1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288 |
- //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// Replaces repeated sequences of instructions with function calls.
- ///
- /// This works by placing every instruction from every basic block in a
- /// suffix tree, and repeatedly querying that tree for repeated sequences of
- /// instructions. If a sequence of instructions appears often, then it ought
- /// to be beneficial to pull out into a function.
- ///
- /// The MachineOutliner communicates with a given target using hooks defined in
- /// TargetInstrInfo.h. The target supplies the outliner with information on how
- /// a specific sequence of instructions should be outlined. This information
- /// is used to deduce the number of instructions necessary to
- ///
- /// * Create an outlined function
- /// * Call that outlined function
- ///
- /// Targets must implement
- /// * getOutliningCandidateInfo
- /// * insertOutlinerEpilogue
- /// * insertOutlinedCall
- /// * insertOutlinerPrologue
- /// * isFunctionSafeToOutlineFrom
- ///
- /// in order to make use of the MachineOutliner.
- ///
- /// This was originally presented at the 2016 LLVM Developers' Meeting in the
- /// talk "Reducing Code Size Using Outlining". For a high-level overview of
- /// how this pass works, the talk is available on YouTube at
- ///
- /// https://www.youtube.com/watch?v=yorld-WSOeU
- ///
- /// The slides for the talk are available at
- ///
- /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
- ///
- /// The talk provides an overview of how the outliner finds candidates and
- /// ultimately outlines them. It describes how the main data structure for this
- /// pass, the suffix tree, is queried and purged for candidates. It also gives
- /// a simplified suffix tree construction algorithm for suffix trees based off
- /// of the algorithm actually used here, Ukkonen's algorithm.
- ///
- /// For the original RFC for this pass, please see
- ///
- /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
- ///
- /// For more information on the suffix tree data structure, please see
- /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
- ///
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineModuleInfo.h"
- #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/Support/Allocator.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Target/TargetRegisterInfo.h"
- #include "llvm/Target/TargetSubtargetInfo.h"
- #include <functional>
- #include <map>
- #include <sstream>
- #include <tuple>
- #include <vector>
- #define DEBUG_TYPE "machine-outliner"
- using namespace llvm;
- using namespace ore;
- STATISTIC(NumOutlined, "Number of candidates outlined");
- STATISTIC(FunctionsCreated, "Number of functions created");
- namespace {
- /// \brief An individual sequence of instructions to be replaced with a call to
- /// an outlined function.
- struct Candidate {
- /// Set to false if the candidate overlapped with another candidate.
- bool InCandidateList = true;
- /// The start index of this \p Candidate.
- unsigned StartIdx;
- /// The number of instructions in this \p Candidate.
- unsigned Len;
- /// The index of this \p Candidate's \p OutlinedFunction in the list of
- /// \p OutlinedFunctions.
- unsigned FunctionIdx;
- /// Contains all target-specific information for this \p Candidate.
- TargetInstrInfo::MachineOutlinerInfo MInfo;
- /// \brief The number of instructions that would be saved by outlining every
- /// candidate of this type.
- ///
- /// This is a fixed value which is not updated during the candidate pruning
- /// process. It is only used for deciding which candidate to keep if two
- /// candidates overlap. The true benefit is stored in the OutlinedFunction
- /// for some given candidate.
- unsigned Benefit = 0;
- Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx)
- : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {}
- Candidate() {}
- /// \brief Used to ensure that \p Candidates are outlined in an order that
- /// preserves the start and end indices of other \p Candidates.
- bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; }
- };
- /// \brief The information necessary to create an outlined function for some
- /// class of candidate.
- struct OutlinedFunction {
- /// The actual outlined function created.
- /// This is initialized after we go through and create the actual function.
- MachineFunction *MF = nullptr;
- /// A number assigned to this function which appears at the end of its name.
- unsigned Name;
- /// The number of candidates for this OutlinedFunction.
- unsigned OccurrenceCount = 0;
- /// \brief The sequence of integers corresponding to the instructions in this
- /// function.
- std::vector<unsigned> Sequence;
- /// Contains all target-specific information for this \p OutlinedFunction.
- TargetInstrInfo::MachineOutlinerInfo MInfo;
- /// \brief Return the number of instructions it would take to outline this
- /// function.
- unsigned getOutliningCost() {
- return (OccurrenceCount * MInfo.CallOverhead) + Sequence.size() +
- MInfo.FrameOverhead;
- }
- /// \brief Return the number of instructions that would be saved by outlining
- /// this function.
- unsigned getBenefit() {
- unsigned NotOutlinedCost = OccurrenceCount * Sequence.size();
- unsigned OutlinedCost = getOutliningCost();
- return (NotOutlinedCost < OutlinedCost) ? 0
- : NotOutlinedCost - OutlinedCost;
- }
- OutlinedFunction(unsigned Name, unsigned OccurrenceCount,
- const std::vector<unsigned> &Sequence,
- TargetInstrInfo::MachineOutlinerInfo &MInfo)
- : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence),
- MInfo(MInfo) {}
- };
- /// Represents an undefined index in the suffix tree.
