123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124 |
- //===-- Execution.cpp - Implement code to simulate the program ------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains the actual instruction interpreter.
- //
- //===----------------------------------------------------------------------===//
- #include "Interpreter.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/CodeGen/IntrinsicLowering.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <cmath>
- using namespace llvm;
- #define DEBUG_TYPE "interpreter"
- STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
- static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
- cl::desc("make the interpreter print every volatile load and store"));
- //===----------------------------------------------------------------------===//
- // Various Helper Functions
- //===----------------------------------------------------------------------===//
- static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
- SF.Values[V] = Val;
- }
- //===----------------------------------------------------------------------===//
- // Binary Instruction Implementations
- //===----------------------------------------------------------------------===//
- #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
- case Type::TY##TyID: \
- Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
- break
- static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_BINARY_OPERATOR(+, Float);
- IMPLEMENT_BINARY_OPERATOR(+, Double);
- default:
- dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- }
- static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_BINARY_OPERATOR(-, Float);
- IMPLEMENT_BINARY_OPERATOR(-, Double);
- default:
- dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- }
- static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_BINARY_OPERATOR(*, Float);
- IMPLEMENT_BINARY_OPERATOR(*, Double);
- default:
- dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- }
- static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_BINARY_OPERATOR(/, Float);
- IMPLEMENT_BINARY_OPERATOR(/, Double);
- default:
- dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- }
- static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::FloatTyID:
- Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
- break;
- case Type::DoubleTyID:
- Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
- break;
- default:
- dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- }
- #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
- case Type::IntegerTyID: \
- Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
- break;
- #define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \
- case Type::VectorTyID: { \
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
- Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
- for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
- Dest.AggregateVal[_i].IntVal = APInt(1, \
- Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\
- } break;
- // Handle pointers specially because they must be compared with only as much
- // width as the host has. We _do not_ want to be comparing 64 bit values when
- // running on a 32-bit target, otherwise the upper 32 bits might mess up
- // comparisons if they contain garbage.
- #define IMPLEMENT_POINTER_ICMP(OP) \
- case Type::PointerTyID: \
- Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
- (void*)(intptr_t)Src2.PointerVal); \
- break;
- static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(eq,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty);
- IMPLEMENT_POINTER_ICMP(==);
- default:
- dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ne,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty);
- IMPLEMENT_POINTER_ICMP(!=);
- default:
- dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ult,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty);
- IMPLEMENT_POINTER_ICMP(<);
- default:
- dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(slt,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty);
- IMPLEMENT_POINTER_ICMP(<);
- default:
- dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ugt,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty);
- IMPLEMENT_POINTER_ICMP(>);
- default:
- dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(sgt,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty);
- IMPLEMENT_POINTER_ICMP(>);
- default:
- dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ule,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty);
- IMPLEMENT_POINTER_ICMP(<=);
- default:
- dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(sle,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty);
- IMPLEMENT_POINTER_ICMP(<=);
- default:
- dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(uge,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty);
- IMPLEMENT_POINTER_ICMP(>=);
- default:
- dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(sge,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty);
- IMPLEMENT_POINTER_ICMP(>=);
- default:
- dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- void Interpreter::visitICmpInst(ICmpInst &I) {
- ExecutionContext &SF = ECStack.back();
- Type *Ty = I.getOperand(0)->getType();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue R; // Result
-
- switch (I.getPredicate()) {
- case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
- default:
- dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
- llvm_unreachable(nullptr);
- }
-
- SetValue(&I, R, SF);
- }
- #define IMPLEMENT_FCMP(OP, TY) \
- case Type::TY##TyID: \
- Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
- break
- #define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
- Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
- for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
- Dest.AggregateVal[_i].IntVal = APInt(1, \
- Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
- break;
- #define IMPLEMENT_VECTOR_FCMP(OP) \
- case Type::VectorTyID: \
- if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \
- IMPLEMENT_VECTOR_FCMP_T(OP, Float); \
- } else { \
- IMPLEMENT_VECTOR_FCMP_T(OP, Double); \
- }
- static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(==, Float);
- IMPLEMENT_FCMP(==, Double);
- IMPLEMENT_VECTOR_FCMP(==);
- default:
- dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- #define IMPLEMENT_SCALAR_NANS(TY, X,Y) \
- if (TY->isFloatTy()) { \
- if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
- Dest.IntVal = APInt(1,false); \
- return Dest; \
- } \
- } else { \
- if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
- Dest.IntVal = APInt(1,false); \
- return Dest; \
- } \
- }
- #define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \
- assert(X.AggregateVal.size() == Y.AggregateVal.size()); \
- Dest.AggregateVal.resize( X.AggregateVal.size() ); \
- for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \
- if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \
- Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \
- Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \
- else { \
- Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \
- } \
- }
- #define MASK_VECTOR_NANS(TY, X,Y, FLAG) \
- if (TY->isVectorTy()) { \
- if (cast<VectorType>(TY)->getElementType()->isFloatTy()) { \
- MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \
- } else { \
- MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \
- } \
- } \
- static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
- Type *Ty)
- {
- GenericValue Dest;
- // if input is scalar value and Src1 or Src2 is NaN return false
- IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
- // if vector input detect NaNs and fill mask
- MASK_VECTOR_NANS(Ty, Src1, Src2, false)
- GenericValue DestMask = Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(!=, Float);
- IMPLEMENT_FCMP(!=, Double);
- IMPLEMENT_VECTOR_FCMP(!=);
- default:
- dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- // in vector case mask out NaN elements
- if (Ty->isVectorTy())
- for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
- if (DestMask.AggregateVal[_i].IntVal == false)
- Dest.AggregateVal[_i].IntVal = APInt(1,false);
- return Dest;
- }
- static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(<=, Float);
- IMPLEMENT_FCMP(<=, Double);
- IMPLEMENT_VECTOR_FCMP(<=);
- default:
- dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(>=, Float);
- IMPLEMENT_FCMP(>=, Double);
- IMPLEMENT_VECTOR_FCMP(>=);
- default:
- dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(<, Float);
- IMPLEMENT_FCMP(<, Double);
- IMPLEMENT_VECTOR_FCMP(<);
- default:
- dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(>, Float);
- IMPLEMENT_FCMP(>, Double);
- IMPLEMENT_VECTOR_FCMP(>);
- default:
- dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- #define IMPLEMENT_UNORDERED(TY, X,Y) \
- if (TY->isFloatTy()) { \
- if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
- Dest.IntVal = APInt(1,true); \
- return Dest; \
- } \
- } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
- Dest.IntVal = APInt(1,true); \
- return Dest; \
- }
- #define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \
- if (TY->isVectorTy()) { \
- GenericValue DestMask = Dest; \
- Dest = FUNC(Src1, Src2, Ty); \
- for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \
- if (DestMask.AggregateVal[_i].IntVal == true) \
- Dest.AggregateVal[_i].IntVal = APInt(1, true); \
- return Dest; \
- }
- static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ)
- return executeFCMP_OEQ(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE)
