BitcodeWriter.cpp 78 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095
  1. //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // Bitcode writer implementation.
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #include "llvm/Bitcode/ReaderWriter.h"
  14. #include "ValueEnumerator.h"
  15. #include "llvm/ADT/Triple.h"
  16. #include "llvm/Bitcode/BitstreamWriter.h"
  17. #include "llvm/Bitcode/LLVMBitCodes.h"
  18. #include "llvm/IR/Constants.h"
  19. #include "llvm/IR/DerivedTypes.h"
  20. #include "llvm/IR/InlineAsm.h"
  21. #include "llvm/IR/Instructions.h"
  22. #include "llvm/IR/Module.h"
  23. #include "llvm/IR/Operator.h"
  24. #include "llvm/IR/ValueSymbolTable.h"
  25. #include "llvm/Support/CommandLine.h"
  26. #include "llvm/Support/ErrorHandling.h"
  27. #include "llvm/Support/MathExtras.h"
  28. #include "llvm/Support/Program.h"
  29. #include "llvm/Support/raw_ostream.h"
  30. #include <cctype>
  31. #include <map>
  32. using namespace llvm;
  33. static cl::opt<bool>
  34. EnablePreserveUseListOrdering("enable-bc-uselist-preserve",
  35. cl::desc("Turn on experimental support for "
  36. "use-list order preservation."),
  37. cl::init(false), cl::Hidden);
  38. /// These are manifest constants used by the bitcode writer. They do not need to
  39. /// be kept in sync with the reader, but need to be consistent within this file.
  40. enum {
  41. // VALUE_SYMTAB_BLOCK abbrev id's.
  42. VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  43. VST_ENTRY_7_ABBREV,
  44. VST_ENTRY_6_ABBREV,
  45. VST_BBENTRY_6_ABBREV,
  46. // CONSTANTS_BLOCK abbrev id's.
  47. CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  48. CONSTANTS_INTEGER_ABBREV,
  49. CONSTANTS_CE_CAST_Abbrev,
  50. CONSTANTS_NULL_Abbrev,
  51. // FUNCTION_BLOCK abbrev id's.
  52. FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  53. FUNCTION_INST_BINOP_ABBREV,
  54. FUNCTION_INST_BINOP_FLAGS_ABBREV,
  55. FUNCTION_INST_CAST_ABBREV,
  56. FUNCTION_INST_RET_VOID_ABBREV,
  57. FUNCTION_INST_RET_VAL_ABBREV,
  58. FUNCTION_INST_UNREACHABLE_ABBREV
  59. };
  60. static unsigned GetEncodedCastOpcode(unsigned Opcode) {
  61. switch (Opcode) {
  62. default: llvm_unreachable("Unknown cast instruction!");
  63. case Instruction::Trunc : return bitc::CAST_TRUNC;
  64. case Instruction::ZExt : return bitc::CAST_ZEXT;
  65. case Instruction::SExt : return bitc::CAST_SEXT;
  66. case Instruction::FPToUI : return bitc::CAST_FPTOUI;
  67. case Instruction::FPToSI : return bitc::CAST_FPTOSI;
  68. case Instruction::UIToFP : return bitc::CAST_UITOFP;
  69. case Instruction::SIToFP : return bitc::CAST_SITOFP;
  70. case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
  71. case Instruction::FPExt : return bitc::CAST_FPEXT;
  72. case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
  73. case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
  74. case Instruction::BitCast : return bitc::CAST_BITCAST;
  75. case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
  76. }
  77. }
  78. static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
  79. switch (Opcode) {
  80. default: llvm_unreachable("Unknown binary instruction!");
  81. case Instruction::Add:
  82. case Instruction::FAdd: return bitc::BINOP_ADD;
  83. case Instruction::Sub:
  84. case Instruction::FSub: return bitc::BINOP_SUB;
  85. case Instruction::Mul:
  86. case Instruction::FMul: return bitc::BINOP_MUL;
  87. case Instruction::UDiv: return bitc::BINOP_UDIV;
  88. case Instruction::FDiv:
  89. case Instruction::SDiv: return bitc::BINOP_SDIV;
  90. case Instruction::URem: return bitc::BINOP_UREM;
  91. case Instruction::FRem:
  92. case Instruction::SRem: return bitc::BINOP_SREM;
  93. case Instruction::Shl: return bitc::BINOP_SHL;
  94. case Instruction::LShr: return bitc::BINOP_LSHR;
  95. case Instruction::AShr: return bitc::BINOP_ASHR;
  96. case Instruction::And: return bitc::BINOP_AND;
  97. case Instruction::Or: return bitc::BINOP_OR;
  98. case Instruction::Xor: return bitc::BINOP_XOR;
  99. }
  100. }
  101. static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
  102. switch (Op) {
  103. default: llvm_unreachable("Unknown RMW operation!");
  104. case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
  105. case AtomicRMWInst::Add: return bitc::RMW_ADD;
  106. case AtomicRMWInst::Sub: return bitc::RMW_SUB;
  107. case AtomicRMWInst::And: return bitc::RMW_AND;
  108. case AtomicRMWInst::Nand: return bitc::RMW_NAND;
  109. case AtomicRMWInst::Or: return bitc::RMW_OR;
  110. case AtomicRMWInst::Xor: return bitc::RMW_XOR;
  111. case AtomicRMWInst::Max: return bitc::RMW_MAX;
  112. case AtomicRMWInst::Min: return bitc::RMW_MIN;
  113. case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
  114. case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
  115. }
  116. }
  117. static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
  118. switch (Ordering) {
  119. case NotAtomic: return bitc::ORDERING_NOTATOMIC;
  120. case Unordered: return bitc::ORDERING_UNORDERED;
  121. case Monotonic: return bitc::ORDERING_MONOTONIC;
  122. case Acquire: return bitc::ORDERING_ACQUIRE;
  123. case Release: return bitc::ORDERING_RELEASE;
  124. case AcquireRelease: return bitc::ORDERING_ACQREL;
  125. case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
  126. }
  127. llvm_unreachable("Invalid ordering");
  128. }
  129. static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
  130. switch (SynchScope) {
  131. case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
  132. case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
  133. }
  134. llvm_unreachable("Invalid synch scope");
  135. }
  136. static void WriteStringRecord(unsigned Code, StringRef Str,
  137. unsigned AbbrevToUse, BitstreamWriter &Stream) {
  138. SmallVector<unsigned, 64> Vals;
  139. // Code: [strchar x N]
  140. for (unsigned i = 0, e = Str.size(); i != e; ++i) {
  141. if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
  142. AbbrevToUse = 0;
  143. Vals.push_back(Str[i]);
  144. }
  145. // Emit the finished record.
  146. Stream.EmitRecord(Code, Vals, AbbrevToUse);
  147. }
  148. static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
  149. switch (Kind) {
  150. case Attribute::Alignment:
  151. return bitc::ATTR_KIND_ALIGNMENT;
  152. case Attribute::AlwaysInline:
  153. return bitc::ATTR_KIND_ALWAYS_INLINE;
  154. case Attribute::Builtin:
  155. return bitc::ATTR_KIND_BUILTIN;
  156. case Attribute::ByVal:
  157. return bitc::ATTR_KIND_BY_VAL;
  158. case Attribute::InAlloca:
  159. return bitc::ATTR_KIND_IN_ALLOCA;
  160. case Attribute::Cold:
  161. return bitc::ATTR_KIND_COLD;
  162. case Attribute::InlineHint:
  163. return bitc::ATTR_KIND_INLINE_HINT;
  164. case Attribute::InReg:
  165. return bitc::ATTR_KIND_IN_REG;
  166. case Attribute::JumpTable:
  167. return bitc::ATTR_KIND_JUMP_TABLE;
  168. case Attribute::MinSize:
  169. return bitc::ATTR_KIND_MIN_SIZE;
  170. case Attribute::Naked:
  171. return bitc::ATTR_KIND_NAKED;
  172. case Attribute::Nest:
  173. return bitc::ATTR_KIND_NEST;
  174. case Attribute::NoAlias:
  175. return bitc::ATTR_KIND_NO_ALIAS;
  176. case Attribute::NoBuiltin:
  177. return bitc::ATTR_KIND_NO_BUILTIN;
  178. case Attribute::NoCapture:
  179. return bitc::ATTR_KIND_NO_CAPTURE;
  180. case Attribute::NoDuplicate:
  181. return bitc::ATTR_KIND_NO_DUPLICATE;
  182. case Attribute::NoImplicitFloat:
  183. return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
  184. case Attribute::NoInline:
  185. return bitc::ATTR_KIND_NO_INLINE;
  186. case Attribute::NonLazyBind:
  187. return bitc::ATTR_KIND_NON_LAZY_BIND;
  188. case Attribute::NonNull:
  189. return bitc::ATTR_KIND_NON_NULL;
  190. case Attribute::Dereferenceable:
  191. return bitc::ATTR_KIND_DEREFERENCEABLE;
  192. case Attribute::NoRedZone:
  193. return bitc::ATTR_KIND_NO_RED_ZONE;
  194. case Attribute::NoReturn:
  195. return bitc::ATTR_KIND_NO_RETURN;
  196. case Attribute::NoUnwind:
  197. return bitc::ATTR_KIND_NO_UNWIND;
  198. case Attribute::OptimizeForSize:
  199. return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
  200. case Attribute::OptimizeNone:
  201. return bitc::ATTR_KIND_OPTIMIZE_NONE;
  202. case Attribute::ReadNone:
  203. return bitc::ATTR_KIND_READ_NONE;
  204. case Attribute::ReadOnly:
  205. return bitc::ATTR_KIND_READ_ONLY;
  206. case Attribute::Returned:
  207. return bitc::ATTR_KIND_RETURNED;
  208. case Attribute::ReturnsTwice:
  209. return bitc::ATTR_KIND_RETURNS_TWICE;
  210. case Attribute::SExt:
  211. return bitc::ATTR_KIND_S_EXT;
  212. case Attribute::StackAlignment:
  213. return bitc::ATTR_KIND_STACK_ALIGNMENT;
  214. case Attribute::StackProtect:
  215. return bitc::ATTR_KIND_STACK_PROTECT;
  216. case Attribute::StackProtectReq:
  217. return bitc::ATTR_KIND_STACK_PROTECT_REQ;
  218. case Attribute::StackProtectStrong:
  219. return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
  220. case Attribute::StructRet:
  221. return bitc::ATTR_KIND_STRUCT_RET;
  222. case Attribute::SanitizeAddress:
  223. return bitc::ATTR_KIND_SANITIZE_ADDRESS;
  224. case Attribute::SanitizeThread:
  225. return bitc::ATTR_KIND_SANITIZE_THREAD;
  226. case Attribute::SanitizeMemory:
  227. return bitc::ATTR_KIND_SANITIZE_MEMORY;
  228. case Attribute::UWTable:
  229. return bitc::ATTR_KIND_UW_TABLE;
  230. case Attribute::ZExt:
  231. return bitc::ATTR_KIND_Z_EXT;
  232. case Attribute::EndAttrKinds:
  233. llvm_unreachable("Can not encode end-attribute kinds marker.");
  234. case Attribute::None:
  235. llvm_unreachable("Can not encode none-attribute.");
  236. }
  237. llvm_unreachable("Trying to encode unknown attribute");
  238. }
  239. static void WriteAttributeGroupTable(const ValueEnumerator &VE,
  240. BitstreamWriter &Stream) {
  241. const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
  242. if (AttrGrps.empty()) return;
  243. Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
  244. SmallVector<uint64_t, 64> Record;
  245. for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
  246. AttributeSet AS = AttrGrps[i];
  247. for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
  248. AttributeSet A = AS.getSlotAttributes(i);
  249. Record.push_back(VE.getAttributeGroupID(A));
  250. Record.push_back(AS.getSlotIndex(i));
  251. for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
  252. I != E; ++I) {
  253. Attribute Attr = *I;
  254. if (Attr.isEnumAttribute()) {
  255. Record.push_back(0);
  256. Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
  257. } else if (Attr.isIntAttribute()) {
  258. Record.push_back(1);
  259. Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
  260. Record.push_back(Attr.getValueAsInt());
  261. } else {
  262. StringRef Kind = Attr.getKindAsString();
  263. StringRef Val = Attr.getValueAsString();
  264. Record.push_back(Val.empty() ? 3 : 4);
  265. Record.append(Kind.begin(), Kind.end());
  266. Record.push_back(0);
  267. if (!Val.empty()) {
  268. Record.append(Val.begin(), Val.end());
  269. Record.push_back(0);
  270. }
  271. }
  272. }
  273. Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
  274. Record.clear();
  275. }
  276. }
  277. Stream.ExitBlock();
  278. }
  279. static void WriteAttributeTable(const ValueEnumerator &VE,
  280. BitstreamWriter &Stream) {
  281. const std::vector<AttributeSet> &Attrs = VE.getAttributes();
  282. if (Attrs.empty()) return;
  283. Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
  284. SmallVector<uint64_t, 64> Record;
  285. for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
  286. const AttributeSet &A = Attrs[i];
  287. for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
  288. Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
  289. Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
  290. Record.clear();
  291. }
  292. Stream.ExitBlock();
  293. }
  294. /// WriteTypeTable - Write out the type table for a module.
  295. static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  296. const ValueEnumerator::TypeList &TypeList = VE.getTypes();
  297. Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
  298. SmallVector<uint64_t, 64> TypeVals;
  299. uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
  300. // Abbrev for TYPE_CODE_POINTER.
  301. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  302. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
  303. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  304. Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
  305. unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
  306. // Abbrev for TYPE_CODE_FUNCTION.
  307. Abbv = new BitCodeAbbrev();
  308. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
  309. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
  310. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  311. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  312. unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
  313. // Abbrev for TYPE_CODE_STRUCT_ANON.
  314. Abbv = new BitCodeAbbrev();
  315. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
  316. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
  317. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  318. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  319. unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
  320. // Abbrev for TYPE_CODE_STRUCT_NAME.
  321. Abbv = new BitCodeAbbrev();
  322. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
  323. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  324. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  325. unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
  326. // Abbrev for TYPE_CODE_STRUCT_NAMED.
  327. Abbv = new BitCodeAbbrev();
  328. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
  329. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
  330. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  331. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  332. unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
  333. // Abbrev for TYPE_CODE_ARRAY.
  334. Abbv = new BitCodeAbbrev();
  335. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
  336. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
  337. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  338. unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
  339. // Emit an entry count so the reader can reserve space.
  340. TypeVals.push_back(TypeList.size());
  341. Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
  342. TypeVals.clear();
  343. // Loop over all of the types, emitting each in turn.
  344. for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
  345. Type *T = TypeList[i];
  346. int AbbrevToUse = 0;
  347. unsigned Code = 0;
  348. switch (T->getTypeID()) {
  349. case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
  350. case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
  351. case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
  352. case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
  353. case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
  354. case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
  355. case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
  356. case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
  357. case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
  358. case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
  359. case Type::IntegerTyID:
  360. // INTEGER: [width]
  361. Code = bitc::TYPE_CODE_INTEGER;
  362. TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
  363. break;
  364. case Type::PointerTyID: {
  365. PointerType *PTy = cast<PointerType>(T);
  366. // POINTER: [pointee type, address space]
  367. Code = bitc::TYPE_CODE_POINTER;
  368. TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
  369. unsigned AddressSpace = PTy->getAddressSpace();
  370. TypeVals.push_back(AddressSpace);
  371. if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
  372. break;
  373. }
  374. case Type::FunctionTyID: {
  375. FunctionType *FT = cast<FunctionType>(T);
  376. // FUNCTION: [isvararg, retty, paramty x N]
  377. Code = bitc::TYPE_CODE_FUNCTION;
  378. TypeVals.push_back(FT->isVarArg());
  379. TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
  380. for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
  381. TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
  382. AbbrevToUse = FunctionAbbrev;
  383. break;
  384. }
  385. case Type::StructTyID: {
  386. StructType *ST = cast<StructType>(T);
  387. // STRUCT: [ispacked, eltty x N]
  388. TypeVals.push_back(ST->isPacked());
  389. // Output all of the element types.
  390. for (StructType::element_iterator I = ST->element_begin(),
  391. E = ST->element_end(); I != E; ++I)
  392. TypeVals.push_back(VE.getTypeID(*I));
  393. if (ST->isLiteral()) {
  394. Code = bitc::TYPE_CODE_STRUCT_ANON;
  395. AbbrevToUse = StructAnonAbbrev;
  396. } else {
  397. if (ST->isOpaque()) {
  398. Code = bitc::TYPE_CODE_OPAQUE;
  399. } else {
  400. Code = bitc::TYPE_CODE_STRUCT_NAMED;
  401. AbbrevToUse = StructNamedAbbrev;
  402. }
  403. // Emit the name if it is present.
  404. if (!ST->getName().empty())
  405. WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
  406. StructNameAbbrev, Stream);
  407. }
  408. break;
  409. }
  410. case Type::ArrayTyID: {
  411. ArrayType *AT = cast<ArrayType>(T);
  412. // ARRAY: [numelts, eltty]
  413. Code = bitc::TYPE_CODE_ARRAY;
  414. TypeVals.push_back(AT->getNumElements());
  415. TypeVals.push_back(VE.getTypeID(AT->getElementType()));
  416. AbbrevToUse = ArrayAbbrev;
  417. break;
  418. }
  419. case Type::VectorTyID: {
  420. VectorType *VT = cast<VectorType>(T);
  421. // VECTOR [numelts, eltty]
  422. Code = bitc::TYPE_CODE_VECTOR;
  423. TypeVals.push_back(VT->getNumElements());
  424. TypeVals.push_back(VE.getTypeID(VT->getElementType()));
  425. break;
  426. }
  427. }
  428. // Emit the finished record.