- const unsigned EmptyIdx = -1;
- /// A node in a suffix tree which represents a substring or suffix.
- ///
- /// Each node has either no children or at least two children, with the root
- /// being a exception in the empty tree.
- ///
- /// Children are represented as a map between unsigned integers and nodes. If
- /// a node N has a child M on unsigned integer k, then the mapping represented
- /// by N is a proper prefix of the mapping represented by M. Note that this,
- /// although similar to a trie is somewhat different: each node stores a full
- /// substring of the full mapping rather than a single character state.
- ///
- /// Each internal node contains a pointer to the internal node representing
- /// the same string, but with the first character chopped off. This is stored
- /// in \p Link. Each leaf node stores the start index of its respective
- /// suffix in \p SuffixIdx.
- struct SuffixTreeNode {
- /// The children of this node.
- ///
- /// A child existing on an unsigned integer implies that from the mapping
- /// represented by the current node, there is a way to reach another
- /// mapping by tacking that character on the end of the current string.
- DenseMap<unsigned, SuffixTreeNode *> Children;
- /// A flag set to false if the node has been pruned from the tree.
- bool IsInTree = true;
- /// The start index of this node's substring in the main string.
- unsigned StartIdx = EmptyIdx;
- /// The end index of this node's substring in the main string.
- ///
- /// Every leaf node must have its \p EndIdx incremented at the end of every
- /// step in the construction algorithm. To avoid having to update O(N)
- /// nodes individually at the end of every step, the end index is stored
- /// as a pointer.
- unsigned *EndIdx = nullptr;
- /// For leaves, the start index of the suffix represented by this node.
- ///
- /// For all other nodes, this is ignored.
- unsigned SuffixIdx = EmptyIdx;
- /// \brief For internal nodes, a pointer to the internal node representing
- /// the same sequence with the first character chopped off.
- ///
- /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
- /// Ukkonen's algorithm does to achieve linear-time construction is
- /// keep track of which node the next insert should be at. This makes each
- /// insert O(1), and there are a total of O(N) inserts. The suffix link
- /// helps with inserting children of internal nodes.
- ///
- /// Say we add a child to an internal node with associated mapping S. The
- /// next insertion must be at the node representing S - its first character.
- /// This is given by the way that we iteratively build the tree in Ukkonen's
- /// algorithm. The main idea is to look at the suffixes of each prefix in the
- /// string, starting with the longest suffix of the prefix, and ending with
- /// the shortest. Therefore, if we keep pointers between such nodes, we can
- /// move to the next insertion point in O(1) time. If we don't, then we'd
- /// have to query from the root, which takes O(N) time. This would make the
- /// construction algorithm O(N^2) rather than O(N).
- SuffixTreeNode *Link = nullptr;
- /// The parent of this node. Every node except for the root has a parent.
- SuffixTreeNode *Parent = nullptr;
- /// The number of times this node's string appears in the tree.
- ///
- /// This is equal to the number of leaf children of the string. It represents
- /// the number of suffixes that the node's string is a prefix of.
- unsigned OccurrenceCount = 0;
- /// The length of the string formed by concatenating the edge labels from the
- /// root to this node.
- unsigned ConcatLen = 0;
- /// Returns true if this node is a leaf.
- bool isLeaf() const { return SuffixIdx != EmptyIdx; }
- /// Returns true if this node is the root of its owning \p SuffixTree.
- bool isRoot() const { return StartIdx == EmptyIdx; }
- /// Return the number of elements in the substring associated with this node.
- size_t size() const {
- // Is it the root? If so, it's the empty string so return 0.
- if (isRoot())
- return 0;
- assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
- // Size = the number of elements in the string.
- // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
- return *EndIdx - StartIdx + 1;
- }
- SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link,
- SuffixTreeNode *Parent)
- : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
- SuffixTreeNode() {}
- };
- /// A data structure for fast substring queries.
- ///
- /// Suffix trees represent the suffixes of their input strings in their leaves.
- /// A suffix tree is a type of compressed trie structure where each node
- /// represents an entire substring rather than a single character. Each leaf
- /// of the tree is a suffix.
- ///
- /// A suffix tree can be seen as a type of state machine where each state is a
- /// substring of the full string. The tree is structured so that, for a string
- /// of length N, there are exactly N leaves in the tree. This structure allows
- /// us to quickly find repeated substrings of the input string.
- ///
- /// In this implementation, a "string" is a vector of unsigned integers.
- /// These integers may result from hashing some data type. A suffix tree can
- /// contain 1 or many strings, which can then be queried as one large string.
- ///
- /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
- /// suffix tree construction. Ukkonen's algorithm is explained in more detail
- /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
- /// paper is available at
- ///
- /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
- class SuffixTree {
- public:
- /// Stores each leaf node in the tree.
- ///
- /// This is used for finding outlining candidates.
- std::vector<SuffixTreeNode *> LeafVector;
- /// Each element is an integer representing an instruction in the module.
- ArrayRef<unsigned> Str;
- private:
- /// Maintains each node in the tree.
- SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
- /// The root of the suffix tree.
