executionengine_ocaml.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311
  1. /*===-- analysis_ocaml.c - LLVM Ocaml Glue ----------------------*- C++ -*-===*\
  2. |* *|
  3. |* The LLVM Compiler Infrastructure *|
  4. |* *|
  5. |* This file was developed by Gordon Henriksen and is distributed under the *|
  6. |* University of Illinois Open Source License. See LICENSE.TXT for details. *|
  7. |* *|
  8. |*===----------------------------------------------------------------------===*|
  9. |* *|
  10. |* This file glues LLVM's ocaml interface to its C interface. These functions *|
  11. |* are by and large transparent wrappers to the corresponding C functions. *|
  12. |* *|
  13. |* Note that these functions intentionally take liberties with the CAMLparamX *|
  14. |* macros, since most of the parameters are not GC heap objects. *|
  15. |* *|
  16. \*===----------------------------------------------------------------------===*/
  17. #include "llvm-c/ExecutionEngine.h"
  18. #include "caml/alloc.h"
  19. #include "caml/custom.h"
  20. #include "caml/fail.h"
  21. #include "caml/memory.h"
  22. #include <string.h>
  23. #include <assert.h>
  24. /* Can't use the recommended caml_named_value mechanism for backwards
  25. compatibility reasons. This is largely equivalent. */
  26. static value llvm_ee_error_exn;
  27. CAMLprim value llvm_register_ee_exns(value Error) {
  28. llvm_ee_error_exn = Field(Error, 0);
  29. register_global_root(&llvm_ee_error_exn);
  30. return Val_unit;
  31. }
  32. static void llvm_raise(value Prototype, char *Message) {
  33. CAMLparam1(Prototype);
  34. CAMLlocal1(CamlMessage);
  35. CamlMessage = copy_string(Message);
  36. LLVMDisposeMessage(Message);
  37. raise_with_arg(Prototype, CamlMessage);
  38. abort(); /* NOTREACHED */
  39. CAMLnoreturn;
  40. }
  41. /*--... Operations on generic values .......................................--*/
  42. #define Genericvalue_val(v) (*(LLVMGenericValueRef *)(Data_custom_val(v)))
  43. static void llvm_finalize_generic_value(value GenVal) {
  44. LLVMDisposeGenericValue(Genericvalue_val(GenVal));
  45. }
  46. static struct custom_operations generic_value_ops = {
  47. (char *) "LLVMGenericValue",
  48. llvm_finalize_generic_value,
  49. custom_compare_default,
  50. custom_hash_default,
  51. custom_serialize_default,
  52. custom_deserialize_default
  53. };
  54. static value alloc_generic_value(LLVMGenericValueRef Ref) {
  55. value Val = alloc_custom(&generic_value_ops, sizeof(LLVMGenericValueRef), 0, 1);
  56. Genericvalue_val(Val) = Ref;
  57. return Val;
  58. }
  59. /* Llvm.lltype -> float -> t */
  60. CAMLprim value llvm_genericvalue_of_float(LLVMTypeRef Ty, value N) {
  61. CAMLparam1(N);
  62. CAMLreturn(alloc_generic_value(
  63. LLVMCreateGenericValueOfFloat(Ty, Double_val(N))));
  64. }
  65. /* 'a -> t */
  66. CAMLprim value llvm_genericvalue_of_value(value V) {
  67. CAMLparam1(V);
  68. CAMLreturn(alloc_generic_value(LLVMCreateGenericValueOfPointer(Op_val(V))));
  69. }
  70. /* Llvm.lltype -> int -> t */
  71. CAMLprim value llvm_genericvalue_of_int(LLVMTypeRef Ty, value Int) {
  72. return alloc_generic_value(LLVMCreateGenericValueOfInt(Ty, Int_val(Int), 1));
  73. }
  74. /* Llvm.lltype -> int32 -> t */
  75. CAMLprim value llvm_genericvalue_of_int32(LLVMTypeRef Ty, value Int32) {
  76. CAMLparam1(Int32);
  77. CAMLreturn(alloc_generic_value(
  78. LLVMCreateGenericValueOfInt(Ty, Int32_val(Int32), 1)));
  79. }
  80. /* Llvm.lltype -> nativeint -> t */
  81. CAMLprim value llvm_genericvalue_of_nativeint(LLVMTypeRef Ty, value NatInt) {
  82. CAMLparam1(NatInt);