- return executeFCMP_ONE(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE)
- return executeFCMP_OLE(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE)
- return executeFCMP_OGE(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT)
- return executeFCMP_OLT(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT)
- return executeFCMP_OGT(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- if(Ty->isVectorTy()) {
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
- Dest.AggregateVal.resize( Src1.AggregateVal.size() );
- if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
- for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,
- ( (Src1.AggregateVal[_i].FloatVal ==
- Src1.AggregateVal[_i].FloatVal) &&
- (Src2.AggregateVal[_i].FloatVal ==
- Src2.AggregateVal[_i].FloatVal)));
- } else {
- for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,
- ( (Src1.AggregateVal[_i].DoubleVal ==
- Src1.AggregateVal[_i].DoubleVal) &&
- (Src2.AggregateVal[_i].DoubleVal ==
- Src2.AggregateVal[_i].DoubleVal)));
- }
- } else if (Ty->isFloatTy())
- Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
- Src2.FloatVal == Src2.FloatVal));
- else {
- Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
- Src2.DoubleVal == Src2.DoubleVal));
- }
- return Dest;
- }
- static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- if(Ty->isVectorTy()) {
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
- Dest.AggregateVal.resize( Src1.AggregateVal.size() );
- if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
- for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,
- ( (Src1.AggregateVal[_i].FloatVal !=
- Src1.AggregateVal[_i].FloatVal) ||
- (Src2.AggregateVal[_i].FloatVal !=
- Src2.AggregateVal[_i].FloatVal)));
- } else {
- for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,
- ( (Src1.AggregateVal[_i].DoubleVal !=
- Src1.AggregateVal[_i].DoubleVal) ||
- (Src2.AggregateVal[_i].DoubleVal !=
- Src2.AggregateVal[_i].DoubleVal)));
- }
- } else if (Ty->isFloatTy())
- Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
- Src2.FloatVal != Src2.FloatVal));
- else {
- Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
- Src2.DoubleVal != Src2.DoubleVal));
- }
- return Dest;
- }
- static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2,
- Type *Ty, const bool val) {
- GenericValue Dest;
- if(Ty->isVectorTy()) {
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
- Dest.AggregateVal.resize( Src1.AggregateVal.size() );
- for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,val);
- } else {
- Dest.IntVal = APInt(1, val);
- }
- return Dest;
- }
- void Interpreter::visitFCmpInst(FCmpInst &I) {
- ExecutionContext &SF = ECStack.back();
- Type *Ty = I.getOperand(0)->getType();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue R; // Result
-
- switch (I.getPredicate()) {
- default:
- dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
- llvm_unreachable(nullptr);
- break;
- case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
- break;
- case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true);
- break;
- case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
- }
-
- SetValue(&I, R, SF);
- }
- static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
- GenericValue Src2, Type *Ty) {
- GenericValue Result;
- switch (predicate) {
- case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
- case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
- case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
- case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
- case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
- case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
- case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
- case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
- case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
- case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
- case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
- case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
- case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
- case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
- case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
- case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
- case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
- case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
- case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
- case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
- case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
- case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
- case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
- case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
- case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
- case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true);
- default:
- dbgs() << "Unhandled Cmp predicate\n";
- llvm_unreachable(nullptr);
- }
- }
- void Interpreter::visitBinaryOperator(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- Type *Ty = I.getOperand(0)->getType();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue R; // Result
- // First process vector operation
- if (Ty->isVectorTy()) {
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
- R.AggregateVal.resize(Src1.AggregateVal.size());
- // Macros to execute binary operation 'OP' over integer vectors
- #define INTEGER_VECTOR_OPERATION(OP) \
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
- R.AggregateVal[i].IntVal = \
- Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
- // Additional macros to execute binary operations udiv/sdiv/urem/srem since
- // they have different notation.
- #define INTEGER_VECTOR_FUNCTION(OP) \
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
- R.AggregateVal[i].IntVal = \
- Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
- // Macros to execute binary operation 'OP' over floating point type TY
- // (float or double) vectors
- #define FLOAT_VECTOR_FUNCTION(OP, TY) \
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
- R.AggregateVal[i].TY = \
- Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
- // Macros to choose appropriate TY: float or double and run operation
- // execution
- #define FLOAT_VECTOR_OP(OP) { \
- if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) \
- FLOAT_VECTOR_FUNCTION(OP, FloatVal) \
- else { \
- if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \
- FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \
- else { \
- dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
- llvm_unreachable(0); \
- } \
- } \
- }
- switch(I.getOpcode()){
- default:
- dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
- llvm_unreachable(nullptr);
- break;
- case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break;
- case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break;
- case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break;
- case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break;
- case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break;
- case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break;
- case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break;
- case Instruction::And: INTEGER_VECTOR_OPERATION(&) break;
- case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break;
- case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break;
- case Instruction::FAdd: FLOAT_VECTOR_OP(+) break;
- case Instruction::FSub: FLOAT_VECTOR_OP(-) break;
- case Instruction::FMul: FLOAT_VECTOR_OP(*) break;
- case Instruction::FDiv: FLOAT_VECTOR_OP(/) break;
- case Instruction::FRem:
- if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
- R.AggregateVal[i].FloatVal =
- fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
- else {
- if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
- R.AggregateVal[i].DoubleVal =
- fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
- else {
- dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- }
- break;
- }
- } else {
- switch (I.getOpcode()) {
- default:
- dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
- llvm_unreachable(nullptr);
- break;
- case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
- case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
- case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
- case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
- case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
- case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
- case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
- case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
- case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
- case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
- case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
- case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
- case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
- case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
- case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
- }
- }
- SetValue(&I, R, SF);
- }
- static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
- GenericValue Src3, Type *Ty) {
- GenericValue Dest;
- if(Ty->isVectorTy()) {
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
- assert(Src2.AggregateVal.size() == Src3.AggregateVal.size());
- Dest.AggregateVal.resize( Src1.AggregateVal.size() );
- for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)
- Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ?