  429. Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
  430. TypeVals.clear();
  431. }
  432. Stream.ExitBlock();
  433. }
  434. static unsigned getEncodedLinkage(const GlobalValue &GV) {
  435. switch (GV.getLinkage()) {
  436. case GlobalValue::ExternalLinkage: return 0;
  437. case GlobalValue::WeakAnyLinkage: return 1;
  438. case GlobalValue::AppendingLinkage: return 2;
  439. case GlobalValue::InternalLinkage: return 3;
  440. case GlobalValue::LinkOnceAnyLinkage: return 4;
  441. case GlobalValue::ExternalWeakLinkage: return 7;
  442. case GlobalValue::CommonLinkage: return 8;
  443. case GlobalValue::PrivateLinkage: return 9;
  444. case GlobalValue::WeakODRLinkage: return 10;
  445. case GlobalValue::LinkOnceODRLinkage: return 11;
  446. case GlobalValue::AvailableExternallyLinkage: return 12;
  447. }
  448. llvm_unreachable("Invalid linkage");
  449. }
  450. static unsigned getEncodedVisibility(const GlobalValue &GV) {
  451. switch (GV.getVisibility()) {
  452. case GlobalValue::DefaultVisibility: return 0;
  453. case GlobalValue::HiddenVisibility: return 1;
  454. case GlobalValue::ProtectedVisibility: return 2;
  455. }
  456. llvm_unreachable("Invalid visibility");
  457. }
  458. static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
  459. switch (GV.getDLLStorageClass()) {
  460. case GlobalValue::DefaultStorageClass: return 0;
  461. case GlobalValue::DLLImportStorageClass: return 1;
  462. case GlobalValue::DLLExportStorageClass: return 2;
  463. }
  464. llvm_unreachable("Invalid DLL storage class");
  465. }
  466. static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
  467. switch (GV.getThreadLocalMode()) {
  468. case GlobalVariable::NotThreadLocal: return 0;
  469. case GlobalVariable::GeneralDynamicTLSModel: return 1;
  470. case GlobalVariable::LocalDynamicTLSModel: return 2;
  471. case GlobalVariable::InitialExecTLSModel: return 3;
  472. case GlobalVariable::LocalExecTLSModel: return 4;
  473. }
  474. llvm_unreachable("Invalid TLS model");
  475. }
  476. static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
  477. switch (C.getSelectionKind()) {
  478. case Comdat::Any:
  479. return bitc::COMDAT_SELECTION_KIND_ANY;
  480. case Comdat::ExactMatch:
  481. return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
  482. case Comdat::Largest:
  483. return bitc::COMDAT_SELECTION_KIND_LARGEST;
  484. case Comdat::NoDuplicates:
  485. return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
  486. case Comdat::SameSize:
  487. return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
  488. }
  489. llvm_unreachable("Invalid selection kind");
  490. }
  491. static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  492. SmallVector<uint8_t, 64> Vals;
  493. for (const Comdat *C : VE.getComdats()) {
  494. // COMDAT: [selection_kind, name]
  495. Vals.push_back(getEncodedComdatSelectionKind(*C));
  496. Vals.push_back(C->getName().size());
  497. for (char Chr : C->getName())
  498. Vals.push_back((unsigned char)Chr);
  499. Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
  500. Vals.clear();
  501. }
  502. }
  503. // Emit top-level description of module, including target triple, inline asm,
  504. // descriptors for global variables, and function prototype info.
  505. static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
  506. BitstreamWriter &Stream) {
  507. // Emit various pieces of data attached to a module.
  508. if (!M->getTargetTriple().empty())
  509. WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
  510. 0/*TODO*/, Stream);
  511. const std::string &DL = M->getDataLayoutStr();
  512. if (!DL.empty())
  513. WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
  514. if (!M->getModuleInlineAsm().empty())
  515. WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
  516. 0/*TODO*/, Stream);
  517. // Emit information about sections and GC, computing how many there are. Also
  518. // compute the maximum alignment value.
  519. std::map<std::string, unsigned> SectionMap;
  520. std::map<std::string, unsigned> GCMap;
  521. unsigned MaxAlignment = 0;
  522. unsigned MaxGlobalType = 0;
  523. for (const GlobalValue &GV : M->globals()) {
  524. MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
  525. MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
  526. if (GV.hasSection()) {
  527. // Give section names unique ID's.
  528. unsigned &Entry = SectionMap[GV.getSection()];
  529. if (!Entry) {
  530. WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
  531. 0/*TODO*/, Stream);
  532. Entry = SectionMap.size();
  533. }
  534. }
  535. }
  536. for (const Function &F : *M) {
  537. MaxAlignment = std::max(MaxAlignment, F.getAlignment());
  538. if (F.hasSection()) {
  539. // Give section names unique ID's.
  540. unsigned &Entry = SectionMap[F.getSection()];
  541. if (!Entry) {
  542. WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
  543. 0/*TODO*/, Stream);
  544. Entry = SectionMap.size();
  545. }
  546. }
  547. if (F.hasGC()) {
  548. // Same for GC names.
  549. unsigned &Entry = GCMap[F.getGC()];
  550. if (!Entry) {
  551. WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
  552. 0/*TODO*/, Stream);
  553. Entry = GCMap.size();
  554. }
  555. }
  556. }
  557. // Emit abbrev for globals, now that we know # sections and max alignment.
  558. unsigned SimpleGVarAbbrev = 0;
  559. if (!M->global_empty()) {
  560. // Add an abbrev for common globals with no visibility or thread localness.
  561. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  562. Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
  563. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  564. Log2_32_Ceil(MaxGlobalType+1)));
  565. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
  566. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
  567. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage.
  568. if (MaxAlignment == 0) // Alignment.
  569. Abbv->Add(BitCodeAbbrevOp(0));
  570. else {
  571. unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
  572. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  573. Log2_32_Ceil(MaxEncAlignment+1)));
  574. }
  575. if (SectionMap.empty()) // Section.
  576. Abbv->Add(BitCodeAbbrevOp(0));
  577. else
  578. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  579. Log2_32_Ceil(SectionMap.size()+1)));
  580. // Don't bother emitting vis + thread local.
  581. SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
  582. }
  583. // Emit the global variable information.
  584. SmallVector<unsigned, 64> Vals;
  585. for (const GlobalVariable &GV : M->globals()) {
  586. unsigned AbbrevToUse = 0;
  587. // GLOBALVAR: [type, isconst, initid,
  588. // linkage, alignment, section, visibility, threadlocal,
  589. // unnamed_addr, externally_initialized, dllstorageclass]
  590. Vals.push_back(VE.getTypeID(GV.getType()));
  591. Vals.push_back(GV.isConstant());
  592. Vals.push_back(GV.isDeclaration() ? 0 :
  593. (VE.getValueID(GV.getInitializer()) + 1));
  594. Vals.push_back(getEncodedLinkage(GV));
  595. Vals.push_back(Log2_32(GV.getAlignment())+1);
  596. Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
  597. if (GV.isThreadLocal() ||
  598. GV.getVisibility() != GlobalValue::DefaultVisibility ||
  599. GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
  600. GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
  601. GV.hasComdat()) {
  602. Vals.push_back(getEncodedVisibility(GV));
  603. Vals.push_back(getEncodedThreadLocalMode(GV));
  604. Vals.push_back(GV.hasUnnamedAddr());
  605. Vals.push_back(GV.isExternallyInitialized());
  606. Vals.push_back(getEncodedDLLStorageClass(GV));
  607. Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
  608. } else {
  609. AbbrevToUse = SimpleGVarAbbrev;
  610. }
  611. Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
  612. Vals.clear();
  613. }
  614. // Emit the function proto information.
  615. for (const Function &F : *M) {
  616. // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
  617. // section, visibility, gc, unnamed_addr, prefix]
  618. Vals.push_back(VE.getTypeID(F.getType()));
  619. Vals.push_back(F.getCallingConv());
  620. Vals.push_back(F.isDeclaration());
  621. Vals.push_back(getEncodedLinkage(F));
  622. Vals.push_back(VE.getAttributeID(F.getAttributes()));
  623. Vals.push_back(Log2_32(F.getAlignment())+1);
  624. Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
  625. Vals.push_back(getEncodedVisibility(F));
  626. Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
  627. Vals.push_back(F.hasUnnamedAddr());
  628. Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
  629. : 0);
  630. Vals.push_back(getEncodedDLLStorageClass(F));
  631. Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
  632. unsigned AbbrevToUse = 0;
  633. Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
  634. Vals.clear();
  635. }
  636. // Emit the alias information.
  637. for (const GlobalAlias &A : M->aliases()) {
  638. // ALIAS: [alias type, aliasee val#, linkage, visibility]
  639. Vals.push_back(VE.getTypeID(A.getType()));
  640. Vals.push_back(VE.getValueID(A.getAliasee()));
  641. Vals.push_back(getEncodedLinkage(A));
  642. Vals.push_back(getEncodedVisibility(A));
  643. Vals.push_back(getEncodedDLLStorageClass(A));
  644. Vals.push_back(getEncodedThreadLocalMode(A));
  645. Vals.push_back(A.hasUnnamedAddr());
  646. unsigned AbbrevToUse = 0;
  647. Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
  648. Vals.clear();
  649. }
  650. }
  651. static uint64_t GetOptimizationFlags(const Value *V) {
  652. uint64_t Flags = 0;
  653. if (const OverflowingBinaryOperator *OBO =
  654. dyn_cast<OverflowingBinaryOperator>(V)) {
  655. if (OBO->hasNoSignedWrap())
  656. Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
  657. if (OBO->hasNoUnsignedWrap())
  658. Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
  659. } else if (const PossiblyExactOperator *PEO =
  660. dyn_cast<PossiblyExactOperator>(V)) {
  661. if (PEO->isExact())
  662. Flags |= 1 << bitc::PEO_EXACT;
  663. } else if (const FPMathOperator *FPMO =
  664. dyn_cast<const FPMathOperator>(V)) {
  665. if (FPMO->hasUnsafeAlgebra())
  666. Flags |= FastMathFlags::UnsafeAlgebra;
  667. if (FPMO->hasNoNaNs())
  668. Flags |= FastMathFlags::NoNaNs;
  669. if (FPMO->hasNoInfs())
  670. Flags |= FastMathFlags::NoInfs;
  671. if (FPMO->hasNoSignedZeros())
  672. Flags |= FastMathFlags::NoSignedZeros;
  673. if (FPMO->hasAllowReciprocal())
  674. Flags |= FastMathFlags::AllowReciprocal;
  675. }
  676. return Flags;
  677. }
  678. static void WriteMDNode(const MDNode *N,
  679. const ValueEnumerator &VE,
  680. BitstreamWriter &Stream,
  681. SmallVectorImpl<uint64_t> &Record) {
  682. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
  683. if (N->getOperand(i)) {
  684. Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
  685. Record.push_back(VE.getValueID(N->getOperand(i)));
  686. } else {
  687. Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
  688. Record.push_back(0);
  689. }
  690. }
  691. unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
  692. bitc::METADATA_NODE;
  693. Stream.EmitRecord(MDCode, Record, 0);
  694. Record.clear();
  695. }
  696. static void WriteModuleMetadata(const Module *M,
  697. const ValueEnumerator &VE,
  698. BitstreamWriter &Stream) {
  699. const ValueEnumerator::ValueList &Vals = VE.getMDValues();
  700. bool StartedMetadataBlock = false;
  701. unsigned MDSAbbrev = 0;
  702. SmallVector<uint64_t, 64> Record;
  703. for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
  704. if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
  705. if (!N->isFunctionLocal() || !N->getFunction()) {
  706. if (!StartedMetadataBlock) {
  707. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  708. StartedMetadataBlock = true;
  709. }
  710. WriteMDNode(N, VE, Stream, Record);
  711. }
  712. } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
  713. if (!StartedMetadataBlock) {
  714. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  715. // Abbrev for METADATA_STRING.