  83. CAMLreturn(alloc_generic_value(
  84. LLVMCreateGenericValueOfInt(Ty, Nativeint_val(NatInt), 1)));
  85. }
  86. /* Llvm.lltype -> int64 -> t */
  87. CAMLprim value llvm_genericvalue_of_int64(LLVMTypeRef Ty, value Int64) {
  88. CAMLparam1(Int64);
  89. CAMLreturn(alloc_generic_value(
  90. LLVMCreateGenericValueOfInt(Ty, Int64_val(Int64), 1)));
  91. }
  92. /* Llvm.lltype -> t -> float */
  93. CAMLprim value llvm_genericvalue_as_float(LLVMTypeRef Ty, value GenVal) {
  94. CAMLparam1(GenVal);
  95. CAMLreturn(copy_double(
  96. LLVMGenericValueToFloat(Ty, Genericvalue_val(GenVal))));
  97. }
  98. /* t -> 'a */
  99. CAMLprim value llvm_genericvalue_as_value(value GenVal) {
  100. return Val_op(LLVMGenericValueToPointer(Genericvalue_val(GenVal)));
  101. }
  102. /* t -> int */
  103. CAMLprim value llvm_genericvalue_as_int(value GenVal) {
  104. assert(LLVMGenericValueIntWidth(Genericvalue_val(GenVal)) <= 8 * sizeof(value)
  105. && "Generic value too wide to treat as an int!");
  106. return Val_int(LLVMGenericValueToInt(Genericvalue_val(GenVal), 1));
  107. }
  108. /* t -> int32 */
  109. CAMLprim value llvm_genericvalue_as_int32(value GenVal) {
  110. CAMLparam1(GenVal);
  111. assert(LLVMGenericValueIntWidth(Genericvalue_val(GenVal)) <= 32
  112. && "Generic value too wide to treat as an int32!");
  113. CAMLreturn(copy_int32(LLVMGenericValueToInt(Genericvalue_val(GenVal), 1)));
  114. }
  115. /* t -> int64 */
  116. CAMLprim value llvm_genericvalue_as_int64(value GenVal) {
  117. CAMLparam1(GenVal);
  118. assert(LLVMGenericValueIntWidth(Genericvalue_val(GenVal)) <= 64
  119. && "Generic value too wide to treat as an int64!");
  120. CAMLreturn(copy_int64(LLVMGenericValueToInt(Genericvalue_val(GenVal), 1)));
  121. }
  122. /* t -> nativeint */
  123. CAMLprim value llvm_genericvalue_as_nativeint(value GenVal) {
  124. CAMLparam1(GenVal);
  125. assert(LLVMGenericValueIntWidth(Genericvalue_val(GenVal)) <= 8 * sizeof(value)
  126. && "Generic value too wide to treat as a nativeint!");
  127. CAMLreturn(copy_nativeint(LLVMGenericValueToInt(Genericvalue_val(GenVal),1)));
  128. }
  129. /*--... Operations on execution engines ....................................--*/
  130. /* llmoduleprovider -> ExecutionEngine.t */
  131. CAMLprim LLVMExecutionEngineRef llvm_ee_create(LLVMModuleProviderRef MP) {
  132. LLVMExecutionEngineRef Interp;
  133. char *Error;
  134. if (LLVMCreateExecutionEngine(&Interp, MP, &Error))
  135. llvm_raise(llvm_ee_error_exn, Error);
  136. return Interp;
  137. }
  138. /* llmoduleprovider -> ExecutionEngine.t */
  139. CAMLprim LLVMExecutionEngineRef
  140. llvm_ee_create_interpreter(LLVMModuleProviderRef MP) {
  141. LLVMExecutionEngineRef Interp;
  142. char *Error;
  143. if (LLVMCreateInterpreter(&Interp, MP, &Error))
  144. llvm_raise(llvm_ee_error_exn, Error);
  145. return Interp;
  146. }
  147. /* llmoduleprovider -> ExecutionEngine.t */
  148. CAMLprim LLVMExecutionEngineRef
  149. llvm_ee_create_jit(LLVMModuleProviderRef MP) {
  150. LLVMExecutionEngineRef JIT;
  151. char *Error;
  152. if (LLVMCreateJITCompiler(&JIT, MP, &Error))
  153. llvm_raise(llvm_ee_error_exn, Error);
  154. return JIT;
  155. }
  156. /* ExecutionEngine.t -> unit */
  157. CAMLprim value llvm_ee_dispose(LLVMExecutionEngineRef EE) {
  158. LLVMDisposeExecutionEngine(EE);
  159. return Val_unit;
  160. }
  161. /* llmoduleprovider -> ExecutionEngine.t -> unit */
  162. CAMLprim value llvm_ee_add_mp(LLVMModuleProviderRef MP,
  163. LLVMExecutionEngineRef EE) {
  164. LLVMAddModuleProvider(EE, MP);
  165. return Val_unit;
  166. }
  167. /* llmoduleprovider -> ExecutionEngine.t -> llmodule */