- Src3.AggregateVal[i] : Src2.AggregateVal[i];
- } else {
- Dest = (Src1.IntVal == 0) ? Src3 : Src2;
- }
- return Dest;
- }
- void Interpreter::visitSelectInst(SelectInst &I) {
- ExecutionContext &SF = ECStack.back();
- Type * Ty = I.getOperand(0)->getType();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
- GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty);
- SetValue(&I, R, SF);
- }
- //===----------------------------------------------------------------------===//
- // Terminator Instruction Implementations
- //===----------------------------------------------------------------------===//
- void Interpreter::exitCalled(GenericValue GV) {
- // runAtExitHandlers() assumes there are no stack frames, but
- // if exit() was called, then it had a stack frame. Blow away
- // the stack before interpreting atexit handlers.
- ECStack.clear();
- runAtExitHandlers();
- exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
- }
- /// Pop the last stack frame off of ECStack and then copy the result
- /// back into the result variable if we are not returning void. The
- /// result variable may be the ExitValue, or the Value of the calling
- /// CallInst if there was a previous stack frame. This method may
- /// invalidate any ECStack iterators you have. This method also takes
- /// care of switching to the normal destination BB, if we are returning
- /// from an invoke.
- ///
- void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
- GenericValue Result) {
- // Pop the current stack frame.
- ECStack.pop_back();
- if (ECStack.empty()) { // Finished main. Put result into exit code...
- if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type?
- ExitValue = Result; // Capture the exit value of the program
- } else {
- memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
- }
- } else {
- // If we have a previous stack frame, and we have a previous call,
- // fill in the return value...
- ExecutionContext &CallingSF = ECStack.back();
- if (Instruction *I = CallingSF.Caller.getInstruction()) {
- // Save result...
- if (!CallingSF.Caller.getType()->isVoidTy())
- SetValue(I, Result, CallingSF);
- if (InvokeInst *II = dyn_cast<InvokeInst> (I))
- SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
- CallingSF.Caller = CallSite(); // We returned from the call...
- }
- }
- }
- void Interpreter::visitReturnInst(ReturnInst &I) {
- ExecutionContext &SF = ECStack.back();
- Type *RetTy = Type::getVoidTy(I.getContext());
- GenericValue Result;
- // Save away the return value... (if we are not 'ret void')
- if (I.getNumOperands()) {
- RetTy = I.getReturnValue()->getType();
- Result = getOperandValue(I.getReturnValue(), SF);
- }
- popStackAndReturnValueToCaller(RetTy, Result);
- }
- void Interpreter::visitUnreachableInst(UnreachableInst &I) {
- report_fatal_error("Program executed an 'unreachable' instruction!");
- }
- void Interpreter::visitBranchInst(BranchInst &I) {
- ExecutionContext &SF = ECStack.back();
- BasicBlock *Dest;
- Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
- if (!I.isUnconditional()) {
- Value *Cond = I.getCondition();
- if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
- Dest = I.getSuccessor(1);
- }
- SwitchToNewBasicBlock(Dest, SF);
- }
- void Interpreter::visitSwitchInst(SwitchInst &I) {
- ExecutionContext &SF = ECStack.back();
- Value* Cond = I.getCondition();
- Type *ElTy = Cond->getType();
- GenericValue CondVal = getOperandValue(Cond, SF);
- // Check to see if any of the cases match...
- BasicBlock *Dest = nullptr;
- for (auto Case : I.cases()) {
- GenericValue CaseVal = getOperandValue(Case.getCaseValue(), SF);
- if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
- Dest = cast<BasicBlock>(Case.getCaseSuccessor());
- break;
- }
- }
- if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
- SwitchToNewBasicBlock(Dest, SF);
- }
- void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
- ExecutionContext &SF = ECStack.back();
- void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
- SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
- }
- // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
- // This function handles the actual updating of block and instruction iterators
- // as well as execution of all of the PHI nodes in the destination block.
- //
- // This method does this because all of the PHI nodes must be executed
- // atomically, reading their inputs before any of the results are updated. Not
- // doing this can cause problems if the PHI nodes depend on other PHI nodes for
- // their inputs. If the input PHI node is updated before it is read, incorrect
- // results can happen. Thus we use a two phase approach.
- //
- void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
- BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
- SF.CurBB = Dest; // Update CurBB to branch destination
- SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
- if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
- // Loop over all of the PHI nodes in the current block, reading their inputs.
- std::vector<GenericValue> ResultValues;
- for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
- // Search for the value corresponding to this previous bb...
- int i = PN->getBasicBlockIndex(PrevBB);
- assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
- Value *IncomingValue = PN->getIncomingValue(i);
- // Save the incoming value for this PHI node...
- ResultValues.push_back(getOperandValue(IncomingValue, SF));
- }
- // Now loop over all of the PHI nodes setting their values...