  716. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  717. Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
  718. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  719. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  720. MDSAbbrev = Stream.EmitAbbrev(Abbv);
  721. StartedMetadataBlock = true;
  722. }
  723. // Code: [strchar x N]
  724. Record.append(MDS->begin(), MDS->end());
  725. // Emit the finished record.
  726. Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
  727. Record.clear();
  728. }
  729. }
  730. // Write named metadata.
  731. for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
  732. E = M->named_metadata_end(); I != E; ++I) {
  733. const NamedMDNode *NMD = I;
  734. if (!StartedMetadataBlock) {
  735. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  736. StartedMetadataBlock = true;
  737. }
  738. // Write name.
  739. StringRef Str = NMD->getName();
  740. for (unsigned i = 0, e = Str.size(); i != e; ++i)
  741. Record.push_back(Str[i]);
  742. Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
  743. Record.clear();
  744. // Write named metadata operands.
  745. for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
  746. Record.push_back(VE.getValueID(NMD->getOperand(i)));
  747. Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
  748. Record.clear();
  749. }
  750. if (StartedMetadataBlock)
  751. Stream.ExitBlock();
  752. }
  753. static void WriteFunctionLocalMetadata(const Function &F,
  754. const ValueEnumerator &VE,
  755. BitstreamWriter &Stream) {
  756. bool StartedMetadataBlock = false;
  757. SmallVector<uint64_t, 64> Record;
  758. const SmallVectorImpl<const MDNode *> &Vals = VE.getFunctionLocalMDValues();
  759. for (unsigned i = 0, e = Vals.size(); i != e; ++i)
  760. if (const MDNode *N = Vals[i])
  761. if (N->isFunctionLocal() && N->getFunction() == &F) {
  762. if (!StartedMetadataBlock) {
  763. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  764. StartedMetadataBlock = true;
  765. }
  766. WriteMDNode(N, VE, Stream, Record);
  767. }
  768. if (StartedMetadataBlock)
  769. Stream.ExitBlock();
  770. }
  771. static void WriteMetadataAttachment(const Function &F,
  772. const ValueEnumerator &VE,
  773. BitstreamWriter &Stream) {
  774. Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
  775. SmallVector<uint64_t, 64> Record;
  776. // Write metadata attachments
  777. // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
  778. SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
  779. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
  780. for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
  781. I != E; ++I) {
  782. MDs.clear();
  783. I->getAllMetadataOtherThanDebugLoc(MDs);
  784. // If no metadata, ignore instruction.
  785. if (MDs.empty()) continue;
  786. Record.push_back(VE.getInstructionID(I));
  787. for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
  788. Record.push_back(MDs[i].first);
  789. Record.push_back(VE.getValueID(MDs[i].second));
  790. }
  791. Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
  792. Record.clear();
  793. }
  794. Stream.ExitBlock();
  795. }
  796. static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
  797. SmallVector<uint64_t, 64> Record;
  798. // Write metadata kinds
  799. // METADATA_KIND - [n x [id, name]]
  800. SmallVector<StringRef, 8> Names;
  801. M->getMDKindNames(Names);
  802. if (Names.empty()) return;
  803. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  804. for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
  805. Record.push_back(MDKindID);
  806. StringRef KName = Names[MDKindID];
  807. Record.append(KName.begin(), KName.end());
  808. Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
  809. Record.clear();
  810. }
  811. Stream.ExitBlock();
  812. }
  813. static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
  814. if ((int64_t)V >= 0)
  815. Vals.push_back(V << 1);
  816. else
  817. Vals.push_back((-V << 1) | 1);
  818. }
  819. static void WriteConstants(unsigned FirstVal, unsigned LastVal,
  820. const ValueEnumerator &VE,
  821. BitstreamWriter &Stream, bool isGlobal) {
  822. if (FirstVal == LastVal) return;
  823. Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
  824. unsigned AggregateAbbrev = 0;
  825. unsigned String8Abbrev = 0;
  826. unsigned CString7Abbrev = 0;
  827. unsigned CString6Abbrev = 0;
  828. // If this is a constant pool for the module, emit module-specific abbrevs.
  829. if (isGlobal) {
  830. // Abbrev for CST_CODE_AGGREGATE.
  831. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  832. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
  833. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  834. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
  835. AggregateAbbrev = Stream.EmitAbbrev(Abbv);
  836. // Abbrev for CST_CODE_STRING.
  837. Abbv = new BitCodeAbbrev();
  838. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
  839. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  840. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  841. String8Abbrev = Stream.EmitAbbrev(Abbv);
  842. // Abbrev for CST_CODE_CSTRING.
  843. Abbv = new BitCodeAbbrev();
  844. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
  845. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  846. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
  847. CString7Abbrev = Stream.EmitAbbrev(Abbv);
  848. // Abbrev for CST_CODE_CSTRING.
  849. Abbv = new BitCodeAbbrev();
  850. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
  851. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  852. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  853. CString6Abbrev = Stream.EmitAbbrev(Abbv);
  854. }
  855. SmallVector<uint64_t, 64> Record;
  856. const ValueEnumerator::ValueList &Vals = VE.getValues();
  857. Type *LastTy = nullptr;
  858. for (unsigned i = FirstVal; i != LastVal; ++i) {
  859. const Value *V = Vals[i].first;
  860. // If we need to switch types, do so now.
  861. if (V->getType() != LastTy) {
  862. LastTy = V->getType();
  863. Record.push_back(VE.getTypeID(LastTy));
  864. Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
  865. CONSTANTS_SETTYPE_ABBREV);
  866. Record.clear();
  867. }
  868. if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
  869. Record.push_back(unsigned(IA->hasSideEffects()) |
  870. unsigned(IA->isAlignStack()) << 1 |
  871. unsigned(IA->getDialect()&1) << 2);
  872. // Add the asm string.
  873. const std::string &AsmStr = IA->getAsmString();
  874. Record.push_back(AsmStr.size());
  875. for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
  876. Record.push_back(AsmStr[i]);
  877. // Add the constraint string.
  878. const std::string &ConstraintStr = IA->getConstraintString();
  879. Record.push_back(ConstraintStr.size());
  880. for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
  881. Record.push_back(ConstraintStr[i]);
  882. Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
  883. Record.clear();
  884. continue;
  885. }
  886. const Constant *C = cast<Constant>(V);
  887. unsigned Code = -1U;
  888. unsigned AbbrevToUse = 0;
  889. if (C->isNullValue()) {
  890. Code = bitc::CST_CODE_NULL;
  891. } else if (isa<UndefValue>(C)) {
  892. Code = bitc::CST_CODE_UNDEF;
  893. } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
  894. if (IV->getBitWidth() <= 64) {
  895. uint64_t V = IV->getSExtValue();
  896. emitSignedInt64(Record, V);
  897. Code = bitc::CST_CODE_INTEGER;
  898. AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
  899. } else { // Wide integers, > 64 bits in size.
  900. // We have an arbitrary precision integer value to write whose
  901. // bit width is > 64. However, in canonical unsigned integer
  902. // format it is likely that the high bits are going to be zero.
  903. // So, we only write the number of active words.
  904. unsigned NWords = IV->getValue().getActiveWords();
  905. const uint64_t *RawWords = IV->getValue().getRawData();
  906. for (unsigned i = 0; i != NWords; ++i) {
  907. emitSignedInt64(Record, RawWords[i]);
  908. }
  909. Code = bitc::CST_CODE_WIDE_INTEGER;
  910. }
  911. } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
  912. Code = bitc::CST_CODE_FLOAT;
  913. Type *Ty = CFP->getType();
  914. if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
  915. Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
  916. } else if (Ty->isX86_FP80Ty()) {
  917. // api needed to prevent premature destruction
  918. // bits are not in the same order as a normal i80 APInt, compensate.
  919. APInt api = CFP->getValueAPF().bitcastToAPInt();
  920. const uint64_t *p = api.getRawData();
  921. Record.push_back((p[1] << 48) | (p[0] >> 16));
  922. Record.push_back(p[0] & 0xffffLL);
  923. } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
  924. APInt api = CFP->getValueAPF().bitcastToAPInt();
  925. const uint64_t *p = api.getRawData();
  926. Record.push_back(p[0]);
  927. Record.push_back(p[1]);
  928. } else {
  929. assert (0 && "Unknown FP type!");
  930. }
  931. } else if (isa<ConstantDataSequential>(C) &&
  932. cast<ConstantDataSequential>(C)->isString()) {
  933. const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
  934. // Emit constant strings specially.
  935. unsigned NumElts = Str->getNumElements();
  936. // If this is a null-terminated string, use the denser CSTRING encoding.
  937. if (Str->isCString()) {
  938. Code = bitc::CST_CODE_CSTRING;
  939. --NumElts; // Don't encode the null, which isn't allowed by char6.
