123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472 |
- //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
- // and generates target-independent LLVM-IR.
- // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
- // of instructions in order to estimate the profitability of vectorization.
- //
- // The loop vectorizer combines consecutive loop iterations into a single
- // 'wide' iteration. After this transformation the index is incremented
- // by the SIMD vector width, and not by one.
- //
- // This pass has three parts:
- // 1. The main loop pass that drives the different parts.
- // 2. LoopVectorizationLegality - A unit that checks for the legality
- // of the vectorization.
- // 3. InnerLoopVectorizer - A unit that performs the actual
- // widening of instructions.
- // 4. LoopVectorizationCostModel - A unit that checks for the profitability
- // of vectorization. It decides on the optimal vector width, which
- // can be one, if vectorization is not profitable.
- //
- //===----------------------------------------------------------------------===//
- //
- // The reduction-variable vectorization is based on the paper:
- // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
- //
- // Variable uniformity checks are inspired by:
- // Karrenberg, R. and Hack, S. Whole Function Vectorization.
- //
- // The interleaved access vectorization is based on the paper:
- // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
- // Data for SIMD
- //
- // Other ideas/concepts are from:
- // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
- //
- // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
- // Vectorizing Compilers.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Vectorize.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/EquivalenceClasses.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AliasSetTracker.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/BlockFrequencyInfo.h"
- #include "llvm/Analysis/CodeMetrics.h"
- #include "llvm/Analysis/LoopAccessAnalysis.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopIterator.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpander.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/DiagnosticInfo.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/IR/Verifier.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/BranchProbability.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include <algorithm>
- #include <map>
- #include <tuple>
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define LV_NAME "loop-vectorize"
- #define DEBUG_TYPE LV_NAME
- STATISTIC(LoopsVectorized, "Number of loops vectorized");
- STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
- static cl::opt<bool>
- EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
- cl::desc("Enable if-conversion during vectorization."));
- /// We don't vectorize loops with a known constant trip count below this number.
- static cl::opt<unsigned>
- TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
- cl::Hidden,
- cl::desc("Don't vectorize loops with a constant "
- "trip count that is smaller than this "
- "value."));
- /// This enables versioning on the strides of symbolically striding memory
- /// accesses in code like the following.
- /// for (i = 0; i < N; ++i)
- /// A[i * Stride1] += B[i * Stride2] ...
- ///
- /// Will be roughly translated to
- /// if (Stride1 == 1 && Stride2 == 1) {
- /// for (i = 0; i < N; i+=4)
- /// A[i:i+3] += ...
- /// } else
- /// ...
- static cl::opt<bool> EnableMemAccessVersioning(
- "enable-mem-access-versioning", cl::init(true), cl::Hidden,
- cl::desc("Enable symblic stride memory access versioning"));
- static cl::opt<bool> EnableInterleavedMemAccesses(
- "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
- cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
- /// Maximum factor for an interleaved memory access.
- static cl::opt<unsigned> MaxInterleaveGroupFactor(
- "max-interleave-group-factor", cl::Hidden,
- cl::desc("Maximum factor for an interleaved access group (default = 8)"),
- cl::init(8));
- /// We don't interleave loops with a known constant trip count below this
- /// number.
- static const unsigned TinyTripCountInterleaveThreshold = 128;
- static cl::opt<unsigned> ForceTargetNumScalarRegs(
- "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's number of scalar registers."));
- static cl::opt<unsigned> ForceTargetNumVectorRegs(
- "force-target-num-vector-regs", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's number of vector registers."));
- /// Maximum vectorization interleave count.
- static const unsigned MaxInterleaveFactor = 16;
- static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
- "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's max interleave factor for "
- "scalar loops."));
- static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
- "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's max interleave factor for "
- "vectorized loops."));
- static cl::opt<unsigned> ForceTargetInstructionCost(
- "force-target-instruction-cost", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's expected cost for "
- "an instruction to a single constant value. Mostly "
- "useful for getting consistent testing."));
- static cl::opt<unsigned> SmallLoopCost(
- "small-loop-cost", cl::init(20), cl::Hidden,
- cl::desc(
- "The cost of a loop that is considered 'small' by the interleaver."));
- static cl::opt<bool> LoopVectorizeWithBlockFrequency(
- "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
- cl::desc("Enable the use of the block frequency analysis to access PGO "
- "heuristics minimizing code growth in cold regions and being more "
- "aggressive in hot regions."));
- // Runtime interleave loops for load/store throughput.
- static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
- "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
- cl::desc(
- "Enable runtime interleaving until load/store ports are saturated"));
- /// The number of stores in a loop that are allowed to need predication.
- static cl::opt<unsigned> NumberOfStoresToPredicate(
- "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
- cl::desc("Max number of stores to be predicated behind an if."));
- static cl::opt<bool> EnableIndVarRegisterHeur(
- "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
- cl::desc("Count the induction variable only once when interleaving"));
- static cl::opt<bool> EnableCondStoresVectorization(
- "enable-cond-stores-vec", cl::init(false), cl::Hidden,
- cl::desc("Enable if predication of stores during vectorization."));
- static cl::opt<unsigned> MaxNestedScalarReductionIC(
- "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
- cl::desc("The maximum interleave count to use when interleaving a scalar "
- "reduction in a nested loop."));
- namespace {
- // Forward declarations.
- class LoopVectorizeHints;
- class LoopVectorizationLegality;
- class LoopVectorizationCostModel;
- class LoopVectorizationRequirements;
- /// \brief This modifies LoopAccessReport to initialize message with
- /// loop-vectorizer-specific part.
- class VectorizationReport : public LoopAccessReport {
- public:
- VectorizationReport(Instruction *I = nullptr)
- : LoopAccessReport("loop not vectorized: ", I) {}
- /// \brief This allows promotion of the loop-access analysis report into the
- /// loop-vectorizer report. It modifies the message to add the
- /// loop-vectorizer-specific part of the message.
- explicit VectorizationReport(const LoopAccessReport &R)
- : LoopAccessReport(Twine("loop not vectorized: ") + R.str(),
- R.getInstr()) {}
- };
- /// A helper function for converting Scalar types to vector types.
- /// If the incoming type is void, we return void. If the VF is 1, we return
- /// the scalar type.
- static Type* ToVectorTy(Type *Scalar, unsigned VF) {
- if (Scalar->isVoidTy() || VF == 1)
- return Scalar;
- return VectorType::get(Scalar, VF);
- }
- /// InnerLoopVectorizer vectorizes loops which contain only one basic
- /// block to a specified vectorization factor (VF).
- /// This class performs the widening of scalars into vectors, or multiple
- /// scalars. This class also implements the following features:
- /// * It inserts an epilogue loop for handling loops that don't have iteration
- /// counts that are known to be a multiple of the vectorization factor.
- /// * It handles the code generation for reduction variables.
- /// * Scalarization (implementation using scalars) of un-vectorizable
- /// instructions.
- /// InnerLoopVectorizer does not perform any vectorization-legality
- /// checks, and relies on the caller to check for the different legality
- /// aspects. The InnerLoopVectorizer relies on the
- /// LoopVectorizationLegality class to provide information about the induction
- /// and reduction variables that were found to a given vectorization factor.
- class InnerLoopVectorizer {
- public:
- InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
- DominatorTree *DT, const TargetLibraryInfo *TLI,
- const TargetTransformInfo *TTI, unsigned VecWidth,
- unsigned UnrollFactor)
- : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
- VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()),
- Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor),
- Legal(nullptr), AddedSafetyChecks(false) {}
- // Perform the actual loop widening (vectorization).
- void vectorize(LoopVectorizationLegality *L) {
- Legal = L;
- // Create a new empty loop. Unlink the old loop and connect the new one.
- createEmptyLoop();
- // Widen each instruction in the old loop to a new one in the new loop.
- // Use the Legality module to find the induction and reduction variables.
- vectorizeLoop();
- // Register the new loop and update the analysis passes.
- updateAnalysis();
- }
- // Return true if any runtime check is added.
- bool IsSafetyChecksAdded() {
- return AddedSafetyChecks;
- }
- virtual ~InnerLoopVectorizer() {}
- protected:
- /// A small list of PHINodes.
- typedef SmallVector<PHINode*, 4> PhiVector;
- /// When we unroll loops we have multiple vector values for each scalar.
- /// This data structure holds the unrolled and vectorized values that
- /// originated from one scalar instruction.
- typedef SmallVector<Value*, 2> VectorParts;
- // When we if-convert we need to create edge masks. We have to cache values
- // so that we don't end up with exponential recursion/IR.
- typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
- VectorParts> EdgeMaskCache;
- /// \brief Add checks for strides that were assumed to be 1.
- ///
- /// Returns the last check instruction and the first check instruction in the
- /// pair as (first, last).
- std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc);
- /// Create an empty loop, based on the loop ranges of the old loop.
- void createEmptyLoop();
- /// Copy and widen the instructions from the old loop.
- virtual void vectorizeLoop();
- /// \brief The Loop exit block may have single value PHI nodes where the
- /// incoming value is 'Undef'. While vectorizing we only handled real values
- /// that were defined inside the loop. Here we fix the 'undef case'.
- /// See PR14725.
- void fixLCSSAPHIs();
- /// A helper function that computes the predicate of the block BB, assuming
- /// that the header block of the loop is set to True. It returns the *entry*
- /// mask for the block BB.
- VectorParts createBlockInMask(BasicBlock *BB);
- /// A helper function that computes the predicate of the edge between SRC
- /// and DST.
- VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
- /// A helper function to vectorize a single BB within the innermost loop.
- void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
- /// Vectorize a single PHINode in a block. This method handles the induction
- /// variable canonicalization. It supports both VF = 1 for unrolled loops and
- /// arbitrary length vectors.
- void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
- unsigned UF, unsigned VF, PhiVector *PV);
- /// Insert the new loop to the loop hierarchy and pass manager
- /// and update the analysis passes.
- void updateAnalysis();
- /// This instruction is un-vectorizable. Implement it as a sequence
- /// of scalars. If \p IfPredicateStore is true we need to 'hide' each
- /// scalarized instruction behind an if block predicated on the control
- /// dependence of the instruction.
- virtual void scalarizeInstruction(Instruction *Instr,
- bool IfPredicateStore=false);
- /// Vectorize Load and Store instructions,
- virtual void vectorizeMemoryInstruction(Instruction *Instr);
- /// Create a broadcast instruction. This method generates a broadcast
- /// instruction (shuffle) for loop invariant values and for the induction
- /// value. If this is the induction variable then we extend it to N, N+1, ...
- /// this is needed because each iteration in the loop corresponds to a SIMD
- /// element.
- virtual Value *getBroadcastInstrs(Value *V);
- /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
- /// to each vector element of Val. The sequence starts at StartIndex.
- virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step);
- /// When we go over instructions in the basic block we rely on previous
- /// values within the current basic block or on loop invariant values.
- /// When we widen (vectorize) values we place them in the map. If the values
- /// are not within the map, they have to be loop invariant, so we simply
- /// broadcast them into a vector.
- VectorParts &getVectorValue(Value *V);
- /// Try to vectorize the interleaved access group that \p Instr belongs to.
- void vectorizeInterleaveGroup(Instruction *Instr);
- /// Generate a shuffle sequence that will reverse the vector Vec.
- virtual Value *reverseVector(Value *Vec);
- /// This is a helper class that holds the vectorizer state. It maps scalar
- /// instructions to vector instructions. When the code is 'unrolled' then
- /// then a single scalar value is mapped to multiple vector parts. The parts
- /// are stored in the VectorPart type.
- struct ValueMap {
- /// C'tor. UnrollFactor controls the number of vectors ('parts') that
- /// are mapped.
- ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
- /// \return True if 'Key' is saved in the Value Map.
- bool has(Value *Key) const { return MapStorage.count(Key); }
- /// Initializes a new entry in the map. Sets all of the vector parts to the
- /// save value in 'Val'.
- /// \return A reference to a vector with splat values.
- VectorParts &splat(Value *Key, Value *Val) {
- VectorParts &Entry = MapStorage[Key];
- Entry.assign(UF, Val);
- return Entry;
- }
- ///\return A reference to the value that is stored at 'Key'.
- VectorParts &get(Value *Key) {
- VectorParts &Entry = MapStorage[Key];
- if (Entry.empty())
- Entry.resize(UF);
- assert(Entry.size() == UF);
- return Entry;
- }
- private:
- /// The unroll factor. Each entry in the map stores this number of vector
- /// elements.
- unsigned UF;
- /// Map storage. We use std::map and not DenseMap because insertions to a
- /// dense map invalidates its iterators.
- std::map<Value *, VectorParts> MapStorage;
- };
- /// The original loop.
- Loop *OrigLoop;
- /// Scev analysis to use.
- ScalarEvolution *SE;
- /// Loop Info.
- LoopInfo *LI;
- /// Dominator Tree.
- DominatorTree *DT;
- /// Alias Analysis.
- AliasAnalysis *AA;
- /// Target Library Info.
- const TargetLibraryInfo *TLI;
- /// Target Transform Info.
- const TargetTransformInfo *TTI;
- /// The vectorization SIMD factor to use. Each vector will have this many
- /// vector elements.
- unsigned VF;
- protected:
- /// The vectorization unroll factor to use. Each scalar is vectorized to this
- /// many different vector instructions.
- unsigned UF;
- /// The builder that we use
- IRBuilder<> Builder;
- // --- Vectorization state ---
- /// The vector-loop preheader.
- BasicBlock *LoopVectorPreHeader;
- /// The scalar-loop preheader.
- BasicBlock *LoopScalarPreHeader;
- /// Middle Block between the vector and the scalar.
- BasicBlock *LoopMiddleBlock;
- ///The ExitBlock of the scalar loop.
- BasicBlock *LoopExitBlock;
- ///The vector loop body.
- SmallVector<BasicBlock *, 4> LoopVectorBody;
- ///The scalar loop body.
- BasicBlock *LoopScalarBody;
- /// A list of all bypass blocks. The first block is the entry of the loop.
- SmallVector<BasicBlock *, 4> LoopBypassBlocks;
- /// The new Induction variable which was added to the new block.
- PHINode *Induction;
- /// The induction variable of the old basic block.
- PHINode *OldInduction;
- /// Holds the extended (to the widest induction type) start index.
- Value *ExtendedIdx;
- /// Maps scalars to widened vectors.
- ValueMap WidenMap;
- EdgeMaskCache MaskCache;
- LoopVectorizationLegality *Legal;
- // Record whether runtime check is added.
- bool AddedSafetyChecks;
- };
- class InnerLoopUnroller : public InnerLoopVectorizer {
- public:
- InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
- DominatorTree *DT, const TargetLibraryInfo *TLI,
- const TargetTransformInfo *TTI, unsigned UnrollFactor)
- : InnerLoopVectorizer(OrigLoop, SE, LI, DT, TLI, TTI, 1, UnrollFactor) {}
- private:
- void scalarizeInstruction(Instruction *Instr,
- bool IfPredicateStore = false) override;
- void vectorizeMemoryInstruction(Instruction *Instr) override;
- Value *getBroadcastInstrs(Value *V) override;
- Value *getStepVector(Value *Val, int StartIdx, Value *Step) override;
- Value *reverseVector(Value *Vec) override;
- };
- /// \brief Look for a meaningful debug location on the instruction or it's
- /// operands.
- static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
- if (!I)
- return I;
- DebugLoc Empty;
- if (I->getDebugLoc() != Empty)
- return I;
- for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
- if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
- if (OpInst->getDebugLoc() != Empty)
- return OpInst;
- }
- return I;
- }
- /// \brief Set the debug location in the builder using the debug location in the
- /// instruction.
- static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
- if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
- B.SetCurrentDebugLocation(Inst->getDebugLoc());
- else
- B.SetCurrentDebugLocation(DebugLoc());
- }
- #ifndef NDEBUG
- /// \return string containing a file name and a line # for the given loop.
- static std::string getDebugLocString(const Loop *L) {
- std::string Result;
- if (L) {
- raw_string_ostream OS(Result);
- if (const DebugLoc LoopDbgLoc = L->getStartLoc())
- LoopDbgLoc.print(OS);
- else
- // Just print the module name.
- OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
- OS.flush();
- }
- return Result;
- }
- #endif
- /// \brief Propagate known metadata from one instruction to another.
- static void propagateMetadata(Instruction *To, const Instruction *From) {
- SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
- From->getAllMetadataOtherThanDebugLoc(Metadata);
- for (auto M : Metadata) {
- unsigned Kind = M.first;
- // These are safe to transfer (this is safe for TBAA, even when we
- // if-convert, because should that metadata have had a control dependency
- // on the condition, and thus actually aliased with some other
- // non-speculated memory access when the condition was false, this would be
- // caught by the runtime overlap checks).
- if (Kind != LLVMContext::MD_tbaa &&
- Kind != LLVMContext::MD_alias_scope &&
- Kind != LLVMContext::MD_noalias &&
- Kind != LLVMContext::MD_fpmath &&
- Kind != LLVMContext::MD_nontemporal)
- continue;
- To->setMetadata(Kind, M.second);
- }
- }
- /// \brief Propagate known metadata from one instruction to a vector of others.
- static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) {
- for (Value *V : To)
- if (Instruction *I = dyn_cast<Instruction>(V))
- propagateMetadata(I, From);
- }
- /// \brief The group of interleaved loads/stores sharing the same stride and
- /// close to each other.
- ///
- /// Each member in this group has an index starting from 0, and the largest
- /// index should be less than interleaved factor, which is equal to the absolute
- /// value of the access's stride.
- ///
- /// E.g. An interleaved load group of factor 4:
- /// for (unsigned i = 0; i < 1024; i+=4) {
- /// a = A[i]; // Member of index 0
- /// b = A[i+1]; // Member of index 1
- /// d = A[i+3]; // Member of index 3
- /// ...
- /// }
- ///
- /// An interleaved store group of factor 4:
- /// for (unsigned i = 0; i < 1024; i+=4) {
- /// ...
- /// A[i] = a; // Member of index 0
- /// A[i+1] = b; // Member of index 1
- /// A[i+2] = c; // Member of index 2
- /// A[i+3] = d; // Member of index 3
- /// }
- ///
- /// Note: the interleaved load group could have gaps (missing members), but
- /// the interleaved store group doesn't allow gaps.
- class InterleaveGroup {
- public:
- InterleaveGroup(Instruction *Instr, int Stride, unsigned Align)
- : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) {
- assert(Align && "The alignment should be non-zero");
- Factor = std::abs(Stride);
- assert(Factor > 1 && "Invalid interleave factor");
- Reverse = Stride < 0;
- Members[0] = Instr;
- }
- bool isReverse() const { return Reverse; }
- unsigned getFactor() const { return Factor; }
- unsigned getAlignment() const { return Align; }
- unsigned getNumMembers() const { return Members.size(); }
- /// \brief Try to insert a new member \p Instr with index \p Index and
- /// alignment \p NewAlign. The index is related to the leader and it could be
- /// negative if it is the new leader.
- ///
- /// \returns false if the instruction doesn't belong to the group.
- bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) {
- assert(NewAlign && "The new member's alignment should be non-zero");
- int Key = Index + SmallestKey;
- // Skip if there is already a member with the same index.
- if (Members.count(Key))
- return false;
- if (Key > LargestKey) {
- // The largest index is always less than the interleave factor.
- if (Index >= static_cast<int>(Factor))
- return false;
- LargestKey = Key;
- } else if (Key < SmallestKey) {
- // The largest index is always less than the interleave factor.
- if (LargestKey - Key >= static_cast<int>(Factor))
- return false;
- SmallestKey = Key;
- }
- // It's always safe to select the minimum alignment.
- Align = std::min(Align, NewAlign);
- Members[Key] = Instr;
- return true;
- }
- /// \brief Get the member with the given index \p Index
- ///
- /// \returns nullptr if contains no such member.
- Instruction *getMember(unsigned Index) const {
- int Key = SmallestKey + Index;
- if (!Members.count(Key))
- return nullptr;
- return Members.find(Key)->second;
- }
- /// \brief Get the index for the given member. Unlike the key in the member
- /// map, the index starts from 0.
- unsigned getIndex(Instruction *Instr) const {
- for (auto I : Members)
- if (I.second == Instr)
- return I.first - SmallestKey;
- llvm_unreachable("InterleaveGroup contains no such member");
- }
- Instruction *getInsertPos() const { return InsertPos; }
- void setInsertPos(Instruction *Inst) { InsertPos = Inst; }
- private:
- unsigned Factor; // Interleave Factor.
- bool Reverse;
- unsigned Align;
- DenseMap<int, Instruction *> Members;
- int SmallestKey;
- int LargestKey;
- // To avoid breaking dependences, vectorized instructions of an interleave
- // group should be inserted at either the first load or the last store in
- // program order.