- SF.CurInst = SF.CurBB->begin();
- for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
- PHINode *PN = cast<PHINode>(SF.CurInst);
- SetValue(PN, ResultValues[i], SF);
- }
- }
- //===----------------------------------------------------------------------===//
- // Memory Instruction Implementations
- //===----------------------------------------------------------------------===//
- void Interpreter::visitAllocaInst(AllocaInst &I) {
- ExecutionContext &SF = ECStack.back();
- Type *Ty = I.getType()->getElementType(); // Type to be allocated
- // Get the number of elements being allocated by the array...
- unsigned NumElements =
- getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
- unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty);
- // Avoid malloc-ing zero bytes, use max()...
- unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
- // Allocate enough memory to hold the type...
- void *Memory = malloc(MemToAlloc);
- DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
- << NumElements << " (Total: " << MemToAlloc << ") at "
- << uintptr_t(Memory) << '\n');
- GenericValue Result = PTOGV(Memory);
- assert(Result.PointerVal && "Null pointer returned by malloc!");
- SetValue(&I, Result, SF);
- if (I.getOpcode() == Instruction::Alloca)
- ECStack.back().Allocas.add(Memory);
- }
- // getElementOffset - The workhorse for getelementptr.
- //
- GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
- gep_type_iterator E,
- ExecutionContext &SF) {
- assert(Ptr->getType()->isPointerTy() &&
- "Cannot getElementOffset of a nonpointer type!");
- uint64_t Total = 0;
- for (; I != E; ++I) {
- if (StructType *STy = I.getStructTypeOrNull()) {
- const StructLayout *SLO = getDataLayout().getStructLayout(STy);
- const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
- unsigned Index = unsigned(CPU->getZExtValue());
- Total += SLO->getElementOffset(Index);
- } else {
- // Get the index number for the array... which must be long type...
- GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
- int64_t Idx;
- unsigned BitWidth =
- cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
- if (BitWidth == 32)
- Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
- else {
- assert(BitWidth == 64 && "Invalid index type for getelementptr");
- Idx = (int64_t)IdxGV.IntVal.getZExtValue();
- }
- Total += getDataLayout().getTypeAllocSize(I.getIndexedType()) * Idx;
- }
- }
- GenericValue Result;
- Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
- DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
- return Result;
- }
- void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeGEPOperation(I.getPointerOperand(),
- gep_type_begin(I), gep_type_end(I), SF), SF);
- }
- void Interpreter::visitLoadInst(LoadInst &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
- GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
- GenericValue Result;
- LoadValueFromMemory(Result, Ptr, I.getType());
- SetValue(&I, Result, SF);
- if (I.isVolatile() && PrintVolatile)
- dbgs() << "Volatile load " << I;
- }
- void Interpreter::visitStoreInst(StoreInst &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Val = getOperandValue(I.getOperand(0), SF);
- GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
- StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
- I.getOperand(0)->getType());
- if (I.isVolatile() && PrintVolatile)
- dbgs() << "Volatile store: " << I;
- }
- //===----------------------------------------------------------------------===//
- // Miscellaneous Instruction Implementations
- //===----------------------------------------------------------------------===//
- void Interpreter::visitCallSite(CallSite CS) {
- ExecutionContext &SF = ECStack.back();
- // Check to see if this is an intrinsic function call...
- Function *F = CS.getCalledFunction();
- if (F && F->isDeclaration())
- switch (F->getIntrinsicID()) {
- case Intrinsic::not_intrinsic:
- break;
- case Intrinsic::vastart: { // va_start
- GenericValue ArgIndex;
- ArgIndex.UIntPairVal.first = ECStack.size() - 1;
- ArgIndex.UIntPairVal.second = 0;
- SetValue(CS.getInstruction(), ArgIndex, SF);
- return;
- }
- case Intrinsic::vaend: // va_end is a noop for the interpreter
- return;
- case Intrinsic::vacopy: // va_copy: dest = src
- SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
- return;
- default:
- // If it is an unknown intrinsic function, use the intrinsic lowering
- // class to transform it into hopefully tasty LLVM code.
- //
- BasicBlock::iterator me(CS.getInstruction());
- BasicBlock *Parent = CS.getInstruction()->getParent();
- bool atBegin(Parent->begin() == me);
- if (!atBegin)
- --me;
- IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
- // Restore the CurInst pointer to the first instruction newly inserted, if
- // any.
- if (atBegin) {
- SF.CurInst = Parent->begin();
- } else {
- SF.CurInst = me;
- ++SF.CurInst;
- }
- return;
- }
- SF.Caller = CS;
- std::vector<GenericValue> ArgVals;
- const unsigned NumArgs = SF.Caller.arg_size();
- ArgVals.reserve(NumArgs);
- uint16_t pNum = 1;
- for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
- e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
- Value *V = *i;
- ArgVals.push_back(getOperandValue(V, SF));
- }
- // To handle indirect calls, we must get the pointer value from the argument
- // and treat it as a function pointer.
- GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
- callFunction((Function*)GVTOP(SRC), ArgVals);
- }
- // auxiliary function for shift operations
- static unsigned getShiftAmount(uint64_t orgShiftAmount,
- llvm::APInt valueToShift) {
- unsigned valueWidth = valueToShift.getBitWidth();
- if (orgShiftAmount < (uint64_t)valueWidth)
- return orgShiftAmount;
- // according to the llvm documentation, if orgShiftAmount > valueWidth,
- // the result is undfeined. but we do shift by this rule:
- return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
- }
- void Interpreter::visitShl(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest;
- Type *Ty = I.getType();
- if (Ty->isVectorTy()) {
- uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
- assert(src1Size == Src2.AggregateVal.size());
- for (unsigned i = 0; i < src1Size; i++) {
- GenericValue Result;
- uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
- llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
- Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
- Dest.AggregateVal.push_back(Result);
- }
- } else {
- // scalar
- uint64_t shiftAmount = Src2.IntVal.getZExtValue();
- llvm::APInt valueToShift = Src1.IntVal;
- Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
- }
- SetValue(&I, Dest, SF);
- }
- void Interpreter::visitLShr(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest;
- Type *Ty = I.getType();
- if (Ty->isVectorTy()) {
- uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
- assert(src1Size == Src2.AggregateVal.size());
- for (unsigned i = 0; i < src1Size; i++) {
- GenericValue Result;
- uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
- llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
- Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
- Dest.AggregateVal.push_back(Result);
- }
- } else {
- // scalar
- uint64_t shiftAmount = Src2.IntVal.getZExtValue();
- llvm::APInt valueToShift = Src1.IntVal;
- Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
- }
- SetValue(&I, Dest, SF);
- }
- void Interpreter::visitAShr(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest;
- Type *Ty = I.getType();
- if (Ty->isVectorTy()) {
- size_t src1Size = Src1.AggregateVal.size();
- assert(src1Size == Src2.AggregateVal.size());
- for (unsigned i = 0; i < src1Size; i++) {
- GenericValue Result;
- uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
- llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
- Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
- Dest.AggregateVal.push_back(Result);
- }
- } else {
- // scalar
- uint64_t shiftAmount = Src2.IntVal.getZExtValue();
- llvm::APInt valueToShift = Src1.IntVal;
- Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
- }
- SetValue(&I, Dest, SF);
- }
- GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- Type *SrcTy = SrcVal->getType();
- if (SrcTy->isVectorTy()) {
- Type *DstVecTy = DstTy->getScalarType();
- unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
- unsigned NumElts = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal
- Dest.AggregateVal.resize(NumElts);
- for (unsigned i = 0; i < NumElts; i++)
- Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
- } else {
- IntegerType *DITy = cast<IntegerType>(DstTy);
- unsigned DBitWidth = DITy->getBitWidth();
- Dest.IntVal = Src.IntVal.trunc(DBitWidth);
- }
- return Dest;
- }
- GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (SrcTy->isVectorTy()) {
- Type *DstVecTy = DstTy->getScalarType();
- unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal.
- Dest.AggregateVal.resize(size);
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
- } else {
- auto *DITy = cast<IntegerType>(DstTy);
- unsigned DBitWidth = DITy->getBitWidth();
- Dest.IntVal = Src.IntVal.sext(DBitWidth);
- }
- return Dest;
- }
- GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (SrcTy->isVectorTy()) {
- Type *DstVecTy = DstTy->getScalarType();
- unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal.
- Dest.AggregateVal.resize(size);
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
- } else {
- auto *DITy = cast<IntegerType>(DstTy);
- unsigned DBitWidth = DITy->getBitWidth();
- Dest.IntVal = Src.IntVal.zext(DBitWidth);
- }
- return Dest;
- }
- GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
- assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
- DstTy->getScalarType()->isFloatTy() &&
- "Invalid FPTrunc instruction");
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal.
- Dest.AggregateVal.resize(size);
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
- } else {
- assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
- "Invalid FPTrunc instruction");
- Dest.FloatVal = (float)Src.DoubleVal;
- }
- return Dest;
- }
- GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
- assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
- DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal.
- Dest.AggregateVal.resize(size);
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
- } else {
- assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
- "Invalid FPExt instruction");
- Dest.DoubleVal = (double)Src.FloatVal;
- }
- return Dest;
- }
- GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (SrcTy->getTypeID() == Type::VectorTyID) {
- Type *DstVecTy = DstTy->getScalarType();
- Type *SrcVecTy = SrcTy->getScalarType();
- uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal.
- Dest.AggregateVal.resize(size);
- if (SrcVecTy->getTypeID() == Type::FloatTyID) {
- assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
- Src.AggregateVal[i].FloatVal, DBitWidth);
- } else {
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
- Src.AggregateVal[i].DoubleVal, DBitWidth);
- }
- } else {
- // scalar
- uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
- assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
- if (SrcTy->getTypeID() == Type::FloatTyID)
- Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
- else {
- Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
- }
- }
- return Dest;
- }
- GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (SrcTy->getTypeID() == Type::VectorTyID) {
- Type *DstVecTy = DstTy->getScalarType();
- Type *SrcVecTy = SrcTy->getScalarType();
- uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal
- Dest.AggregateVal.resize(size);
- if (SrcVecTy->getTypeID() == Type::FloatTyID) {
- assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
- Src.AggregateVal[i].FloatVal, DBitWidth);
- } else {
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
- Src.AggregateVal[i].DoubleVal, DBitWidth);
- }
- } else {
- // scalar
- unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
- assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
- if (SrcTy->getTypeID() == Type::FloatTyID)
- Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
- else {
- Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
- }
- }
- return Dest;
- }
- GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
- Type *DstVecTy = DstTy->getScalarType();
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal
- Dest.AggregateVal.resize(size);
- if (DstVecTy->getTypeID() == Type::FloatTyID) {
- assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].FloatVal =
- APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal);
- } else {
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].DoubleVal =
- APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal);
- }
- } else {
- // scalar
- assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
- if (DstTy->getTypeID() == Type::FloatTyID)
- Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
- else {
- Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
- }
- }
- return Dest;
- }
- GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
- Type *DstVecTy = DstTy->getScalarType();
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal
- Dest.AggregateVal.resize(size);
- if (DstVecTy->getTypeID() == Type::FloatTyID) {
- assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].FloatVal =
- APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal);
- } else {
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].DoubleVal =
- APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal);
- }
- } else {
- // scalar
- assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
- if (DstTy->getTypeID() == Type::FloatTyID)
- Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
- else {
- Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
- }
- }
- return Dest;
- }
- GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
- Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
- return Dest;
- }
- GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
- uint32_t PtrSize = getDataLayout().getPointerSizeInBits();
- if (PtrSize != Src.IntVal.getBitWidth())
- Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
- Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
- return Dest;
- }
- GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- // This instruction supports bitwise conversion of vectors to integers and
- // to vectors of other types (as long as they have the same size)
- Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if ((SrcTy->getTypeID() == Type::VectorTyID) ||
- (DstTy->getTypeID() == Type::VectorTyID)) {
- // vector src bitcast to vector dst or vector src bitcast to scalar dst or
- // scalar src bitcast to vector dst
- bool isLittleEndian = getDataLayout().isLittleEndian();
- GenericValue TempDst, TempSrc, SrcVec;
- Type *SrcElemTy;
- Type *DstElemTy;
- unsigned SrcBitSize;
- unsigned DstBitSize;
- unsigned SrcNum;
- unsigned DstNum;
- if (SrcTy->getTypeID() == Type::VectorTyID) {
- SrcElemTy = SrcTy->getScalarType();
- SrcBitSize = SrcTy->getScalarSizeInBits();
- SrcNum = Src.AggregateVal.size();
- SrcVec = Src;
- } else {
- // if src is scalar value, make it vector <1 x type>
- SrcElemTy = SrcTy;
- SrcBitSize = SrcTy->getPrimitiveSizeInBits();
- SrcNum = 1;
- SrcVec.AggregateVal.push_back(Src);
- }
- if (DstTy->getTypeID() == Type::VectorTyID) {
- DstElemTy = DstTy->getScalarType();
- DstBitSize = DstTy->getScalarSizeInBits();
- DstNum = (SrcNum * SrcBitSize) / DstBitSize;
- } else {
- DstElemTy = DstTy;
- DstBitSize = DstTy->getPrimitiveSizeInBits();
- DstNum = 1;
- }
- if (SrcNum * SrcBitSize != DstNum * DstBitSize)
- llvm_unreachable("Invalid BitCast");
- // If src is floating point, cast to integer first.