  940. } else {
  941. Code = bitc::CST_CODE_STRING;
  942. AbbrevToUse = String8Abbrev;
  943. }
  944. bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
  945. bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
  946. for (unsigned i = 0; i != NumElts; ++i) {
  947. unsigned char V = Str->getElementAsInteger(i);
  948. Record.push_back(V);
  949. isCStr7 &= (V & 128) == 0;
  950. if (isCStrChar6)
  951. isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
  952. }
  953. if (isCStrChar6)
  954. AbbrevToUse = CString6Abbrev;
  955. else if (isCStr7)
  956. AbbrevToUse = CString7Abbrev;
  957. } else if (const ConstantDataSequential *CDS =
  958. dyn_cast<ConstantDataSequential>(C)) {
  959. Code = bitc::CST_CODE_DATA;
  960. Type *EltTy = CDS->getType()->getElementType();
  961. if (isa<IntegerType>(EltTy)) {
  962. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
  963. Record.push_back(CDS->getElementAsInteger(i));
  964. } else if (EltTy->isFloatTy()) {
  965. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
  966. union { float F; uint32_t I; };
  967. F = CDS->getElementAsFloat(i);
  968. Record.push_back(I);
  969. }
  970. } else {
  971. assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
  972. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
  973. union { double F; uint64_t I; };
  974. F = CDS->getElementAsDouble(i);
  975. Record.push_back(I);
  976. }
  977. }
  978. } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
  979. isa<ConstantVector>(C)) {
  980. Code = bitc::CST_CODE_AGGREGATE;
  981. for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
  982. Record.push_back(VE.getValueID(C->getOperand(i)));
  983. AbbrevToUse = AggregateAbbrev;
  984. } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
  985. switch (CE->getOpcode()) {
  986. default:
  987. if (Instruction::isCast(CE->getOpcode())) {
  988. Code = bitc::CST_CODE_CE_CAST;
  989. Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
  990. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  991. Record.push_back(VE.getValueID(C->getOperand(0)));
  992. AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
  993. } else {
  994. assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
  995. Code = bitc::CST_CODE_CE_BINOP;
  996. Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
  997. Record.push_back(VE.getValueID(C->getOperand(0)));
  998. Record.push_back(VE.getValueID(C->getOperand(1)));
  999. uint64_t Flags = GetOptimizationFlags(CE);
  1000. if (Flags != 0)
  1001. Record.push_back(Flags);
  1002. }
  1003. break;
  1004. case Instruction::GetElementPtr:
  1005. Code = bitc::CST_CODE_CE_GEP;
  1006. if (cast<GEPOperator>(C)->isInBounds())
  1007. Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
  1008. for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
  1009. Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
  1010. Record.push_back(VE.getValueID(C->getOperand(i)));
  1011. }
  1012. break;
  1013. case Instruction::Select:
  1014. Code = bitc::CST_CODE_CE_SELECT;
  1015. Record.push_back(VE.getValueID(C->getOperand(0)));
  1016. Record.push_back(VE.getValueID(C->getOperand(1)));
  1017. Record.push_back(VE.getValueID(C->getOperand(2)));
  1018. break;
  1019. case Instruction::ExtractElement:
  1020. Code = bitc::CST_CODE_CE_EXTRACTELT;
  1021. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1022. Record.push_back(VE.getValueID(C->getOperand(0)));
  1023. Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
  1024. Record.push_back(VE.getValueID(C->getOperand(1)));
  1025. break;
  1026. case Instruction::InsertElement:
  1027. Code = bitc::CST_CODE_CE_INSERTELT;
  1028. Record.push_back(VE.getValueID(C->getOperand(0)));
  1029. Record.push_back(VE.getValueID(C->getOperand(1)));
  1030. Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
  1031. Record.push_back(VE.getValueID(C->getOperand(2)));
  1032. break;
  1033. case Instruction::ShuffleVector:
  1034. // If the return type and argument types are the same, this is a
  1035. // standard shufflevector instruction. If the types are different,
  1036. // then the shuffle is widening or truncating the input vectors, and
  1037. // the argument type must also be encoded.
  1038. if (C->getType() == C->getOperand(0)->getType()) {
  1039. Code = bitc::CST_CODE_CE_SHUFFLEVEC;
  1040. } else {
  1041. Code = bitc::CST_CODE_CE_SHUFVEC_EX;
  1042. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1043. }
  1044. Record.push_back(VE.getValueID(C->getOperand(0)));
  1045. Record.push_back(VE.getValueID(C->getOperand(1)));
  1046. Record.push_back(VE.getValueID(C->getOperand(2)));
  1047. break;
  1048. case Instruction::ICmp:
  1049. case Instruction::FCmp:
  1050. Code = bitc::CST_CODE_CE_CMP;
  1051. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1052. Record.push_back(VE.getValueID(C->getOperand(0)));
  1053. Record.push_back(VE.getValueID(C->getOperand(1)));
  1054. Record.push_back(CE->getPredicate());
  1055. break;
  1056. }
  1057. } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
  1058. Code = bitc::CST_CODE_BLOCKADDRESS;
  1059. Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
  1060. Record.push_back(VE.getValueID(BA->getFunction()));
  1061. Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
  1062. } else {
  1063. #ifndef NDEBUG
  1064. C->dump();
  1065. #endif
  1066. llvm_unreachable("Unknown constant!");
  1067. }
  1068. Stream.EmitRecord(Code, Record, AbbrevToUse);
  1069. Record.clear();
  1070. }
  1071. Stream.ExitBlock();
  1072. }
  1073. static void WriteModuleConstants(const ValueEnumerator &VE,
  1074. BitstreamWriter &Stream) {
  1075. const ValueEnumerator::ValueList &Vals = VE.getValues();
  1076. // Find the first constant to emit, which is the first non-globalvalue value.
  1077. // We know globalvalues have been emitted by WriteModuleInfo.
  1078. for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
  1079. if (!isa<GlobalValue>(Vals[i].first)) {
  1080. WriteConstants(i, Vals.size(), VE, Stream, true);
  1081. return;
  1082. }
  1083. }
  1084. }
  1085. /// PushValueAndType - The file has to encode both the value and type id for
  1086. /// many values, because we need to know what type to create for forward
  1087. /// references. However, most operands are not forward references, so this type
  1088. /// field is not needed.
  1089. ///
  1090. /// This function adds V's value ID to Vals. If the value ID is higher than the
  1091. /// instruction ID, then it is a forward reference, and it also includes the
  1092. /// type ID. The value ID that is written is encoded relative to the InstID.
  1093. static bool PushValueAndType(const Value *V, unsigned InstID,
  1094. SmallVectorImpl<unsigned> &Vals,
  1095. ValueEnumerator &VE) {
  1096. unsigned ValID = VE.getValueID(V);
  1097. // Make encoding relative to the InstID.
  1098. Vals.push_back(InstID - ValID);
  1099. if (ValID >= InstID) {
  1100. Vals.push_back(VE.getTypeID(V->getType()));
  1101. return true;
  1102. }
  1103. return false;
  1104. }
  1105. /// pushValue - Like PushValueAndType, but where the type of the value is
  1106. /// omitted (perhaps it was already encoded in an earlier operand).
  1107. static void pushValue(const Value *V, unsigned InstID,
  1108. SmallVectorImpl<unsigned> &Vals,
  1109. ValueEnumerator &VE) {
  1110. unsigned ValID = VE.getValueID(V);
  1111. Vals.push_back(InstID - ValID);
  1112. }
  1113. static void pushValueSigned(const Value *V, unsigned InstID,
  1114. SmallVectorImpl<uint64_t> &Vals,
  1115. ValueEnumerator &VE) {
  1116. unsigned ValID = VE.getValueID(V);
  1117. int64_t diff = ((int32_t)InstID - (int32_t)ValID);
  1118. emitSignedInt64(Vals, diff);
  1119. }
  1120. /// WriteInstruction - Emit an instruction to the specified stream.