- //
- // E.g. %even = load i32 // Insert Position
- // %add = add i32 %even // Use of %even
- // %odd = load i32
- //
- // store i32 %even
- // %odd = add i32 // Def of %odd
- // store i32 %odd // Insert Position
- Instruction *InsertPos;
- };
- /// \brief Drive the analysis of interleaved memory accesses in the loop.
- ///
- /// Use this class to analyze interleaved accesses only when we can vectorize
- /// a loop. Otherwise it's meaningless to do analysis as the vectorization
- /// on interleaved accesses is unsafe.
- ///
- /// The analysis collects interleave groups and records the relationships
- /// between the member and the group in a map.
- class InterleavedAccessInfo {
- public:
- InterleavedAccessInfo(ScalarEvolution *SE, Loop *L, DominatorTree *DT)
- : SE(SE), TheLoop(L), DT(DT) {}
- ~InterleavedAccessInfo() {
- SmallSet<InterleaveGroup *, 4> DelSet;
- // Avoid releasing a pointer twice.
- for (auto &I : InterleaveGroupMap)
- DelSet.insert(I.second);
- for (auto *Ptr : DelSet)
- delete Ptr;
- }
- /// \brief Analyze the interleaved accesses and collect them in interleave
- /// groups. Substitute symbolic strides using \p Strides.
- void analyzeInterleaving(const ValueToValueMap &Strides);
- /// \brief Check if \p Instr belongs to any interleave group.
- bool isInterleaved(Instruction *Instr) const {
- return InterleaveGroupMap.count(Instr);
- }
- /// \brief Get the interleave group that \p Instr belongs to.
- ///
- /// \returns nullptr if doesn't have such group.
- InterleaveGroup *getInterleaveGroup(Instruction *Instr) const {
- if (InterleaveGroupMap.count(Instr))
- return InterleaveGroupMap.find(Instr)->second;
- return nullptr;
- }
- private:
- ScalarEvolution *SE;
- Loop *TheLoop;
- DominatorTree *DT;
- /// Holds the relationships between the members and the interleave group.
- DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap;
- /// \brief The descriptor for a strided memory access.
- struct StrideDescriptor {
- StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size,
- unsigned Align)
- : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {}
- StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {}
- int Stride; // The access's stride. It is negative for a reverse access.
- const SCEV *Scev; // The scalar expression of this access
- unsigned Size; // The size of the memory object.
- unsigned Align; // The alignment of this access.
- };
- /// \brief Create a new interleave group with the given instruction \p Instr,
- /// stride \p Stride and alignment \p Align.
- ///
- /// \returns the newly created interleave group.
- InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride,
- unsigned Align) {
- assert(!InterleaveGroupMap.count(Instr) &&
- "Already in an interleaved access group");
- InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align);
- return InterleaveGroupMap[Instr];
- }
- /// \brief Release the group and remove all the relationships.
- void releaseGroup(InterleaveGroup *Group) {
- for (unsigned i = 0; i < Group->getFactor(); i++)
- if (Instruction *Member = Group->getMember(i))
- InterleaveGroupMap.erase(Member);
- delete Group;
- }
- /// \brief Collect all the accesses with a constant stride in program order.
- void collectConstStridedAccesses(
- MapVector<Instruction *, StrideDescriptor> &StrideAccesses,
- const ValueToValueMap &Strides);
- };
- /// Utility class for getting and setting loop vectorizer hints in the form
- /// of loop metadata.
- /// This class keeps a number of loop annotations locally (as member variables)
- /// and can, upon request, write them back as metadata on the loop. It will
- /// initially scan the loop for existing metadata, and will update the local
- /// values based on information in the loop.
- /// We cannot write all values to metadata, as the mere presence of some info,
- /// for example 'force', means a decision has been made. So, we need to be
- /// careful NOT to add them if the user hasn't specifically asked so.
- class LoopVectorizeHints {
- enum HintKind {
- HK_WIDTH,
- HK_UNROLL,
- HK_FORCE
- };
- /// Hint - associates name and validation with the hint value.
- struct Hint {
- const char * Name;
- unsigned Value; // This may have to change for non-numeric values.
- HintKind Kind;
- Hint(const char * Name, unsigned Value, HintKind Kind)
- : Name(Name), Value(Value), Kind(Kind) { }
- bool validate(unsigned Val) {
- switch (Kind) {
- case HK_WIDTH:
- return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
- case HK_UNROLL:
- return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
- case HK_FORCE:
- return (Val <= 1);
- }
- return false;
- }
- };
- /// Vectorization width.
- Hint Width;
- /// Vectorization interleave factor.
- Hint Interleave;
- /// Vectorization forced
- Hint Force;
- /// Return the loop metadata prefix.
- static StringRef Prefix() { return "llvm.loop."; }
- public:
- enum ForceKind {
- FK_Undefined = -1, ///< Not selected.
- FK_Disabled = 0, ///< Forcing disabled.
- FK_Enabled = 1, ///< Forcing enabled.
- };
- LoopVectorizeHints(const Loop *L, bool DisableInterleaving)
- : Width("vectorize.width", VectorizerParams::VectorizationFactor,
- HK_WIDTH),
- Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
- Force("vectorize.enable", FK_Undefined, HK_FORCE),
- TheLoop(L) {
- // Populate values with existing loop metadata.
- getHintsFromMetadata();
- // force-vector-interleave overrides DisableInterleaving.
- if (VectorizerParams::isInterleaveForced())
- Interleave.Value = VectorizerParams::VectorizationInterleave;
- DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
- << "LV: Interleaving disabled by the pass manager\n");
- }
- /// Mark the loop L as already vectorized by setting the width to 1.
- void setAlreadyVectorized() {
- Width.Value = Interleave.Value = 1;
- Hint Hints[] = {Width, Interleave};
- writeHintsToMetadata(Hints);
- }
- bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const {
- if (getForce() == LoopVectorizeHints::FK_Disabled) {
- DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
- emitOptimizationRemarkAnalysis(F->getContext(),
- vectorizeAnalysisPassName(), *F,
- L->getStartLoc(), emitRemark());
- return false;
- }
- if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
- DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
- emitOptimizationRemarkAnalysis(F->getContext(),
- vectorizeAnalysisPassName(), *F,
- L->getStartLoc(), emitRemark());
- return false;
- }
- if (getWidth() == 1 && getInterleave() == 1) {
- // FIXME: Add a separate metadata to indicate when the loop has already
- // been vectorized instead of setting width and count to 1.
- DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
- // FIXME: Add interleave.disable metadata. This will allow
- // vectorize.disable to be used without disabling the pass and errors
- // to differentiate between disabled vectorization and a width of 1.
- emitOptimizationRemarkAnalysis(
- F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(),
- "loop not vectorized: vectorization and interleaving are explicitly "
- "disabled, or vectorize width and interleave count are both set to "
- "1");
- return false;
- }
- return true;
- }
- /// Dumps all the hint information.
- std::string emitRemark() const {
- VectorizationReport R;
- if (Force.Value == LoopVectorizeHints::FK_Disabled)
- R << "vectorization is explicitly disabled";
- else {
- R << "use -Rpass-analysis=loop-vectorize for more info";
- if (Force.Value == LoopVectorizeHints::FK_Enabled) {
- R << " (Force=true";
- if (Width.Value != 0)
- R << ", Vector Width=" << Width.Value;
- if (Interleave.Value != 0)
- R << ", Interleave Count=" << Interleave.Value;
- R << ")";
- }
- }
- return R.str();
- }
- unsigned getWidth() const { return Width.Value; }
- unsigned getInterleave() const { return Interleave.Value; }
- enum ForceKind getForce() const { return (ForceKind)Force.Value; }
- const char *vectorizeAnalysisPassName() const {
- // If hints are provided that don't disable vectorization use the
- // AlwaysPrint pass name to force the frontend to print the diagnostic.
- if (getWidth() == 1)
- return LV_NAME;
- if (getForce() == LoopVectorizeHints::FK_Disabled)
- return LV_NAME;
- if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
- return LV_NAME;
- return DiagnosticInfo::AlwaysPrint;
- }
- private:
- /// Find hints specified in the loop metadata and update local values.
- void getHintsFromMetadata() {
- MDNode *LoopID = TheLoop->getLoopID();
- if (!LoopID)
- return;
- // First operand should refer to the loop id itself.
- assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
- assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
- for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
- const MDString *S = nullptr;
- SmallVector<Metadata *, 4> Args;
- // The expected hint is either a MDString or a MDNode with the first
- // operand a MDString.
- if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
- if (!MD || MD->getNumOperands() == 0)
- continue;
- S = dyn_cast<MDString>(MD->getOperand(0));
- for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
- Args.push_back(MD->getOperand(i));
- } else {
- S = dyn_cast<MDString>(LoopID->getOperand(i));
- assert(Args.size() == 0 && "too many arguments for MDString");
- }
- if (!S)
- continue;
- // Check if the hint starts with the loop metadata prefix.
- StringRef Name = S->getString();
- if (Args.size() == 1)
- setHint(Name, Args[0]);
- }
- }
- /// Checks string hint with one operand and set value if valid.
- void setHint(StringRef Name, Metadata *Arg) {
- if (!Name.startswith(Prefix()))
- return;
- Name = Name.substr(Prefix().size(), StringRef::npos);
- const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
- if (!C) return;
- unsigned Val = C->getZExtValue();
- Hint *Hints[] = {&Width, &Interleave, &Force};
- for (auto H : Hints) {
- if (Name == H->Name) {
- if (H->validate(Val))
- H->Value = Val;
- else
- DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
- break;
- }
- }
- }
- /// Create a new hint from name / value pair.
- MDNode *createHintMetadata(StringRef Name, unsigned V) const {
- LLVMContext &Context = TheLoop->getHeader()->getContext();
- Metadata *MDs[] = {MDString::get(Context, Name),
- ConstantAsMetadata::get(
- ConstantInt::get(Type::getInt32Ty(Context), V))};
- return MDNode::get(Context, MDs);
- }
- /// Matches metadata with hint name.
- bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
- MDString* Name = dyn_cast<MDString>(Node->getOperand(0));
- if (!Name)
- return false;
- for (auto H : HintTypes)
- if (Name->getString().endswith(H.Name))
- return true;
- return false;
- }
- /// Sets current hints into loop metadata, keeping other values intact.
- void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
- if (HintTypes.size() == 0)
- return;
- // Reserve the first element to LoopID (see below).
- SmallVector<Metadata *, 4> MDs(1);
- // If the loop already has metadata, then ignore the existing operands.
- MDNode *LoopID = TheLoop->getLoopID();
- if (LoopID) {
- for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
- MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
- // If node in update list, ignore old value.
- if (!matchesHintMetadataName(Node, HintTypes))
- MDs.push_back(Node);
- }
- }
- // Now, add the missing hints.
- for (auto H : HintTypes)
- MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
- // Replace current metadata node with new one.
- LLVMContext &Context = TheLoop->getHeader()->getContext();
- MDNode *NewLoopID = MDNode::get(Context, MDs);
- // Set operand 0 to refer to the loop id itself.
- NewLoopID->replaceOperandWith(0, NewLoopID);
- TheLoop->setLoopID(NewLoopID);
- }
- /// The loop these hints belong to.
- const Loop *TheLoop;
- };
- static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop,
- const LoopVectorizeHints &Hints,
- const LoopAccessReport &Message) {
- const char *Name = Hints.vectorizeAnalysisPassName();
- LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name);
- }
- static void emitMissedWarning(Function *F, Loop *L,
- const LoopVectorizeHints &LH) {
- emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(),
- LH.emitRemark());
- if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
- if (LH.getWidth() != 1)
- emitLoopVectorizeWarning(
- F->getContext(), *F, L->getStartLoc(),
- "failed explicitly specified loop vectorization");
- else if (LH.getInterleave() != 1)
- emitLoopInterleaveWarning(
- F->getContext(), *F, L->getStartLoc(),
- "failed explicitly specified loop interleaving");
- }
- }
- /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
- /// to what vectorization factor.
- /// This class does not look at the profitability of vectorization, only the
- /// legality. This class has two main kinds of checks:
- /// * Memory checks - The code in canVectorizeMemory checks if vectorization
- /// will change the order of memory accesses in a way that will change the
- /// correctness of the program.
- /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
- /// checks for a number of different conditions, such as the availability of a
- /// single induction variable, that all types are supported and vectorize-able,
- /// etc. This code reflects the capabilities of InnerLoopVectorizer.
- /// This class is also used by InnerLoopVectorizer for identifying
- /// induction variable and the different reduction variables.
- class LoopVectorizationLegality {
- public:
- LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
- TargetLibraryInfo *TLI, AliasAnalysis *AA,
- Function *F, const TargetTransformInfo *TTI,
- LoopAccessAnalysis *LAA,
- LoopVectorizationRequirements *R,
- const LoopVectorizeHints *H)
- : NumPredStores(0), TheLoop(L), SE(SE), TLI(TLI), TheFunction(F),
- TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(SE, L, DT),
- Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false),
- Requirements(R), Hints(H) {}
- /// ReductionList contains the reduction descriptors for all
- /// of the reductions that were found in the loop.
- typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList;
- /// InductionList saves induction variables and maps them to the
- /// induction descriptor.
- typedef MapVector<PHINode*, InductionDescriptor> InductionList;
- /// Returns true if it is legal to vectorize this loop.
- /// This does not mean that it is profitable to vectorize this
- /// loop, only that it is legal to do so.
- bool canVectorize();
- /// Returns the Induction variable.
- PHINode *getInduction() { return Induction; }
- /// Returns the reduction variables found in the loop.
- ReductionList *getReductionVars() { return &Reductions; }
- /// Returns the induction variables found in the loop.
- InductionList *getInductionVars() { return &Inductions; }
- /// Returns the widest induction type.
- Type *getWidestInductionType() { return WidestIndTy; }
- /// Returns True if V is an induction variable in this loop.
- bool isInductionVariable(const Value *V);
- /// Return true if the block BB needs to be predicated in order for the loop
- /// to be vectorized.
- bool blockNeedsPredication(BasicBlock *BB);
- /// Check if this pointer is consecutive when vectorizing. This happens
- /// when the last index of the GEP is the induction variable, or that the
- /// pointer itself is an induction variable.
- /// This check allows us to vectorize A[idx] into a wide load/store.
- /// Returns:
- /// 0 - Stride is unknown or non-consecutive.
- /// 1 - Address is consecutive.
- /// -1 - Address is consecutive, and decreasing.
- int isConsecutivePtr(Value *Ptr);
- /// Returns true if the value V is uniform within the loop.
- bool isUniform(Value *V);
- /// Returns true if this instruction will remain scalar after vectorization.
- bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
- /// Returns the information that we collected about runtime memory check.
- const RuntimePointerChecking *getRuntimePointerChecking() const {
- return LAI->getRuntimePointerChecking();
- }
- const LoopAccessInfo *getLAI() const {
- return LAI;
- }
- /// \brief Check if \p Instr belongs to any interleaved access group.
- bool isAccessInterleaved(Instruction *Instr) {
- return InterleaveInfo.isInterleaved(Instr);
- }
- /// \brief Get the interleaved access group that \p Instr belongs to.
- const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) {
- return InterleaveInfo.getInterleaveGroup(Instr);
- }
- unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
- bool hasStride(Value *V) { return StrideSet.count(V); }
- bool mustCheckStrides() { return !StrideSet.empty(); }
- SmallPtrSet<Value *, 8>::iterator strides_begin() {
- return StrideSet.begin();
- }
- SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
- /// Returns true if the target machine supports masked store operation
- /// for the given \p DataType and kind of access to \p Ptr.
- bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
- return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr));
- }
- /// Returns true if the target machine supports masked load operation
- /// for the given \p DataType and kind of access to \p Ptr.
- bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
- return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr));
- }
- /// Returns true if vector representation of the instruction \p I
- /// requires mask.
- bool isMaskRequired(const Instruction* I) {
- return (MaskedOp.count(I) != 0);
- }
- unsigned getNumStores() const {
- return LAI->getNumStores();
- }
- unsigned getNumLoads() const {
- return LAI->getNumLoads();
- }
- unsigned getNumPredStores() const {
- return NumPredStores;
- }
- private:
- /// Check if a single basic block loop is vectorizable.
- /// At this point we know that this is a loop with a constant trip count
- /// and we only need to check individual instructions.
- bool canVectorizeInstrs();
- /// When we vectorize loops we may change the order in which
- /// we read and write from memory. This method checks if it is
- /// legal to vectorize the code, considering only memory constrains.
- /// Returns true if the loop is vectorizable
- bool canVectorizeMemory();
- /// Return true if we can vectorize this loop using the IF-conversion
- /// transformation.
- bool canVectorizeWithIfConvert();
- /// Collect the variables that need to stay uniform after vectorization.
- void collectLoopUniforms();
- /// Return true if all of the instructions in the block can be speculatively
- /// executed. \p SafePtrs is a list of addresses that are known to be legal
- /// and we know that we can read from them without segfault.
- bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
- /// \brief Collect memory access with loop invariant strides.
- ///
- /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
- /// invariant.
- void collectStridedAccess(Value *LoadOrStoreInst);
- /// Report an analysis message to assist the user in diagnosing loops that are
- /// not vectorized. These are handled as LoopAccessReport rather than
- /// VectorizationReport because the << operator of VectorizationReport returns
- /// LoopAccessReport.
- void emitAnalysis(const LoopAccessReport &Message) const {
- emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message);
- }
- unsigned NumPredStores;
- /// The loop that we evaluate.
- Loop *TheLoop;
- /// Scev analysis.
- ScalarEvolution *SE;
- /// Target Library Info.
- TargetLibraryInfo *TLI;
- /// Parent function
- Function *TheFunction;
- /// Target Transform Info
- const TargetTransformInfo *TTI;
- /// Dominator Tree.
- DominatorTree *DT;
- // LoopAccess analysis.
- LoopAccessAnalysis *LAA;
- // And the loop-accesses info corresponding to this loop. This pointer is
- // null until canVectorizeMemory sets it up.
- const LoopAccessInfo *LAI;
- /// The interleave access information contains groups of interleaved accesses
- /// with the same stride and close to each other.
- InterleavedAccessInfo InterleaveInfo;
- // --- vectorization state --- //
- /// Holds the integer induction variable. This is the counter of the
- /// loop.
- PHINode *Induction;
- /// Holds the reduction variables.
- ReductionList Reductions;
- /// Holds all of the induction variables that we found in the loop.
- /// Notice that inductions don't need to start at zero and that induction
- /// variables can be pointers.
- InductionList Inductions;
- /// Holds the widest induction type encountered.
- Type *WidestIndTy;
- /// Allowed outside users. This holds the reduction
- /// vars which can be accessed from outside the loop.
- SmallPtrSet<Value*, 4> AllowedExit;
- /// This set holds the variables which are known to be uniform after
- /// vectorization.
- SmallPtrSet<Instruction*, 4> Uniforms;
- /// Can we assume the absence of NaNs.
- bool HasFunNoNaNAttr;
- /// Vectorization requirements that will go through late-evaluation.
- LoopVectorizationRequirements *Requirements;
- /// Used to emit an analysis of any legality issues.
- const LoopVectorizeHints *Hints;
- ValueToValueMap Strides;
- SmallPtrSet<Value *, 8> StrideSet;
- /// While vectorizing these instructions we have to generate a
- /// call to the appropriate masked intrinsic
- SmallPtrSet<const Instruction*, 8> MaskedOp;
- };
- /// LoopVectorizationCostModel - estimates the expected speedups due to
- /// vectorization.
- /// In many cases vectorization is not profitable. This can happen because of
- /// a number of reasons. In this class we mainly attempt to predict the
- /// expected speedup/slowdowns due to the supported instruction set. We use the
- /// TargetTransformInfo to query the different backends for the cost of
- /// different operations.
- class LoopVectorizationCostModel {
- public:
- LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
- LoopVectorizationLegality *Legal,
- const TargetTransformInfo &TTI,
- const TargetLibraryInfo *TLI, AssumptionCache *AC,
- const Function *F, const LoopVectorizeHints *Hints)
- : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI),
- TheFunction(F), Hints(Hints) {
- CodeMetrics::collectEphemeralValues(L, AC, EphValues);
- }
- /// Information about vectorization costs
- struct VectorizationFactor {
- unsigned Width; // Vector width with best cost
- unsigned Cost; // Cost of the loop with that width
- };
- /// \return The most profitable vectorization factor and the cost of that VF.
- /// This method checks every power of two up to VF. If UserVF is not ZERO
- /// then this vectorization factor will be selected if vectorization is
- /// possible.
- VectorizationFactor selectVectorizationFactor(bool OptForSize);
- /// \return The size (in bits) of the widest type in the code that
- /// needs to be vectorized. We ignore values that remain scalar such as
- /// 64 bit loop indices.