- TempSrc.AggregateVal.resize(SrcNum);
- if (SrcElemTy->isFloatTy()) {
- for (unsigned i = 0; i < SrcNum; i++)
- TempSrc.AggregateVal[i].IntVal =
- APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
- } else if (SrcElemTy->isDoubleTy()) {
- for (unsigned i = 0; i < SrcNum; i++)
- TempSrc.AggregateVal[i].IntVal =
- APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
- } else if (SrcElemTy->isIntegerTy()) {
- for (unsigned i = 0; i < SrcNum; i++)
- TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
- } else {
- // Pointers are not allowed as the element type of vector.
- llvm_unreachable("Invalid Bitcast");
- }
- // now TempSrc is integer type vector
- if (DstNum < SrcNum) {
- // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
- unsigned Ratio = SrcNum / DstNum;
- unsigned SrcElt = 0;
- for (unsigned i = 0; i < DstNum; i++) {
- GenericValue Elt;
- Elt.IntVal = 0;
- Elt.IntVal = Elt.IntVal.zext(DstBitSize);
- unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
- for (unsigned j = 0; j < Ratio; j++) {
- APInt Tmp;
- Tmp = Tmp.zext(SrcBitSize);
- Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
- Tmp = Tmp.zext(DstBitSize);
- Tmp <<= ShiftAmt;
- ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
- Elt.IntVal |= Tmp;
- }
- TempDst.AggregateVal.push_back(Elt);
- }
- } else {
- // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
- unsigned Ratio = DstNum / SrcNum;
- for (unsigned i = 0; i < SrcNum; i++) {
- unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
- for (unsigned j = 0; j < Ratio; j++) {
- GenericValue Elt;
- Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
- Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
- Elt.IntVal.lshrInPlace(ShiftAmt);
- // it could be DstBitSize == SrcBitSize, so check it
- if (DstBitSize < SrcBitSize)
- Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
- ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
- TempDst.AggregateVal.push_back(Elt);
- }
- }
- }
- // convert result from integer to specified type
- if (DstTy->getTypeID() == Type::VectorTyID) {
- if (DstElemTy->isDoubleTy()) {
- Dest.AggregateVal.resize(DstNum);
- for (unsigned i = 0; i < DstNum; i++)
- Dest.AggregateVal[i].DoubleVal =
- TempDst.AggregateVal[i].IntVal.bitsToDouble();
- } else if (DstElemTy->isFloatTy()) {
- Dest.AggregateVal.resize(DstNum);
- for (unsigned i = 0; i < DstNum; i++)
- Dest.AggregateVal[i].FloatVal =
- TempDst.AggregateVal[i].IntVal.bitsToFloat();
- } else {
- Dest = TempDst;
- }
- } else {
- if (DstElemTy->isDoubleTy())
- Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
- else if (DstElemTy->isFloatTy()) {
- Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
- } else {
- Dest.IntVal = TempDst.AggregateVal[0].IntVal;
- }
- }
- } else { // if ((SrcTy->getTypeID() == Type::VectorTyID) ||
- // (DstTy->getTypeID() == Type::VectorTyID))
- // scalar src bitcast to scalar dst
- if (DstTy->isPointerTy()) {
- assert(SrcTy->isPointerTy() && "Invalid BitCast");
- Dest.PointerVal = Src.PointerVal;
- } else if (DstTy->isIntegerTy()) {
- if (SrcTy->isFloatTy())
- Dest.IntVal = APInt::floatToBits(Src.FloatVal);
- else if (SrcTy->isDoubleTy()) {
- Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
- } else if (SrcTy->isIntegerTy()) {
- Dest.IntVal = Src.IntVal;
- } else {
- llvm_unreachable("Invalid BitCast");
- }
- } else if (DstTy->isFloatTy()) {
- if (SrcTy->isIntegerTy())
- Dest.FloatVal = Src.IntVal.bitsToFloat();
- else {
- Dest.FloatVal = Src.FloatVal;
- }
- } else if (DstTy->isDoubleTy()) {
- if (SrcTy->isIntegerTy())
- Dest.DoubleVal = Src.IntVal.bitsToDouble();
- else {
- Dest.DoubleVal = Src.DoubleVal;
- }
- } else {
- llvm_unreachable("Invalid Bitcast");
- }
- }
- return Dest;
- }
- void Interpreter::visitTruncInst(TruncInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitSExtInst(SExtInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitZExtInst(ZExtInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitFPTruncInst(FPTruncInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitFPExtInst(FPExtInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitUIToFPInst(UIToFPInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitSIToFPInst(SIToFPInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitFPToUIInst(FPToUIInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitFPToSIInst(FPToSIInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitBitCastInst(BitCastInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
- }
- #define IMPLEMENT_VAARG(TY) \
- case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
- void Interpreter::visitVAArgInst(VAArgInst &I) {
- ExecutionContext &SF = ECStack.back();
- // Get the incoming valist parameter. LLI treats the valist as a
- // (ec-stack-depth var-arg-index) pair.