  1121. static void WriteInstruction(const Instruction &I, unsigned InstID,
  1122. ValueEnumerator &VE, BitstreamWriter &Stream,
  1123. SmallVectorImpl<unsigned> &Vals) {
  1124. unsigned Code = 0;
  1125. unsigned AbbrevToUse = 0;
  1126. VE.setInstructionID(&I);
  1127. switch (I.getOpcode()) {
  1128. default:
  1129. if (Instruction::isCast(I.getOpcode())) {
  1130. Code = bitc::FUNC_CODE_INST_CAST;
  1131. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1132. AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
  1133. Vals.push_back(VE.getTypeID(I.getType()));
  1134. Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
  1135. } else {
  1136. assert(isa<BinaryOperator>(I) && "Unknown instruction!");
  1137. Code = bitc::FUNC_CODE_INST_BINOP;
  1138. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1139. AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
  1140. pushValue(I.getOperand(1), InstID, Vals, VE);
  1141. Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
  1142. uint64_t Flags = GetOptimizationFlags(&I);
  1143. if (Flags != 0) {
  1144. if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
  1145. AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
  1146. Vals.push_back(Flags);
  1147. }
  1148. }
  1149. break;
  1150. case Instruction::GetElementPtr:
  1151. Code = bitc::FUNC_CODE_INST_GEP;
  1152. if (cast<GEPOperator>(&I)->isInBounds())
  1153. Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
  1154. for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
  1155. PushValueAndType(I.getOperand(i), InstID, Vals, VE);
  1156. break;
  1157. case Instruction::ExtractValue: {
  1158. Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
  1159. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1160. const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
  1161. for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
  1162. Vals.push_back(*i);
  1163. break;
  1164. }
  1165. case Instruction::InsertValue: {
  1166. Code = bitc::FUNC_CODE_INST_INSERTVAL;
  1167. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1168. PushValueAndType(I.getOperand(1), InstID, Vals, VE);
  1169. const InsertValueInst *IVI = cast<InsertValueInst>(&I);
  1170. for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
  1171. Vals.push_back(*i);
  1172. break;
  1173. }
  1174. case Instruction::Select:
  1175. Code = bitc::FUNC_CODE_INST_VSELECT;
  1176. PushValueAndType(I.getOperand(1), InstID, Vals, VE);
  1177. pushValue(I.getOperand(2), InstID, Vals, VE);
  1178. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1179. break;
  1180. case Instruction::ExtractElement:
  1181. Code = bitc::FUNC_CODE_INST_EXTRACTELT;
  1182. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1183. PushValueAndType(I.getOperand(1), InstID, Vals, VE);
  1184. break;
  1185. case Instruction::InsertElement:
  1186. Code = bitc::FUNC_CODE_INST_INSERTELT;
  1187. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1188. pushValue(I.getOperand(1), InstID, Vals, VE);
  1189. PushValueAndType(I.getOperand(2), InstID, Vals, VE);
  1190. break;
  1191. case Instruction::ShuffleVector:
  1192. Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
  1193. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1194. pushValue(I.getOperand(1), InstID, Vals, VE);
  1195. pushValue(I.getOperand(2), InstID, Vals, VE);
  1196. break;
  1197. case Instruction::ICmp:
  1198. case Instruction::FCmp:
  1199. // compare returning Int1Ty or vector of Int1Ty
  1200. Code = bitc::FUNC_CODE_INST_CMP2;
  1201. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1202. pushValue(I.getOperand(1), InstID, Vals, VE);
  1203. Vals.push_back(cast<CmpInst>(I).getPredicate());
  1204. break;
  1205. case Instruction::Ret:
  1206. {
  1207. Code = bitc::FUNC_CODE_INST_RET;
  1208. unsigned NumOperands = I.getNumOperands();
  1209. if (NumOperands == 0)
  1210. AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
  1211. else if (NumOperands == 1) {
  1212. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1213. AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
  1214. } else {
  1215. for (unsigned i = 0, e = NumOperands; i != e; ++i)
  1216. PushValueAndType(I.getOperand(i), InstID, Vals, VE);
  1217. }
  1218. }
  1219. break;
  1220. case Instruction::Br:
  1221. {
  1222. Code = bitc::FUNC_CODE_INST_BR;
  1223. const BranchInst &II = cast<BranchInst>(I);
  1224. Vals.push_back(VE.getValueID(II.getSuccessor(0)));
  1225. if (II.isConditional()) {
  1226. Vals.push_back(VE.getValueID(II.getSuccessor(1)));
  1227. pushValue(II.getCondition(), InstID, Vals, VE);
  1228. }
  1229. }
  1230. break;
  1231. case Instruction::Switch:
  1232. {
  1233. Code = bitc::FUNC_CODE_INST_SWITCH;
  1234. const SwitchInst &SI = cast<SwitchInst>(I);
  1235. Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
  1236. pushValue(SI.getCondition(), InstID, Vals, VE);
  1237. Vals.push_back(VE.getValueID(SI.getDefaultDest()));
  1238. for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
  1239. i != e; ++i) {
  1240. Vals.push_back(VE.getValueID(i.getCaseValue()));
  1241. Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
  1242. }
  1243. }
  1244. break;
  1245. case Instruction::IndirectBr:
  1246. Code = bitc::FUNC_CODE_INST_INDIRECTBR;
  1247. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
  1248. // Encode the address operand as relative, but not the basic blocks.
  1249. pushValue(I.getOperand(0), InstID, Vals, VE);
  1250. for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
  1251. Vals.push_back(VE.getValueID(I.getOperand(i)));
  1252. break;
  1253. case Instruction::Invoke: {
  1254. const InvokeInst *II = cast<InvokeInst>(&I);
  1255. const Value *Callee(II->getCalledValue());
  1256. PointerType *PTy = cast<PointerType>(Callee->getType());
  1257. FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
  1258. Code = bitc::FUNC_CODE_INST_INVOKE;
  1259. Vals.push_back(VE.getAttributeID(II->getAttributes()));
  1260. Vals.push_back(II->getCallingConv());
  1261. Vals.push_back(VE.getValueID(II->getNormalDest()));
  1262. Vals.push_back(VE.getValueID(II->getUnwindDest()));
  1263. PushValueAndType(Callee, InstID, Vals, VE);
  1264. // Emit value #'s for the fixed parameters.
  1265. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
  1266. pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param.
  1267. // Emit type/value pairs for varargs params.
  1268. if (FTy->isVarArg()) {
  1269. for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
  1270. i != e; ++i)
  1271. PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
  1272. }
  1273. break;
  1274. }
  1275. case Instruction::Resume:
  1276. Code = bitc::FUNC_CODE_INST_RESUME;
  1277. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1278. break;
  1279. case Instruction::Unreachable:
  1280. Code = bitc::FUNC_CODE_INST_UNREACHABLE;
  1281. AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
  1282. break;
  1283. case Instruction::PHI: {
  1284. const PHINode &PN = cast<PHINode>(I);
  1285. Code = bitc::FUNC_CODE_INST_PHI;
  1286. // With the newer instruction encoding, forward references could give
  1287. // negative valued IDs. This is most common for PHIs, so we use
  1288. // signed VBRs.
  1289. SmallVector<uint64_t, 128> Vals64;
  1290. Vals64.push_back(VE.getTypeID(PN.getType()));
  1291. for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
  1292. pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
  1293. Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
  1294. }
  1295. // Emit a Vals64 vector and exit.
  1296. Stream.EmitRecord(Code, Vals64, AbbrevToUse);
  1297. Vals64.clear();
  1298. return;
  1299. }
  1300. case Instruction::LandingPad: {
  1301. const LandingPadInst &LP = cast<LandingPadInst>(I);
  1302. Code = bitc::FUNC_CODE_INST_LANDINGPAD;
  1303. Vals.push_back(VE.getTypeID(LP.getType()));
  1304. PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
  1305. Vals.push_back(LP.isCleanup());
  1306. Vals.push_back(LP.getNumClauses());
  1307. for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
  1308. if (LP.isCatch(I))
  1309. Vals.push_back(LandingPadInst::Catch);
  1310. else
  1311. Vals.push_back(LandingPadInst::Filter);
  1312. PushValueAndType(LP.getClause(I), InstID, Vals, VE);
  1313. }
  1314. break;
  1315. }
  1316. case Instruction::Alloca: {
  1317. Code = bitc::FUNC_CODE_INST_ALLOCA;
  1318. Vals.push_back(VE.getTypeID(I.getType()));
  1319. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
  1320. Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
  1321. const AllocaInst &AI = cast<AllocaInst>(I);
  1322. unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
  1323. assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
  1324. "not enough bits for maximum alignment");
  1325. assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
  1326. AlignRecord |= AI.isUsedWithInAlloca() << 5;
  1327. Vals.push_back(AlignRecord);
  1328. break;
  1329. }
  1330. case Instruction::Load:
  1331. if (cast<LoadInst>(I).isAtomic()) {
  1332. Code = bitc::FUNC_CODE_INST_LOADATOMIC;
  1333. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1334. } else {
  1335. Code = bitc::FUNC_CODE_INST_LOAD;
  1336. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
  1337. AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
  1338. }
  1339. Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
  1340. Vals.push_back(cast<LoadInst>(I).isVolatile());
  1341. if (cast<LoadInst>(I).isAtomic()) {
  1342. Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
  1343. Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
  1344. }
  1345. break;
  1346. case Instruction::Store:
  1347. if (cast<StoreInst>(I).isAtomic())
  1348. Code = bitc::FUNC_CODE_INST_STOREATOMIC;
  1349. else
  1350. Code = bitc::FUNC_CODE_INST_STORE;
  1351. PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
  1352. pushValue(I.getOperand(0), InstID, Vals, VE); // val.
  1353. Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
  1354. Vals.push_back(cast<StoreInst>(I).isVolatile());
  1355. if (cast<StoreInst>(I).isAtomic()) {
  1356. Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
  1357. Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
  1358. }
  1359. break;
  1360. case Instruction::AtomicCmpXchg:
  1361. Code = bitc::FUNC_CODE_INST_CMPXCHG;
  1362. PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
  1363. pushValue(I.getOperand(1), InstID, Vals, VE); // cmp.
  1364. pushValue(I.getOperand(2), InstID, Vals, VE); // newval.
  1365. Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
  1366. Vals.push_back(GetEncodedOrdering(
  1367. cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
  1368. Vals.push_back(GetEncodedSynchScope(
  1369. cast<AtomicCmpXchgInst>(I).getSynchScope()));
  1370. Vals.push_back(GetEncodedOrdering(
  1371. cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
  1372. Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
  1373. break;
  1374. case Instruction::AtomicRMW:
  1375. Code = bitc::FUNC_CODE_INST_ATOMICRMW;
  1376. PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
  1377. pushValue(I.getOperand(1), InstID, Vals, VE); // val.
  1378. Vals.push_back(GetEncodedRMWOperation(
  1379. cast<AtomicRMWInst>(I).getOperation()));
  1380. Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
  1381. Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
  1382. Vals.push_back(GetEncodedSynchScope(
  1383. cast<AtomicRMWInst>(I).getSynchScope()));
  1384. break;
  1385. case Instruction::Fence:
  1386. Code = bitc::FUNC_CODE_INST_FENCE;
  1387. Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
  1388. Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
  1389. break;
  1390. case Instruction::Call: {
  1391. const CallInst &CI = cast<CallInst>(I);
  1392. PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
  1393. FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
  1394. Code = bitc::FUNC_CODE_INST_CALL;
  1395. Vals.push_back(VE.getAttributeID(CI.getAttributes()));
  1396. Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
  1397. unsigned(CI.isMustTailCall()) << 14);
  1398. PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
  1399. // Emit value #'s for the fixed parameters.
