IRSymtab.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. //===- IRSymtab.cpp - implementation of IR symbol tables ------------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. #include "llvm/Object/IRSymtab.h"
  10. #include "llvm/ADT/ArrayRef.h"
  11. #include "llvm/ADT/DenseMap.h"
  12. #include "llvm/ADT/SmallPtrSet.h"
  13. #include "llvm/ADT/SmallString.h"
  14. #include "llvm/ADT/SmallVector.h"
  15. #include "llvm/ADT/StringRef.h"
  16. #include "llvm/ADT/Triple.h"
  17. #include "llvm/Config/llvm-config.h"
  18. #include "llvm/IR/Comdat.h"
  19. #include "llvm/IR/DataLayout.h"
  20. #include "llvm/IR/GlobalAlias.h"
  21. #include "llvm/IR/GlobalObject.h"
  22. #include "llvm/IR/Mangler.h"
  23. #include "llvm/IR/Metadata.h"
  24. #include "llvm/IR/Module.h"
  25. #include "llvm/Bitcode/BitcodeReader.h"
  26. #include "llvm/MC/StringTableBuilder.h"
  27. #include "llvm/Object/IRObjectFile.h"
  28. #include "llvm/Object/ModuleSymbolTable.h"
  29. #include "llvm/Object/SymbolicFile.h"
  30. #include "llvm/Support/Allocator.h"
  31. #include "llvm/Support/Casting.h"
  32. #include "llvm/Support/Error.h"
  33. #include "llvm/Support/StringSaver.h"
  34. #include "llvm/Support/VCSRevision.h"
  35. #include "llvm/Support/raw_ostream.h"
  36. #include <cassert>
  37. #include <string>
  38. #include <utility>
  39. #include <vector>
  40. using namespace llvm;
  41. using namespace irsymtab;
  42. namespace {
  43. const char *getExpectedProducerName() {
  44. static char DefaultName[] = LLVM_VERSION_STRING
  45. #ifdef LLVM_REVISION
  46. " " LLVM_REVISION
  47. #endif
  48. ;
  49. // Allows for testing of the irsymtab writer and upgrade mechanism. This
  50. // environment variable should not be set by users.
  51. if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER"))
  52. return OverrideName;
  53. return DefaultName;
  54. }
  55. const char *kExpectedProducerName = getExpectedProducerName();
  56. /// Stores the temporary state that is required to build an IR symbol table.
  57. struct Builder {
  58. SmallVector<char, 0> &Symtab;
  59. StringTableBuilder &StrtabBuilder;
  60. StringSaver Saver;
  61. // This ctor initializes a StringSaver using the passed in BumpPtrAllocator.
  62. // The StringTableBuilder does not create a copy of any strings added to it,
  63. // so this provides somewhere to store any strings that we create.
  64. Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder,
  65. BumpPtrAllocator &Alloc)
  66. : Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {}
  67. DenseMap<const Comdat *, int> ComdatMap;
  68. Mangler Mang;
  69. Triple TT;
  70. std::vector<storage::Comdat> Comdats;
  71. std::vector<storage::Module> Mods;
  72. std::vector<storage::Symbol> Syms;
  73. std::vector<storage::Uncommon> Uncommons;
  74. std::string COFFLinkerOpts;
  75. raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts};
  76. void setStr(storage::Str &S, StringRef Value) {
  77. S.Offset = StrtabBuilder.add(Value);
  78. S.Size = Value.size();
  79. }
  80. template <typename T>
  81. void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) {
  82. R.Offset = Symtab.size();
  83. R.Size = Objs.size();
  84. Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()),
  85. reinterpret_cast<const char *>(Objs.data() + Objs.size()));
  86. }
  87. Expected<int> getComdatIndex(const Comdat *C, const Module *M);
  88. Error addModule(Module *M);
  89. Error addSymbol(const ModuleSymbolTable &Msymtab,
  90. const SmallPtrSet<GlobalValue *, 8> &Used,
  91. ModuleSymbolTable::Symbol Sym);
  92. Error build(ArrayRef<Module *> Mods);
  93. };
  94. Error Builder::addModule(Module *M) {
  95. if (M->getDataLayoutStr().empty())
  96. return make_error<StringError>("input module has no datalayout",
  97. inconvertibleErrorCode());
  98. SmallPtrSet<GlobalValue *, 8> Used;
  99. collectUsedGlobalVariables(*M, Used, /*CompilerUsed*/ false);
  100. ModuleSymbolTable Msymtab;
  101. Msymtab.addModule(M);
  102. storage::Module Mod;
  103. Mod.Begin = Syms.size();
  104. Mod.End = Syms.size() + Msymtab.symbols().size();
  105. Mod.UncBegin = Uncommons.size();
  106. Mods.push_back(Mod);
  107. if (TT.isOSBinFormatCOFF()) {
  108. if (auto E = M->materializeMetadata())
  109. return E;
  110. if (NamedMDNode *LinkerOptions =
  111. M->getNamedMetadata("llvm.linker.options")) {
  112. for (MDNode *MDOptions : LinkerOptions->operands())
  113. for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands())
  114. COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString();
  115. }
  116. }
  117. for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols())
  118. if (Error Err = addSymbol(Msymtab, Used, Msym))
  119. return Err;
  120. return Error::success();
  121. }
  122. Expected<int> Builder::getComdatIndex(const Comdat *C, const Module *M) {
  123. auto P = ComdatMap.insert(std::make_pair(C, Comdats.size()));
  124. if (P.second) {
  125. std::string Name;
  126. if (TT.isOSBinFormatCOFF()) {
  127. const GlobalValue *GV = M->getNamedValue(C->getName());
  128. if (!GV)
  129. return make_error<StringError>("Could not find leader",
  130. inconvertibleErrorCode());
  131. // Internal leaders do not affect symbol resolution, therefore they do not
  132. // appear in the symbol table.