- ///
- /// The root represents the empty string. It is maintained by the
- /// \p NodeAllocator like every other node in the tree.
- SuffixTreeNode *Root = nullptr;
- /// Maintains the end indices of the internal nodes in the tree.
- ///
- /// Each internal node is guaranteed to never have its end index change
- /// during the construction algorithm; however, leaves must be updated at
- /// every step. Therefore, we need to store leaf end indices by reference
- /// to avoid updating O(N) leaves at every step of construction. Thus,
- /// every internal node must be allocated its own end index.
- BumpPtrAllocator InternalEndIdxAllocator;
- /// The end index of each leaf in the tree.
- unsigned LeafEndIdx = -1;
- /// \brief Helper struct which keeps track of the next insertion point in
- /// Ukkonen's algorithm.
- struct ActiveState {
- /// The next node to insert at.
- SuffixTreeNode *Node;
- /// The index of the first character in the substring currently being added.
- unsigned Idx = EmptyIdx;
- /// The length of the substring we have to add at the current step.
- unsigned Len = 0;
- };
- /// \brief The point the next insertion will take place at in the
- /// construction algorithm.
- ActiveState Active;
- /// Allocate a leaf node and add it to the tree.
- ///
- /// \param Parent The parent of this node.
- /// \param StartIdx The start index of this node's associated string.
- /// \param Edge The label on the edge leaving \p Parent to this node.
- ///
- /// \returns A pointer to the allocated leaf node.
- SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
- unsigned Edge) {
- assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
- SuffixTreeNode *N = new (NodeAllocator.Allocate())
- SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent);
- Parent.Children[Edge] = N;
- return N;
- }
- /// Allocate an internal node and add it to the tree.
- ///
- /// \param Parent The parent of this node. Only null when allocating the root.
- /// \param StartIdx The start index of this node's associated string.
- /// \param EndIdx The end index of this node's associated string.
- /// \param Edge The label on the edge leaving \p Parent to this node.
- ///
- /// \returns A pointer to the allocated internal node.
- SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
- unsigned EndIdx, unsigned Edge) {
- assert(StartIdx <= EndIdx && "String can't start after it ends!");
- assert(!(!Parent && StartIdx != EmptyIdx) &&
- "Non-root internal nodes must have parents!");
- unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
- SuffixTreeNode *N = new (NodeAllocator.Allocate())
- SuffixTreeNode(StartIdx, E, Root, Parent);
- if (Parent)
- Parent->Children[Edge] = N;
- return N;
- }
- /// \brief Set the suffix indices of the leaves to the start indices of their
- /// respective suffixes. Also stores each leaf in \p LeafVector at its
- /// respective suffix index.
- ///
- /// \param[in] CurrNode The node currently being visited.
- /// \param CurrIdx The current index of the string being visited.
- void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) {
- bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
- // Store the length of the concatenation of all strings from the root to
- // this node.
- if (!CurrNode.isRoot()) {
- if (CurrNode.ConcatLen == 0)
- CurrNode.ConcatLen = CurrNode.size();
- if (CurrNode.Parent)
- CurrNode.ConcatLen += CurrNode.Parent->ConcatLen;
- }
- // Traverse the tree depth-first.
- for (auto &ChildPair : CurrNode.Children) {
- assert(ChildPair.second && "Node had a null child!");
- setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size());
- }
- // Is this node a leaf?
- if (IsLeaf) {
- // If yes, give it a suffix index and bump its parent's occurrence count.
- CurrNode.SuffixIdx = Str.size() - CurrIdx;
- assert(CurrNode.Parent && "CurrNode had no parent!");
- CurrNode.Parent->OccurrenceCount++;
- // Store the leaf in the leaf vector for pruning later.
- LeafVector[CurrNode.SuffixIdx] = &CurrNode;
- }
- }
- /// \brief Construct the suffix tree for the prefix of the input ending at
- /// \p EndIdx.
- ///
- /// Used to construct the full suffix tree iteratively. At the end of each
- /// step, the constructed suffix tree is either a valid suffix tree, or a
- /// suffix tree with implicit suffixes. At the end of the final step, the
- /// suffix tree is a valid tree.
- ///
- /// \param EndIdx The end index of the current prefix in the main string.
- /// \param SuffixesToAdd The number of suffixes that must be added
- /// to complete the suffix tree at the current phase.
- ///
- /// \returns The number of suffixes that have not been added at the end of
- /// this step.
- unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
- SuffixTreeNode *NeedsLink = nullptr;
- while (SuffixesToAdd > 0) {
- // Are we waiting to add anything other than just the last character?
- if (Active.Len == 0) {
- // If not, then say the active index is the end index.
- Active.Idx = EndIdx;
- }
- assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
- // The first character in the current substring we're looking at.
- unsigned FirstChar = Str[Active.Idx];
- // Have we inserted anything starting with FirstChar at the current node?
- if (Active.Node->Children.count(FirstChar) == 0) {
- // If not, then we can just insert a leaf and move too the next step.
- insertLeaf(*Active.Node, EndIdx, FirstChar);
- // The active node is an internal node, and we visited it, so it must
- // need a link if it doesn't have one.