- unsigned getWidestType();
- /// \return The desired interleave count.
- /// If interleave count has been specified by metadata it will be returned.
- /// Otherwise, the interleave count is computed and returned. VF and LoopCost
- /// are the selected vectorization factor and the cost of the selected VF.
- unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
- unsigned LoopCost);
- /// \return The most profitable unroll factor.
- /// This method finds the best unroll-factor based on register pressure and
- /// other parameters. VF and LoopCost are the selected vectorization factor
- /// and the cost of the selected VF.
- unsigned computeInterleaveCount(bool OptForSize, unsigned VF,
- unsigned LoopCost);
- /// \brief A struct that represents some properties of the register usage
- /// of a loop.
- struct RegisterUsage {
- /// Holds the number of loop invariant values that are used in the loop.
- unsigned LoopInvariantRegs;
- /// Holds the maximum number of concurrent live intervals in the loop.
- unsigned MaxLocalUsers;
- /// Holds the number of instructions in the loop.
- unsigned NumInstructions;
- };
- /// \return information about the register usage of the loop.
- RegisterUsage calculateRegisterUsage();
- private:
- /// Returns the expected execution cost. The unit of the cost does
- /// not matter because we use the 'cost' units to compare different
- /// vector widths. The cost that is returned is *not* normalized by
- /// the factor width.
- unsigned expectedCost(unsigned VF);
- /// Returns the execution time cost of an instruction for a given vector
- /// width. Vector width of one means scalar.
- unsigned getInstructionCost(Instruction *I, unsigned VF);
- /// Returns whether the instruction is a load or store and will be a emitted
- /// as a vector operation.
- bool isConsecutiveLoadOrStore(Instruction *I);
- /// Report an analysis message to assist the user in diagnosing loops that are
- /// not vectorized. These are handled as LoopAccessReport rather than
- /// VectorizationReport because the << operator of VectorizationReport returns
- /// LoopAccessReport.
- void emitAnalysis(const LoopAccessReport &Message) const {
- emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message);
- }
- /// Values used only by @llvm.assume calls.
- SmallPtrSet<const Value *, 32> EphValues;
- /// The loop that we evaluate.
- Loop *TheLoop;
- /// Scev analysis.
- ScalarEvolution *SE;
- /// Loop Info analysis.
- LoopInfo *LI;
- /// Vectorization legality.
- LoopVectorizationLegality *Legal;
- /// Vector target information.
- const TargetTransformInfo &TTI;
- /// Target Library Info.
- const TargetLibraryInfo *TLI;
- const Function *TheFunction;
- // Loop Vectorize Hint.
- const LoopVectorizeHints *Hints;
- };
- /// \brief This holds vectorization requirements that must be verified late in
- /// the process. The requirements are set by legalize and costmodel. Once
- /// vectorization has been determined to be possible and profitable the
- /// requirements can be verified by looking for metadata or compiler options.
- /// For example, some loops require FP commutativity which is only allowed if
- /// vectorization is explicitly specified or if the fast-math compiler option
- /// has been provided.
- /// Late evaluation of these requirements allows helpful diagnostics to be
- /// composed that tells the user what need to be done to vectorize the loop. For
- /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
- /// evaluation should be used only when diagnostics can generated that can be
- /// followed by a non-expert user.
- class LoopVectorizationRequirements {
- public:
- LoopVectorizationRequirements()
- : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {}
- void addUnsafeAlgebraInst(Instruction *I) {
- // First unsafe algebra instruction.
- if (!UnsafeAlgebraInst)
- UnsafeAlgebraInst = I;
- }
- void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; }
- bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) {
- const char *Name = Hints.vectorizeAnalysisPassName();
- bool Failed = false;
- if (UnsafeAlgebraInst &&
- Hints.getForce() == LoopVectorizeHints::FK_Undefined &&
- Hints.getWidth() == 0) {
- emitOptimizationRemarkAnalysisFPCommute(
- F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(),
- VectorizationReport() << "vectorization requires changes in the "
- "order of operations, however IEEE 754 "
- "floating-point operations are not "
- "commutative");
- Failed = true;
- }
- if (NumRuntimePointerChecks >
- VectorizerParams::RuntimeMemoryCheckThreshold) {
- emitOptimizationRemarkAnalysisAliasing(
- F->getContext(), Name, *F, L->getStartLoc(),
- VectorizationReport()
- << "cannot prove pointers refer to independent arrays in memory. "
- "The loop requires "
- << NumRuntimePointerChecks
- << " runtime independence checks to vectorize the loop, but that "
- "would exceed the limit of "
- << VectorizerParams::RuntimeMemoryCheckThreshold << " checks");
- DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
- Failed = true;
- }
- return Failed;
- }
- private:
- unsigned NumRuntimePointerChecks;
- Instruction *UnsafeAlgebraInst;
- };
- static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
- if (L.empty())
- return V.push_back(&L);
- for (Loop *InnerL : L)
- addInnerLoop(*InnerL, V);
- }
- /// The LoopVectorize Pass.
- struct LoopVectorize : public FunctionPass {
- /// Pass identification, replacement for typeid
- static char ID;
- explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
- : FunctionPass(ID),
- DisableUnrolling(NoUnrolling),
- AlwaysVectorize(AlwaysVectorize) {
- initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
- }
- ScalarEvolution *SE;
- LoopInfo *LI;
- TargetTransformInfo *TTI;
- DominatorTree *DT;
- BlockFrequencyInfo *BFI;
- TargetLibraryInfo *TLI;
- AliasAnalysis *AA;
- AssumptionCache *AC;
- LoopAccessAnalysis *LAA;
- bool DisableUnrolling;
- bool AlwaysVectorize;
- BlockFrequency ColdEntryFreq;
- bool runOnFunction(Function &F) override {
- SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
- auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
- TLI = TLIP ? &TLIP->getTLI() : nullptr;
- AA = &getAnalysis<AliasAnalysis>();
- AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- LAA = &getAnalysis<LoopAccessAnalysis>();
- // Compute some weights outside of the loop over the loops. Compute this
- // using a BranchProbability to re-use its scaling math.
- const BranchProbability ColdProb(1, 5); // 20%
- ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
- // Don't attempt if
- // 1. the target claims to have no vector registers, and
- // 2. interleaving won't help ILP.
- //
- // The second condition is necessary because, even if the target has no
- // vector registers, loop vectorization may still enable scalar
- // interleaving.
- if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
- return false;
- // Build up a worklist of inner-loops to vectorize. This is necessary as
- // the act of vectorizing or partially unrolling a loop creates new loops
- // and can invalidate iterators across the loops.
- SmallVector<Loop *, 8> Worklist;
- for (Loop *L : *LI)
- addInnerLoop(*L, Worklist);
- LoopsAnalyzed += Worklist.size();
- // Now walk the identified inner loops.
- bool Changed = false;
- while (!Worklist.empty())
- Changed |= processLoop(Worklist.pop_back_val());
- // Process each loop nest in the function.
- return Changed;
- }
- static void AddRuntimeUnrollDisableMetaData(Loop *L) {
- SmallVector<Metadata *, 4> MDs;
- // Reserve first location for self reference to the LoopID metadata node.
- MDs.push_back(nullptr);
- bool IsUnrollMetadata = false;
- MDNode *LoopID = L->getLoopID();
- if (LoopID) {
- // First find existing loop unrolling disable metadata.
- for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
- MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
- if (MD) {
- const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
- IsUnrollMetadata =
- S && S->getString().startswith("llvm.loop.unroll.disable");
- }
- MDs.push_back(LoopID->getOperand(i));
- }
- }
- if (!IsUnrollMetadata) {
- // Add runtime unroll disable metadata.
- LLVMContext &Context = L->getHeader()->getContext();
- SmallVector<Metadata *, 1> DisableOperands;
- DisableOperands.push_back(
- MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
- MDNode *DisableNode = MDNode::get(Context, DisableOperands);
- MDs.push_back(DisableNode);
- MDNode *NewLoopID = MDNode::get(Context, MDs);
- // Set operand 0 to refer to the loop id itself.
- NewLoopID->replaceOperandWith(0, NewLoopID);
- L->setLoopID(NewLoopID);
- }
- }
- bool processLoop(Loop *L) {
- assert(L->empty() && "Only process inner loops.");
- #ifndef NDEBUG
- const std::string DebugLocStr = getDebugLocString(L);
- #endif /* NDEBUG */
- DEBUG(dbgs() << "\nLV: Checking a loop in \""
- << L->getHeader()->getParent()->getName() << "\" from "
- << DebugLocStr << "\n");
- LoopVectorizeHints Hints(L, DisableUnrolling);
- DEBUG(dbgs() << "LV: Loop hints:"
- << " force="
- << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
- ? "disabled"
- : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
- ? "enabled"
- : "?")) << " width=" << Hints.getWidth()
- << " unroll=" << Hints.getInterleave() << "\n");
- // Function containing loop
- Function *F = L->getHeader()->getParent();
- // Looking at the diagnostic output is the only way to determine if a loop
- // was vectorized (other than looking at the IR or machine code), so it
- // is important to generate an optimization remark for each loop. Most of
- // these messages are generated by emitOptimizationRemarkAnalysis. Remarks
- // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
- // less verbose reporting vectorized loops and unvectorized loops that may
- // benefit from vectorization, respectively.
- if (!Hints.allowVectorization(F, L, AlwaysVectorize)) {
- DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
- return false;
- }
- // Check the loop for a trip count threshold:
- // do not vectorize loops with a tiny trip count.
- const unsigned TC = SE->getSmallConstantTripCount(L);
- if (TC > 0u && TC < TinyTripCountVectorThreshold) {
- DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
- << "This loop is not worth vectorizing.");
- if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
- DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
- else {
- DEBUG(dbgs() << "\n");
- emitAnalysisDiag(F, L, Hints, VectorizationReport()
- << "vectorization is not beneficial "
- "and is not explicitly forced");
- return false;
- }
- }
- // Check if it is legal to vectorize the loop.
- LoopVectorizationRequirements Requirements;
- LoopVectorizationLegality LVL(L, SE, DT, TLI, AA, F, TTI, LAA,
- &Requirements, &Hints);
- if (!LVL.canVectorize()) {
- DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
- emitMissedWarning(F, L, Hints);
- return false;
- }
- // Use the cost model.
- LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, TLI, AC, F, &Hints);
- // Check the function attributes to find out if this function should be
- // optimized for size.
- bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
- F->optForSize();
- // Compute the weighted frequency of this loop being executed and see if it
- // is less than 20% of the function entry baseline frequency. Note that we
- // always have a canonical loop here because we think we *can* vectorize.
- // FIXME: This is hidden behind a flag due to pervasive problems with
- // exactly what block frequency models.
- if (LoopVectorizeWithBlockFrequency) {
- BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
- if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
- LoopEntryFreq < ColdEntryFreq)
- OptForSize = true;
- }
- // Check the function attributes to see if implicit floats are allowed.
- // FIXME: This check doesn't seem possibly correct -- what if the loop is
- // an integer loop and the vector instructions selected are purely integer
- // vector instructions?
- if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
- DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
- "attribute is used.\n");
- emitAnalysisDiag(
- F, L, Hints,
- VectorizationReport()
- << "loop not vectorized due to NoImplicitFloat attribute");
- emitMissedWarning(F, L, Hints);
- return false;
- }
- // Select the optimal vectorization factor.
- const LoopVectorizationCostModel::VectorizationFactor VF =
- CM.selectVectorizationFactor(OptForSize);
- // Select the interleave count.
- unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);
- // Get user interleave count.
- unsigned UserIC = Hints.getInterleave();
- // Identify the diagnostic messages that should be produced.
- std::string VecDiagMsg, IntDiagMsg;
- bool VectorizeLoop = true, InterleaveLoop = true;
- if (Requirements.doesNotMeet(F, L, Hints)) {
- DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
- "requirements.\n");
- emitMissedWarning(F, L, Hints);
- return false;
- }
- if (VF.Width == 1) {
- DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
- VecDiagMsg =
- "the cost-model indicates that vectorization is not beneficial";
- VectorizeLoop = false;
- }
- if (IC == 1 && UserIC <= 1) {
- // Tell the user interleaving is not beneficial.
- DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
- IntDiagMsg =
- "the cost-model indicates that interleaving is not beneficial";
- InterleaveLoop = false;
- if (UserIC == 1)
- IntDiagMsg +=
- " and is explicitly disabled or interleave count is set to 1";
- } else if (IC > 1 && UserIC == 1) {
- // Tell the user interleaving is beneficial, but it explicitly disabled.
- DEBUG(dbgs()
- << "LV: Interleaving is beneficial but is explicitly disabled.");
- IntDiagMsg = "the cost-model indicates that interleaving is beneficial "
- "but is explicitly disabled or interleave count is set to 1";
- InterleaveLoop = false;
- }
- // Override IC if user provided an interleave count.
- IC = UserIC > 0 ? UserIC : IC;
- // Emit diagnostic messages, if any.
- const char *VAPassName = Hints.vectorizeAnalysisPassName();
- if (!VectorizeLoop && !InterleaveLoop) {
- // Do not vectorize or interleaving the loop.
- emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F,
- L->getStartLoc(), VecDiagMsg);
- emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F,
- L->getStartLoc(), IntDiagMsg);
- return false;
- } else if (!VectorizeLoop && InterleaveLoop) {
- DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
- emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F,
- L->getStartLoc(), VecDiagMsg);
- } else if (VectorizeLoop && !InterleaveLoop) {
- DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
- << DebugLocStr << '\n');
- emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F,
- L->getStartLoc(), IntDiagMsg);
- } else if (VectorizeLoop && InterleaveLoop) {
- DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
- << DebugLocStr << '\n');
- DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
- }
- if (!VectorizeLoop) {
- assert(IC > 1 && "interleave count should not be 1 or 0");
- // If we decided that it is not legal to vectorize the loop then
- // interleave it.
- InnerLoopUnroller Unroller(L, SE, LI, DT, TLI, TTI, IC);
- Unroller.vectorize(&LVL);
- emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(),
- Twine("interleaved loop (interleaved count: ") +
- Twine(IC) + ")");
- } else {
- // If we decided that it is *legal* to vectorize the loop then do it.
- InnerLoopVectorizer LB(L, SE, LI, DT, TLI, TTI, VF.Width, IC);
- LB.vectorize(&LVL);
- ++LoopsVectorized;
- // Add metadata to disable runtime unrolling scalar loop when there's no
- // runtime check about strides and memory. Because at this situation,
- // scalar loop is rarely used not worthy to be unrolled.
- if (!LB.IsSafetyChecksAdded())
- AddRuntimeUnrollDisableMetaData(L);
- // Report the vectorization decision.
- emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(),
- Twine("vectorized loop (vectorization width: ") +
- Twine(VF.Width) + ", interleaved count: " +
- Twine(IC) + ")");
- }
- // Mark the loop as already vectorized to avoid vectorizing again.
- Hints.setAlreadyVectorized();
- DEBUG(verifyFunction(*L->getHeader()->getParent()));
- return true;
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequiredID(LoopSimplifyID);
- AU.addRequiredID(LCSSAID);
- AU.addRequired<BlockFrequencyInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addRequired<ScalarEvolutionWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addRequired<AliasAnalysis>();
- AU.addRequired<LoopAccessAnalysis>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<AliasAnalysis>();
- }
- };
- } // end anonymous namespace
- //===----------------------------------------------------------------------===//
- // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
- // LoopVectorizationCostModel.
- //===----------------------------------------------------------------------===//
- Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
- // We need to place the broadcast of invariant variables outside the loop.
- Instruction *Instr = dyn_cast<Instruction>(V);
- bool NewInstr =
- (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(),
- Instr->getParent()) != LoopVectorBody.end());
- bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
- // Place the code for broadcasting invariant variables in the new preheader.
- IRBuilder<>::InsertPointGuard Guard(Builder);
- if (Invariant)
- Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
- // Broadcast the scalar into all locations in the vector.
- Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
- return Shuf;
- }
- Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx,
- Value *Step) {
- assert(Val->getType()->isVectorTy() && "Must be a vector");
- assert(Val->getType()->getScalarType()->isIntegerTy() &&
- "Elem must be an integer");
- assert(Step->getType() == Val->getType()->getScalarType() &&
- "Step has wrong type");
- // Create the types.
- Type *ITy = Val->getType()->getScalarType();
- VectorType *Ty = cast<VectorType>(Val->getType());
- int VLen = Ty->getNumElements();
- SmallVector<Constant*, 8> Indices;
- // Create a vector of consecutive numbers from zero to VF.
- for (int i = 0; i < VLen; ++i)
- Indices.push_back(ConstantInt::get(ITy, StartIdx + i));
- // Add the consecutive indices to the vector value.
- Constant *Cv = ConstantVector::get(Indices);
- assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
- Step = Builder.CreateVectorSplat(VLen, Step);
- assert(Step->getType() == Val->getType() && "Invalid step vec");
- // FIXME: The newly created binary instructions should contain nsw/nuw flags,
- // which can be found from the original scalar operations.
- Step = Builder.CreateMul(Cv, Step);
- return Builder.CreateAdd(Val, Step, "induction");
- }
- int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
- assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
- // Make sure that the pointer does not point to structs.
- if (Ptr->getType()->getPointerElementType()->isAggregateType())
- return 0;
- // If this value is a pointer induction variable we know it is consecutive.
- PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
- if (Phi && Inductions.count(Phi)) {
- InductionDescriptor II = Inductions[Phi];
- return II.getConsecutiveDirection();
- }
- GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
- if (!Gep)
- return 0;
- unsigned NumOperands = Gep->getNumOperands();
- Value *GpPtr = Gep->getPointerOperand();
- // If this GEP value is a consecutive pointer induction variable and all of
- // the indices are constant then we know it is consecutive. We can
- Phi = dyn_cast<PHINode>(GpPtr);
- if (Phi && Inductions.count(Phi)) {
- // Make sure that the pointer does not point to structs.
- PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
- if (GepPtrType->getElementType()->isAggregateType())
- return 0;
- // Make sure that all of the index operands are loop invariant.
- for (unsigned i = 1; i < NumOperands; ++i)
- if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
- return 0;
- InductionDescriptor II = Inductions[Phi];
- return II.getConsecutiveDirection();
- }
- unsigned InductionOperand = getGEPInductionOperand(Gep);
- // Check that all of the gep indices are uniform except for our induction
- // operand.
- for (unsigned i = 0; i != NumOperands; ++i)
- if (i != InductionOperand &&
- !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
- return 0;
- // We can emit wide load/stores only if the last non-zero index is the
- // induction variable.
- const SCEV *Last = nullptr;
- if (!Strides.count(Gep))
- Last = SE->getSCEV(Gep->getOperand(InductionOperand));
- else {
- // Because of the multiplication by a stride we can have a s/zext cast.
- // We are going to replace this stride by 1 so the cast is safe to ignore.
- //
- // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
- // %0 = trunc i64 %indvars.iv to i32
- // %mul = mul i32 %0, %Stride1
- // %idxprom = zext i32 %mul to i64 << Safe cast.
- // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
- //
- Last = replaceSymbolicStrideSCEV(SE, Strides,
- Gep->getOperand(InductionOperand), Gep);
- if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
- Last =
- (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
- ? C->getOperand()
- : Last;
- }
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
- const SCEV *Step = AR->getStepRecurrence(*SE);
- // The memory is consecutive because the last index is consecutive
- // and all other indices are loop invariant.
- if (Step->isOne())
- return 1;
- if (Step->isAllOnesValue())
- return -1;
- }
- return 0;
- }
- bool LoopVectorizationLegality::isUniform(Value *V) {
- return LAI->isUniform(V);
- }
- InnerLoopVectorizer::VectorParts&
- InnerLoopVectorizer::getVectorValue(Value *V) {
- assert(V != Induction && "The new induction variable should not be used.");
- assert(!V->getType()->isVectorTy() && "Can't widen a vector");
- // If we have a stride that is replaced by one, do it here.
- if (Legal->hasStride(V))
- V = ConstantInt::get(V->getType(), 1);
- // If we have this scalar in the map, return it.
- if (WidenMap.has(V))
- return WidenMap.get(V);
- // If this scalar is unknown, assume that it is a constant or that it is
- // loop invariant. Broadcast V and save the value for future uses.
- Value *B = getBroadcastInstrs(V);
- return WidenMap.splat(V, B);
- }
- Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
- assert(Vec->getType()->isVectorTy() && "Invalid type");
- SmallVector<Constant*, 8> ShuffleMask;
- for (unsigned i = 0; i < VF; ++i)
- ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
- return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
- ConstantVector::get(ShuffleMask),
- "reverse");
- }
- // Get a mask to interleave \p NumVec vectors into a wide vector.
- // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...>
- // E.g. For 2 interleaved vectors, if VF is 4, the mask is:
- // <0, 4, 1, 5, 2, 6, 3, 7>
- static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF,
- unsigned NumVec) {
- SmallVector<Constant *, 16> Mask;
- for (unsigned i = 0; i < VF; i++)
- for (unsigned j = 0; j < NumVec; j++)
- Mask.push_back(Builder.getInt32(j * VF + i));
- return ConstantVector::get(Mask);
- }
- // Get the strided mask starting from index \p Start.
- // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)>
- static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start,
- unsigned Stride, unsigned VF) {
- SmallVector<Constant *, 16> Mask;
- for (unsigned i = 0; i < VF; i++)
- Mask.push_back(Builder.getInt32(Start + i * Stride));
- return ConstantVector::get(Mask);
- }
- // Get a mask of two parts: The first part consists of sequential integers
- // starting from 0, The second part consists of UNDEFs.
- // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef>
- static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt,
- unsigned NumUndef) {
- SmallVector<Constant *, 16> Mask;
- for (unsigned i = 0; i < NumInt; i++)
- Mask.push_back(Builder.getInt32(i));
- Constant *Undef = UndefValue::get(Builder.getInt32Ty());
- for (unsigned i = 0; i < NumUndef; i++)
- Mask.push_back(Undef);
- return ConstantVector::get(Mask);
- }
- // Concatenate two vectors with the same element type. The 2nd vector should
- // not have more elements than the 1st vector. If the 2nd vector has less
- // elements, extend it with UNDEFs.
- static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
- Value *V2) {
- VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
- VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
- assert(VecTy1 && VecTy2 &&
- VecTy1->getScalarType() == VecTy2->getScalarType() &&
- "Expect two vectors with the same element type");
- unsigned NumElts1 = VecTy1->getNumElements();
- unsigned NumElts2 = VecTy2->getNumElements();
- assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
- if (NumElts1 > NumElts2) {
- // Extend with UNDEFs.
- Constant *ExtMask =
- getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2);
- V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
- }
- Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0);
- return Builder.CreateShuffleVector(V1, V2, Mask);
- }
- // Concatenate vectors in the given list. All vectors have the same type.
- static Value *ConcatenateVectors(IRBuilder<> &Builder,
- ArrayRef<Value *> InputList) {
- unsigned NumVec = InputList.size();
- assert(NumVec > 1 && "Should be at least two vectors");
- SmallVector<Value *, 8> ResList;
- ResList.append(InputList.begin(), InputList.end());
- do {
- SmallVector<Value *, 8> TmpList;
- for (unsigned i = 0; i < NumVec - 1; i += 2) {
- Value *V0 = ResList[i], *V1 = ResList[i + 1];
- assert((V0->getType() == V1->getType() || i == NumVec - 2) &&
- "Only the last vector may have a different type");
- TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1));
- }
- // Push the last vector if the total number of vectors is odd.
- if (NumVec % 2 != 0)
- TmpList.push_back(ResList[NumVec - 1]);
- ResList = TmpList;
- NumVec = ResList.size();
- } while (NumVec > 1);
- return ResList[0];
- }
- // Try to vectorize the interleave group that \p Instr belongs to.
- //
- // E.g. Translate following interleaved load group (factor = 3):
- // for (i = 0; i < N; i+=3) {
- // R = Pic[i]; // Member of index 0
- // G = Pic[i+1]; // Member of index 1
- // B = Pic[i+2]; // Member of index 2
- // ... // do something to R, G, B
- // }
- // To:
- // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
- // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements
- // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements
- // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements
- //
- // Or translate following interleaved store group (factor = 3):
- // for (i = 0; i < N; i+=3) {
- // ... do something to R, G, B
- // Pic[i] = R; // Member of index 0
- // Pic[i+1] = G; // Member of index 1
- // Pic[i+2] = B; // Member of index 2
- // }
- // To:
- // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
- // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
- // %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
- // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
- // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
- void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) {
- const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr);
- assert(Group && "Fail to get an interleaved access group.");
- // Skip if current instruction is not the insert position.
- if (Instr != Group->getInsertPos())
- return;
- LoadInst *LI = dyn_cast<LoadInst>(Instr);
- StoreInst *SI = dyn_cast<StoreInst>(Instr);
- Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
- // Prepare for the vector type of the interleaved load/store.
- Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
- unsigned InterleaveFactor = Group->getFactor();
- Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
- Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace());
- // Prepare for the new pointers.
- setDebugLocFromInst(Builder, Ptr);
- VectorParts &PtrParts = getVectorValue(Ptr);
- SmallVector<Value *, 2> NewPtrs;
- unsigned Index = Group->getIndex(Instr);
- for (unsigned Part = 0; Part < UF; Part++) {
- // Extract the pointer for current instruction from the pointer vector. A
- // reverse access uses the pointer in the last lane.
- Value *NewPtr = Builder.CreateExtractElement(
- PtrParts[Part],
- Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0));
- // Notice current instruction could be any index. Need to adjust the address
- // to the member of index 0.
- //
- // E.g. a = A[i+1]; // Member of index 1 (Current instruction)
- // b = A[i]; // Member of index 0
- // Current pointer is pointed to A[i+1], adjust it to A[i].
- //
- // E.g. A[i+1] = a; // Member of index 1
- // A[i] = b; // Member of index 0
- // A[i+2] = c; // Member of index 2 (Current instruction)
- // Current pointer is pointed to A[i+2], adjust it to A[i].
- NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index));
- // Cast to the vector pointer type.
- NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
- }
- setDebugLocFromInst(Builder, Instr);
- Value *UndefVec = UndefValue::get(VecTy);
- // Vectorize the interleaved load group.
- if (LI) {
- for (unsigned Part = 0; Part < UF; Part++) {
- Instruction *NewLoadInstr = Builder.CreateAlignedLoad(
- NewPtrs[Part], Group->getAlignment(), "wide.vec");
- for (unsigned i = 0; i < InterleaveFactor; i++) {
- Instruction *Member = Group->getMember(i);
- // Skip the gaps in the group.
- if (!Member)
- continue;
- Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF);
- Value *StridedVec = Builder.CreateShuffleVector(
- NewLoadInstr, UndefVec, StrideMask, "strided.vec");
- // If this member has different type, cast the result type.
- if (Member->getType() != ScalarTy) {
- VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
- StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy);
- }
- VectorParts &Entry = WidenMap.get(Member);
- Entry[Part] =
- Group->isReverse() ? reverseVector(StridedVec) : StridedVec;
- }
- propagateMetadata(NewLoadInstr, Instr);
- }
- return;
- }
- // The sub vector type for current instruction.
- VectorType *SubVT = VectorType::get(ScalarTy, VF);
- // Vectorize the interleaved store group.
- for (unsigned Part = 0; Part < UF; Part++) {
- // Collect the stored vector from each member.
- SmallVector<Value *, 4> StoredVecs;
- for (unsigned i = 0; i < InterleaveFactor; i++) {
- // Interleaved store group doesn't allow a gap, so each index has a member
- Instruction *Member = Group->getMember(i);
- assert(Member && "Fail to get a member from an interleaved store group");
- Value *StoredVec =
- getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part];
- if (Group->isReverse())
- StoredVec = reverseVector(StoredVec);
- // If this member has different type, cast it to an unified type.
- if (StoredVec->getType() != SubVT)
- StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT);
- StoredVecs.push_back(StoredVec);
- }
- // Concatenate all vectors into a wide vector.
- Value *WideVec = ConcatenateVectors(Builder, StoredVecs);
- // Interleave the elements in the wide vector.
- Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor);
- Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
- "interleaved.vec");
- Instruction *NewStoreInstr =
- Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment());
- propagateMetadata(NewStoreInstr, Instr);
- }
- }
- void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
- // Attempt to issue a wide load.
- LoadInst *LI = dyn_cast<LoadInst>(Instr);
- StoreInst *SI = dyn_cast<StoreInst>(Instr);
- assert((LI || SI) && "Invalid Load/Store instruction");
- // Try to vectorize the interleave group if this access is interleaved.
- if (Legal->isAccessInterleaved(Instr))
- return vectorizeInterleaveGroup(Instr);
- Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
- Type *DataTy = VectorType::get(ScalarDataTy, VF);
- Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
- unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
- // An alignment of 0 means target abi alignment. We need to use the scalar's
- // target abi alignment in such a case.
- const DataLayout &DL = Instr->getModule()->getDataLayout();
- if (!Alignment)
- Alignment = DL.getABITypeAlignment(ScalarDataTy);
- unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
- unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy);
- unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF;
- if (SI && Legal->blockNeedsPredication(SI->getParent()) &&
- !Legal->isMaskRequired(SI))
- return scalarizeInstruction(Instr, true);
- if (ScalarAllocatedSize != VectorElementSize)
- return scalarizeInstruction(Instr);
- // If the pointer is loop invariant or if it is non-consecutive,
- // scalarize the load.
- int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
- bool Reverse = ConsecutiveStride < 0;
- bool UniformLoad = LI && Legal->isUniform(Ptr);
- if (!ConsecutiveStride || UniformLoad)
- return scalarizeInstruction(Instr);
- Constant *Zero = Builder.getInt32(0);
- VectorParts &Entry = WidenMap.get(Instr);
- // Handle consecutive loads/stores.
- GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
- if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
- setDebugLocFromInst(Builder, Gep);
- Value *PtrOperand = Gep->getPointerOperand();
- Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
- FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
- // Create the new GEP with the new induction variable.
- GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
- Gep2->setOperand(0, FirstBasePtr);
- Gep2->setName("gep.indvar.base");
- Ptr = Builder.Insert(Gep2);
- } else if (Gep) {
- setDebugLocFromInst(Builder, Gep);
- assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
- OrigLoop) && "Base ptr must be invariant");
- // The last index does not have to be the induction. It can be
- // consecutive and be a function of the index. For example A[I+1];
- unsigned NumOperands = Gep->getNumOperands();
- unsigned InductionOperand = getGEPInductionOperand(Gep);
- // Create the new GEP with the new induction variable.
- GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
- for (unsigned i = 0; i < NumOperands; ++i) {
- Value *GepOperand = Gep->getOperand(i);
- Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
- // Update last index or loop invariant instruction anchored in loop.
- if (i == InductionOperand ||
- (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
- assert((i == InductionOperand ||
- SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
- "Must be last index or loop invariant");
- VectorParts &GEPParts = getVectorValue(GepOperand);
- Value *Index = GEPParts[0];
- Index = Builder.CreateExtractElement(Index, Zero);
- Gep2->setOperand(i, Index);
- Gep2->setName("gep.indvar.idx");
- }
- }
- Ptr = Builder.Insert(Gep2);
- } else {
- // Use the induction element ptr.
- assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
- setDebugLocFromInst(Builder, Ptr);
- VectorParts &PtrVal = getVectorValue(Ptr);
- Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
- }
- VectorParts Mask = createBlockInMask(Instr->getParent());
- // Handle Stores:
- if (SI) {
- assert(!Legal->isUniform(SI->getPointerOperand()) &&
- "We do not allow storing to uniform addresses");
- setDebugLocFromInst(Builder, SI);
- // We don't want to update the value in the map as it might be used in
- // another expression. So don't use a reference type for "StoredVal".
- VectorParts StoredVal = getVectorValue(SI->getValueOperand());
-
- for (unsigned Part = 0; Part < UF; ++Part) {
- // Calculate the pointer for the specific unroll-part.
- Value *PartPtr =
- Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
- if (Reverse) {
- // If we store to reverse consecutive memory locations, then we need
- // to reverse the order of elements in the stored value.
- StoredVal[Part] = reverseVector(StoredVal[Part]);
- // If the address is consecutive but reversed, then the
- // wide store needs to start at the last vector element.
- PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
- PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
- Mask[Part] = reverseVector(Mask[Part]);
- }
- Value *VecPtr = Builder.CreateBitCast(PartPtr,
- DataTy->getPointerTo(AddressSpace));
- Instruction *NewSI;
- if (Legal->isMaskRequired(SI))
- NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment,
- Mask[Part]);
- else
- NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
- propagateMetadata(NewSI, SI);
- }
- return;
- }
- // Handle loads.
- assert(LI && "Must have a load instruction");
- setDebugLocFromInst(Builder, LI);
- for (unsigned Part = 0; Part < UF; ++Part) {
- // Calculate the pointer for the specific unroll-part.
- Value *PartPtr =
- Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
- if (Reverse) {
- // If the address is consecutive but reversed, then the
- // wide load needs to start at the last vector element.
- PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
- PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
- Mask[Part] = reverseVector(Mask[Part]);
- }
- Instruction* NewLI;
- Value *VecPtr = Builder.CreateBitCast(PartPtr,
- DataTy->getPointerTo(AddressSpace));
- if (Legal->isMaskRequired(LI))
- NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
- UndefValue::get(DataTy),
- "wide.masked.load");
- else
- NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
- propagateMetadata(NewLI, LI);
- Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI;
- }
- }
- void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) {
- assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
- // Holds vector parameters or scalars, in case of uniform vals.
- SmallVector<VectorParts, 4> Params;
- setDebugLocFromInst(Builder, Instr);
- // Find all of the vectorized parameters.
- for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
- Value *SrcOp = Instr->getOperand(op);
- // If we are accessing the old induction variable, use the new one.
- if (SrcOp == OldInduction) {
- Params.push_back(getVectorValue(SrcOp));
- continue;
- }
- // Try using previously calculated values.
- Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
- // If the src is an instruction that appeared earlier in the basic block,
- // then it should already be vectorized.
- if (SrcInst && OrigLoop->contains(SrcInst)) {
- assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
- // The parameter is a vector value from earlier.
- Params.push_back(WidenMap.get(SrcInst));
- } else {
- // The parameter is a scalar from outside the loop. Maybe even a constant.
- VectorParts Scalars;
- Scalars.append(UF, SrcOp);
- Params.push_back(Scalars);
- }
- }
- assert(Params.size() == Instr->getNumOperands() &&
- "Invalid number of operands");
- // Does this instruction return a value ?
- bool IsVoidRetTy = Instr->getType()->isVoidTy();
- Value *UndefVec = IsVoidRetTy ? nullptr :
- UndefValue::get(VectorType::get(Instr->getType(), VF));
- // Create a new entry in the WidenMap and initialize it to Undef or Null.
- VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
- Instruction *InsertPt = Builder.GetInsertPoint();
- BasicBlock *IfBlock = Builder.GetInsertBlock();
- BasicBlock *CondBlock = nullptr;
- VectorParts Cond;
- Loop *VectorLp = nullptr;
- if (IfPredicateStore) {
- assert(Instr->getParent()->getSinglePredecessor() &&
- "Only support single predecessor blocks");
- Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
- Instr->getParent());
- VectorLp = LI->getLoopFor(IfBlock);
- assert(VectorLp && "Must have a loop for this block");
- }
- // For each vector unroll 'part':
- for (unsigned Part = 0; Part < UF; ++Part) {
- // For each scalar that we create:
- for (unsigned Width = 0; Width < VF; ++Width) {
- // Start if-block.
- Value *Cmp = nullptr;
- if (IfPredicateStore) {
- Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
- Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1));
- CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
- LoopVectorBody.push_back(CondBlock);
- VectorLp->addBasicBlockToLoop(CondBlock, *LI);
- // Update Builder with newly created basic block.
- Builder.SetInsertPoint(InsertPt);
- }
- Instruction *Cloned = Instr->clone();
- if (!IsVoidRetTy)
- Cloned->setName(Instr->getName() + ".cloned");
- // Replace the operands of the cloned instructions with extracted scalars.
- for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
- Value *Op = Params[op][Part];
- // Param is a vector. Need to extract the right lane.
- if (Op->getType()->isVectorTy())
- Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
- Cloned->setOperand(op, Op);
- }
- // Place the cloned scalar in the new loop.
- Builder.Insert(Cloned);
- // If the original scalar returns a value we need to place it in a vector
- // so that future users will be able to use it.
- if (!IsVoidRetTy)
- VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
- Builder.getInt32(Width));
- // End if-block.
- if (IfPredicateStore) {
- BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
- LoopVectorBody.push_back(NewIfBlock);
- VectorLp->addBasicBlockToLoop(NewIfBlock, *LI);
- Builder.SetInsertPoint(InsertPt);
- ReplaceInstWithInst(IfBlock->getTerminator(),
- BranchInst::Create(CondBlock, NewIfBlock, Cmp));
- IfBlock = NewIfBlock;
- }
- }
- }
- }
- static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
- Instruction *Loc) {
- if (FirstInst)
- return FirstInst;
- if (Instruction *I = dyn_cast<Instruction>(V))
- return I->getParent() == Loc->getParent() ? I : nullptr;
- return nullptr;
- }
- std::pair<Instruction *, Instruction *>
- InnerLoopVectorizer::addStrideCheck(Instruction *Loc) {
- Instruction *tnullptr = nullptr;
- if (!Legal->mustCheckStrides())
- return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
- IRBuilder<> ChkBuilder(Loc);
- // Emit checks.
- Value *Check = nullptr;
- Instruction *FirstInst = nullptr;
- for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(),
- SE = Legal->strides_end();
- SI != SE; ++SI) {
- Value *Ptr = stripIntegerCast(*SI);
- Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1),
- "stride.chk");
- // Store the first instruction we create.
- FirstInst = getFirstInst(FirstInst, C, Loc);
- if (Check)
- Check = ChkBuilder.CreateOr(Check, C);
- else
- Check = C;
- }
- // We have to do this trickery because the IRBuilder might fold the check to a
- // constant expression in which case there is no Instruction anchored in a
- // the block.
- LLVMContext &Ctx = Loc->getContext();
- Instruction *TheCheck =
- BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx));
- ChkBuilder.Insert(TheCheck, "stride.not.one");
- FirstInst = getFirstInst(FirstInst, TheCheck, Loc);
- return std::make_pair(FirstInst, TheCheck);
- }
- void InnerLoopVectorizer::createEmptyLoop() {
- /*
- In this function we generate a new loop. The new loop will contain
- the vectorized instructions while the old loop will continue to run the
- scalar remainder.
- [ ] <-- loop iteration number check.
- / |
- / v
- | [ ] <-- vector loop bypass (may consist of multiple blocks).
- | / |
- | / v
- || [ ] <-- vector pre header.
- || |
- || v
- || [ ] \
- || [ ]_| <-- vector loop.
- || |
- | \ v
- | >[ ] <--- middle-block.
- | / |
- | / v
- -|- >[ ] <--- new preheader.
- | |
- | v
- | [ ] \
- | [ ]_| <-- old scalar loop to handle remainder.
- \ |
- \ v
- >[ ] <-- exit block.
- ...
- */
- BasicBlock *OldBasicBlock = OrigLoop->getHeader();
- BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
- BasicBlock *ExitBlock = OrigLoop->getExitBlock();
- assert(VectorPH && "Invalid loop structure");
- assert(ExitBlock && "Must have an exit block");
- // Some loops have a single integer induction variable, while other loops
- // don't. One example is c++ iterators that often have multiple pointer
- // induction variables. In the code below we also support a case where we
- // don't have a single induction variable.
- OldInduction = Legal->getInduction();
- Type *IdxTy = Legal->getWidestInductionType();
- // Find the loop boundaries.
- const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
- assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
- // The exit count might have the type of i64 while the phi is i32. This can
- // happen if we have an induction variable that is sign extended before the
- // compare. The only way that we get a backedge taken count is that the
- // induction variable was signed and as such will not overflow. In such a case
- // truncation is legal.
- if (ExitCount->getType()->getPrimitiveSizeInBits() >
- IdxTy->getPrimitiveSizeInBits())
- ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy);
- const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy);
- // Get the total trip count from the count by adding 1.
- ExitCount = SE->getAddExpr(BackedgeTakeCount,
- SE->getConstant(BackedgeTakeCount->getType(), 1));
- const DataLayout &DL = OldBasicBlock->getModule()->getDataLayout();
- // Expand the trip count and place the new instructions in the preheader.
- // Notice that the pre-header does not change, only the loop body.
- SCEVExpander Exp(*SE, DL, "induction");
- // The loop minimum iterations check below is to ensure the loop has enough
- // trip count so the generated vector loop will likely be executed and the
- // preparation and rounding-off costs will likely be worthy.
- //
- // The minimum iteration check also covers case where the backedge-taken
- // count is uint##_max. Adding one to it will cause overflow and an
- // incorrect loop trip count being generated in the vector body. In this
- // case we also want to directly jump to the scalar remainder loop.
