocedural analysis
- Output.clear();
- }
- for (Value *V : Inst.arg_operands())
- Output.push_back(Edge(&Inst, V, EdgeType::Assign, AttrAll));
- }
- void visitCallInst(CallInst &Inst) { visitCallLikeInst(Inst); }
- void visitInvokeInst(InvokeInst &Inst) { visitCallLikeInst(Inst); }
- // Because vectors/aggregates are immutable and unaddressable,
- // there's nothing we can do to coax a value out of them, other
- // than calling Extract{Element,Value}. We can effectively treat
- // them as pointers to arbitrary memory locations we can store in
- // and load from.
- void visitExtractElementInst(ExtractElementInst &Inst) {
- auto *Ptr = Inst.getVectorOperand();
- auto *Val = &Inst;
- Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
- }
- void visitInsertElementInst(InsertElementInst &Inst) {
- auto *Vec = Inst.getOperand(0);
- auto *Val = Inst.getOperand(1);
- Output.push_back(Edge(&Inst, Vec, EdgeType::Assign, AttrNone));
- Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
- }
- void visitLandingPadInst(LandingPadInst &Inst) {
- // Exceptions come from "nowhere", from our analysis' perspective.
- // So we place the instruction its own group, noting that said group may
- // alias externals
- Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll));
- }
- void visitInsertValueInst(InsertValueInst &Inst) {
- auto *Agg = Inst.getOperand(0);
- auto *Val = Inst.getOperand(1);
- Output.push_back(Edge(&Inst, Agg, EdgeType::Assign, AttrNone));
- Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
- }
- void visitExtractValueInst(ExtractValueInst &Inst) {
- auto *Ptr = Inst.getAggregateOperand();
- Output.push_back(Edge(&Inst, Ptr, EdgeType::Reference, AttrNone));
- }
- void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
- auto *From1 = Inst.getOperand(0);
- auto *From2 = Inst.getOperand(1);
- Output.push_back(Edge(&Inst, From1, EdgeType::Assign, AttrNone));
- Output.push_back(Edge(&Inst, From2, EdgeType::Assign, AttrNone));
- }
- };
- // For a given instruction, we need to know which Value* to get the
- // users of in order to build our graph. In some cases (i.e. add),
- // we simply need the Instruction*. In other cases (i.e. store),
- // finding the users of the Instruction* is useless; we need to find
- // the users of the first operand. This handles determining which
- // value to follow for us.
- //
- // Note: we *need* to keep this in sync with GetEdgesVisitor. Add
- // something to GetEdgesVisitor, add it here -- remove something from
- // GetEdgesVisitor, remove it here.
- class GetTargetValueVisitor
- : public InstVisitor<GetTargetValueVisitor, Value *> {
- public:
- Value *visitInstruction(Instruction &Inst) { return &Inst; }
- Value *visitStoreInst(StoreInst &Inst) { return Inst.getPointerOperand(); }
- Value *visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
- return Inst.getPointerOperand();
- }
- Value *visitAtomicRMWInst(AtomicRMWInst &Inst) {
- return Inst.getPointerOperand();
- }
- Value *visitInsertElementInst(InsertElementInst &Inst) {
- return Inst.getOperand(0);
- }
- Value *visitInsertValueInst(InsertValueInst &Inst) {
- return Inst.getAggregateOperand();
- }
- };
- // Set building requires a weighted bidirectional graph.
- template <typename EdgeTypeT> class WeightedBidirectionalGraph {
- public:
- typedef std::size_t Node;
- private:
- const static Node StartNode = Node(0);
- struct Edge {
- EdgeTypeT Weight;
- Node Other;
- Edge(const EdgeTypeT &W, const Node &N)
- : Weight(W), Other(N) {}
- bool operator==(const Edge &E) const {
- return Weight == E.Weight && Other == E.Other;
- }
- bool operator!=(const Edge &E) const { return !operator==(E); }
- };
- struct NodeImpl {
- std::vector<Edge> Edges;
- };
- std::vector<NodeImpl> NodeImpls;
- bool inbounds(Node NodeIndex) const { return NodeIndex < NodeImpls.size(); }
- const NodeImpl &getNode(Node N) const { return NodeImpls[N]; }
- NodeImpl &getNode(Node N) { return NodeImpls[N]; }
- public:
- // ----- Various Edge iterators for the graph ----- //
- // \brief Iterator for edges. Because this graph is bidirected, we don't
- // allow modificaiton of the edges using this iterator. Additionally, the
- // iterator becomes invalid if you add edges to or from the node you're
- // getting the edges of.