- if (NeedsLink) {
- NeedsLink->Link = Active.Node;
- NeedsLink = nullptr;
- }
- } else {
- // There's a match with FirstChar, so look for the point in the tree to
- // insert a new node.
- SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
- unsigned SubstringLen = NextNode->size();
- // Is the current suffix we're trying to insert longer than the size of
- // the child we want to move to?
- if (Active.Len >= SubstringLen) {
- // If yes, then consume the characters we've seen and move to the next
- // node.
- Active.Idx += SubstringLen;
- Active.Len -= SubstringLen;
- Active.Node = NextNode;
- continue;
- }
- // Otherwise, the suffix we're trying to insert must be contained in the
- // next node we want to move to.
- unsigned LastChar = Str[EndIdx];
- // Is the string we're trying to insert a substring of the next node?
- if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
- // If yes, then we're done for this step. Remember our insertion point
- // and move to the next end index. At this point, we have an implicit
- // suffix tree.
- if (NeedsLink && !Active.Node->isRoot()) {
- NeedsLink->Link = Active.Node;
- NeedsLink = nullptr;
- }
- Active.Len++;
- break;
- }
- // The string we're trying to insert isn't a substring of the next node,
- // but matches up to a point. Split the node.
- //
- // For example, say we ended our search at a node n and we're trying to
- // insert ABD. Then we'll create a new node s for AB, reduce n to just
- // representing C, and insert a new leaf node l to represent d. This
- // allows us to ensure that if n was a leaf, it remains a leaf.
- //
- // | ABC ---split---> | AB
- // n s
- // C / \ D
- // n l
- // The node s from the diagram
- SuffixTreeNode *SplitNode =
- insertInternalNode(Active.Node, NextNode->StartIdx,
- NextNode->StartIdx + Active.Len - 1, FirstChar);
- // Insert the new node representing the new substring into the tree as
- // a child of the split node. This is the node l from the diagram.
- insertLeaf(*SplitNode, EndIdx, LastChar);
- // Make the old node a child of the split node and update its start
- // index. This is the node n from the diagram.
- NextNode->StartIdx += Active.Len;
- NextNode->Parent = SplitNode;
- SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
- // SplitNode is an internal node, update the suffix link.
- if (NeedsLink)
- NeedsLink->Link = SplitNode;
- NeedsLink = SplitNode;
- }
- // We've added something new to the tree, so there's one less suffix to
- // add.
- SuffixesToAdd--;
- if (Active.Node->isRoot()) {
- if (Active.Len > 0) {
- Active.Len--;
- Active.Idx = EndIdx - SuffixesToAdd + 1;
- }
- } else {
- // Start the next phase at the next smallest suffix.
- Active.Node = Active.Node->Link;
- }
- }
- return SuffixesToAdd;
- }
- public:
- /// Construct a suffix tree from a sequence of unsigned integers.
- ///
- /// \param Str The string to construct the suffix tree for.
- SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
- Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
- Root->IsInTree = true;
- Active.Node = Root;
- LeafVector = std::vector<SuffixTreeNode *>(Str.size());
- // Keep track of the number of suffixes we have to add of the current
- // prefix.
- unsigned SuffixesToAdd = 0;
- Active.Node = Root;
- // Construct the suffix tree iteratively on each prefix of the string.
- // PfxEndIdx is the end index of the current prefix.
- // End is one past the last element in the string.
- for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
- PfxEndIdx++) {
- SuffixesToAdd++;
- LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
- SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
- }
- // Set the suffix indices of each leaf.
- assert(Root && "Root node can't be nullptr!");
- setSuffixIndices(*Root, 0);
- }
- };
- /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
- struct InstructionMapper {
- /// \brief The next available integer to assign to a \p MachineInstr that
- /// cannot be outlined.
- ///
- /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
- unsigned IllegalInstrNumber = -3;
- /// \brief The next available integer to assign to a \p MachineInstr that can
- /// be outlined.
- unsigned LegalInstrNumber = 0;
- /// Correspondence from \p MachineInstrs to unsigned integers.
- DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
- InstructionIntegerMap;
- /// Corresponcence from unsigned integers to \p MachineInstrs.
- /// Inverse of \p InstructionIntegerMap.
- DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
- /// The vector of unsigned integers that the module is mapped to.
- std::vector<unsigned> UnsignedVec;
- /// \brief Stores the location of the instruction associated with the integer
- /// at index i in \p UnsignedVec for each index i.
- std::vector<MachineBasicBlock::iterator> InstrList;
- /// \brief Maps \p *It to a legal integer.
- ///
- /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
- /// \p IntegerInstructionMap, and \p LegalInstrNumber.
- ///
- /// \returns The integer that \p *It was mapped to.
- unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
- // Get the integer for this instruction or give it the current
- // LegalInstrNumber.
- InstrList.push_back(It);
- MachineInstr &MI = *It;
- bool WasInserted;
- DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
- ResultIt;
- std::tie(ResultIt, WasInserted) =
- InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
- unsigned MINumber = ResultIt->second;
- // There was an insertion.
