123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041 |
- //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the ValueEnumerator class.
- //
- //===----------------------------------------------------------------------===//
- #include "ValueEnumerator.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Config/llvm-config.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GlobalAlias.h"
- #include "llvm/IR/GlobalIFunc.h"
- #include "llvm/IR/GlobalObject.h"
- #include "llvm/IR/GlobalValue.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/UseListOrder.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/ValueSymbolTable.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <cassert>
- #include <cstddef>
- #include <iterator>
- #include <tuple>
- #include <utility>
- #include <vector>
- using namespace llvm;
- namespace {
- struct OrderMap {
- DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
- unsigned LastGlobalConstantID = 0;
- unsigned LastGlobalValueID = 0;
- OrderMap() = default;
- bool isGlobalConstant(unsigned ID) const {
- return ID <= LastGlobalConstantID;
- }
- bool isGlobalValue(unsigned ID) const {
- return ID <= LastGlobalValueID && !isGlobalConstant(ID);
- }
- unsigned size() const { return IDs.size(); }
- std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
- std::pair<unsigned, bool> lookup(const Value *V) const {
- return IDs.lookup(V);
- }
- void index(const Value *V) {
- // Explicitly sequence get-size and insert-value operations to avoid UB.
- unsigned ID = IDs.size() + 1;
- IDs[V].first = ID;
- }
- };
- } // end anonymous namespace
- static void orderValue(const Value *V, OrderMap &OM) {
- if (OM.lookup(V).first)
- return;
- if (const Constant *C = dyn_cast<Constant>(V))
- if (C->getNumOperands() && !isa<GlobalValue>(C))
- for (const Value *Op : C->operands())
- if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
- orderValue(Op, OM);
- // Note: we cannot cache this lookup above, since inserting into the map
- // changes the map's size, and thus affects the other IDs.
- OM.index(V);
- }
- static OrderMap orderModule(const Module &M) {
- // This needs to match the order used by ValueEnumerator::ValueEnumerator()
- // and ValueEnumerator::incorporateFunction().
- OrderMap OM;
- // In the reader, initializers of GlobalValues are set *after* all the
- // globals have been read. Rather than awkwardly modeling this behaviour
- // directly in predictValueUseListOrderImpl(), just assign IDs to
- // initializers of GlobalValues before GlobalValues themselves to model this
- // implicitly.
- for (const GlobalVariable &G : M.globals())
- if (G.hasInitializer())
- if (!isa<GlobalValue>(G.getInitializer()))
- orderValue(G.getInitializer(), OM);
- for (const GlobalAlias &A : M.aliases())
- if (!isa<GlobalValue>(A.getAliasee()))
- orderValue(A.getAliasee(), OM);
- for (const GlobalIFunc &I : M.ifuncs())
- if (!isa<GlobalValue>(I.getResolver()))
- orderValue(I.getResolver(), OM);
- for (const Function &F : M) {
- for (const Use &U : F.operands())
- if (!isa<GlobalValue>(U.get()))
- orderValue(U.get(), OM);
- }
- OM.LastGlobalConstantID = OM.size();
- // Initializers of GlobalValues are processed in
- // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather
- // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
- // by giving IDs in reverse order.
- //
- // Since GlobalValues never reference each other directly (just through
- // initializers), their relative IDs only matter for determining order of
- // uses in their initializers.
- for (const Function &F : M)
- orderValue(&F, OM);
- for (const GlobalAlias &A : M.aliases())
- orderValue(&A, OM);
- for (const GlobalIFunc &I : M.ifuncs())
- orderValue(&I, OM);
- for (const GlobalVariable &G : M.globals())
- orderValue(&G, OM);
- OM.LastGlobalValueID = OM.size();
- for (const Function &F : M) {
- if (F.isDeclaration())
- continue;
- // Here we need to match the union of ValueEnumerator::incorporateFunction()
- // and WriteFunction(). Basic blocks are implicitly declared before
- // anything else (by declaring their size).
- for (const BasicBlock &BB : F)
- orderValue(&BB, OM);
- for (const Argument &A : F.args())
- orderValue(&A, OM);
- for (const BasicBlock &BB : F)
- for (const Instruction &I : BB)
- for (const Value *Op : I.operands())
- if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
- isa<InlineAsm>(*Op))
- orderValue(Op, OM);
- for (const BasicBlock &BB : F)
- for (const Instruction &I : BB)
- orderValue(&I, OM);
- }
- return OM;
- }
- static void predictValueUseListOrderImpl(const Value *V, const Function *F,
- unsigned ID, const OrderMap &OM,
- UseListOrderStack &Stack) {
- // Predict use-list order for this one.
- using Entry = std::pair<const Use *, unsigned>;
- SmallVector<Entry, 64> List;
- for (const Use &U : V->uses())
- // Check if this user will be serialized.
- if (OM.lookup(U.getUser()).first)
- List.push_back(std::make_pair(&U, List.size()));
- if (List.size() < 2)
- // We may have lost some users.