  133. if (GV->hasLocalLinkage()) {
  134. P.first->second = -1;
  135. return -1;
  136. }
  137. llvm::raw_string_ostream OS(Name);
  138. Mang.getNameWithPrefix(OS, GV, false);
  139. } else {
  140. Name = C->getName();
  141. }
  142. storage::Comdat Comdat;
  143. setStr(Comdat.Name, Saver.save(Name));
  144. Comdats.push_back(Comdat);
  145. }
  146. return P.first->second;
  147. }
  148. Error Builder::addSymbol(const ModuleSymbolTable &Msymtab,
  149. const SmallPtrSet<GlobalValue *, 8> &Used,
  150. ModuleSymbolTable::Symbol Msym) {
  151. Syms.emplace_back();
  152. storage::Symbol &Sym = Syms.back();
  153. Sym = {};
  154. storage::Uncommon *Unc = nullptr;
  155. auto Uncommon = [&]() -> storage::Uncommon & {
  156. if (Unc)
  157. return *Unc;
  158. Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon;
  159. Uncommons.emplace_back();
  160. Unc = &Uncommons.back();
  161. *Unc = {};
  162. setStr(Unc->COFFWeakExternFallbackName, "");
  163. setStr(Unc->SectionName, "");
  164. return *Unc;
  165. };
  166. SmallString<64> Name;
  167. {
  168. raw_svector_ostream OS(Name);
  169. Msymtab.printSymbolName(OS, Msym);
  170. }
  171. setStr(Sym.Name, Saver.save(StringRef(Name)));
  172. auto Flags = Msymtab.getSymbolFlags(Msym);
  173. if (Flags & object::BasicSymbolRef::SF_Undefined)
  174. Sym.Flags |= 1 << storage::Symbol::FB_undefined;
  175. if (Flags & object::BasicSymbolRef::SF_Weak)
  176. Sym.Flags |= 1 << storage::Symbol::FB_weak;
  177. if (Flags & object::BasicSymbolRef::SF_Common)
  178. Sym.Flags |= 1 << storage::Symbol::FB_common;
  179. if (Flags & object::BasicSymbolRef::SF_Indirect)
  180. Sym.Flags |= 1 << storage::Symbol::FB_indirect;
  181. if (Flags & object::BasicSymbolRef::SF_Global)
  182. Sym.Flags |= 1 << storage::Symbol::FB_global;
  183. if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
  184. Sym.Flags |= 1 << storage::Symbol::FB_format_specific;
  185. if (Flags & object::BasicSymbolRef::SF_Executable)
  186. Sym.Flags |= 1 << storage::Symbol::FB_executable;
  187. Sym.ComdatIndex = -1;
  188. auto *GV = Msym.dyn_cast<GlobalValue *>();
  189. if (!GV) {
  190. // Undefined module asm symbols act as GC roots and are implicitly used.