  168. CAMLprim LLVMModuleRef llvm_ee_remove_mp(LLVMModuleProviderRef MP,
  169. LLVMExecutionEngineRef EE) {
  170. LLVMModuleRef RemovedModule;
  171. char *Error;
  172. if (LLVMRemoveModuleProvider(EE, MP, &RemovedModule, &Error))
  173. llvm_raise(llvm_ee_error_exn, Error);
  174. return RemovedModule;
  175. }
  176. /* string -> ExecutionEngine.t -> llvalue option */
  177. CAMLprim value llvm_ee_find_function(value Name, LLVMExecutionEngineRef EE) {
  178. CAMLparam1(Name);
  179. CAMLlocal1(Option);
  180. LLVMValueRef Found;
  181. if (LLVMFindFunction(EE, String_val(Name), &Found))
  182. CAMLreturn(Val_unit);
  183. Option = alloc(1, 1);
  184. Field(Option, 0) = Val_op(Found);
  185. CAMLreturn(Option);
  186. }
  187. /* llvalue -> GenericValue.t array -> ExecutionEngine.t -> GenericValue.t */
  188. CAMLprim value llvm_ee_run_function(LLVMValueRef F, value Args,
  189. LLVMExecutionEngineRef EE) {
  190. unsigned NumArgs;
  191. LLVMGenericValueRef Result, *GVArgs;
  192. unsigned I;
  193. NumArgs = Wosize_val(Args);
  194. GVArgs = (LLVMGenericValueRef*) malloc(NumArgs * sizeof(LLVMGenericValueRef));
  195. for (I = 0; I != NumArgs; ++I)
  196. GVArgs[I] = Genericvalue_val(Field(Args, I));
  197. Result = LLVMRunFunction(EE, F, NumArgs, GVArgs);
  198. free(GVArgs);
  199. return alloc_generic_value(Result);
  200. }
  201. /* ExecutionEngine.t -> unit */
  202. CAMLprim value llvm_ee_run_static_ctors(LLVMExecutionEngineRef EE) {
  203. LLVMRunStaticConstructors(EE);
  204. return Val_unit;
  205. }
  206. /* ExecutionEngine.t -> unit */
  207. CAMLprim value llvm_ee_run_static_dtors(LLVMExecutionEngineRef EE) {
  208. LLVMRunStaticDestructors(EE);
  209. return Val_unit;
  210. }
  211. /* llvalue -> string array -> (string * string) array -> ExecutionEngine.t ->
  212. int */
  213. CAMLprim value llvm_ee_run_function_as_main(LLVMValueRef F,
  214. value Args, value Env,
  215. LLVMExecutionEngineRef EE) {
  216. CAMLparam2(Args, Env);
  217. int I, NumArgs, NumEnv, EnvSize, Result;
  218. const char **CArgs, **CEnv;
  219. char *CEnvBuf, *Pos;
  220. NumArgs = Wosize_val(Args);
  221. NumEnv = Wosize_val(Env);
  222. /* Build the environment. */
  223. CArgs = (const char **) malloc(NumArgs * sizeof(char*));
  224. for (I = 0; I != NumArgs; ++I)
  225. CArgs[I] = String_val(Field(Args, I));
  226. /* Compute the size of the environment string buffer. */
  227. for (I = 0, EnvSize = 0; I != NumEnv; ++I) {
  228. EnvSize += strlen(String_val(Field(Field(Env, I), 0))) + 1;
  229. EnvSize += strlen(String_val(Field(Field(Env, I), 1))) + 1;
  230. }
  231. /* Build the environment. */
  232. CEnv = (const char **) malloc((NumEnv + 1) * sizeof(char*));
  233. CEnvBuf = (char*) malloc(EnvSize);
  234. Pos = CEnvBuf;
  235. for (I = 0; I != NumEnv; ++I) {
  236. char *Name = String_val(Field(Field(Env, I), 0)),
  237. *Value = String_val(Field(Field(Env, I), 1));
  238. int NameLen = strlen(Name),
  239. ValueLen = strlen(Value);
  240. CEnv[I] = Pos;
  241. memcpy(Pos, Name, NameLen);
  242. Pos += NameLen;
  243. *Pos++ = '=';
  244. memcpy(Pos, Value, ValueLen);
  245. Pos += ValueLen;
  246. *Pos++ = '\0';
  247. }
  248. CEnv[NumEnv] = NULL;
  249. Result = LLVMRunFunctionAsMain(EE, F, NumArgs, CArgs, CEnv);
  250. free(CArgs);
  251. free(CEnv);
  252. free(CEnvBuf);
  253. CAMLreturn(Val_int(Result));
  254. }
  255. /* llvalue -> ExecutionEngine.t -> unit */
  256. CAMLprim value llvm_ee_free_machine_code(LLVMValueRef F,
  257. LLVMExecutionEngineRef EE) {
  258. LLVMFreeMachineCodeForFunction(EE, F);
  259. return Val_unit;
  260. }