- if (WasInserted) {
- LegalInstrNumber++;
- IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
- }
- UnsignedVec.push_back(MINumber);
- // Make sure we don't overflow or use any integers reserved by the DenseMap.
- if (LegalInstrNumber >= IllegalInstrNumber)
- report_fatal_error("Instruction mapping overflow!");
- assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
- "Tried to assign DenseMap tombstone or empty key to instruction.");
- assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
- "Tried to assign DenseMap tombstone or empty key to instruction.");
- return MINumber;
- }
- /// Maps \p *It to an illegal integer.
- ///
- /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
- ///
- /// \returns The integer that \p *It was mapped to.
- unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
- unsigned MINumber = IllegalInstrNumber;
- InstrList.push_back(It);
- UnsignedVec.push_back(IllegalInstrNumber);
- IllegalInstrNumber--;
- assert(LegalInstrNumber < IllegalInstrNumber &&
- "Instruction mapping overflow!");
- assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
- "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
- assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
- "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
- return MINumber;
- }
- /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
- /// and appends it to \p UnsignedVec and \p InstrList.
- ///
- /// Two instructions are assigned the same integer if they are identical.
- /// If an instruction is deemed unsafe to outline, then it will be assigned an
- /// unique integer. The resulting mapping is placed into a suffix tree and
- /// queried for candidates.
- ///
- /// \param MBB The \p MachineBasicBlock to be translated into integers.
- /// \param TRI \p TargetRegisterInfo for the module.
- /// \param TII \p TargetInstrInfo for the module.
- void convertToUnsignedVec(MachineBasicBlock &MBB,
- const TargetRegisterInfo &TRI,
- const TargetInstrInfo &TII) {
- for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
- It++) {
- // Keep track of where this instruction is in the module.
- switch (TII.getOutliningType(*It)) {
- case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
- mapToIllegalUnsigned(It);
- break;
- case TargetInstrInfo::MachineOutlinerInstrType::Legal:
- mapToLegalUnsigned(It);
- break;
- case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
- break;
- }
- }
- // After we're done every insertion, uniquely terminate this part of the
- // "string". This makes sure we won't match across basic block or function
- // boundaries since the "end" is encoded uniquely and thus appears in no
- // repeated substring.
- InstrList.push_back(MBB.end());
- UnsignedVec.push_back(IllegalInstrNumber);
- IllegalInstrNumber--;
- }
- InstructionMapper() {
- // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
- // changed.
- assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
- "DenseMapInfo<unsigned>'s empty key isn't -1!");
- assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
- "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
- }
- };
- /// \brief An interprocedural pass which finds repeated sequences of
- /// instructions and replaces them with calls to functions.
- ///
- /// Each instruction is mapped to an unsigned integer and placed in a string.
- /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
- /// is then repeatedly queried for repeated sequences of instructions. Each
- /// non-overlapping repeated sequence is then placed in its own
- /// \p MachineFunction and each instance is then replaced with a call to that
- /// function.
- struct MachineOutliner : public ModulePass {
- static char ID;
- /// \brief Set to true if the outliner should consider functions with
- /// linkonceodr linkage.
- bool OutlineFromLinkOnceODRs = false;
- StringRef getPassName() const override { return "Machine Outliner"; }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<MachineModuleInfo>();
- AU.addPreserved<MachineModuleInfo>();
- AU.setPreservesAll();
- ModulePass::getAnalysisUsage(AU);
- }
- MachineOutliner(bool OutlineFromLinkOnceODRs = false) :
- ModulePass(ID), OutlineFromLinkOnceODRs(OutlineFromLinkOnceODRs) {
- initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
- }
- /// Find all repeated substrings that satisfy the outlining cost model.
- ///
- /// If a substring appears at least twice, then it must be represented by
- /// an internal node which appears in at least two suffixes. Each suffix is
- /// represented by a leaf node. To do this, we visit each internal node in
- /// the tree, using the leaf children of each internal node. If an internal
- /// node represents a beneficial substring, then we use each of its leaf
- /// children to find the locations of its substring.
- ///
- /// \param ST A suffix tree to query.
- /// \param TII TargetInstrInfo for the target.
- /// \param Mapper Contains outlining mapping information.
- /// \param[out] CandidateList Filled with candidates representing each
- /// beneficial substring.
- /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each
- /// type of candidate.
- ///
- /// \returns The length of the longest candidate found.
- unsigned findCandidates(SuffixTree &ST, const TargetInstrInfo &TII,
- InstructionMapper &Mapper,
- std::vector<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList);
- /// \brief Replace the sequences of instructions represented by the
- /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
- /// described in \p FunctionList.
- ///
- /// \param M The module we are outlining from.
- /// \param CandidateList A list of candidates to be outlined.
- /// \param FunctionList A list of functions to be inserted into the module.
- /// \param Mapper Contains the instruction mappings for the module.
- bool outline(Module &M, const ArrayRef<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- InstructionMapper &Mapper);
- /// Creates a function for \p OF and inserts it into the module.
- MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
- InstructionMapper &Mapper);
- /// Find potential outlining candidates and store them in \p CandidateList.
- ///
- /// For each type of potential candidate, also build an \p OutlinedFunction
- /// struct containing the information to build the function for that
- /// candidate.
- ///
- /// \param[out] CandidateList Filled with outlining candidates for the module.
- /// \param[out] FunctionList Filled with functions corresponding to each type
- /// of \p Candidate.
- /// \param ST The suffix tree for the module.
- /// \param TII TargetInstrInfo for the module.
- ///
- /// \returns The length of the longest candidate found. 0 if there are none.
- unsigned buildCandidateList(std::vector<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- SuffixTree &ST, InstructionMapper &Mapper,
- const TargetInstrInfo &TII);
- /// \brief Remove any overlapping candidates that weren't handled by the
- /// suffix tree's pruning method.
- ///
- /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
- /// If a short candidate is chosen for outlining, then a longer candidate
- /// which has that short candidate as a suffix is chosen, the tree's pruning
- /// method will not find it. Thus, we need to prune before outlining as well.
- ///
- /// \param[in,out] CandidateList A list of outlining candidates.
- /// \param[in,out] FunctionList A list of functions to be outlined.
- /// \param Mapper Contains instruction mapping info for outlining.
- /// \param MaxCandidateLen The length of the longest candidate.
- /// \param TII TargetInstrInfo for the module.
- void pruneOverlaps(std::vector<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- InstructionMapper &Mapper, unsigned MaxCandidateLen,
- const TargetInstrInfo &TII);
- /// Construct a suffix tree on the instructions in \p M and outline repeated
- /// strings from that tree.
- bool runOnModule(Module &M) override;
- };
- } // Anonymous namespace.
- char MachineOutliner::ID = 0;
- namespace llvm {
- ModulePass *createMachineOutlinerPass(bool OutlineFromLinkOnceODRs) {
- return new MachineOutliner(OutlineFromLinkOnceODRs);
- }
- } // namespace llvm
- INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
- false)
- unsigned
- MachineOutliner::findCandidates(SuffixTree &ST, const TargetInstrInfo &TII,
- InstructionMapper &Mapper,
- std::vector<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList) {
- CandidateList.clear();
- FunctionList.clear();
- unsigned MaxLen = 0;
- // FIXME: Visit internal nodes instead of leaves.
- for (SuffixTreeNode *Leaf : ST.LeafVector) {
- assert(Leaf && "Leaves in LeafVector cannot be null!");
- if (!Leaf->IsInTree)
- continue;
- assert(Leaf->Parent && "All leaves must have parents!");
- SuffixTreeNode &Parent = *(Leaf->Parent);
- // If it doesn't appear enough, or we already outlined from it, skip it.
- if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree)
- continue;
- // Figure out if this candidate is beneficial.
- unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size();
- // Too short to be beneficial; skip it.
- // FIXME: This isn't necessarily true for, say, X86. If we factor in
- // instruction lengths we need more information than this.
- if (StringLen < 2)
- continue;
- // If this is a beneficial class of candidate, then every one is stored in
- // this vector.
- std::vector<Candidate> CandidatesForRepeatedSeq;
- // Describes the start and end point of each candidate. This allows the
- // target to infer some information about each occurrence of each repeated
- // sequence.
- // FIXME: CandidatesForRepeatedSeq and this should be combined.
- std::vector<
- std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
- RepeatedSequenceLocs;
- // Figure out the call overhead for each instance of the sequence.
- for (auto &ChildPair : Parent.Children) {
- SuffixTreeNode *M = ChildPair.second;
- if (M && M->IsInTree && M->isLeaf()) {
- // Each sequence is over [StartIt, EndIt].
- MachineBasicBlock::iterator StartIt = Mapper.InstrList[M->SuffixIdx];
- MachineBasicBlock::iterator EndIt =
- Mapper.InstrList[M->SuffixIdx + StringLen - 1];
- CandidatesForRepeatedSeq.emplace_back(M->SuffixIdx, StringLen,
- FunctionList.size());
- RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt));
- // Never visit this leaf again.
- M->IsInTree = false;
- }
- }
- // We've found something we might want to outline.
- // Create an OutlinedFunction to store it and check if it'd be beneficial
- // to outline.
- TargetInstrInfo::MachineOutlinerInfo MInfo =
- TII.getOutlininingCandidateInfo(RepeatedSequenceLocs);
- std::vector<unsigned> Seq;
- for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++)
- Seq.push_back(ST.Str[i]);
- OutlinedFunction OF(FunctionList.size(), Parent.OccurrenceCount, Seq,
- MInfo);
- unsigned Benefit = OF.getBenefit();
- // Is it better to outline this candidate than not?
- if (Benefit < 1) {
- // Outlining this candidate would take more instructions than not
- // outlining.
- // Emit a remark explaining why we didn't outline this candidate.
- std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C =
- RepeatedSequenceLocs[0];
- MachineOptimizationRemarkEmitter MORE(*(C.first->getMF()), nullptr);
- MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
- C.first->getDebugLoc(),
- C.first->getParent());
- R << "Did not outline " << NV("Length", StringLen) << " instructions"
- << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size())
- << " locations."