  191. if (Flags & object::BasicSymbolRef::SF_Undefined)
  192. Sym.Flags |= 1 << storage::Symbol::FB_used;
  193. setStr(Sym.IRName, "");
  194. return Error::success();
  195. }
  196. setStr(Sym.IRName, GV->getName());
  197. if (Used.count(GV))
  198. Sym.Flags |= 1 << storage::Symbol::FB_used;
  199. if (GV->isThreadLocal())
  200. Sym.Flags |= 1 << storage::Symbol::FB_tls;
  201. if (GV->hasGlobalUnnamedAddr())
  202. Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr;
  203. if (GV->canBeOmittedFromSymbolTable())
  204. Sym.Flags |= 1 << storage::Symbol::FB_may_omit;
  205. Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility;
  206. if (Flags & object::BasicSymbolRef::SF_Common) {
  207. Uncommon().CommonSize = GV->getParent()->getDataLayout().getTypeAllocSize(
  208. GV->getType()->getElementType());
  209. Uncommon().CommonAlign = GV->getAlignment();
  210. }
  211. const GlobalObject *Base = GV->getBaseObject();
  212. if (!Base)
  213. return make_error<StringError>("Unable to determine comdat of alias!",
  214. inconvertibleErrorCode());
  215. if (const Comdat *C = Base->getComdat()) {
  216. Expected<int> ComdatIndexOrErr = getComdatIndex(C, GV->getParent());
  217. if (!ComdatIndexOrErr)
  218. return ComdatIndexOrErr.takeError();
  219. Sym.ComdatIndex = *ComdatIndexOrErr;
  220. }
  221. if (TT.isOSBinFormatCOFF()) {
  222. emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang);
  223. if ((Flags & object::BasicSymbolRef::SF_Weak) &&
  224. (Flags & object::BasicSymbolRef::SF_Indirect)) {
  225. auto *Fallback = dyn_cast<GlobalValue>(
  226. cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts());
  227. if (!Fallback)
  228. return make_error<StringError>("Invalid weak external",
  229. inconvertibleErrorCode());
  230. std::string FallbackName;
  231. raw_string_ostream OS(FallbackName);
  232. Msymtab.printSymbolName(OS, Fallback);
  233. OS.flush();
  234. setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName));
  235. }
  236. }
  237. if (!Base->getSection().empty())
  238. setStr(Uncommon().SectionName, Saver.save(Base->getSection()));
  239. return Error::success();
  240. }
  241. Error Builder::build(ArrayRef<Module *> IRMods) {
  242. storage::Header Hdr;
  243. assert(!IRMods.empty());
  244. Hdr.Version = storage::Header::kCurrentVersion;
  245. setStr(Hdr.Producer, kExpectedProducerName);
  246. setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple());
  247. setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName());
  248. TT = Triple(IRMods[0]->getTargetTriple());
  249. for (auto *M : IRMods)
  250. if (Error Err = addModule(M))
  251. return Err;
  252. COFFLinkerOptsOS.flush();
  253. setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts));
  254. // We are about to fill in the header's range fields, so reserve space for it
  255. // and copy it in afterwards.
  256. Symtab.resize(sizeof(storage::Header));
  257. writeRange(Hdr.Modules, Mods);
  258. writeRange(Hdr.Comdats, Comdats);
  259. writeRange(Hdr.Symbols, Syms);
  260. writeRange(Hdr.Uncommons, Uncommons);
  261. *reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr;
  262. return Error::success();
  263. }
  264. } // end anonymous namespace
  265. Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab,
  266. StringTableBuilder &StrtabBuilder,
  267. BumpPtrAllocator &Alloc) {
  268. return Builder(Symtab, StrtabBuilder, Alloc).build(Mods);
  269. }
  270. // Upgrade a vector of bitcode modules created by an old version of LLVM by
  271. // creating an irsymtab for them in the current format.
  272. static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) {
  273. FileContents FC;
  274. LLVMContext Ctx;
  275. std::vector<Module *> Mods;
  276. std::vector<std::unique_ptr<Module>> OwnedMods;
  277. for (auto BM : BMs) {
  278. Expected<std::unique_ptr<Module>> MOrErr =
  279. BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true,
  280. /*IsImporting*/ false);
  281. if (!MOrErr)
  282. return MOrErr.takeError();
  283. Mods.push_back(MOrErr->get());
  284. OwnedMods.push_back(std::move(*MOrErr));
  285. }
  286. StringTableBuilder StrtabBuilder(StringTableBuilder::RAW);
  287. BumpPtrAllocator Alloc;
  288. if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc))
  289. return std::move(E);
  290. StrtabBuilder.finalizeInOrder();
  291. FC.Strtab.resize(StrtabBuilder.getSize());
  292. StrtabBuilder.write((uint8_t *)FC.Strtab.data());
  293. FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()},
  294. {FC.Strtab.data(), FC.Strtab.size()}};
  295. return std::move(FC);
  296. }
  297. Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) {
  298. if (BFC.Mods.empty())
  299. return make_error<StringError>("Bitcode file does not contain any modules",
  300. inconvertibleErrorCode());
  301. if (BFC.StrtabForSymtab.empty() ||
  302. BFC.Symtab.size() < sizeof(storage::Header))
  303. return upgrade(BFC.Mods);
  304. // We cannot use the regular reader to read the version and producer, because
  305. // it will expect the header to be in the current format. The only thing we
  306. // can rely on is that the version and producer will be present as the first
  307. // struct elements.
  308. auto *Hdr = reinterpret_cast<const storage::Header *>(BFC.Symtab.data());
  309. unsigned Version = Hdr->Version;
  310. StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab);
  311. if (Version != storage::Header::kCurrentVersion ||
  312. Producer != kExpectedProducerName)
  313. return upgrade(BFC.Mods);
  314. FileContents FC;
  315. FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()},
  316. {BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}};
  317. // Finally, make sure that the number of modules in the symbol table matches
  318. // the number of modules in the bitcode file. If they differ, it may mean that
  319. // the bitcode file was created by binary concatenation, so we need to create
  320. // a new symbol table from scratch.
  321. if (FC.TheReader.getNumModules() != BFC.Mods.size())
  322. return upgrade(std::move(BFC.Mods));
  323. return std::move(FC);
  324. }