- struct EdgeIterator : public std::iterator<std::forward_iterator_tag,
- std::tuple<EdgeTypeT, Node *>> {
- EdgeIterator(const typename std::vector<Edge>::const_iterator &Iter)
- : Current(Iter) {}
- EdgeIterator(NodeImpl &Impl) : Current(Impl.begin()) {}
- EdgeIterator &operator++() {
- ++Current;
- return *this;
- }
- EdgeIterator operator++(int) {
- EdgeIterator Copy(Current);
- operator++();
- return Copy;
- }
- std::tuple<EdgeTypeT, Node> &operator*() {
- Store = std::make_tuple(Current->Weight, Current->Other);
- return Store;
- }
- bool operator==(const EdgeIterator &Other) const {
- return Current == Other.Current;
- }
- bool operator!=(const EdgeIterator &Other) const {
- return !operator==(Other);
- }
- private:
- typename std::vector<Edge>::const_iterator Current;
- std::tuple<EdgeTypeT, Node> Store;
- };
- // Wrapper for EdgeIterator with begin()/end() calls.
- struct EdgeIterable {
- EdgeIterable(const std::vector<Edge> &Edges)
- : BeginIter(Edges.begin()), EndIter(Edges.end()) {}
- EdgeIterator begin() { return EdgeIterator(BeginIter); }
- EdgeIterator end() { return EdgeIterator(EndIter); }
- private:
- typename std::vector<Edge>::const_iterator BeginIter;
- typename std::vector<Edge>::const_iterator EndIter;
- };
- // ----- Actual graph-related things ----- //
- WeightedBidirectionalGraph() {}
- WeightedBidirectionalGraph(WeightedBidirectionalGraph<EdgeTypeT> &&Other)
- : NodeImpls(std::move(Other.NodeImpls)) {}
- WeightedBidirectionalGraph<EdgeTypeT> &
- operator=(WeightedBidirectionalGraph<EdgeTypeT> &&Other) {
- NodeImpls = std::move(Other.NodeImpls);
- return *this;
- }
- Node addNode() {
- auto Index = NodeImpls.size();
- auto NewNode = Node(Index);
- NodeImpls.push_back(NodeImpl());
- return NewNode;
- }
- void addEdge(Node From, Node To, const EdgeTypeT &Weight,
- const EdgeTypeT &ReverseWeight) {
- assert(inbounds(From));
- assert(inbounds(To));
- auto &FromNode = getNode(From);
- auto &ToNode = getNode(To);
- FromNode.Edges.push_back(Edge(Weight, To));
- ToNode.Edges.push_back(Edge(ReverseWeight, From));
- }
- EdgeIterable edgesFor(const Node &N) const {
- const auto &Node = getNode(N);
- return EdgeIterable(Node.Edges);
- }
- bool empty() const { return NodeImpls.empty(); }
- std::size_t size() const { return NodeImpls.size(); }
- // \brief Gets an arbitrary node in the graph as a starting point for
- // traversal.
- Node getEntryNode() {
- assert(inbounds(StartNode));
- return StartNode;
- }
- };
- typedef WeightedBidirectionalGraph<std::pair<EdgeType, StratifiedAttrs>> GraphT;
- typedef DenseMap<Value *, GraphT::Node> NodeMapT;
- }
- // -- Setting up/registering CFLAA pass -- //
- char CFLAliasAnalysis::ID = 0;
- INITIALIZE_AG_PASS(CFLAliasAnalysis, AliasAnalysis, "cfl-aa",
- "CFL-Based AA implementation", false, true, false)
- ImmutablePass *llvm::createCFLAliasAnalysisPass() {
- return new CFLAliasAnalysis();
- }
- //===----------------------------------------------------------------------===//
- // Function declarations that require types defined in the namespace above
- //===----------------------------------------------------------------------===//
- // Given an argument number, returns the appropriate Attr index to set.