- << " Instructions from outlining all occurrences ("
- << NV("OutliningCost", OF.getOutliningCost()) << ")"
- << " >= Unoutlined instruction count ("
- << NV("NotOutliningCost", StringLen * OF.OccurrenceCount) << ")"
- << " (Also found at: ";
- // Tell the user the other places the candidate was found.
- for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) {
- R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
- RepeatedSequenceLocs[i].first->getDebugLoc());
- if (i != e - 1)
- R << ", ";
- }
- R << ")";
- MORE.emit(R);
- // Move to the next candidate.
- continue;
- }
- if (StringLen > MaxLen)
- MaxLen = StringLen;
- // At this point, the candidate class is seen as beneficial. Set their
- // benefit values and save them in the candidate list.
- for (Candidate &C : CandidatesForRepeatedSeq) {
- C.Benefit = Benefit;
- C.MInfo = MInfo;
- CandidateList.push_back(C);
- }
- FunctionList.push_back(OF);
- // Move to the next function.
- Parent.IsInTree = false;
- }
- return MaxLen;
- }
- void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- InstructionMapper &Mapper,
- unsigned MaxCandidateLen,
- const TargetInstrInfo &TII) {
- // Return true if this candidate became unbeneficial for outlining in a
- // previous step.
- auto ShouldSkipCandidate = [&FunctionList](Candidate &C) {
- // Check if the candidate was removed in a previous step.
- if (!C.InCandidateList)
- return true;
- // Check if C's associated function is still beneficial after previous
- // pruning steps.
- OutlinedFunction &F = FunctionList[C.FunctionIdx];
- if (F.OccurrenceCount < 2 || F.getBenefit() < 1) {
- assert(F.OccurrenceCount > 0 &&
- "Can't remove OutlinedFunction with no occurrences!");
- F.OccurrenceCount--;
- C.InCandidateList = false;
- return true;
- }
- // C is in the list, and F is still beneficial.
- return false;
- };
- // Remove C from the candidate space, and update its OutlinedFunction.
- auto Prune = [&FunctionList](Candidate &C) {
- // Get the OutlinedFunction associated with this Candidate.
- OutlinedFunction &F = FunctionList[C.FunctionIdx];
- // Update C's associated function's occurrence count.
- assert(F.OccurrenceCount > 0 &&
- "Can't remove OutlinedFunction with no occurrences!");
- F.OccurrenceCount--;
- // Remove C from the CandidateList.
- C.InCandidateList = false;
- DEBUG(dbgs() << "- Removed a Candidate \n";
- dbgs() << "--- Num fns left for candidate: " << F.OccurrenceCount
- << "\n";
- dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit()
- << "\n";);
- };
- // TODO: Experiment with interval trees or other interval-checking structures
- // to lower the time complexity of this function.
- // TODO: Can we do better than the simple greedy choice?
- // Check for overlaps in the range.
- // This is O(MaxCandidateLen * CandidateList.size()).
- for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
- It++) {
- Candidate &C1 = *It;
- // If C1 was already pruned, or its function is no longer beneficial for
- // outlining, move to the next candidate.
- if (ShouldSkipCandidate(C1))
- continue;
- // The minimum start index of any candidate that could overlap with this
- // one.
- unsigned FarthestPossibleIdx = 0;
- // Either the index is 0, or it's at most MaxCandidateLen indices away.
- if (C1.StartIdx > MaxCandidateLen)
- FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen;
- // Compare against the candidates in the list that start at at most
- // FarthestPossibleIdx indices away from C1. There are at most
- // MaxCandidateLen of these.
- for (auto Sit = It + 1; Sit != Et; Sit++) {
- Candidate &C2 = *Sit;
- // Is this candidate too far away to overlap?
- if (C2.StartIdx < FarthestPossibleIdx)
- break;
- // If C2 was already pruned, or its function is no longer beneficial for
- // outlining, move to the next candidate.
- if (ShouldSkipCandidate(C2))
- continue;
- unsigned C2End = C2.StartIdx + C2.Len - 1;
- // Do C1 and C2 overlap?
- //
- // Not overlapping:
- // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
- //
- // We sorted our candidate list so C2Start <= C1Start. We know that
- // C2End > C2Start since each candidate has length >= 2. Therefore, all we
- // have to check is C2End < C2Start to see if we overlap.
- if (C2End < C1.StartIdx)
- continue;
- // C1 and C2 overlap.
- // We need to choose the better of the two.
- //
- // Approximate this by picking the one which would have saved us the
- // most instructions before any pruning.
- if (C1.Benefit >= C2.Benefit) {
- Prune(C2);
- } else {
- Prune(C1);
- // C1 is out, so we don't have to compare it against anyone else.
- break;
- }
- }
- }
- }
- unsigned
- MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- SuffixTree &ST, InstructionMapper &Mapper,
- const TargetInstrInfo &TII) {
- std::vector<unsigned> CandidateSequence; // Current outlining candidate.