- Value *ExitCountValue = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
- VectorPH->getTerminator());
- if (ExitCountValue->getType()->isPointerTy())
- ExitCountValue = CastInst::CreatePointerCast(ExitCountValue, IdxTy,
- "exitcount.ptrcnt.to.int",
- VectorPH->getTerminator());
- Instruction *CheckMinIters =
- CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULT, ExitCountValue,
- ConstantInt::get(ExitCountValue->getType(), VF * UF),
- "min.iters.check", VectorPH->getTerminator());
- // The loop index does not have to start at Zero. Find the original start
- // value from the induction PHI node. If we don't have an induction variable
- // then we know that it starts at zero.
- Builder.SetInsertPoint(VectorPH->getTerminator());
- Value *StartIdx = ExtendedIdx =
- OldInduction
- ? Builder.CreateZExt(OldInduction->getIncomingValueForBlock(VectorPH),
- IdxTy)
- : ConstantInt::get(IdxTy, 0);
- // Count holds the overall loop count (N).
- Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
- VectorPH->getTerminator());
- LoopBypassBlocks.push_back(VectorPH);
- // Split the single block loop into the two loop structure described above.
- BasicBlock *VecBody =
- VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
- BasicBlock *MiddleBlock =
- VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
- BasicBlock *ScalarPH =
- MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
- // Create and register the new vector loop.
- Loop* Lp = new Loop();
- Loop *ParentLoop = OrigLoop->getParentLoop();
- // Insert the new loop into the loop nest and register the new basic blocks
- // before calling any utilities such as SCEV that require valid LoopInfo.
- if (ParentLoop) {
- ParentLoop->addChildLoop(Lp);
- ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
- ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
- } else {
- LI->addTopLevelLoop(Lp);
- }
- Lp->addBasicBlockToLoop(VecBody, *LI);
- // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
- // inside the loop.
- Builder.SetInsertPoint(VecBody->getFirstNonPHI());
- // Generate the induction variable.
- setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
- Induction = Builder.CreatePHI(IdxTy, 2, "index");
- // The loop step is equal to the vectorization factor (num of SIMD elements)
- // times the unroll factor (num of SIMD instructions).
- Constant *Step = ConstantInt::get(IdxTy, VF * UF);
- // Generate code to check that the loop's trip count is not less than the
- // minimum loop iteration number threshold.
- BasicBlock *NewVectorPH =
- VectorPH->splitBasicBlock(VectorPH->getTerminator(), "min.iters.checked");
- if (ParentLoop)
- ParentLoop->addBasicBlockToLoop(NewVectorPH, *LI);
- ReplaceInstWithInst(VectorPH->getTerminator(),
- BranchInst::Create(ScalarPH, NewVectorPH, CheckMinIters));
- VectorPH = NewVectorPH;
- // This is the IR builder that we use to add all of the logic for bypassing
- // the new vector loop.
- IRBuilder<> BypassBuilder(VectorPH->getTerminator());
- setDebugLocFromInst(BypassBuilder,
- getDebugLocFromInstOrOperands(OldInduction));
- // We may need to extend the index in case there is a type mismatch.
- // We know that the count starts at zero and does not overflow.
- if (Count->getType() != IdxTy) {
- // The exit count can be of pointer type. Convert it to the correct
- // integer type.
- if (ExitCount->getType()->isPointerTy())
- Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
- else
- Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
- }
- // Add the start index to the loop count to get the new end index.
- Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
- // Now we need to generate the expression for N - (N % VF), which is
- // the part that the vectorized body will execute.
- Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
- Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
- Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
- "end.idx.rnd.down");
- // Now, compare the new count to zero. If it is zero skip the vector loop and
- // jump to the scalar loop.
- Value *Cmp =
- BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero");
- NewVectorPH =
- VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.ph");
- if (ParentLoop)
- ParentLoop->addBasicBlockToLoop(NewVectorPH, *LI);
- LoopBypassBlocks.push_back(VectorPH);
- ReplaceInstWithInst(VectorPH->getTerminator(),
- BranchInst::Create(MiddleBlock, NewVectorPH, Cmp));
- VectorPH = NewVectorPH;
- // Generate the code to check that the strides we assumed to be one are really
- // one. We want the new basic block to start at the first instruction in a
- // sequence of instructions that form a check.
- Instruction *StrideCheck;
- Instruction *FirstCheckInst;
- std::tie(FirstCheckInst, StrideCheck) =
- addStrideCheck(VectorPH->getTerminator());
- if (StrideCheck) {
- AddedSafetyChecks = true;
- // Create a new block containing the stride check.
- VectorPH->setName("vector.stridecheck");
- NewVectorPH =
- VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.ph");
- if (ParentLoop)
- ParentLoop->addBasicBlockToLoop(NewVectorPH, *LI);
- LoopBypassBlocks.push_back(VectorPH);
- // Replace the branch into the memory check block with a conditional branch
- // for the "few elements case".
- ReplaceInstWithInst(
- VectorPH->getTerminator(),
- BranchInst::Create(MiddleBlock, NewVectorPH, StrideCheck));
- VectorPH = NewVectorPH;
- }
- // Generate the code that checks in runtime if arrays overlap. We put the
- // checks into a separate block to make the more common case of few elements
- // faster.
- Instruction *MemRuntimeCheck;
- std::tie(FirstCheckInst, MemRuntimeCheck) =
- Legal->getLAI()->addRuntimeChecks(VectorPH->getTerminator());
- if (MemRuntimeCheck) {
- AddedSafetyChecks = true;
- // Create a new block containing the memory check.
- VectorPH->setName("vector.memcheck");
- NewVectorPH =
- VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.ph");
- if (ParentLoop)
- ParentLoop->addBasicBlockToLoop(NewVectorPH, *LI);
- LoopBypassBlocks.push_back(VectorPH);
- // Replace the branch into the memory check block with a conditional branch
- // for the "few elements case".
- ReplaceInstWithInst(
- VectorPH->getTerminator(),
- BranchInst::Create(MiddleBlock, NewVectorPH, MemRuntimeCheck));
- VectorPH = NewVectorPH;
- }
- // We are going to resume the execution of the scalar loop.
- // Go over all of the induction variables that we found and fix the
- // PHIs that are left in the scalar version of the loop.
- // The starting values of PHI nodes depend on the counter of the last
- // iteration in the vectorized loop.
- // If we come from a bypass edge then we need to start from the original
- // start value.
- // This variable saves the new starting index for the scalar loop.
- PHINode *ResumeIndex = nullptr;
- LoopVectorizationLegality::InductionList::iterator I, E;
- LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
- // Set builder to point to last bypass block.
- BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
- for (I = List->begin(), E = List->end(); I != E; ++I) {
- PHINode *OrigPhi = I->first;
- InductionDescriptor II = I->second;
- Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
- PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
- MiddleBlock->getTerminator());
- // We might have extended the type of the induction variable but we need a
- // truncated version for the scalar loop.
- PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
- PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
- MiddleBlock->getTerminator()) : nullptr;
- // Create phi nodes to merge from the backedge-taken check block.
- PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val",
- ScalarPH->getTerminator());
- BCResumeVal->addIncoming(ResumeVal, MiddleBlock);
- PHINode *BCTruncResumeVal = nullptr;
- if (OrigPhi == OldInduction) {
- BCTruncResumeVal =
- PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val",
- ScalarPH->getTerminator());
- BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock);
- }
- Value *EndValue = nullptr;
- switch (II.getKind()) {
- case InductionDescriptor::IK_NoInduction:
- llvm_unreachable("Unknown induction");
- case InductionDescriptor::IK_IntInduction: {
- // Handle the integer induction counter.
- assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
- // We have the canonical induction variable.
- if (OrigPhi == OldInduction) {
- // Create a truncated version of the resume value for the scalar loop,
- // we might have promoted the type to a larger width.
- EndValue =
- BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
- // The new PHI merges the original incoming value, in case of a bypass,
- // or the value at the end of the vectorized loop.
- for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
- TruncResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]);
- TruncResumeVal->addIncoming(EndValue, VecBody);
- BCTruncResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[0]);
- // We know what the end value is.
- EndValue = IdxEndRoundDown;
- // We also know which PHI node holds it.
- ResumeIndex = ResumeVal;
- break;
- }
- // Not the canonical induction variable - add the vector loop count to the
- // start value.
- Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
- II.getStartValue()->getType(),
- "cast.crd");
- EndValue = II.transform(BypassBuilder, CRD);
- EndValue->setName("ind.end");
- break;
- }
- case InductionDescriptor::IK_PtrInduction: {
- Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
- II.getStepValue()->getType(),
- "cast.crd");
- EndValue = II.transform(BypassBuilder, CRD);
- EndValue->setName("ptr.ind.end");
- break;
- }
- }// end of case
- // The new PHI merges the original incoming value, in case of a bypass,
- // or the value at the end of the vectorized loop.
- for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) {
- if (OrigPhi == OldInduction)
- ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
- else
- ResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]);
- }
- ResumeVal->addIncoming(EndValue, VecBody);
- // Fix the scalar body counter (PHI node).
- unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
- // The old induction's phi node in the scalar body needs the truncated
- // value.
- if (OrigPhi == OldInduction) {
- BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]);
- OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal);
- } else {
- BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[0]);
- OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
- }
- }
- // If we are generating a new induction variable then we also need to
- // generate the code that calculates the exit value. This value is not
- // simply the end of the counter because we may skip the vectorized body
- // in case of a runtime check.
- if (!OldInduction){
- assert(!ResumeIndex && "Unexpected resume value found");
- ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
- MiddleBlock->getTerminator());
- for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
- ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
- ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
- }
- // Make sure that we found the index where scalar loop needs to continue.
- assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
- "Invalid resume Index");
- // Add a check in the middle block to see if we have completed
- // all of the iterations in the first vector loop.
- // If (N - N%VF) == N, then we *don't* need to run the remainder.
- Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
- ResumeIndex, "cmp.n",
- MiddleBlock->getTerminator());
- ReplaceInstWithInst(MiddleBlock->getTerminator(),
- BranchInst::Create(ExitBlock, ScalarPH, CmpN));
- // Create i+1 and fill the PHINode.
- Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
- Induction->addIncoming(StartIdx, VectorPH);
- Induction->addIncoming(NextIdx, VecBody);
- // Create the compare.
- Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
- Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
- // Now we have two terminators. Remove the old one from the block.
- VecBody->getTerminator()->eraseFromParent();
- // Get ready to start creating new instructions into the vectorized body.
- Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
- // Save the state.
- LoopVectorPreHeader = VectorPH;
- LoopScalarPreHeader = ScalarPH;
- LoopMiddleBlock = MiddleBlock;
- LoopExitBlock = ExitBlock;
- LoopVectorBody.push_back(VecBody);
- LoopScalarBody = OldBasicBlock;
- LoopVectorizeHints Hints(Lp, true);
- Hints.setAlreadyVectorized();
- }
- namespace {
- struct CSEDenseMapInfo {
- static bool canHandle(Instruction *I) {
- return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
- isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
- }
- static inline Instruction *getEmptyKey() {
- return DenseMapInfo<Instruction *>::getEmptyKey();
- }
- static inline Instruction *getTombstoneKey() {
- return DenseMapInfo<Instruction *>::getTombstoneKey();
- }
- static unsigned getHashValue(Instruction *I) {
- assert(canHandle(I) && "Unknown instruction!");
- return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
- I->value_op_end()));
- }
- static bool isEqual(Instruction *LHS, Instruction *RHS) {
- if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
- LHS == getTombstoneKey() || RHS == getTombstoneKey())
- return LHS == RHS;
- return LHS->isIdenticalTo(RHS);
- }
- };
- }
- /// \brief Check whether this block is a predicated block.
- /// Due to if predication of stores we might create a sequence of "if(pred) a[i]
- /// = ...; " blocks. We start with one vectorized basic block. For every
- /// conditional block we split this vectorized block. Therefore, every second
- /// block will be a predicated one.
- static bool isPredicatedBlock(unsigned BlockNum) {
- return BlockNum % 2;
- }
- ///\brief Perform cse of induction variable instructions.
- static void cse(SmallVector<BasicBlock *, 4> &BBs) {
- // Perform simple cse.
- SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
- for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
- BasicBlock *BB = BBs[i];
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
- Instruction *In = I++;
- if (!CSEDenseMapInfo::canHandle(In))
- continue;
- // Check if we can replace this instruction with any of the
- // visited instructions.
- if (Instruction *V = CSEMap.lookup(In)) {
- In->replaceAllUsesWith(V);
- In->eraseFromParent();
- continue;
- }
- // Ignore instructions in conditional blocks. We create "if (pred) a[i] =
- // ...;" blocks for predicated stores. Every second block is a predicated
- // block.
- if (isPredicatedBlock(i))
- continue;
- CSEMap[In] = In;
- }
- }
- }
- /// \brief Adds a 'fast' flag to floating point operations.
- static Value *addFastMathFlag(Value *V) {
- if (isa<FPMathOperator>(V)){
- FastMathFlags Flags;
- Flags.setUnsafeAlgebra();
- cast<Instruction>(V)->setFastMathFlags(Flags);
- }
- return V;
- }
- /// Estimate the overhead of scalarizing a value. Insert and Extract are set if
- /// the result needs to be inserted and/or extracted from vectors.
- static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract,
- const TargetTransformInfo &TTI) {
- if (Ty->isVoidTy())
- return 0;
- assert(Ty->isVectorTy() && "Can only scalarize vectors");
- unsigned Cost = 0;
- for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
- if (Insert)
- Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i);
- if (Extract)
- Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i);
- }
- return Cost;
- }
- // Estimate cost of a call instruction CI if it were vectorized with factor VF.
- // Return the cost of the instruction, including scalarization overhead if it's
- // needed. The flag NeedToScalarize shows if the call needs to be scalarized -
- // i.e. either vector version isn't available, or is too expensive.
- static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
- const TargetTransformInfo &TTI,
- const TargetLibraryInfo *TLI,
- bool &NeedToScalarize) {
- Function *F = CI->getCalledFunction();
- StringRef FnName = CI->getCalledFunction()->getName();
- Type *ScalarRetTy = CI->getType();
- SmallVector<Type *, 4> Tys, ScalarTys;
- for (auto &ArgOp : CI->arg_operands())
- ScalarTys.push_back(ArgOp->getType());
- // Estimate cost of scalarized vector call. The source operands are assumed
- // to be vectors, so we need to extract individual elements from there,
- // execute VF scalar calls, and then gather the result into the vector return
- // value.
- unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
- if (VF == 1)
- return ScalarCallCost;
- // Compute corresponding vector type for return value and arguments.
- Type *RetTy = ToVectorTy(ScalarRetTy, VF);
- for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i)
- Tys.push_back(ToVectorTy(ScalarTys[i], VF));
- // Compute costs of unpacking argument values for the scalar calls and
- // packing the return values to a vector.
- unsigned ScalarizationCost =
- getScalarizationOverhead(RetTy, true, false, TTI);
- for (unsigned i = 0, ie = Tys.size(); i != ie; ++i)
- ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI);
- unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
- // If we can't emit a vector call for this function, then the currently found
- // cost is the cost we need to return.
- NeedToScalarize = true;
- if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
- return Cost;
- // If the corresponding vector cost is cheaper, return its cost.
- unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
- if (VectorCallCost < Cost) {
- NeedToScalarize = false;
- return VectorCallCost;
- }
- return Cost;
- }
- // Estimate cost of an intrinsic call instruction CI if it were vectorized with
- // factor VF. Return the cost of the instruction, including scalarization
- // overhead if it's needed.
- static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
- const TargetTransformInfo &TTI,
- const TargetLibraryInfo *TLI) {
- Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
- assert(ID && "Expected intrinsic call!");
- Type *RetTy = ToVectorTy(CI->getType(), VF);
- SmallVector<Type *, 4> Tys;
- for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
- Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
- return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
- }
- void InnerLoopVectorizer::vectorizeLoop() {
- //===------------------------------------------------===//
- //
- // Notice: any optimization or new instruction that go
- // into the code below should be also be implemented in
- // the cost-model.
- //
- //===------------------------------------------------===//
- Constant *Zero = Builder.getInt32(0);
- // In order to support reduction variables we need to be able to vectorize
- // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
- // stages. First, we create a new vector PHI node with no incoming edges.
- // We use this value when we vectorize all of the instructions that use the
- // PHI. Next, after all of the instructions in the block are complete we
- // add the new incoming edges to the PHI. At this point all of the
- // instructions in the basic block are vectorized, so we can use them to
- // construct the PHI.
- PhiVector RdxPHIsToFix;
- // Scan the loop in a topological order to ensure that defs are vectorized
- // before users.
- LoopBlocksDFS DFS(OrigLoop);
- DFS.perform(LI);
- // Vectorize all of the blocks in the original loop.
- for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
- be = DFS.endRPO(); bb != be; ++bb)
- vectorizeBlockInLoop(*bb, &RdxPHIsToFix);
- // At this point every instruction in the original loop is widened to
- // a vector form. We are almost done. Now, we need to fix the PHI nodes
- // that we vectorized. The PHI nodes are currently empty because we did
- // not want to introduce cycles. Notice that the remaining PHI nodes
- // that we need to fix are reduction variables.
- // Create the 'reduced' values for each of the induction vars.
- // The reduced values are the vector values that we scalarize and combine
- // after the loop is finished.
- for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
- it != e; ++it) {
- PHINode *RdxPhi = *it;
- assert(RdxPhi && "Unable to recover vectorized PHI");
- // Find the reduction variable descriptor.
- assert(Legal->getReductionVars()->count(RdxPhi) &&
- "Unable to find the reduction variable");
- RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi];
- RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
- TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
- Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
- RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
- RdxDesc.getMinMaxRecurrenceKind();
- setDebugLocFromInst(Builder, ReductionStartValue);
- // We need to generate a reduction vector from the incoming scalar.
- // To do so, we need to generate the 'identity' vector and override
- // one of the elements with the incoming scalar reduction. We need
- // to do it in the vector-loop preheader.
- Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
- // This is the vector-clone of the value that leaves the loop.
- VectorParts &VectorExit = getVectorValue(LoopExitInst);
- Type *VecTy = VectorExit[0]->getType();
- // Find the reduction identity variable. Zero for addition, or, xor,
- // one for multiplication, -1 for And.
- Value *Identity;
- Value *VectorStart;
- if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
- RK == RecurrenceDescriptor::RK_FloatMinMax) {
- // MinMax reduction have the start value as their identify.
- if (VF == 1) {
- VectorStart = Identity = ReductionStartValue;
- } else {
- VectorStart = Identity =
- Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
- }
- } else {
- // Handle other reduction kinds:
- Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
- RK, VecTy->getScalarType());
- if (VF == 1) {
- Identity = Iden;
- // This vector is the Identity vector where the first element is the
- // incoming scalar reduction.
- VectorStart = ReductionStartValue;
- } else {
- Identity = ConstantVector::getSplat(VF, Iden);
- // This vector is the Identity vector where the first element is the
- // incoming scalar reduction.
- VectorStart =
- Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
- }
- }
- // Fix the vector-loop phi.
- // Reductions do not have to start at zero. They can start with
- // any loop invariant values.
- VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
- BasicBlock *Latch = OrigLoop->getLoopLatch();
- Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
- VectorParts &Val = getVectorValue(LoopVal);
- for (unsigned part = 0; part < UF; ++part) {
- // Make sure to add the reduction stat value only to the
- // first unroll part.
- Value *StartVal = (part == 0) ? VectorStart : Identity;
- cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal,
- LoopVectorPreHeader);
- cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part],
- LoopVectorBody.back());
- }
- // Before each round, move the insertion point right between
- // the PHIs and the values we are going to write.
- // This allows us to write both PHINodes and the extractelement
- // instructions.
- Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
- VectorParts RdxParts;
- setDebugLocFromInst(Builder, LoopExitInst);
- for (unsigned part = 0; part < UF; ++part) {
- // This PHINode contains the vectorized reduction variable, or
- // the initial value vector, if we bypass the vector loop.
- VectorParts &RdxExitVal = getVectorValue(LoopExitInst);
- PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
- Value *StartVal = (part == 0) ? VectorStart : Identity;
- for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
- NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
- NewPhi->addIncoming(RdxExitVal[part],
- LoopVectorBody.back());
- RdxParts.push_back(NewPhi);
- }
- // Reduce all of the unrolled parts into a single vector.
- Value *ReducedPartRdx = RdxParts[0];
- unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
- setDebugLocFromInst(Builder, ReducedPartRdx);
- for (unsigned part = 1; part < UF; ++part) {
- if (Op != Instruction::ICmp && Op != Instruction::FCmp)
- // Floating point operations had to be 'fast' to enable the reduction.
- ReducedPartRdx = addFastMathFlag(
- Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
- ReducedPartRdx, "bin.rdx"));
- else
- ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp(
- Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]);
- }
- if (VF > 1) {
- // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
- // and vector ops, reducing the set of values being computed by half each
- // round.