  1400. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
  1401. // Check for labels (can happen with asm labels).
  1402. if (FTy->getParamType(i)->isLabelTy())
  1403. Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
  1404. else
  1405. pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param.
  1406. }
  1407. // Emit type/value pairs for varargs params.
  1408. if (FTy->isVarArg()) {
  1409. for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
  1410. i != e; ++i)
  1411. PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
  1412. }
  1413. break;
  1414. }
  1415. case Instruction::VAArg:
  1416. Code = bitc::FUNC_CODE_INST_VAARG;
  1417. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
  1418. pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
  1419. Vals.push_back(VE.getTypeID(I.getType())); // restype.
  1420. break;
  1421. }
  1422. Stream.EmitRecord(Code, Vals, AbbrevToUse);
  1423. Vals.clear();
  1424. }
  1425. // Emit names for globals/functions etc.
  1426. static void WriteValueSymbolTable(const ValueSymbolTable &VST,
  1427. const ValueEnumerator &VE,
  1428. BitstreamWriter &Stream) {
  1429. if (VST.empty()) return;
  1430. Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
  1431. // FIXME: Set up the abbrev, we know how many values there are!
  1432. // FIXME: We know if the type names can use 7-bit ascii.
  1433. SmallVector<unsigned, 64> NameVals;
  1434. for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
  1435. SI != SE; ++SI) {
  1436. const ValueName &Name = *SI;
  1437. // Figure out the encoding to use for the name.
  1438. bool is7Bit = true;
  1439. bool isChar6 = true;
  1440. for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
  1441. C != E; ++C) {
  1442. if (isChar6)
  1443. isChar6 = BitCodeAbbrevOp::isChar6(*C);
  1444. if ((unsigned char)*C & 128) {
  1445. is7Bit = false;
  1446. break; // don't bother scanning the rest.
  1447. }
  1448. }
  1449. unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
  1450. // VST_ENTRY: [valueid, namechar x N]
  1451. // VST_BBENTRY: [bbid, namechar x N]
  1452. unsigned Code;
  1453. if (isa<BasicBlock>(SI->getValue())) {
  1454. Code = bitc::VST_CODE_BBENTRY;
  1455. if (isChar6)
  1456. AbbrevToUse = VST_BBENTRY_6_ABBREV;
  1457. } else {
  1458. Code = bitc::VST_CODE_ENTRY;
  1459. if (isChar6)
  1460. AbbrevToUse = VST_ENTRY_6_ABBREV;
  1461. else if (is7Bit)
  1462. AbbrevToUse = VST_ENTRY_7_ABBREV;
  1463. }
  1464. NameVals.push_back(VE.getValueID(SI->getValue()));
  1465. for (const char *P = Name.getKeyData(),
  1466. *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
  1467. NameVals.push_back((unsigned char)*P);
  1468. // Emit the finished record.
  1469. Stream.EmitRecord(Code, NameVals, AbbrevToUse);
  1470. NameVals.clear();
  1471. }
  1472. Stream.ExitBlock();
  1473. }
  1474. /// WriteFunction - Emit a function body to the module stream.
  1475. static void WriteFunction(const Function &F, ValueEnumerator &VE,
  1476. BitstreamWriter &Stream) {
  1477. Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
  1478. VE.incorporateFunction(F);
  1479. SmallVector<unsigned, 64> Vals;
  1480. // Emit the number of basic blocks, so the reader can create them ahead of
  1481. // time.
  1482. Vals.push_back(VE.getBasicBlocks().size());
  1483. Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
  1484. Vals.clear();
  1485. // If there are function-local constants, emit them now.
  1486. unsigned CstStart, CstEnd;
  1487. VE.getFunctionConstantRange(CstStart, CstEnd);
  1488. WriteConstants(CstStart, CstEnd, VE, Stream, false);
  1489. // If there is function-local metadata, emit it now.
  1490. WriteFunctionLocalMetadata(F, VE, Stream);
  1491. // Keep a running idea of what the instruction ID is.
  1492. unsigned InstID = CstEnd;
  1493. bool NeedsMetadataAttachment = false;
  1494. DebugLoc LastDL;
  1495. // Finally, emit all the instructions, in order.
  1496. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
  1497. for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
  1498. I != E; ++I) {
  1499. WriteInstruction(*I, InstID, VE, Stream, Vals);
  1500. if (!I->getType()->isVoidTy())
  1501. ++InstID;
  1502. // If the instruction has metadata, write a metadata attachment later.
  1503. NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
  1504. // If the instruction has a debug location, emit it.
  1505. DebugLoc DL = I->getDebugLoc();
  1506. if (DL.isUnknown()) {
  1507. // nothing todo.
  1508. } else if (DL == LastDL) {
  1509. // Just repeat the same debug loc as last time.
  1510. Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
  1511. } else {
  1512. MDNode *Scope, *IA;
  1513. DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
  1514. Vals.push_back(DL.getLine());
  1515. Vals.push_back(DL.getCol());
  1516. Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
  1517. Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
  1518. Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
  1519. Vals.clear();
  1520. LastDL = DL;
  1521. }
  1522. }
  1523. // Emit names for all the instructions etc.
  1524. WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
  1525. if (NeedsMetadataAttachment)
  1526. WriteMetadataAttachment(F, VE, Stream);
  1527. VE.purgeFunction();
  1528. Stream.ExitBlock();
  1529. }
  1530. // Emit blockinfo, which defines the standard abbreviations etc.
  1531. static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  1532. // We only want to emit block info records for blocks that have multiple
  1533. // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
  1534. // Other blocks can define their abbrevs inline.
  1535. Stream.EnterBlockInfoBlock(2);
  1536. { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
  1537. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1538. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
  1539. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1540. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1541. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  1542. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1543. Abbv) != VST_ENTRY_8_ABBREV)
  1544. llvm_unreachable("Unexpected abbrev ordering!");
  1545. }
  1546. { // 7-bit fixed width VST_ENTRY strings.
  1547. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1548. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
  1549. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1550. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1551. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
  1552. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1553. Abbv) != VST_ENTRY_7_ABBREV)
  1554. llvm_unreachable("Unexpected abbrev ordering!");
  1555. }
  1556. { // 6-bit char6 VST_ENTRY strings.
  1557. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1558. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
  1559. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1560. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1561. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  1562. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1563. Abbv) != VST_ENTRY_6_ABBREV)
  1564. llvm_unreachable("Unexpected abbrev ordering!");
  1565. }
  1566. { // 6-bit char6 VST_BBENTRY strings.
  1567. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1568. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
  1569. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1570. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1571. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  1572. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1573. Abbv) != VST_BBENTRY_6_ABBREV)
  1574. llvm_unreachable("Unexpected abbrev ordering!");
  1575. }
  1576. { // SETTYPE abbrev for CONSTANTS_BLOCK.
  1577. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1578. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
  1579. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  1580. Log2_32_Ceil(VE.getTypes().size()+1)));
  1581. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1582. Abbv) != CONSTANTS_SETTYPE_ABBREV)
  1583. llvm_unreachable("Unexpected abbrev ordering!");
  1584. }
  1585. { // INTEGER abbrev for CONSTANTS_BLOCK.
  1586. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1587. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
  1588. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1589. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1590. Abbv) != CONSTANTS_INTEGER_ABBREV)
  1591. llvm_unreachable("Unexpected abbrev ordering!");
  1592. }
  1593. { // CE_CAST abbrev for CONSTANTS_BLOCK.
  1594. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1595. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
  1596. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
  1597. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
  1598. Log2_32_Ceil(VE.getTypes().size()+1)));
  1599. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
  1600. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1601. Abbv) != CONSTANTS_CE_CAST_Abbrev)
  1602. llvm_unreachable("Unexpected abbrev ordering!");
  1603. }
  1604. { // NULL abbrev for CONSTANTS_BLOCK.
  1605. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1606. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
  1607. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1608. Abbv) != CONSTANTS_NULL_Abbrev)
  1609. llvm_unreachable("Unexpected abbrev ordering!");
  1610. }
  1611. // FIXME: This should only use space for first class types!
  1612. { // INST_LOAD abbrev for FUNCTION_BLOCK.
  1613. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1614. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
  1615. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
  1616. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
  1617. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
  1618. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1619. Abbv) != FUNCTION_INST_LOAD_ABBREV)
  1620. llvm_unreachable("Unexpected abbrev ordering!");
  1621. }
  1622. { // INST_BINOP abbrev for FUNCTION_BLOCK.
  1623. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1624. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
  1625. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
  1626. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
  1627. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  1628. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1629. Abbv) != FUNCTION_INST_BINOP_ABBREV)
  1630. llvm_unreachable("Unexpected abbrev ordering!");
  1631. }
  1632. { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
  1633. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1634. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
  1635. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
  1636. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
  1637. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  1638. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
  1639. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1640. Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
  1641. llvm_unreachable("Unexpected abbrev ordering!");
  1642. }
  1643. { // INST_CAST abbrev for FUNCTION_BLOCK.
  1644. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1645. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
  1646. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
  1647. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
  1648. Log2_32_Ceil(VE.getTypes().size()+1)));
  1649. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  1650. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1651. Abbv) != FUNCTION_INST_CAST_ABBREV)
  1652. llvm_unreachable("Unexpected abbrev ordering!");
  1653. }
  1654. { // INST_RET abbrev for FUNCTION_BLOCK.
  1655. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1656. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
  1657. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1658. Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
  1659. llvm_unreachable("Unexpected abbrev ordering!");
  1660. }
  1661. { // INST_RET abbrev for FUNCTION_BLOCK.
