123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- //==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // Implementation of some scaled number algorithms.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Support/ScaledNumber.h"
- using namespace llvm;
- using namespace llvm::ScaledNumbers;
- std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS,
- uint64_t RHS) {
- // Separate into two 32-bit digits (U.L).
- auto getU = [](uint64_t N) { return N >> 32; };
- auto getL = [](uint64_t N) { return N & UINT32_MAX; };
- uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS);
- // Compute cross products.
- uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
- // Sum into two 64-bit digits.
- uint64_t Upper = P1, Lower = P4;
- auto addWithCarry = [&](uint64_t N) {
- uint64_t NewLower = Lower + (getL(N) << 32);
- Upper += getU(N) + (NewLower < Lower);
- Lower = NewLower;
- };
- addWithCarry(P2);
- addWithCarry(P3);
- // Check whether the upper digit is empty.
- if (!Upper)
- return std::make_pair(Lower, 0);
- // Shift as little as possible to maximize precision.
- unsigned LeadingZeros = countLeadingZeros(Upper);
- int Shift = 64 - LeadingZeros;
- if (LeadingZeros)
- Upper = Upper << LeadingZeros | Lower >> Shift;
- return getRounded(Upper, Shift,
- Shift && (Lower & UINT64_C(1) << (Shift - 1)));
- }
- static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
- std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend,
- uint32_t Divisor) {
- assert(Dividend && "expected non-zero dividend");
- assert(Divisor && "expected non-zero divisor");
- // Use 64-bit math and canonicalize the dividend to gain precision.
- uint64_t Dividend64 = Dividend;
- int Shift = 0;
- if (int Zeros = countLeadingZeros(Dividend64)) {
- Shift -= Zeros;
- Dividend64 <<= Zeros;
- }
- uint64_t Quotient = Dividend64 / Divisor;
- uint64_t Remainder = Dividend64 % Divisor;
- // If Quotient needs to be shifted, leave the rounding to getAdjusted().
- if (Quotient > UINT32_MAX)
- return getAdjusted<uint32_t>(Quotient, Shift);
- // Round based on the value of the next bit.
- return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor));
- }
- std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend,
- uint64_t Divisor) {
- assert(Dividend && "expected non-zero dividend");
- assert(Divisor && "expected non-zero divisor");
- // Minimize size of divisor.
- int Shift = 0;
- if (int Zeros = countTrailingZeros(Divisor)) {
- Shift -= Zeros;
- Divisor >>= Zeros;
- }
- // Check for powers of two.
- if (Divisor == 1)
- return std::make_pair(Dividend, Shift);
- // Maximize size of dividend.
- if (int Zeros = countLeadingZeros(Dividend)) {
- Shift -= Zeros;
- Dividend <<= Zeros;
- }
- // Start with the result of a divide.
- uint64_t Quotient = Dividend / Divisor;
- Dividend %= Divisor;
- // Continue building the quotient with long division.
- while (!(Quotient >> 63) && Dividend) {
- // Shift Dividend and check for overflow.
- bool IsOverflow = Dividend >> 63;
- Dividend <<= 1;
- --Shift;
- // Get the next bit of Quotient.
- Quotient <<= 1;
- if (IsOverflow || Divisor <= Dividend) {
- Quotient |= 1;
- Dividend -= Divisor;
- }
- }
- return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor));
- }
- int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) {
- assert(ScaleDiff >= 0 && "wrong argument order");
- assert(ScaleDiff < 64 && "numbers too far apart");
- uint64_t L_adjusted = L >> ScaleDiff;
- if (L_adjusted < R)
- return -1;
- if (L_adjusted > R)
- return 1;
- return L > L_adjusted << ScaleDiff ? 1 : 0;
- }
|