- static StratifiedAttr argNumberToAttrIndex(StratifiedAttr);
- // Given a Value, potentially return which AttrIndex it maps to.
- static Optional<StratifiedAttr> valueToAttrIndex(Value *Val);
- // Gets the inverse of a given EdgeType.
- static EdgeType flipWeight(EdgeType);
- // Gets edges of the given Instruction*, writing them to the SmallVector*.
- static void argsToEdges(CFLAliasAnalysis &, Instruction *,
- SmallVectorImpl<Edge> &);
- // Gets the "Level" that one should travel in StratifiedSets
- // given an EdgeType.
- static Level directionOfEdgeType(EdgeType);
- // Builds the graph needed for constructing the StratifiedSets for the
- // given function
- static void buildGraphFrom(CFLAliasAnalysis &, Function *,
- SmallVectorImpl<Value *> &, NodeMapT &, GraphT &);
- // Builds the graph + StratifiedSets for a function.
- static FunctionInfo buildSetsFrom(CFLAliasAnalysis &, Function *);
- static Optional<Function *> parentFunctionOfValue(Value *Val) {
- if (auto *Inst = dyn_cast<Instruction>(Val)) {
- auto *Bb = Inst->getParent();
- return Bb->getParent();
- }
- if (auto *Arg = dyn_cast<Argument>(Val))
- return Arg->getParent();
- return NoneType();
- }
- template <typename Inst>
- static bool getPossibleTargets(Inst *Call,
- SmallVectorImpl<Function *> &Output) {
- if (auto *Fn = Call->getCalledFunction()) {
- Output.push_back(Fn);
- return true;
- }
- // TODO: If the call is indirect, we might be able to enumerate all potential
- // targets of the call and return them, rather than just failing.
- return false;
- }
- static Optional<Value *> getTargetValue(Instruction *Inst) {
- GetTargetValueVisitor V;
- return V.visit(Inst);
- }
- static bool hasUsefulEdges(Instruction *Inst) {
- bool IsNonInvokeTerminator =
- isa<TerminatorInst>(Inst) && !isa<InvokeInst>(Inst);
- return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) && !IsNonInvokeTerminator;
- }
- static Optional<StratifiedAttr> valueToAttrIndex(Value *Val) {
- if (isa<GlobalValue>(Val))
- return AttrGlobalIndex;
- if (auto *Arg = dyn_cast<Argument>(Val))
- if (!Arg->hasNoAliasAttr())
- return argNumberToAttrIndex(Arg->getArgNo());
- return NoneType();
- }
- static StratifiedAttr argNumberToAttrIndex(unsigned ArgNum) {
- if (ArgNum > AttrMaxNumArgs)
- return AttrAllIndex;
- return ArgNum + AttrFirstArgIndex;
- }
- static EdgeType flipWeight(EdgeType Initial) {
- switch (Initial) {
- case EdgeType::Assign:
- return EdgeType::Assign;
- case EdgeType::Dereference:
- return EdgeType::Reference;
- case EdgeType::Reference:
- return EdgeType::Dereference;
- }
- llvm_unreachable("Incomplete coverage of EdgeType enum");
- }
- static void argsToEdges(CFLAliasAnalysis &Analysis, Instruction *Inst,
- SmallVectorImpl<Edge> &Output) {
- GetEdgesVisitor v(Analysis, Output);
- v.visit(Inst);
- }
- static Level directionOfEdgeType(EdgeType Weight) {
- switch (Weight) {
- case EdgeType::Reference:
- return Level::Above;
- case EdgeType::Dereference:
- return Level::Below;
- case EdgeType::Assign:
- return Level::Same;
- }
- llvm_unreachable("Incomplete switch coverage");
- }
- // Aside: We may remove graph construction entirely, because it doesn't really
- // buy us much that we don't already have. I'd like to add interprocedural
- // analysis prior to this however, in case that somehow requires the graph
- // produced by this for efficient execution
- static void buildGraphFrom(CFLAliasAnalysis &Analysis, Function *Fn,
- SmallVectorImpl<Value *> &ReturnedValues,
- NodeMapT &Map, GraphT &Graph) {
- const auto findOrInsertNode = [&Map, &Graph](Value *Val) {
- auto Pair = Map.insert(std::make_pair(Val, GraphT::Node()));
- auto &Iter = Pair.first;
- if (Pair.second) {
- auto NewNode = Graph.addNode();
- Iter->second = NewNode;
- }
- return Iter->second;
- };
- SmallVector<Edge, 8> Edges;
- for (auto &Bb : Fn->getBasicBlockList()) {
- for (auto &Inst : Bb.getInstList()) {
- // We don't want the edges of most "return" instructions, but we *do* want
- // to know what can be returned.