- GenericValue VAList = getOperandValue(I.getOperand(0), SF);
- GenericValue Dest;
- GenericValue Src = ECStack[VAList.UIntPairVal.first]
- .VarArgs[VAList.UIntPairVal.second];
- Type *Ty = I.getType();
- switch (Ty->getTypeID()) {
- case Type::IntegerTyID:
- Dest.IntVal = Src.IntVal;
- break;
- IMPLEMENT_VAARG(Pointer);
- IMPLEMENT_VAARG(Float);
- IMPLEMENT_VAARG(Double);
- default:
- dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- // Set the Value of this Instruction.
- SetValue(&I, Dest, SF);
- // Move the pointer to the next vararg.
- ++VAList.UIntPairVal.second;
- }
- void Interpreter::visitExtractElementInst(ExtractElementInst &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest;
- Type *Ty = I.getType();
- const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
- if(Src1.AggregateVal.size() > indx) {
- switch (Ty->getTypeID()) {
- default:
- dbgs() << "Unhandled destination type for extractelement instruction: "
- << *Ty << "\n";
- llvm_unreachable(nullptr);
- break;
- case Type::IntegerTyID:
- Dest.IntVal = Src1.AggregateVal[indx].IntVal;
- break;
- case Type::FloatTyID:
- Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
- break;
- case Type::DoubleTyID:
- Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
- break;
- }
- } else {
- dbgs() << "Invalid index in extractelement instruction\n";
- }
- SetValue(&I, Dest, SF);
- }
- void Interpreter::visitInsertElementInst(InsertElementInst &I) {
- ExecutionContext &SF = ECStack.back();
- Type *Ty = I.getType();
- if(!(Ty->isVectorTy()) )
- llvm_unreachable("Unhandled dest type for insertelement instruction");
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
- GenericValue Dest;
- Type *TyContained = Ty->getContainedType(0);
- const unsigned indx = unsigned(Src3.IntVal.getZExtValue());
- Dest.AggregateVal = Src1.AggregateVal;
- if(Src1.AggregateVal.size() <= indx)
- llvm_unreachable("Invalid index in insertelement instruction");
- switch (TyContained->getTypeID()) {
- default:
- llvm_unreachable("Unhandled dest type for insertelement instruction");
- case Type::IntegerTyID:
- Dest.AggregateVal[indx].IntVal = Src2.IntVal;
- break;
- case Type::FloatTyID:
- Dest.AggregateVal[indx].FloatVal = Src2.FloatVal;
- break;
- case Type::DoubleTyID:
- Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal;
- break;
- }
- SetValue(&I, Dest, SF);
- }
- void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){
- ExecutionContext &SF = ECStack.back();
- Type *Ty = I.getType();
- if(!(Ty->isVectorTy()))
- llvm_unreachable("Unhandled dest type for shufflevector instruction");
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
- GenericValue Dest;
- // There is no need to check types of src1 and src2, because the compiled
- // bytecode can't contain different types for src1 and src2 for a
- // shufflevector instruction.
- Type *TyContained = Ty->getContainedType(0);
- unsigned src1Size = (unsigned)Src1.AggregateVal.size();
- unsigned src2Size = (unsigned)Src2.AggregateVal.size();
- unsigned src3Size = (unsigned)Src3.AggregateVal.size();
- Dest.AggregateVal.resize(src3Size);
- switch (TyContained->getTypeID()) {
- default:
- llvm_unreachable("Unhandled dest type for insertelement instruction");
- break;
- case Type::IntegerTyID:
- for( unsigned i=0; i<src3Size; i++) {
- unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
- if(j < src1Size)
- Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal;
- else if(j < src1Size + src2Size)
- Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal;
- else
- // The selector may not be greater than sum of lengths of first and
- // second operands and llasm should not allow situation like
- // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
- // <2 x i32> < i32 0, i32 5 >,
- // where i32 5 is invalid, but let it be additional check here:
- llvm_unreachable("Invalid mask in shufflevector instruction");
- }
- break;
- case Type::FloatTyID:
- for( unsigned i=0; i<src3Size; i++) {
- unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
- if(j < src1Size)
- Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal;
- else if(j < src1Size + src2Size)
- Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal;
- else
- llvm_unreachable("Invalid mask in shufflevector instruction");
- }
- break;
- case Type::DoubleTyID:
- for( unsigned i=0; i<src3Size; i++) {
- unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
- if(j < src1Size)
- Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal;
- else if(j < src1Size + src2Size)
- Dest.AggregateVal[i].DoubleVal =
- Src2.AggregateVal[j-src1Size].DoubleVal;
- else
- llvm_unreachable("Invalid mask in shufflevector instruction");
- }
- break;
- }
- SetValue(&I, Dest, SF);
- }
- void Interpreter::visitExtractValueInst(ExtractValueInst &I) {
- ExecutionContext &SF = ECStack.back();
- Value *Agg = I.getAggregateOperand();
- GenericValue Dest;
- GenericValue Src = getOperandValue(Agg, SF);
- ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
- unsigned Num = I.getNumIndices();
- GenericValue *pSrc = &Src;
- for (unsigned i = 0 ; i < Num; ++i) {
- pSrc = &pSrc->AggregateVal[*IdxBegin];
- ++IdxBegin;
- }
- Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
- switch (IndexedType->getTypeID()) {
- default:
- llvm_unreachable("Unhandled dest type for extractelement instruction");
- break;
- case Type::IntegerTyID:
- Dest.IntVal = pSrc->IntVal;
- break;
- case Type::FloatTyID:
- Dest.FloatVal = pSrc->FloatVal;
- break;
- case Type::DoubleTyID:
- Dest.DoubleVal = pSrc->DoubleVal;
- break;
- case Type::ArrayTyID:
- case Type::StructTyID:
- case Type::VectorTyID:
- Dest.AggregateVal = pSrc->AggregateVal;
- break;
- case Type::PointerTyID:
- Dest.PointerVal = pSrc->PointerVal;
- break;
- }
- SetValue(&I, Dest, SF);
- }
- void Interpreter::visitInsertValueInst(InsertValueInst &I) {
- ExecutionContext &SF = ECStack.back();
- Value *Agg = I.getAggregateOperand();
- GenericValue Src1 = getOperandValue(Agg, SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest = Src1; // Dest is a slightly changed Src1
- ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
- unsigned Num = I.getNumIndices();
- GenericValue *pDest = &Dest;
- for (unsigned i = 0 ; i < Num; ++i) {
- pDest = &pDest->AggregateVal[*IdxBegin];
- ++IdxBegin;
- }