- assert(isPowerOf2_32(VF) &&
- "Reduction emission only supported for pow2 vectors!");
- Value *TmpVec = ReducedPartRdx;
- SmallVector<Constant*, 32> ShuffleMask(VF, nullptr);
- for (unsigned i = VF; i != 1; i >>= 1) {
- // Move the upper half of the vector to the lower half.
- for (unsigned j = 0; j != i/2; ++j)
- ShuffleMask[j] = Builder.getInt32(i/2 + j);
- // Fill the rest of the mask with undef.
- std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
- UndefValue::get(Builder.getInt32Ty()));
- Value *Shuf =
- Builder.CreateShuffleVector(TmpVec,
- UndefValue::get(TmpVec->getType()),
- ConstantVector::get(ShuffleMask),
- "rdx.shuf");
- if (Op != Instruction::ICmp && Op != Instruction::FCmp)
- // Floating point operations had to be 'fast' to enable the reduction.
- TmpVec = addFastMathFlag(Builder.CreateBinOp(
- (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
- else
- TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind,
- TmpVec, Shuf);
- }
- // The result is in the first element of the vector.
- ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
- Builder.getInt32(0));
- }
- // Create a phi node that merges control-flow from the backedge-taken check
- // block and the middle block.
- PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx",
- LoopScalarPreHeader->getTerminator());
- BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[0]);
- BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
- // Now, we need to fix the users of the reduction variable
- // inside and outside of the scalar remainder loop.
- // We know that the loop is in LCSSA form. We need to update the
- // PHI nodes in the exit blocks.
- for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
- LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
- PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
- if (!LCSSAPhi) break;
- // All PHINodes need to have a single entry edge, or two if
- // we already fixed them.
- assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
- // We found our reduction value exit-PHI. Update it with the
- // incoming bypass edge.
- if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) {
- // Add an edge coming from the bypass.
- LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
- break;
- }
- }// end of the LCSSA phi scan.
- // Fix the scalar loop reduction variable with the incoming reduction sum
- // from the vector body and from the backedge value.
- int IncomingEdgeBlockIdx =
- (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
- assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
- // Pick the other block.
- int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
- (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
- (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
- }// end of for each redux variable.
- fixLCSSAPHIs();
- // Remove redundant induction instructions.
- cse(LoopVectorBody);
- }
- void InnerLoopVectorizer::fixLCSSAPHIs() {
- for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
- LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
- PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
- if (!LCSSAPhi) break;
- if (LCSSAPhi->getNumIncomingValues() == 1)
- LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
- LoopMiddleBlock);
- }
- }
- InnerLoopVectorizer::VectorParts
- InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
- assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
- "Invalid edge");
- // Look for cached value.
- std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
- EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
- if (ECEntryIt != MaskCache.end())
- return ECEntryIt->second;
- VectorParts SrcMask = createBlockInMask(Src);
- // The terminator has to be a branch inst!
- BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
- assert(BI && "Unexpected terminator found");
- if (BI->isConditional()) {
- VectorParts EdgeMask = getVectorValue(BI->getCondition());
- if (BI->getSuccessor(0) != Dst)
- for (unsigned part = 0; part < UF; ++part)
- EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
- for (unsigned part = 0; part < UF; ++part)
- EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
- MaskCache[Edge] = EdgeMask;
- return EdgeMask;
- }
- MaskCache[Edge] = SrcMask;
- return SrcMask;
- }
- InnerLoopVectorizer::VectorParts
- InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
- assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
- // Loop incoming mask is all-one.
- if (OrigLoop->getHeader() == BB) {
- Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
- return getVectorValue(C);
- }
- // This is the block mask. We OR all incoming edges, and with zero.
- Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
- VectorParts BlockMask = getVectorValue(Zero);
- // For each pred:
- for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
- VectorParts EM = createEdgeMask(*it, BB);
- for (unsigned part = 0; part < UF; ++part)
- BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
- }
- return BlockMask;
- }
- void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
- InnerLoopVectorizer::VectorParts &Entry,
- unsigned UF, unsigned VF, PhiVector *PV) {
- PHINode* P = cast<PHINode>(PN);
- // Handle reduction variables:
- if (Legal->getReductionVars()->count(P)) {
- for (unsigned part = 0; part < UF; ++part) {
- // This is phase one of vectorizing PHIs.
- Type *VecTy = (VF == 1) ? PN->getType() :
- VectorType::get(PN->getType(), VF);
- Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
- LoopVectorBody.back()-> getFirstInsertionPt());
- }
- PV->push_back(P);
- return;
- }
- setDebugLocFromInst(Builder, P);
- // Check for PHI nodes that are lowered to vector selects.
- if (P->getParent() != OrigLoop->getHeader()) {
- // We know that all PHIs in non-header blocks are converted into
- // selects, so we don't have to worry about the insertion order and we
- // can just use the builder.
- // At this point we generate the predication tree. There may be
- // duplications since this is a simple recursive scan, but future
- // optimizations will clean it up.
- unsigned NumIncoming = P->getNumIncomingValues();
- // Generate a sequence of selects of the form:
- // SELECT(Mask3, In3,
- // SELECT(Mask2, In2,
- // ( ...)))
- for (unsigned In = 0; In < NumIncoming; In++) {
- VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
- P->getParent());
- VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
- for (unsigned part = 0; part < UF; ++part) {
- // We might have single edge PHIs (blocks) - use an identity
- // 'select' for the first PHI operand.
- if (In == 0)
- Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
- In0[part]);
- else
- // Select between the current value and the previous incoming edge
- // based on the incoming mask.
- Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
- Entry[part], "predphi");
- }
- }
- return;
- }
- // This PHINode must be an induction variable.
- // Make sure that we know about it.
- assert(Legal->getInductionVars()->count(P) &&
- "Not an induction variable");
- InductionDescriptor II = Legal->getInductionVars()->lookup(P);
- // FIXME: The newly created binary instructions should contain nsw/nuw flags,
- // which can be found from the original scalar operations.
- switch (II.getKind()) {
- case InductionDescriptor::IK_NoInduction:
- llvm_unreachable("Unknown induction");
- case InductionDescriptor::IK_IntInduction: {
- assert(P->getType() == II.getStartValue()->getType() && "Types must match");
- Type *PhiTy = P->getType();
- Value *Broadcasted;
- if (P == OldInduction) {
- // Handle the canonical induction variable. We might have had to
- // extend the type.
- Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
- } else {
- // Handle other induction variables that are now based on the
- // canonical one.
- Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
- "normalized.idx");
- NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
- Broadcasted = II.transform(Builder, NormalizedIdx);
- Broadcasted->setName("offset.idx");
- }
- Broadcasted = getBroadcastInstrs(Broadcasted);
- // After broadcasting the induction variable we need to make the vector
- // consecutive by adding 0, 1, 2, etc.
- for (unsigned part = 0; part < UF; ++part)
- Entry[part] = getStepVector(Broadcasted, VF * part, II.getStepValue());
- return;
- }
- case InductionDescriptor::IK_PtrInduction:
- // Handle the pointer induction variable case.
- assert(P->getType()->isPointerTy() && "Unexpected type.");
- // This is the normalized GEP that starts counting at zero.
- Value *NormalizedIdx =
- Builder.CreateSub(Induction, ExtendedIdx, "normalized.idx");
- NormalizedIdx =
- Builder.CreateSExtOrTrunc(NormalizedIdx, II.getStepValue()->getType());
- // This is the vector of results. Notice that we don't generate
- // vector geps because scalar geps result in better code.
- for (unsigned part = 0; part < UF; ++part) {
- if (VF == 1) {
- int EltIndex = part;
- Constant *Idx = ConstantInt::get(NormalizedIdx->getType(), EltIndex);
- Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx);
- Value *SclrGep = II.transform(Builder, GlobalIdx);
- SclrGep->setName("next.gep");
- Entry[part] = SclrGep;
- continue;
- }
- Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
- for (unsigned int i = 0; i < VF; ++i) {
- int EltIndex = i + part * VF;
- Constant *Idx = ConstantInt::get(NormalizedIdx->getType(), EltIndex);
- Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx);
- Value *SclrGep = II.transform(Builder, GlobalIdx);
- SclrGep->setName("next.gep");
- VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
- Builder.getInt32(i),
- "insert.gep");
- }
- Entry[part] = VecVal;
- }
- return;
- }
- }
- void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
- // For each instruction in the old loop.
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- VectorParts &Entry = WidenMap.get(it);
- switch (it->getOpcode()) {
- case Instruction::Br:
- // Nothing to do for PHIs and BR, since we already took care of the
- // loop control flow instructions.
- continue;
- case Instruction::PHI: {
- // Vectorize PHINodes.
- widenPHIInstruction(it, Entry, UF, VF, PV);
- continue;
- }// End of PHI.
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // Just widen binops.
- BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
- setDebugLocFromInst(Builder, BinOp);
- VectorParts &A = getVectorValue(it->getOperand(0));
- VectorParts &B = getVectorValue(it->getOperand(1));
- // Use this vector value for all users of the original instruction.
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
- if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
- VecOp->copyIRFlags(BinOp);
- Entry[Part] = V;
- }
- propagateMetadata(Entry, it);
- break;
- }
- case Instruction::Select: {
- // Widen selects.
- // If the selector is loop invariant we can create a select
- // instruction with a scalar condition. Otherwise, use vector-select.
- bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
- OrigLoop);
- setDebugLocFromInst(Builder, it);
- // The condition can be loop invariant but still defined inside the
- // loop. This means that we can't just use the original 'cond' value.
- // We have to take the 'vectorized' value and pick the first lane.
- // Instcombine will make this a no-op.
- VectorParts &Cond = getVectorValue(it->getOperand(0));
- VectorParts &Op0 = getVectorValue(it->getOperand(1));
- VectorParts &Op1 = getVectorValue(it->getOperand(2));
- Value *ScalarCond = (VF == 1) ? Cond[0] :
- Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
- for (unsigned Part = 0; Part < UF; ++Part) {
- Entry[Part] = Builder.CreateSelect(
- InvariantCond ? ScalarCond : Cond[Part],
- Op0[Part],
- Op1[Part]);
- }
- propagateMetadata(Entry, it);
- break;
- }
- case Instruction::ICmp:
- case Instruction::FCmp: {
- // Widen compares. Generate vector compares.
- bool FCmp = (it->getOpcode() == Instruction::FCmp);
- CmpInst *Cmp = dyn_cast<CmpInst>(it);
- setDebugLocFromInst(Builder, it);
- VectorParts &A = getVectorValue(it->getOperand(0));
- VectorParts &B = getVectorValue(it->getOperand(1));
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *C = nullptr;
- if (FCmp)
- C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
- else
- C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
- Entry[Part] = C;
- }
- propagateMetadata(Entry, it);
- break;
- }
- case Instruction::Store:
- case Instruction::Load:
- vectorizeMemoryInstruction(it);
- break;
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- CastInst *CI = dyn_cast<CastInst>(it);
- setDebugLocFromInst(Builder, it);
- /// Optimize the special case where the source is the induction
- /// variable. Notice that we can only optimize the 'trunc' case
- /// because: a. FP conversions lose precision, b. sext/zext may wrap,
- /// c. other casts depend on pointer size.
- if (CI->getOperand(0) == OldInduction &&
- it->getOpcode() == Instruction::Trunc) {
- Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
- CI->getType());
- Value *Broadcasted = getBroadcastInstrs(ScalarCast);
- InductionDescriptor II = Legal->getInductionVars()->lookup(OldInduction);
- Constant *Step =
- ConstantInt::getSigned(CI->getType(), II.getStepValue()->getSExtValue());
- for (unsigned Part = 0; Part < UF; ++Part)
- Entry[Part] = getStepVector(Broadcasted, VF * Part, Step);
- propagateMetadata(Entry, it);
- break;
- }
- /// Vectorize casts.
- Type *DestTy = (VF == 1) ? CI->getType() :
- VectorType::get(CI->getType(), VF);
- VectorParts &A = getVectorValue(it->getOperand(0));
- for (unsigned Part = 0; Part < UF; ++Part)
- Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
- propagateMetadata(Entry, it);
- break;
- }
- case Instruction::Call: {
- // Ignore dbg intrinsics.
- if (isa<DbgInfoIntrinsic>(it))
- break;
- setDebugLocFromInst(Builder, it);
- Module *M = BB->getParent()->getParent();
- CallInst *CI = cast<CallInst>(it);
- StringRef FnName = CI->getCalledFunction()->getName();
- Function *F = CI->getCalledFunction();
- Type *RetTy = ToVectorTy(CI->getType(), VF);
- SmallVector<Type *, 4> Tys;
- for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
- Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
- Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
- if (ID &&
- (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
- ID == Intrinsic::lifetime_start)) {
- scalarizeInstruction(it);
- break;
- }
- // The flag shows whether we use Intrinsic or a usual Call for vectorized
- // version of the instruction.
- // Is it beneficial to perform intrinsic call compared to lib call?
- bool NeedToScalarize;
- unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
- bool UseVectorIntrinsic =
- ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
- if (!UseVectorIntrinsic && NeedToScalarize) {
- scalarizeInstruction(it);
- break;
- }
- for (unsigned Part = 0; Part < UF; ++Part) {
- SmallVector<Value *, 4> Args;
- for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
- Value *Arg = CI->getArgOperand(i);
- // Some intrinsics have a scalar argument - don't replace it with a
- // vector.
- if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) {
- VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i));
- Arg = VectorArg[Part];
- }
- Args.push_back(Arg);
- }
- Function *VectorF;
- if (UseVectorIntrinsic) {
- // Use vector version of the intrinsic.
- Type *TysForDecl[] = {CI->getType()};
- if (VF > 1)
- TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
- VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
- } else {
- // Use vector version of the library call.
- StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
- assert(!VFnName.empty() && "Vector function name is empty.");
- VectorF = M->getFunction(VFnName);
- if (!VectorF) {
- // Generate a declaration
- FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
- VectorF =
- Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
- VectorF->copyAttributesFrom(F);
- }
- }
- assert(VectorF && "Can't create vector function.");
- Entry[Part] = Builder.CreateCall(VectorF, Args);
- }
- propagateMetadata(Entry, it);
- break;
- }
- default:
- // All other instructions are unsupported. Scalarize them.
- scalarizeInstruction(it);
- break;
- }// end of switch.
- }// end of for_each instr.
- }
- void InnerLoopVectorizer::updateAnalysis() {
- // Forget the original basic block.
- SE->forgetLoop(OrigLoop);
- // Update the dominator tree information.
- assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
- "Entry does not dominate exit.");
- for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
- DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
- DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
- // Due to if predication of stores we might create a sequence of "if(pred)
- // a[i] = ...; " blocks.
- for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) {
- if (i == 0)
- DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader);
- else if (isPredicatedBlock(i)) {
- DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]);
- } else {
- DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]);
- }
- }
- DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]);
- DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
- DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
- DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
- DEBUG(DT->verifyDomTree());
- }
- /// \brief Check whether it is safe to if-convert this phi node.
- ///
- /// Phi nodes with constant expressions that can trap are not safe to if
- /// convert.
- static bool canIfConvertPHINodes(BasicBlock *BB) {
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
- PHINode *Phi = dyn_cast<PHINode>(I);
- if (!Phi)
- return true;
- for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p)
- if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p)))
- if (C->canTrap())
- return false;
- }
- return true;
- }
- bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
- if (!EnableIfConversion) {
- emitAnalysis(VectorizationReport() << "if-conversion is disabled");
- return false;
- }
- assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
- // A list of pointers that we can safely read and write to.
- SmallPtrSet<Value *, 8> SafePointes;
- // Collect safe addresses.
- for (Loop::block_iterator BI = TheLoop->block_begin(),
- BE = TheLoop->block_end(); BI != BE; ++BI) {
- BasicBlock *BB = *BI;
- if (blockNeedsPredication(BB))
- continue;
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- SafePointes.insert(LI->getPointerOperand());
- else if (StoreInst *SI = dyn_cast<StoreInst>(I))
- SafePointes.insert(SI->getPointerOperand());
- }
- }
- // Collect the blocks that need predication.
- BasicBlock *Header = TheLoop->getHeader();
- for (Loop::block_iterator BI = TheLoop->block_begin(),
- BE = TheLoop->block_end(); BI != BE; ++BI) {
- BasicBlock *BB = *BI;
- // We don't support switch statements inside loops.
- if (!isa<BranchInst>(BB->getTerminator())) {
- emitAnalysis(VectorizationReport(BB->getTerminator())
- << "loop contains a switch statement");
- return false;
- }
- // We must be able to predicate all blocks that need to be predicated.
- if (blockNeedsPredication(BB)) {
- if (!blockCanBePredicated(BB, SafePointes)) {
- emitAnalysis(VectorizationReport(BB->getTerminator())
- << "control flow cannot be substituted for a select");
- return false;
- }
- } else if (BB != Header && !canIfConvertPHINodes(BB)) {
- emitAnalysis(VectorizationReport(BB->getTerminator())
- << "control flow cannot be substituted for a select");
- return false;
- }
- }
- // We can if-convert this loop.
- return true;
- }
- bool LoopVectorizationLegality::canVectorize() {
- // We must have a loop in canonical form. Loops with indirectbr in them cannot
- // be canonicalized.
- if (!TheLoop->getLoopPreheader()) {
- emitAnalysis(
- VectorizationReport() <<
- "loop control flow is not understood by vectorizer");
- return false;
- }
- // We can only vectorize innermost loops.
- if (!TheLoop->empty()) {
- emitAnalysis(VectorizationReport() << "loop is not the innermost loop");
- return false;
- }
- // We must have a single backedge.
- if (TheLoop->getNumBackEdges() != 1) {
- emitAnalysis(
- VectorizationReport() <<
- "loop control flow is not understood by vectorizer");
- return false;
- }
- // We must have a single exiting block.
- if (!TheLoop->getExitingBlock()) {
- emitAnalysis(
- VectorizationReport() <<
- "loop control flow is not understood by vectorizer");
- return false;
- }
- // We only handle bottom-tested loops, i.e. loop in which the condition is
- // checked at the end of each iteration. With that we can assume that all
- // instructions in the loop are executed the same number of times.
- if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
- emitAnalysis(
- VectorizationReport() <<
- "loop control flow is not understood by vectorizer");
- return false;
- }
- // We need to have a loop header.
- DEBUG(dbgs() << "LV: Found a loop: " <<
- TheLoop->getHeader()->getName() << '\n');
- // Check if we can if-convert non-single-bb loops.
- unsigned NumBlocks = TheLoop->getNumBlocks();
- if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
- DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
- return false;
- }
- // ScalarEvolution needs to be able to find the exit count.
- const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
- if (ExitCount == SE->getCouldNotCompute()) {
- emitAnalysis(VectorizationReport() <<
- "could not determine number of loop iterations");
- DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
- return false;
- }
- // Check if we can vectorize the instructions and CFG in this loop.
- if (!canVectorizeInstrs()) {
- DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
- return false;
- }
- // Go over each instruction and look at memory deps.
- if (!canVectorizeMemory()) {
- DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
- return false;
- }
- // Collect all of the variables that remain uniform after vectorization.
- collectLoopUniforms();
- DEBUG(dbgs() << "LV: We can vectorize this loop"
- << (LAI->getRuntimePointerChecking()->Need
- ? " (with a runtime bound check)"
- : "")
- << "!\n");
- bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
- // If an override option has been passed in for interleaved accesses, use it.
- if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
- UseInterleaved = EnableInterleavedMemAccesses;
- // Analyze interleaved memory accesses.
- if (UseInterleaved)
- InterleaveInfo.analyzeInterleaving(Strides);
- // Okay! We can vectorize. At this point we don't have any other mem analysis
- // which may limit our maximum vectorization factor, so just return true with
- // no restrictions.
- return true;
- }
- static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
- if (Ty->isPointerTy())
- return DL.getIntPtrType(Ty);
- // It is possible that char's or short's overflow when we ask for the loop's
- // trip count, work around this by changing the type size.
- if (Ty->getScalarSizeInBits() < 32)
- return Type::getInt32Ty(Ty->getContext());
- return Ty;
- }
- static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
- Ty0 = convertPointerToIntegerType(DL, Ty0);
- Ty1 = convertPointerToIntegerType(DL, Ty1);
- if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
- return Ty0;
- return Ty1;
- }
- /// \brief Check that the instruction has outside loop users and is not an
- /// identified reduction variable.
- static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
- SmallPtrSetImpl<Value *> &Reductions) {
- // Reduction instructions are allowed to have exit users. All other
- // instructions must not have external users.
- if (!Reductions.count(Inst))
- //Check that all of the users of the loop are inside the BB.
- for (User *U : Inst->users()) {
- Instruction *UI = cast<Instruction>(U);
- // This user may be a reduction exit value.
- if (!TheLoop->contains(UI)) {
- DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
- return true;
- }
- }
- return false;
- }
- bool LoopVectorizationLegality::canVectorizeInstrs() {
- BasicBlock *Header = TheLoop->getHeader();
- // Look for the attribute signaling the absence of NaNs.