- if (auto *Ret = dyn_cast<ReturnInst>(&Inst))
- ReturnedValues.push_back(Ret);
- if (!hasUsefulEdges(&Inst))
- continue;
- Edges.clear();
- argsToEdges(Analysis, &Inst, Edges);
- // In the case of an unused alloca (or similar), edges may be empty. Note
- // that it exists so we can potentially answer NoAlias.
- if (Edges.empty()) {
- auto MaybeVal = getTargetValue(&Inst);
- assert(MaybeVal.hasValue());
- auto *Target = *MaybeVal;
- findOrInsertNode(Target);
- continue;
- }
- for (const Edge &E : Edges) {
- auto To = findOrInsertNode(E.To);
- auto From = findOrInsertNode(E.From);
- auto FlippedWeight = flipWeight(E.Weight);
- auto Attrs = E.AdditionalAttrs;
- Graph.addEdge(From, To, std::make_pair(E.Weight, Attrs),
- std::make_pair(FlippedWeight, Attrs));
- }
- }
- }
- }
- static FunctionInfo buildSetsFrom(CFLAliasAnalysis &Analysis, Function *Fn) {
- NodeMapT Map;
- GraphT Graph;
- SmallVector<Value *, 4> ReturnedValues;
- buildGraphFrom(Analysis, Fn, ReturnedValues, Map, Graph);
- DenseMap<GraphT::Node, Value *> NodeValueMap;
- NodeValueMap.resize(Map.size());
- for (const auto &Pair : Map)
- NodeValueMap.insert(std::make_pair(Pair.second, Pair.first));
- const auto findValueOrDie = [&NodeValueMap](GraphT::Node Node) {
- auto ValIter = NodeValueMap.find(Node);
- assert(ValIter != NodeValueMap.end());
- return ValIter->second;
- };
- StratifiedSetsBuilder<Value *> Builder;
- SmallVector<GraphT::Node, 16> Worklist;
- for (auto &Pair : Map) {
- Worklist.clear();
- auto *Value = Pair.first;
- Builder.add(Value);
- auto InitialNode = Pair.second;
- Worklist.push_back(InitialNode);
- while (!Worklist.empty()) {
- auto Node = Worklist.pop_back_val();
- auto *CurValue = findValueOrDie(Node);
- if (isa<Constant>(CurValue) && !isa<GlobalValue>(CurValue))
- continue;
- for (const auto &EdgeTuple : Graph.edgesFor(Node)) {
- auto Weight = std::get<0>(EdgeTuple);
- auto Label = Weight.first;
- auto &OtherNode = std::get<1>(EdgeTuple);
- auto *OtherValue = findValueOrDie(OtherNode);
- if (isa<Constant>(OtherValue) && !isa<GlobalValue>(OtherValue))
- continue;
- bool Added;
- switch (directionOfEdgeType(Label)) {
- case Level::Above:
- Added = Builder.addAbove(CurValue, OtherValue);
- break;
- case Level::Below:
- Added = Builder.addBelow(CurValue, OtherValue);
- break;
- case Level::Same:
- Added = Builder.addWith(CurValue, OtherValue);
- break;
- }
- if (Added) {
- auto Aliasing = Weight.second;
- if (auto MaybeCurIndex = valueToAttrIndex(CurValue))
- Aliasing.set(*MaybeCurIndex);
- if (auto MaybeOtherIndex = valueToAttrIndex(OtherValue))
- Aliasing.set(*MaybeOtherIndex);
- Builder.noteAttributes(CurValue, Aliasing);
- Builder.noteAttributes(OtherValue, Aliasing);
- Worklist.push_back(OtherNode);
- }
- }
- }
- }
- // There are times when we end up with parameters not in our graph (i.e. if
- // it's only used as the condition of a branch). Other bits of code depend on
- // things that were present during construction being present in the graph.