- // pDest points to the target value in the Dest now
- Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
- switch (IndexedType->getTypeID()) {
- default:
- llvm_unreachable("Unhandled dest type for insertelement instruction");
- break;
- case Type::IntegerTyID:
- pDest->IntVal = Src2.IntVal;
- break;
- case Type::FloatTyID:
- pDest->FloatVal = Src2.FloatVal;
- break;
- case Type::DoubleTyID:
- pDest->DoubleVal = Src2.DoubleVal;
- break;
- case Type::ArrayTyID:
- case Type::StructTyID:
- case Type::VectorTyID:
- pDest->AggregateVal = Src2.AggregateVal;
- break;
- case Type::PointerTyID:
- pDest->PointerVal = Src2.PointerVal;
- break;
- }
- SetValue(&I, Dest, SF);
- }
- GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
- ExecutionContext &SF) {
- switch (CE->getOpcode()) {
- case Instruction::Trunc:
- return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::ZExt:
- return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::SExt:
- return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPTrunc:
- return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPExt:
- return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::UIToFP:
- return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::SIToFP:
- return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPToUI:
- return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPToSI:
- return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::PtrToInt:
- return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::IntToPtr:
- return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::BitCast:
- return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::GetElementPtr:
- return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
- gep_type_end(CE), SF);
- case Instruction::FCmp:
- case Instruction::ICmp:
- return executeCmpInst(CE->getPredicate(),
- getOperandValue(CE->getOperand(0), SF),
- getOperandValue(CE->getOperand(1), SF),
- CE->getOperand(0)->getType());
- case Instruction::Select:
- return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
- getOperandValue(CE->getOperand(1), SF),
- getOperandValue(CE->getOperand(2), SF),
- CE->getOperand(0)->getType());
- default :
- break;
- }
- // The cases below here require a GenericValue parameter for the result
- // so we initialize one, compute it and then return it.
- GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
- GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
- GenericValue Dest;
- Type * Ty = CE->getOperand(0)->getType();
- switch (CE->getOpcode()) {
- case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
- case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
- case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
- case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
- case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
- case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
- case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
- case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
- case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
- case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
- case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
- case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
- case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
- case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
- case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
- case Instruction::Shl:
- Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
- break;
- case Instruction::LShr:
- Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
- break;
- case Instruction::AShr:
- Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
- break;
- default:
- dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
- llvm_unreachable("Unhandled ConstantExpr");
- }
- return Dest;
- }
- GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- return getConstantExprValue(CE, SF);
- } else if (Constant *CPV = dyn_cast<Constant>(V)) {
- return getConstantValue(CPV);
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- return PTOGV(getPointerToGlobal(GV));
- } else {
- return SF.Values[V];
- }
- }
- //===----------------------------------------------------------------------===//
- // Dispatch and Execution Code
- //===----------------------------------------------------------------------===//
- //===----------------------------------------------------------------------===//
- // callFunction - Execute the specified function...
- //
- void Interpreter::callFunction(Function *F, ArrayRef<GenericValue> ArgVals) {
- assert((ECStack.empty() || !ECStack.back().Caller.getInstruction() ||
- ECStack.back().Caller.arg_size() == ArgVals.size()) &&
- "Incorrect number of arguments passed into function call!");
- // Make a new stack frame... and fill it in.
- ECStack.emplace_back();
- ExecutionContext &StackFrame = ECStack.back();
- StackFrame.CurFunction = F;
- // Special handling for external functions.
- if (F->isDeclaration()) {
- GenericValue Result = callExternalFunction (F, ArgVals);
- // Simulate a 'ret' instruction of the appropriate type.
- popStackAndReturnValueToCaller (F->getReturnType (), Result);
- return;
- }
- // Get pointers to first LLVM BB & Instruction in function.
- StackFrame.CurBB = &F->front();
- StackFrame.CurInst = StackFrame.CurBB->begin();
- // Run through the function arguments and initialize their values...
- assert((ArgVals.size() == F->arg_size() ||
- (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
- "Invalid number of values passed to function invocation!");
- // Handle non-varargs arguments...
- unsigned i = 0;
- for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
- AI != E; ++AI, ++i)
- SetValue(&*AI, ArgVals[i], StackFrame);
- // Handle varargs arguments...
- StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
- }
- void Interpreter::run() {
- while (!ECStack.empty()) {
- // Interpret a single instruction & increment the "PC".
- ExecutionContext &SF = ECStack.back(); // Current stack frame
- Instruction &I = *SF.CurInst++; // Increment before execute
- // Track the number of dynamic instructions executed.
- ++NumDynamicInsts;
- DEBUG(dbgs() << "About to interpret: " << I);
- visit(I); // Dispatch to one of the visit* methods...
- }
- }
|