  1662. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1663. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
  1664. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
  1665. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1666. Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
  1667. llvm_unreachable("Unexpected abbrev ordering!");
  1668. }
  1669. { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
  1670. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1671. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
  1672. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1673. Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
  1674. llvm_unreachable("Unexpected abbrev ordering!");
  1675. }
  1676. Stream.ExitBlock();
  1677. }
  1678. // Sort the Users based on the order in which the reader parses the bitcode
  1679. // file.
  1680. static bool bitcodereader_order(const User *lhs, const User *rhs) {
  1681. // TODO: Implement.
  1682. return true;
  1683. }
  1684. static void WriteUseList(const Value *V, const ValueEnumerator &VE,
  1685. BitstreamWriter &Stream) {
  1686. // One or zero uses can't get out of order.
  1687. if (V->use_empty() || V->hasNUses(1))
  1688. return;
  1689. // Make a copy of the in-memory use-list for sorting.
  1690. SmallVector<const User*, 8> UserList(V->user_begin(), V->user_end());
  1691. // Sort the copy based on the order read by the BitcodeReader.
  1692. std::sort(UserList.begin(), UserList.end(), bitcodereader_order);
  1693. // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the
  1694. // sorted list (i.e., the expected BitcodeReader in-memory use-list).
  1695. // TODO: Emit the USELIST_CODE_ENTRYs.
  1696. }
  1697. static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE,
  1698. BitstreamWriter &Stream) {
  1699. VE.incorporateFunction(*F);
  1700. for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
  1701. AI != AE; ++AI)
  1702. WriteUseList(AI, VE, Stream);
  1703. for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE;
  1704. ++BB) {
  1705. WriteUseList(BB, VE, Stream);
  1706. for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
  1707. ++II) {
  1708. WriteUseList(II, VE, Stream);
  1709. for (User::const_op_iterator OI = II->op_begin(), E = II->op_end();
  1710. OI != E; ++OI) {
  1711. if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
  1712. isa<InlineAsm>(*OI))
  1713. WriteUseList(*OI, VE, Stream);
  1714. }
  1715. }
  1716. }
  1717. VE.purgeFunction();
  1718. }
  1719. // Emit use-lists.
  1720. static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE,
  1721. BitstreamWriter &Stream) {
  1722. Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
  1723. // XXX: this modifies the module, but in a way that should never change the
  1724. // behavior of any pass or codegen in LLVM. The problem is that GVs may
  1725. // contain entries in the use_list that do not exist in the Module and are
  1726. // not stored in the .bc file.
  1727. for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
  1728. I != E; ++I)
  1729. I->removeDeadConstantUsers();
  1730. // Write the global variables.
  1731. for (Module::const_global_iterator GI = M->global_begin(),
  1732. GE = M->global_end(); GI != GE; ++GI) {
  1733. WriteUseList(GI, VE, Stream);
  1734. // Write the global variable initializers.
  1735. if (GI->hasInitializer())
  1736. WriteUseList(GI->getInitializer(), VE, Stream);
  1737. }
  1738. // Write the functions.
  1739. for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
  1740. WriteUseList(FI, VE, Stream);
  1741. if (!FI->isDeclaration())
  1742. WriteFunctionUseList(FI, VE, Stream);
  1743. if (FI->hasPrefixData())
  1744. WriteUseList(FI->getPrefixData(), VE, Stream);
  1745. }
  1746. // Write the aliases.
  1747. for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end();
  1748. AI != AE; ++AI) {
  1749. WriteUseList(AI, VE, Stream);
  1750. WriteUseList(AI->getAliasee(), VE, Stream);
  1751. }
  1752. Stream.ExitBlock();
  1753. }
  1754. /// WriteModule - Emit the specified module to the bitstream.
  1755. static void WriteModule(const Module *M, BitstreamWriter &Stream) {
  1756. Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
  1757. SmallVector<unsigned, 1> Vals;
  1758. unsigned CurVersion = 1;
  1759. Vals.push_back(CurVersion);
  1760. Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
  1761. // Analyze the module, enumerating globals, functions, etc.
  1762. ValueEnumerator VE(M);
  1763. // Emit blockinfo, which defines the standard abbreviations etc.
  1764. WriteBlockInfo(VE, Stream);
  1765. // Emit information about attribute groups.
  1766. WriteAttributeGroupTable(VE, Stream);
  1767. // Emit information about parameter attributes.
  1768. WriteAttributeTable(VE, Stream);
  1769. // Emit information describing all of the types in the module.
  1770. WriteTypeTable(VE, Stream);
  1771. writeComdats(VE, Stream);
  1772. // Emit top-level description of module, including target triple, inline asm,
  1773. // descriptors for global variables, and function prototype info.
  1774. WriteModuleInfo(M, VE, Stream);
  1775. // Emit constants.
  1776. WriteModuleConstants(VE, Stream);
  1777. // Emit metadata.
  1778. WriteModuleMetadata(M, VE, Stream);
  1779. // Emit metadata.
  1780. WriteModuleMetadataStore(M, Stream);
  1781. // Emit names for globals/functions etc.
  1782. WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
  1783. // Emit use-lists.
  1784. if (EnablePreserveUseListOrdering)
  1785. WriteModuleUseLists(M, VE, Stream);
  1786. // Emit function bodies.
  1787. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
  1788. if (!F->isDeclaration())
  1789. WriteFunction(*F, VE, Stream);
  1790. Stream.ExitBlock();
  1791. }
  1792. /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
  1793. /// header and trailer to make it compatible with the system archiver. To do
  1794. /// this we emit the following header, and then emit a trailer that pads the
  1795. /// file out to be a multiple of 16 bytes.
  1796. ///
  1797. /// struct bc_header {
  1798. /// uint32_t Magic; // 0x0B17C0DE
  1799. /// uint32_t Version; // Version, currently always 0.
  1800. /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
  1801. /// uint32_t BitcodeSize; // Size of traditional bitcode file.
  1802. /// uint32_t CPUType; // CPU specifier.
  1803. /// ... potentially more later ...
  1804. /// };
  1805. enum {
  1806. DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
  1807. DarwinBCHeaderSize = 5*4
  1808. };
  1809. static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
  1810. uint32_t &Position) {
  1811. Buffer[Position + 0] = (unsigned char) (Value >> 0);
  1812. Buffer[Position + 1] = (unsigned char) (Value >> 8);
  1813. Buffer[Position + 2] = (unsigned char) (Value >> 16);
  1814. Buffer[Position + 3] = (unsigned char) (Value >> 24);
  1815. Position += 4;
  1816. }
  1817. static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
  1818. const Triple &TT) {
  1819. unsigned CPUType = ~0U;
  1820. // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
  1821. // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
  1822. // number from /usr/include/mach/machine.h. It is ok to reproduce the
  1823. // specific constants here because they are implicitly part of the Darwin ABI.
  1824. enum {
  1825. DARWIN_CPU_ARCH_ABI64 = 0x01000000,
  1826. DARWIN_CPU_TYPE_X86 = 7,
  1827. DARWIN_CPU_TYPE_ARM = 12,
  1828. DARWIN_CPU_TYPE_POWERPC = 18
  1829. };
  1830. Triple::ArchType Arch = TT.getArch();
  1831. if (Arch == Triple::x86_64)
  1832. CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
  1833. else if (Arch == Triple::x86)
  1834. CPUType = DARWIN_CPU_TYPE_X86;
  1835. else if (Arch == Triple::ppc)
  1836. CPUType = DARWIN_CPU_TYPE_POWERPC;
  1837. else if (Arch == Triple::ppc64)
  1838. CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
  1839. else if (Arch == Triple::arm || Arch == Triple::thumb)
  1840. CPUType = DARWIN_CPU_TYPE_ARM;
  1841. // Traditional Bitcode starts after header.
  1842. assert(Buffer.size() >= DarwinBCHeaderSize &&
  1843. "Expected header size to be reserved");
  1844. unsigned BCOffset = DarwinBCHeaderSize;
  1845. unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
  1846. // Write the magic and version.
  1847. unsigned Position = 0;
  1848. WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
  1849. WriteInt32ToBuffer(0 , Buffer, Position); // Version.
  1850. WriteInt32ToBuffer(BCOffset , Buffer, Position);
  1851. WriteInt32ToBuffer(BCSize , Buffer, Position);
  1852. WriteInt32ToBuffer(CPUType , Buffer, Position);
  1853. // If the file is not a multiple of 16 bytes, insert dummy padding.
  1854. while (Buffer.size() & 15)
  1855. Buffer.push_back(0);
  1856. }
  1857. /// WriteBitcodeToFile - Write the specified module to the specified output
  1858. /// stream.
  1859. void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
  1860. SmallVector<char, 0> Buffer;
  1861. Buffer.reserve(256*1024);
  1862. // If this is darwin or another generic macho target, reserve space for the
  1863. // header.
  1864. Triple TT(M->getTargetTriple());
  1865. if (TT.isOSDarwin())
  1866. Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
  1867. // Emit the module into the buffer.
  1868. {
  1869. BitstreamWriter Stream(Buffer);
  1870. // Emit the file header.
  1871. Stream.Emit((unsigned)'B', 8);
  1872. Stream.Emit((unsigned)'C', 8);
  1873. Stream.Emit(0x0, 4);
  1874. Stream.Emit(0xC, 4);
  1875. Stream.Emit(0xE, 4);
  1876. Stream.Emit(0xD, 4);
  1877. // Emit the module.
  1878. WriteModule(M, Stream);
  1879. }
  1880. if (TT.isOSDarwin())
  1881. EmitDarwinBCHeaderAndTrailer(Buffer, TT);
  1882. // Write the generated bitstream to "Out".
  1883. Out.write((char*)&Buffer.front(), Buffer.size());
  1884. }