- Function &F = *Header->getParent();
- const DataLayout &DL = F.getParent()->getDataLayout();
- if (F.hasFnAttribute("no-nans-fp-math"))
- HasFunNoNaNAttr =
- F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
- // For each block in the loop.
- for (Loop::block_iterator bb = TheLoop->block_begin(),
- be = TheLoop->block_end(); bb != be; ++bb) {
- // Scan the instructions in the block and look for hazards.
- for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
- ++it) {
- if (PHINode *Phi = dyn_cast<PHINode>(it)) {
- Type *PhiTy = Phi->getType();
- // Check that this PHI type is allowed.
- if (!PhiTy->isIntegerTy() &&
- !PhiTy->isFloatingPointTy() &&
- !PhiTy->isPointerTy()) {
- emitAnalysis(VectorizationReport(it)
- << "loop control flow is not understood by vectorizer");
- DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
- return false;
- }
- // If this PHINode is not in the header block, then we know that we
- // can convert it to select during if-conversion. No need to check if
- // the PHIs in this block are induction or reduction variables.
- if (*bb != Header) {
- // Check that this instruction has no outside users or is an
- // identified reduction value with an outside user.
- if (!hasOutsideLoopUser(TheLoop, it, AllowedExit))
- continue;
- emitAnalysis(VectorizationReport(it) <<
- "value could not be identified as "
- "an induction or reduction variable");
- return false;
- }
- // We only allow if-converted PHIs with exactly two incoming values.
- if (Phi->getNumIncomingValues() != 2) {
- emitAnalysis(VectorizationReport(it)
- << "control flow not understood by vectorizer");
- DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
- return false;
- }
- InductionDescriptor ID;
- if (InductionDescriptor::isInductionPHI(Phi, SE, ID)) {
- Inductions[Phi] = ID;
- // Get the widest type.
- if (!WidestIndTy)
- WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
- else
- WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
- // Int inductions are special because we only allow one IV.
- if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
- ID.getStepValue()->isOne()) {
- // Use the phi node with the widest type as induction. Use the last
- // one if there are multiple (no good reason for doing this other
- // than it is expedient).
- if (!Induction || PhiTy == WidestIndTy)
- Induction = Phi;
- }
- DEBUG(dbgs() << "LV: Found an induction variable.\n");
- // Until we explicitly handle the case of an induction variable with
- // an outside loop user we have to give up vectorizing this loop.
- if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
- emitAnalysis(VectorizationReport(it) <<
- "use of induction value outside of the "
- "loop is not handled by vectorizer");
- return false;
- }
- continue;
- }
- if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop,
- Reductions[Phi])) {
- if (Reductions[Phi].hasUnsafeAlgebra())
- Requirements->addUnsafeAlgebraInst(
- Reductions[Phi].getUnsafeAlgebraInst());
- AllowedExit.insert(Reductions[Phi].getLoopExitInstr());
- continue;
- }
- emitAnalysis(VectorizationReport(it) <<
- "value that could not be identified as "
- "reduction is used outside the loop");
- DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
- return false;
- }// end of PHI handling
- // We handle calls that:
- // * Are debug info intrinsics.
- // * Have a mapping to an IR intrinsic.
- // * Have a vector version available.
- CallInst *CI = dyn_cast<CallInst>(it);
- if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) &&
- !(CI->getCalledFunction() && TLI &&
- TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
- emitAnalysis(VectorizationReport(it) <<
- "call instruction cannot be vectorized");
- DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
- return false;
- }
- // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
- // second argument is the same (i.e. loop invariant)
- if (CI &&
- hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) {
- if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) {
- emitAnalysis(VectorizationReport(it)
- << "intrinsic instruction cannot be vectorized");
- DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
- return false;
- }
- }
- // Check that the instruction return type is vectorizable.
- // Also, we can't vectorize extractelement instructions.
- if ((!VectorType::isValidElementType(it->getType()) &&
- !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
- emitAnalysis(VectorizationReport(it)
- << "instruction return type cannot be vectorized");
- DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
- return false;
- }
- // Check that the stored type is vectorizable.
- if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
- Type *T = ST->getValueOperand()->getType();
- if (!VectorType::isValidElementType(T)) {
- emitAnalysis(VectorizationReport(ST) <<
- "store instruction cannot be vectorized");
- return false;
- }
- if (EnableMemAccessVersioning)
- collectStridedAccess(ST);
- }
- if (EnableMemAccessVersioning)
- if (LoadInst *LI = dyn_cast<LoadInst>(it))
- collectStridedAccess(LI);
- // Reduction instructions are allowed to have exit users.
- // All other instructions must not have external users.
- if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
- emitAnalysis(VectorizationReport(it) <<
- "value cannot be used outside the loop");
- return false;
- }
- } // next instr.
- }
- if (!Induction) {
- DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
- if (Inductions.empty()) {
- emitAnalysis(VectorizationReport()
- << "loop induction variable could not be identified");
- return false;
- }
- }
- return true;
- }
- void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) {
- Value *Ptr = nullptr;
- if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
- Ptr = LI->getPointerOperand();
- else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
- Ptr = SI->getPointerOperand();
- else
- return;
- Value *Stride = getStrideFromPointer(Ptr, SE, TheLoop);
- if (!Stride)
- return;
- DEBUG(dbgs() << "LV: Found a strided access that we can version");
- DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
- Strides[Ptr] = Stride;
- StrideSet.insert(Stride);
- }
- void LoopVectorizationLegality::collectLoopUniforms() {
- // We now know that the loop is vectorizable!
- // Collect variables that will remain uniform after vectorization.
- std::vector<Value*> Worklist;
- BasicBlock *Latch = TheLoop->getLoopLatch();
- // Start with the conditional branch and walk up the block.
- Worklist.push_back(Latch->getTerminator()->getOperand(0));
- // Also add all consecutive pointer values; these values will be uniform
- // after vectorization (and subsequent cleanup) and, until revectorization is
- // supported, all dependencies must also be uniform.
- for (Loop::block_iterator B = TheLoop->block_begin(),
- BE = TheLoop->block_end(); B != BE; ++B)
- for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end();
- I != IE; ++I)
- if (I->getType()->isPointerTy() && isConsecutivePtr(I))
- Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
- while (!Worklist.empty()) {
- Instruction *I = dyn_cast<Instruction>(Worklist.back());
- Worklist.pop_back();
- // Look at instructions inside this loop.
- // Stop when reaching PHI nodes.
- // TODO: we need to follow values all over the loop, not only in this block.
- if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
- continue;
- // This is a known uniform.
- Uniforms.insert(I);
- // Insert all operands.
- Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
- }
- }
- bool LoopVectorizationLegality::canVectorizeMemory() {
- LAI = &LAA->getInfo(TheLoop, Strides);
- auto &OptionalReport = LAI->getReport();
- if (OptionalReport)
- emitAnalysis(VectorizationReport(*OptionalReport));
- if (!LAI->canVectorizeMemory())
- return false;
- if (LAI->hasStoreToLoopInvariantAddress()) {
- emitAnalysis(
- VectorizationReport()
- << "write to a loop invariant address could not be vectorized");
- DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
- return false;
- }
- Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
- return true;
- }
- bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
- Value *In0 = const_cast<Value*>(V);
- PHINode *PN = dyn_cast_or_null<PHINode>(In0);
- if (!PN)
- return false;
- return Inductions.count(PN);
- }
- bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
- return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
- }
- bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
- SmallPtrSetImpl<Value *> &SafePtrs) {
-
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- // Check that we don't have a constant expression that can trap as operand.
- for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end();
- OI != OE; ++OI) {
- if (Constant *C = dyn_cast<Constant>(*OI))
- if (C->canTrap())
- return false;
- }
- // We might be able to hoist the load.
- if (it->mayReadFromMemory()) {
- LoadInst *LI = dyn_cast<LoadInst>(it);
- if (!LI)
- return false;
- if (!SafePtrs.count(LI->getPointerOperand())) {
- if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) {
- MaskedOp.insert(LI);
- continue;
- }
- return false;
- }
- }
- // We don't predicate stores at the moment.
- if (it->mayWriteToMemory()) {
- StoreInst *SI = dyn_cast<StoreInst>(it);
- // We only support predication of stores in basic blocks with one
- // predecessor.
- if (!SI)
- return false;
- bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0);
- bool isSinglePredecessor = SI->getParent()->getSinglePredecessor();
-
- if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr ||
- !isSinglePredecessor) {
- // Build a masked store if it is legal for the target, otherwise scalarize
- // the block.
- bool isLegalMaskedOp =
- isLegalMaskedStore(SI->getValueOperand()->getType(),
- SI->getPointerOperand());
- if (isLegalMaskedOp) {
- --NumPredStores;
- MaskedOp.insert(SI);
- continue;
- }
- return false;
- }
- }
- if (it->mayThrow())
- return false;
- // The instructions below can trap.
- switch (it->getOpcode()) {
- default: continue;
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::URem:
- case Instruction::SRem:
- return false;
- }
- }
- return true;
- }
- void InterleavedAccessInfo::collectConstStridedAccesses(
- MapVector<Instruction *, StrideDescriptor> &StrideAccesses,
- const ValueToValueMap &Strides) {
- // Holds load/store instructions in program order.
- SmallVector<Instruction *, 16> AccessList;
- for (auto *BB : TheLoop->getBlocks()) {
- bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
- for (auto &I : *BB) {
- if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I))
- continue;
- // FIXME: Currently we can't handle mixed accesses and predicated accesses
- if (IsPred)
- return;
- AccessList.push_back(&I);
- }
- }
- if (AccessList.empty())
- return;
- auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
- for (auto I : AccessList) {
- LoadInst *LI = dyn_cast<LoadInst>(I);
- StoreInst *SI = dyn_cast<StoreInst>(I);
- Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
- int Stride = isStridedPtr(SE, Ptr, TheLoop, Strides);
- // The factor of the corresponding interleave group.
- unsigned Factor = std::abs(Stride);
- // Ignore the access if the factor is too small or too large.
- if (Factor < 2 || Factor > MaxInterleaveGroupFactor)
- continue;
- const SCEV *Scev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
- PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
- unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType());
- // An alignment of 0 means target ABI alignment.
- unsigned Align = LI ? LI->getAlignment() : SI->getAlignment();
- if (!Align)
- Align = DL.getABITypeAlignment(PtrTy->getElementType());
- StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align);
- }
- }
- // Analyze interleaved accesses and collect them into interleave groups.
- //
- // Notice that the vectorization on interleaved groups will change instruction
- // orders and may break dependences. But the memory dependence check guarantees
- // that there is no overlap between two pointers of different strides, element
- // sizes or underlying bases.
- //
- // For pointers sharing the same stride, element size and underlying base, no
- // need to worry about Read-After-Write dependences and Write-After-Read
- // dependences.
- //
- // E.g. The RAW dependence: A[i] = a;
- // b = A[i];
- // This won't exist as it is a store-load forwarding conflict, which has
- // already been checked and forbidden in the dependence check.
- //
- // E.g. The WAR dependence: a = A[i]; // (1)
- // A[i] = b; // (2)
- // The store group of (2) is always inserted at or below (2), and the load group
- // of (1) is always inserted at or above (1). The dependence is safe.
- void InterleavedAccessInfo::analyzeInterleaving(
- const ValueToValueMap &Strides) {
- DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
- // Holds all the stride accesses.
- MapVector<Instruction *, StrideDescriptor> StrideAccesses;
- collectConstStridedAccesses(StrideAccesses, Strides);
- if (StrideAccesses.empty())
- return;
- // Holds all interleaved store groups temporarily.
- SmallSetVector<InterleaveGroup *, 4> StoreGroups;
- // Search the load-load/write-write pair B-A in bottom-up order and try to
- // insert B into the interleave group of A according to 3 rules:
- // 1. A and B have the same stride.
- // 2. A and B have the same memory object size.
- // 3. B belongs to the group according to the distance.
- //
- // The bottom-up order can avoid breaking the Write-After-Write dependences
- // between two pointers of the same base.
- // E.g. A[i] = a; (1)
- // A[i] = b; (2)
- // A[i+1] = c (3)
- // We form the group (2)+(3) in front, so (1) has to form groups with accesses
- // above (1), which guarantees that (1) is always above (2).
- for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E;
- ++I) {
- Instruction *A = I->first;
- StrideDescriptor DesA = I->second;
- InterleaveGroup *Group = getInterleaveGroup(A);
- if (!Group) {
- DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n');
- Group = createInterleaveGroup(A, DesA.Stride, DesA.Align);
- }
- if (A->mayWriteToMemory())
- StoreGroups.insert(Group);
- for (auto II = std::next(I); II != E; ++II) {
- Instruction *B = II->first;
- StrideDescriptor DesB = II->second;
- // Ignore if B is already in a group or B is a different memory operation.
- if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory())
- continue;
- // Check the rule 1 and 2.
- if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size)
- continue;
- // Calculate the distance and prepare for the rule 3.
- const SCEVConstant *DistToA =
- dyn_cast<SCEVConstant>(SE->getMinusSCEV(DesB.Scev, DesA.Scev));
- if (!DistToA)
- continue;
- int DistanceToA = DistToA->getValue()->getValue().getSExtValue();
- // Skip if the distance is not multiple of size as they are not in the
- // same group.
- if (DistanceToA % static_cast<int>(DesA.Size))
- continue;
- // The index of B is the index of A plus the related index to A.
- int IndexB =
- Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size);
- // Try to insert B into the group.
- if (Group->insertMember(B, IndexB, DesB.Align)) {
- DEBUG(dbgs() << "LV: Inserted:" << *B << '\n'
- << " into the interleave group with" << *A << '\n');
- InterleaveGroupMap[B] = Group;
- // Set the first load in program order as the insert position.
- if (B->mayReadFromMemory())
- Group->setInsertPos(B);
- }
- } // Iteration on instruction B
- } // Iteration on instruction A
- // Remove interleaved store groups with gaps.
- for (InterleaveGroup *Group : StoreGroups)
- if (Group->getNumMembers() != Group->getFactor())
- releaseGroup(Group);
- }
- LoopVectorizationCostModel::VectorizationFactor
- LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) {
- // Width 1 means no vectorize
- VectorizationFactor Factor = { 1U, 0U };
- if (OptForSize && Legal->getRuntimePointerChecking()->Need) {
- emitAnalysis(VectorizationReport() <<
- "runtime pointer checks needed. Enable vectorization of this "
- "loop with '#pragma clang loop vectorize(enable)' when "
- "compiling with -Os/-Oz");
- DEBUG(dbgs() <<
- "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n");
- return Factor;
- }
- if (!EnableCondStoresVectorization && Legal->getNumPredStores()) {
- emitAnalysis(VectorizationReport() <<
- "store that is conditionally executed prevents vectorization");
- DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
- return Factor;
- }
- // Find the trip count.
- unsigned TC = SE->getSmallConstantTripCount(TheLoop);
- DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
- unsigned WidestType = getWidestType();
- unsigned WidestRegister = TTI.getRegisterBitWidth(true);
- unsigned MaxSafeDepDist = -1U;
- if (Legal->getMaxSafeDepDistBytes() != -1U)
- MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
- WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
- WidestRegister : MaxSafeDepDist);
- unsigned MaxVectorSize = WidestRegister / WidestType;
- DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
- DEBUG(dbgs() << "LV: The Widest register is: "
- << WidestRegister << " bits.\n");
- if (MaxVectorSize == 0) {
- DEBUG(dbgs() << "LV: The target has no vector registers.\n");
- MaxVectorSize = 1;
- }
- assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"
- " into one vector!");
- unsigned VF = MaxVectorSize;
- // If we optimize the program for size, avoid creating the tail loop.
- if (OptForSize) {
- // If we are unable to calculate the trip count then don't try to vectorize.
- if (TC < 2) {
- emitAnalysis
- (VectorizationReport() <<
- "unable to calculate the loop count due to complex control flow");
- DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
- return Factor;
- }
- // Find the maximum SIMD width that can fit within the trip count.
- VF = TC % MaxVectorSize;
- if (VF == 0)
- VF = MaxVectorSize;
- else {
- // If the trip count that we found modulo the vectorization factor is not
- // zero then we require a tail.
- emitAnalysis(VectorizationReport() <<
- "cannot optimize for size and vectorize at the "
- "same time. Enable vectorization of this loop "
- "with '#pragma clang loop vectorize(enable)' "
- "when compiling with -Os/-Oz");
- DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
- return Factor;
- }
- }
- int UserVF = Hints->getWidth();
- if (UserVF != 0) {
- assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
- DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
- Factor.Width = UserVF;
- return Factor;
- }
- float Cost = expectedCost(1);
- #ifndef NDEBUG
- const float ScalarCost = Cost;
- #endif /* NDEBUG */
- unsigned Width = 1;
- DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
- bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
- // Ignore scalar width, because the user explicitly wants vectorization.
- if (ForceVectorization && VF > 1) {
- Width = 2;
- Cost = expectedCost(Width) / (float)Width;
- }
- for (unsigned i=2; i <= VF; i*=2) {
- // Notice that the vector loop needs to be executed less times, so
- // we need to divide the cost of the vector loops by the width of
- // the vector elements.
- float VectorCost = expectedCost(i) / (float)i;
- DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
- (int)VectorCost << ".\n");
- if (VectorCost < Cost) {
- Cost = VectorCost;
- Width = i;
- }
- }
- DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
- << "LV: Vectorization seems to be not beneficial, "
- << "but was forced by a user.\n");
- DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n");
- Factor.Width = Width;
- Factor.Cost = Width * Cost;
- return Factor;
- }
- unsigned LoopVectorizationCostModel::getWidestType() {
- unsigned MaxWidth = 8;
- const DataLayout &DL = TheFunction->getParent()->getDataLayout();
- // For each block.
- for (Loop::block_iterator bb = TheLoop->block_begin(),
- be = TheLoop->block_end(); bb != be; ++bb) {
- BasicBlock *BB = *bb;
- // For each instruction in the loop.
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- Type *T = it->getType();
- // Ignore ephemeral values.
- if (EphValues.count(it))
- continue;
- // Only examine Loads, Stores and PHINodes.
- if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
- continue;
- // Examine PHI nodes that are reduction variables.
- if (PHINode *PN = dyn_cast<PHINode>(it))
- if (!Legal->getReductionVars()->count(PN))
- continue;
- // Examine the stored values.
- if (StoreInst *ST = dyn_cast<StoreInst>(it))
- T = ST->getValueOperand()->getType();
- // Ignore loaded pointer types and stored pointer types that are not
- // consecutive. However, we do want to take consecutive stores/loads of
- // pointer vectors into account.
- if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
- continue;
- MaxWidth = std::max(MaxWidth,
- (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
- }
- }
- return MaxWidth;
- }
- unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize,
- unsigned VF,
- unsigned LoopCost) {
- // -- The interleave heuristics --
- // We interleave the loop in order to expose ILP and reduce the loop overhead.
- // There are many micro-architectural considerations that we can't predict
- // at this level. For example, frontend pressure (on decode or fetch) due to
- // code size, or the number and capabilities of the execution ports.
- //
- // We use the following heuristics to select the interleave count:
- // 1. If the code has reductions, then we interleave to break the cross
- // iteration dependency.
- // 2. If the loop is really small, then we interleave to reduce the loop
- // overhead.
- // 3. We don't interleave if we think that we will spill registers to memory
- // due to the increased register pressure.
- // When we optimize for size, we don't interleave.
- if (OptForSize)
- return 1;
- // We used the distance for the interleave count.
- if (Legal->getMaxSafeDepDistBytes() != -1U)
- return 1;
- // Do not interleave loops with a relatively small trip count.
- unsigned TC = SE->getSmallConstantTripCount(TheLoop);
- if (TC > 1 && TC < TinyTripCountInterleaveThreshold)
- return 1;
- unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
- DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters <<
- " registers\n");
- if (VF == 1) {
- if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
- TargetNumRegisters = ForceTargetNumScalarRegs;
- } else {
- if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
- TargetNumRegisters = ForceTargetNumVectorRegs;
- }
- LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
- // We divide by these constants so assume that we have at least one
- // instruction that uses at least one register.
- R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
- R.NumInstructions = std::max(R.NumInstructions, 1U);
- // We calculate the interleave count using the following formula.
- // Subtract the number of loop invariants from the number of available
- // registers. These registers are used by all of the interleaved instances.
- // Next, divide the remaining registers by the number of registers that is
- // required by the loop, in order to estimate how many parallel instances
- // fit without causing spills. All of this is rounded down if necessary to be
- // a power of two. We want power of two interleave count to simplify any
- // addressing operations or alignment considerations.
- unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
- R.MaxLocalUsers);
- // Don't count the induction variable as interleaved.