- // So, we add all present arguments here.
- for (auto &Arg : Fn->args()) {
- Builder.add(&Arg);
- }
- return FunctionInfo(Builder.build(), std::move(ReturnedValues));
- }
- void CFLAliasAnalysis::scan(Function *Fn) {
- auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>()));
- (void)InsertPair;
- assert(InsertPair.second &&
- "Trying to scan a function that has already been cached");
- FunctionInfo Info(buildSetsFrom(*this, Fn));
- Cache[Fn] = std::move(Info);
- Handles.push_front(FunctionHandle(Fn, this));
- }
- AliasAnalysis::AliasResult
- CFLAliasAnalysis::query(const AliasAnalysis::Location &LocA,
- const AliasAnalysis::Location &LocB) {
- auto *ValA = const_cast<Value *>(LocA.Ptr);
- auto *ValB = const_cast<Value *>(LocB.Ptr);
- Function *Fn = nullptr;
- auto MaybeFnA = parentFunctionOfValue(ValA);
- auto MaybeFnB = parentFunctionOfValue(ValB);
- if (!MaybeFnA.hasValue() && !MaybeFnB.hasValue()) {
- llvm_unreachable("Don't know how to extract the parent function "
- "from values A or B");
- }
- if (MaybeFnA.hasValue()) {
- Fn = *MaybeFnA;
- assert((!MaybeFnB.hasValue() || *MaybeFnB == *MaybeFnA) &&
- "Interprocedural queries not supported");
- } else {
- Fn = *MaybeFnB;
- }
- assert(Fn != nullptr);
- auto &MaybeInfo = ensureCached(Fn);
- assert(MaybeInfo.hasValue());
- auto &Sets = MaybeInfo->Sets;
- auto MaybeA = Sets.find(ValA);
- if (!MaybeA.hasValue())
- return AliasAnalysis::MayAlias;
- auto MaybeB = Sets.find(ValB);
- if (!MaybeB.hasValue())
- return AliasAnalysis::MayAlias;
- auto SetA = *MaybeA;
- auto SetB = *MaybeB;
- if (SetA.Index == SetB.Index)
- return AliasAnalysis::PartialAlias;
- auto AttrsA = Sets.getLink(SetA.Index).Attrs;
- auto AttrsB = Sets.getLink(SetB.Index).Attrs;
- // Stratified set attributes are used as markets to signify whether a member
- // of a StratifiedSet (or a member of a set above the current set) has
- // interacted with either arguments or globals. "Interacted with" meaning
- // its value may be different depending on the value of an argument or
- // global. The thought behind this is that, because arguments and globals
- // may alias each other, if AttrsA and AttrsB have touched args/globals,
- // we must conservatively say that they alias. However, if at least one of
- // the sets has no values that could legally be altered by changing the value
- // of an argument or global, then we don't have to be as conservative.
- if (AttrsA.any() && AttrsB.any())
- return AliasAnalysis::MayAlias;
- return AliasAnalysis::NoAlias;
- }
|