- unsigned MaxCandidateLen = 0; // Length of the longest candidate.
- MaxCandidateLen =
- findCandidates(ST, TII, Mapper, CandidateList, FunctionList);
- // Sort the candidates in decending order. This will simplify the outlining
- // process when we have to remove the candidates from the mapping by
- // allowing us to cut them out without keeping track of an offset.
- std::stable_sort(CandidateList.begin(), CandidateList.end());
- return MaxCandidateLen;
- }
- MachineFunction *
- MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
- InstructionMapper &Mapper) {
- // Create the function name. This should be unique. For now, just hash the
- // module name and include it in the function name plus the number of this
- // function.
- std::ostringstream NameStream;
- NameStream << "OUTLINED_FUNCTION_" << OF.Name;
- // Create the function using an IR-level function.
- LLVMContext &C = M.getContext();
- Function *F = dyn_cast<Function>(
- M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C)));
- assert(F && "Function was null!");
- // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
- // which gives us better results when we outline from linkonceodr functions.
- F->setLinkage(GlobalValue::PrivateLinkage);
- F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
- BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
- IRBuilder<> Builder(EntryBB);
- Builder.CreateRetVoid();
- MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
- MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
- MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
- const TargetSubtargetInfo &STI = MF.getSubtarget();
- const TargetInstrInfo &TII = *STI.getInstrInfo();
- // Insert the new function into the module.
- MF.insert(MF.begin(), &MBB);
- TII.insertOutlinerPrologue(MBB, MF, OF.MInfo);
- // Copy over the instructions for the function using the integer mappings in
- // its sequence.
- for (unsigned Str : OF.Sequence) {
- MachineInstr *NewMI =
- MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
- NewMI->dropMemRefs();
- // Don't keep debug information for outlined instructions.
- // FIXME: This means outlined functions are currently undebuggable.
- NewMI->setDebugLoc(DebugLoc());
- MBB.insert(MBB.end(), NewMI);
- }
- TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo);
- return &MF;
- }
- bool MachineOutliner::outline(Module &M,
- const ArrayRef<Candidate> &CandidateList,
- std::vector<OutlinedFunction> &FunctionList,
- InstructionMapper &Mapper) {
- bool OutlinedSomething = false;
- // Replace the candidates with calls to their respective outlined functions.
- for (const Candidate &C : CandidateList) {
- // Was the candidate removed during pruneOverlaps?
- if (!C.InCandidateList)
- continue;
- // If not, then look at its OutlinedFunction.
- OutlinedFunction &OF = FunctionList[C.FunctionIdx];
- // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
- if (OF.OccurrenceCount < 2 || OF.getBenefit() < 1)
- continue;
- // If not, then outline it.
- assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
- MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent();
- MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx];
- unsigned EndIdx = C.StartIdx + C.Len - 1;
- assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
- MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
- assert(EndIt != MBB->end() && "EndIt out of bounds!");
- EndIt++; // Erase needs one past the end index.
- // Does this candidate have a function yet?
- if (!OF.MF) {
- OF.MF = createOutlinedFunction(M, OF, Mapper);
- FunctionsCreated++;
- }
- MachineFunction *MF = OF.MF;
- const TargetSubtargetInfo &STI = MF->getSubtarget();
- const TargetInstrInfo &TII = *STI.getInstrInfo();
- // Insert a call to the new function and erase the old sequence.
- TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo);
- StartIt = Mapper.InstrList[C.StartIdx];
- MBB->erase(StartIt, EndIt);
- OutlinedSomething = true;
- // Statistics.
- NumOutlined++;
- }
- DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
- return OutlinedSomething;
- }
- bool MachineOutliner::runOnModule(Module &M) {
- // Is there anything in the module at all?
- if (M.empty())
- return false;
- MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
- const TargetSubtargetInfo &STI =
- MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget();
- const TargetRegisterInfo *TRI = STI.getRegisterInfo();
- const TargetInstrInfo *TII = STI.getInstrInfo();
- InstructionMapper Mapper;
- // Build instruction mappings for each function in the module.
- for (Function &F : M) {
- MachineFunction &MF = MMI.getOrCreateMachineFunction(F);
- // Is the function empty? Safe to outline from?
- if (F.empty() ||
- !TII->isFunctionSafeToOutlineFrom(MF, OutlineFromLinkOnceODRs))
- continue;
- // If it is, look at each MachineBasicBlock in the function.
- for (MachineBasicBlock &MBB : MF) {
- // Is there anything in MBB?
- if (MBB.empty())
- continue;
- // If yes, map it.
- Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
- }
- }
- // Construct a suffix tree, use it to find candidates, and then outline them.
- SuffixTree ST(Mapper.UnsignedVec);
- std::vector<Candidate> CandidateList;
- std::vector<OutlinedFunction> FunctionList;
- // Find all of the outlining candidates.
- unsigned MaxCandidateLen =
- buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII);
- // Remove candidates that overlap with other candidates.
- pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII);
- // Outline each of the candidates and return true if something was outlined.
- return outline(M, CandidateList, FunctionList, Mapper);
- }
|