- if (EnableIndVarRegisterHeur)
- IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
- std::max(1U, (R.MaxLocalUsers - 1)));
- // Clamp the interleave ranges to reasonable counts.
- unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
- // Check if the user has overridden the max.
- if (VF == 1) {
- if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
- MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
- } else {
- if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
- MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
- }
- // If we did not calculate the cost for VF (because the user selected the VF)
- // then we calculate the cost of VF here.
- if (LoopCost == 0)
- LoopCost = expectedCost(VF);
- // Clamp the calculated IC to be between the 1 and the max interleave count
- // that the target allows.
- if (IC > MaxInterleaveCount)
- IC = MaxInterleaveCount;
- else if (IC < 1)
- IC = 1;
- // Interleave if we vectorized this loop and there is a reduction that could
- // benefit from interleaving.
- if (VF > 1 && Legal->getReductionVars()->size()) {
- DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
- return IC;
- }
- // Note that if we've already vectorized the loop we will have done the
- // runtime check and so interleaving won't require further checks.
- bool InterleavingRequiresRuntimePointerCheck =
- (VF == 1 && Legal->getRuntimePointerChecking()->Need);
- // We want to interleave small loops in order to reduce the loop overhead and
- // potentially expose ILP opportunities.
- DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
- if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
- // We assume that the cost overhead is 1 and we use the cost model
- // to estimate the cost of the loop and interleave until the cost of the
- // loop overhead is about 5% of the cost of the loop.
- unsigned SmallIC =
- std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
- // Interleave until store/load ports (estimated by max interleave count) are
- // saturated.
- unsigned NumStores = Legal->getNumStores();
- unsigned NumLoads = Legal->getNumLoads();
- unsigned StoresIC = IC / (NumStores ? NumStores : 1);
- unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
- // If we have a scalar reduction (vector reductions are already dealt with
- // by this point), we can increase the critical path length if the loop
- // we're interleaving is inside another loop. Limit, by default to 2, so the
- // critical path only gets increased by one reduction operation.
- if (Legal->getReductionVars()->size() &&
- TheLoop->getLoopDepth() > 1) {
- unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
- SmallIC = std::min(SmallIC, F);
- StoresIC = std::min(StoresIC, F);
- LoadsIC = std::min(LoadsIC, F);
- }
- if (EnableLoadStoreRuntimeInterleave &&
- std::max(StoresIC, LoadsIC) > SmallIC) {
- DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n");
- return std::max(StoresIC, LoadsIC);
- }
- DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
- return SmallIC;
- }
- // Interleave if this is a large loop (small loops are already dealt with by
- // this
- // point) that could benefit from interleaving.
- bool HasReductions = (Legal->getReductionVars()->size() > 0);
- if (TTI.enableAggressiveInterleaving(HasReductions)) {
- DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
- return IC;
- }
- DEBUG(dbgs() << "LV: Not Interleaving.\n");
- return 1;
- }
- LoopVectorizationCostModel::RegisterUsage
- LoopVectorizationCostModel::calculateRegisterUsage() {
- // This function calculates the register usage by measuring the highest number
- // of values that are alive at a single location. Obviously, this is a very
- // rough estimation. We scan the loop in a topological order in order and
- // assign a number to each instruction. We use RPO to ensure that defs are
- // met before their users. We assume that each instruction that has in-loop
- // users starts an interval. We record every time that an in-loop value is
- // used, so we have a list of the first and last occurrences of each
- // instruction. Next, we transpose this data structure into a multi map that
- // holds the list of intervals that *end* at a specific location. This multi
- // map allows us to perform a linear search. We scan the instructions linearly
- // and record each time that a new interval starts, by placing it in a set.
- // If we find this value in the multi-map then we remove it from the set.
- // The max register usage is the maximum size of the set.
- // We also search for instructions that are defined outside the loop, but are
- // used inside the loop. We need this number separately from the max-interval
- // usage number because when we unroll, loop-invariant values do not take
- // more register.
- LoopBlocksDFS DFS(TheLoop);
- DFS.perform(LI);
- RegisterUsage R;
- R.NumInstructions = 0;
- // Each 'key' in the map opens a new interval. The values
- // of the map are the index of the 'last seen' usage of the
- // instruction that is the key.
- typedef DenseMap<Instruction*, unsigned> IntervalMap;
- // Maps instruction to its index.
- DenseMap<unsigned, Instruction*> IdxToInstr;
- // Marks the end of each interval.
- IntervalMap EndPoint;
- // Saves the list of instruction indices that are used in the loop.
- SmallSet<Instruction*, 8> Ends;
- // Saves the list of values that are used in the loop but are
- // defined outside the loop, such as arguments and constants.
- SmallPtrSet<Value*, 8> LoopInvariants;
- unsigned Index = 0;
- for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
- be = DFS.endRPO(); bb != be; ++bb) {
- R.NumInstructions += (*bb)->size();
- for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
- ++it) {
- Instruction *I = it;
- IdxToInstr[Index++] = I;
- // Save the end location of each USE.
- for (unsigned i = 0; i < I->getNumOperands(); ++i) {
- Value *U = I->getOperand(i);
- Instruction *Instr = dyn_cast<Instruction>(U);
- // Ignore non-instruction values such as arguments, constants, etc.
- if (!Instr) continue;
- // If this instruction is outside the loop then record it and continue.
- if (!TheLoop->contains(Instr)) {
- LoopInvariants.insert(Instr);
- continue;
- }
- // Overwrite previous end points.
- EndPoint[Instr] = Index;
- Ends.insert(Instr);
- }
- }
- }
- // Saves the list of intervals that end with the index in 'key'.
- typedef SmallVector<Instruction*, 2> InstrList;
- DenseMap<unsigned, InstrList> TransposeEnds;
- // Transpose the EndPoints to a list of values that end at each index.
- for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
- it != e; ++it)
- TransposeEnds[it->second].push_back(it->first);
- SmallSet<Instruction*, 8> OpenIntervals;
- unsigned MaxUsage = 0;
- DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
- for (unsigned int i = 0; i < Index; ++i) {
- Instruction *I = IdxToInstr[i];
- // Ignore instructions that are never used within the loop.
- if (!Ends.count(I)) continue;
- // Ignore ephemeral values.
- if (EphValues.count(I))
- continue;
- // Remove all of the instructions that end at this location.
- InstrList &List = TransposeEnds[i];
- for (unsigned int j=0, e = List.size(); j < e; ++j)
- OpenIntervals.erase(List[j]);
- // Count the number of live interals.
- MaxUsage = std::max(MaxUsage, OpenIntervals.size());
- DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
- OpenIntervals.size() << '\n');
- // Add the current instruction to the list of open intervals.
- OpenIntervals.insert(I);
- }
- unsigned Invariant = LoopInvariants.size();
- DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n');
- DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
- DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n');
- R.LoopInvariantRegs = Invariant;
- R.MaxLocalUsers = MaxUsage;
- return R;
- }
- unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
- unsigned Cost = 0;
- // For each block.
- for (Loop::block_iterator bb = TheLoop->block_begin(),
- be = TheLoop->block_end(); bb != be; ++bb) {
- unsigned BlockCost = 0;
- BasicBlock *BB = *bb;
- // For each instruction in the old loop.
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- // Skip dbg intrinsics.
- if (isa<DbgInfoIntrinsic>(it))
- continue;
- // Ignore ephemeral values.
- if (EphValues.count(it))
- continue;
- unsigned C = getInstructionCost(it, VF);
- // Check if we should override the cost.
- if (ForceTargetInstructionCost.getNumOccurrences() > 0)
- C = ForceTargetInstructionCost;
- BlockCost += C;
- DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
- VF << " For instruction: " << *it << '\n');
- }
- // We assume that if-converted blocks have a 50% chance of being executed.
- // When the code is scalar then some of the blocks are avoided due to CF.
- // When the code is vectorized we execute all code paths.
- if (VF == 1 && Legal->blockNeedsPredication(*bb))
- BlockCost /= 2;
- Cost += BlockCost;
- }
- return Cost;
- }
- /// \brief Check whether the address computation for a non-consecutive memory
- /// access looks like an unlikely candidate for being merged into the indexing
- /// mode.
- ///
- /// We look for a GEP which has one index that is an induction variable and all
- /// other indices are loop invariant. If the stride of this access is also
- /// within a small bound we decide that this address computation can likely be
- /// merged into the addressing mode.
- /// In all other cases, we identify the address computation as complex.
- static bool isLikelyComplexAddressComputation(Value *Ptr,
- LoopVectorizationLegality *Legal,
- ScalarEvolution *SE,
- const Loop *TheLoop) {
- GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
- if (!Gep)
- return true;
- // We are looking for a gep with all loop invariant indices except for one
- // which should be an induction variable.
- unsigned NumOperands = Gep->getNumOperands();
- for (unsigned i = 1; i < NumOperands; ++i) {
- Value *Opd = Gep->getOperand(i);
- if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
- !Legal->isInductionVariable(Opd))
- return true;
- }
- // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
- // can likely be merged into the address computation.
- unsigned MaxMergeDistance = 64;
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
- if (!AddRec)
- return true;
- // Check the step is constant.
- const SCEV *Step = AddRec->getStepRecurrence(*SE);
- // Calculate the pointer stride and check if it is consecutive.
- const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
- if (!C)
- return true;
- const APInt &APStepVal = C->getValue()->getValue();
- // Huge step value - give up.
- if (APStepVal.getBitWidth() > 64)
- return true;
- int64_t StepVal = APStepVal.getSExtValue();
- return StepVal > MaxMergeDistance;
- }
- static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
- if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1)))
- return true;
- return false;
- }
- unsigned
- LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
- // If we know that this instruction will remain uniform, check the cost of
- // the scalar version.
- if (Legal->isUniformAfterVectorization(I))
- VF = 1;
- Type *RetTy = I->getType();
- Type *VectorTy = ToVectorTy(RetTy, VF);
- // TODO: We need to estimate the cost of intrinsic calls.
- switch (I->getOpcode()) {
- case Instruction::GetElementPtr:
- // We mark this instruction as zero-cost because the cost of GEPs in
- // vectorized code depends on whether the corresponding memory instruction
- // is scalarized or not. Therefore, we handle GEPs with the memory
- // instruction cost.
- return 0;
- case Instruction::Br: {
- return TTI.getCFInstrCost(I->getOpcode());
- }
- case Instruction::PHI:
- //TODO: IF-converted IFs become selects.
- return 0;
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // Since we will replace the stride by 1 the multiplication should go away.
- if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
- return 0;
- // Certain instructions can be cheaper to vectorize if they have a constant
- // second vector operand. One example of this are shifts on x86.
- TargetTransformInfo::OperandValueKind Op1VK =
- TargetTransformInfo::OK_AnyValue;
- TargetTransformInfo::OperandValueKind Op2VK =
- TargetTransformInfo::OK_AnyValue;
- TargetTransformInfo::OperandValueProperties Op1VP =
- TargetTransformInfo::OP_None;
- TargetTransformInfo::OperandValueProperties Op2VP =
- TargetTransformInfo::OP_None;
- Value *Op2 = I->getOperand(1);
- // Check for a splat of a constant or for a non uniform vector of constants.
- if (isa<ConstantInt>(Op2)) {
- ConstantInt *CInt = cast<ConstantInt>(Op2);
- if (CInt && CInt->getValue().isPowerOf2())
- Op2VP = TargetTransformInfo::OP_PowerOf2;
- Op2VK = TargetTransformInfo::OK_UniformConstantValue;
- } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
- Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
- Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
- if (SplatValue) {
- ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
- if (CInt && CInt->getValue().isPowerOf2())
- Op2VP = TargetTransformInfo::OP_PowerOf2;
- Op2VK = TargetTransformInfo::OK_UniformConstantValue;
- }
- }
- return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK,
- Op1VP, Op2VP);
- }
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
- bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
- Type *CondTy = SI->getCondition()->getType();
- if (!ScalarCond)
- CondTy = VectorType::get(CondTy, VF);
- return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
- }
- case Instruction::ICmp:
- case Instruction::FCmp: {
- Type *ValTy = I->getOperand(0)->getType();
- VectorTy = ToVectorTy(ValTy, VF);
- return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
- }
- case Instruction::Store:
- case Instruction::Load: {
- StoreInst *SI = dyn_cast<StoreInst>(I);
- LoadInst *LI = dyn_cast<LoadInst>(I);
- Type *ValTy = (SI ? SI->getValueOperand()->getType() :
- LI->getType());
- VectorTy = ToVectorTy(ValTy, VF);
- unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
- unsigned AS = SI ? SI->getPointerAddressSpace() :
- LI->getPointerAddressSpace();
- Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
- // We add the cost of address computation here instead of with the gep
- // instruction because only here we know whether the operation is
- // scalarized.
- if (VF == 1)
- return TTI.getAddressComputationCost(VectorTy) +
- TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
- // For an interleaved access, calculate the total cost of the whole
- // interleave group.
- if (Legal->isAccessInterleaved(I)) {
- auto Group = Legal->getInterleavedAccessGroup(I);
- assert(Group && "Fail to get an interleaved access group.");
- // Only calculate the cost once at the insert position.
- if (Group->getInsertPos() != I)
- return 0;
- unsigned InterleaveFactor = Group->getFactor();
- Type *WideVecTy =
- VectorType::get(VectorTy->getVectorElementType(),
- VectorTy->getVectorNumElements() * InterleaveFactor);
- // Holds the indices of existing members in an interleaved load group.
- // An interleaved store group doesn't need this as it dones't allow gaps.
- SmallVector<unsigned, 4> Indices;
- if (LI) {
- for (unsigned i = 0; i < InterleaveFactor; i++)
- if (Group->getMember(i))
- Indices.push_back(i);
- }
- // Calculate the cost of the whole interleaved group.
- unsigned Cost = TTI.getInterleavedMemoryOpCost(
- I->getOpcode(), WideVecTy, Group->getFactor(), Indices,
- Group->getAlignment(), AS);
- if (Group->isReverse())
- Cost +=
- Group->getNumMembers() *
- TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
- // FIXME: The interleaved load group with a huge gap could be even more
- // expensive than scalar operations. Then we could ignore such group and
- // use scalar operations instead.
- return Cost;
- }
- // Scalarized loads/stores.
- int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
- bool Reverse = ConsecutiveStride < 0;
- const DataLayout &DL = I->getModule()->getDataLayout();
- unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy);
- unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF;
- if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
- bool IsComplexComputation =
- isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
- unsigned Cost = 0;
- // The cost of extracting from the value vector and pointer vector.
- Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
- for (unsigned i = 0; i < VF; ++i) {
- // The cost of extracting the pointer operand.
- Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
- // In case of STORE, the cost of ExtractElement from the vector.
- // In case of LOAD, the cost of InsertElement into the returned
- // vector.
- Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
- Instruction::InsertElement,
- VectorTy, i);
- }
- // The cost of the scalar loads/stores.
- Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
- Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
- Alignment, AS);
- return Cost;
- }
- // Wide load/stores.
- unsigned Cost = TTI.getAddressComputationCost(VectorTy);
- if (Legal->isMaskRequired(I))
- Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment,
- AS);
- else
- Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
- if (Reverse)
- Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
- VectorTy, 0);
- return Cost;
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- // We optimize the truncation of induction variable.
- // The cost of these is the same as the scalar operation.
- if (I->getOpcode() == Instruction::Trunc &&
- Legal->isInductionVariable(I->getOperand(0)))
- return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
- I->getOperand(0)->getType());
- Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
- return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
- }
- case Instruction::Call: {
- bool NeedToScalarize;
- CallInst *CI = cast<CallInst>(I);
- unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
- if (getIntrinsicIDForCall(CI, TLI))
- return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
- return CallCost;
- }
- default: {
- // We are scalarizing the instruction. Return the cost of the scalar
- // instruction, plus the cost of insert and extract into vector
- // elements, times the vector width.
- unsigned Cost = 0;
- if (!RetTy->isVoidTy() && VF != 1) {
- unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
- VectorTy);
- unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
- VectorTy);
- // The cost of inserting the results plus extracting each one of the
- // operands.
- Cost += VF * (InsCost + ExtCost * I->getNumOperands());
- }
- // The cost of executing VF copies of the scalar instruction. This opcode
- // is unknown. Assume that it is the same as 'mul'.
- Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
- return Cost;
- }
- }// end of switch.
- }
- char LoopVectorize::ID = 0;
- static const char lv_name[] = "Loop Vectorization";
- INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LCSSA)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
- INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis)
- INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
- namespace llvm {
- Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
- return new LoopVectorize(NoUnrolling, AlwaysVectorize);
- }
- }
- bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
- // Check for a store.
- if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
- return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
- // Check for a load.
- if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
- return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
- return false;
- }
- void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
- bool IfPredicateStore) {
- assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
- // Holds vector parameters or scalars, in case of uniform vals.
- SmallVector<VectorParts, 4> Params;
- setDebugLocFromInst(Builder, Instr);
- // Find all of the vectorized parameters.
- for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
- Value *SrcOp = Instr->getOperand(op);
- // If we are accessing the old induction variable, use the new one.
- if (SrcOp == OldInduction) {
- Params.push_back(getVectorValue(SrcOp));
- continue;
- }
- // Try using previously calculated values.
- Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
- // If the src is an instruction that appeared earlier in the basic block
- // then it should already be vectorized.
- if (SrcInst && OrigLoop->contains(SrcInst)) {
- assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
- // The parameter is a vector value from earlier.
- Params.push_back(WidenMap.get(SrcInst));
- } else {
- // The parameter is a scalar from outside the loop. Maybe even a constant.
- VectorParts Scalars;
- Scalars.append(UF, SrcOp);
- Params.push_back(Scalars);
- }
- }
- assert(Params.size() == Instr->getNumOperands() &&
- "Invalid number of operands");
- // Does this instruction return a value ?
- bool IsVoidRetTy = Instr->getType()->isVoidTy();
- Value *UndefVec = IsVoidRetTy ? nullptr :
- UndefValue::get(Instr->getType());
- // Create a new entry in the WidenMap and initialize it to Undef or Null.
- VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
- Instruction *InsertPt = Builder.GetInsertPoint();
- BasicBlock *IfBlock = Builder.GetInsertBlock();
- BasicBlock *CondBlock = nullptr;
- VectorParts Cond;
- Loop *VectorLp = nullptr;
- if (IfPredicateStore) {
- assert(Instr->getParent()->getSinglePredecessor() &&
- "Only support single predecessor blocks");
- Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
- Instr->getParent());
- VectorLp = LI->getLoopFor(IfBlock);
- assert(VectorLp && "Must have a loop for this block");
- }
- // For each vector unroll 'part':
- for (unsigned Part = 0; Part < UF; ++Part) {
- // For each scalar that we create:
- // Start an "if (pred) a[i] = ..." block.
- Value *Cmp = nullptr;
- if (IfPredicateStore) {
- if (Cond[Part]->getType()->isVectorTy())
- Cond[Part] =
- Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0));
- Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part],
- ConstantInt::get(Cond[Part]->getType(), 1));
- CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
- LoopVectorBody.push_back(CondBlock);
- VectorLp->addBasicBlockToLoop(CondBlock, *LI);
- // Update Builder with newly created basic block.
- Builder.SetInsertPoint(InsertPt);
- }
- Instruction *Cloned = Instr->clone();
- if (!IsVoidRetTy)
- Cloned->setName(Instr->getName() + ".cloned");
- // Replace the operands of the cloned instructions with extracted scalars.
- for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
- Value *Op = Params[op][Part];
- Cloned->setOperand(op, Op);
- }
- // Place the cloned scalar in the new loop.
- Builder.Insert(Cloned);
- // If the original scalar returns a value we need to place it in a vector
- // so that future users will be able to use it.
- if (!IsVoidRetTy)
- VecResults[Part] = Cloned;
- // End if-block.
- if (IfPredicateStore) {
- BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
- LoopVectorBody.push_back(NewIfBlock);
- VectorLp->addBasicBlockToLoop(NewIfBlock, *LI);
- Builder.SetInsertPoint(InsertPt);
- ReplaceInstWithInst(IfBlock->getTerminator(),
- BranchInst::Create(CondBlock, NewIfBlock, Cmp));
- IfBlock = NewIfBlock;
- }
- }
- }
- void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
- StoreInst *SI = dyn_cast<StoreInst>(Instr);
- bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent()));
- return scalarizeInstruction(Instr, IfPredicateStore);
- }
- Value *InnerLoopUnroller::reverseVector(Value *Vec) {
- return Vec;
- }
- Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
- return V;
- }
- Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) {
- // When unrolling and the VF is 1, we only need to add a simple scalar.
- Type *ITy = Val->getType();
- assert(!ITy->isVectorTy() && "Val must be a scalar");
- Constant *C = ConstantInt::get(ITy, StartIdx);
- return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
- }
|