- return;
- bool IsGlobalValue = OM.isGlobalValue(ID);
- llvm::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
- const Use *LU = L.first;
- const Use *RU = R.first;
- if (LU == RU)
- return false;
- auto LID = OM.lookup(LU->getUser()).first;
- auto RID = OM.lookup(RU->getUser()).first;
- // Global values are processed in reverse order.
- //
- // Moreover, initializers of GlobalValues are set *after* all the globals
- // have been read (despite having earlier IDs). Rather than awkwardly
- // modeling this behaviour here, orderModule() has assigned IDs to
- // initializers of GlobalValues before GlobalValues themselves.
- if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
- return LID < RID;
- // If ID is 4, then expect: 7 6 5 1 2 3.
- if (LID < RID) {
- if (RID <= ID)
- if (!IsGlobalValue) // GlobalValue uses don't get reversed.
- return true;
- return false;
- }
- if (RID < LID) {
- if (LID <= ID)
- if (!IsGlobalValue) // GlobalValue uses don't get reversed.
- return false;
- return true;
- }
- // LID and RID are equal, so we have different operands of the same user.
- // Assume operands are added in order for all instructions.
- if (LID <= ID)
- if (!IsGlobalValue) // GlobalValue uses don't get reversed.
- return LU->getOperandNo() < RU->getOperandNo();
- return LU->getOperandNo() > RU->getOperandNo();
- });
- if (std::is_sorted(
- List.begin(), List.end(),
- [](const Entry &L, const Entry &R) { return L.second < R.second; }))
- // Order is already correct.
- return;
- // Store the shuffle.
- Stack.emplace_back(V, F, List.size());
- assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
- for (size_t I = 0, E = List.size(); I != E; ++I)
- Stack.back().Shuffle[I] = List[I].second;
- }
- static void predictValueUseListOrder(const Value *V, const Function *F,
- OrderMap &OM, UseListOrderStack &Stack) {
- auto &IDPair = OM[V];
- assert(IDPair.first && "Unmapped value");
- if (IDPair.second)
- // Already predicted.
- return;
- // Do the actual prediction.
- IDPair.second = true;
- if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
- predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
- // Recursive descent into constants.
- if (const Constant *C = dyn_cast<Constant>(V))
- if (C->getNumOperands()) // Visit GlobalValues.
- for (const Value *Op : C->operands())
- if (isa<Constant>(Op)) // Visit GlobalValues.
- predictValueUseListOrder(Op, F, OM, Stack);
- }
- static UseListOrderStack predictUseListOrder(const Module &M) {
- OrderMap OM = orderModule(M);
- // Use-list orders need to be serialized after all the users have been added
- // to a value, or else the shuffles will be incomplete. Store them per
- // function in a stack.
- //
- // Aside from function order, the order of values doesn't matter much here.
- UseListOrderStack Stack;
- // We want to visit the functions backward now so we can list function-local
- // constants in the last Function they're used in. Module-level constants
- // have already been visited above.
- for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
- const Function &F = *I;
- if (F.isDeclaration())
- continue;
- for (const BasicBlock &BB : F)
- predictValueUseListOrder(&BB, &F, OM, Stack);
- for (const Argument &A : F.args())
- predictValueUseListOrder(&A, &F, OM, Stack);
- for (const BasicBlock &BB : F)
- for (const Instruction &I : BB)
- for (const Value *Op : I.operands())
- if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
- predictValueUseListOrder(Op, &F, OM, Stack);
- for (const BasicBlock &BB : F)
- for (const Instruction &I : BB)
- predictValueUseListOrder(&I, &F, OM, Stack);
- }
- // Visit globals last, since the module-level use-list block will be seen
- // before the function bodies are processed.
- for (const GlobalVariable &G : M.globals())
- predictValueUseListOrder(&G, nullptr, OM, Stack);
- for (const Function &F : M)
- predictValueUseListOrder(&F, nullptr, OM, Stack);
- for (const GlobalAlias &A : M.aliases())
- predictValueUseListOrder(&A, nullptr, OM, Stack);
- for (const GlobalIFunc &I : M.ifuncs())
- predictValueUseListOrder(&I, nullptr, OM, Stack);
- for (const GlobalVariable &G : M.globals())
- if (G.hasInitializer())
- predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
- for (const GlobalAlias &A : M.aliases())
- predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
- for (const GlobalIFunc &I : M.ifuncs())
- predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
- for (const Function &F : M) {
- for (const Use &U : F.operands())
- predictValueUseListOrder(U.get(), nullptr, OM, Stack);
- }
- return Stack;
- }
- static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
- return V.first->getType()->isIntOrIntVectorTy();
- }
- ValueEnumerator::ValueEnumerator(const Module &M,
- bool ShouldPreserveUseListOrder)
- : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
- if (ShouldPreserveUseListOrder)
- UseListOrders = predictUseListOrder(M);
- // Enumerate the global variables.
- for (const GlobalVariable &GV : M.globals())
- EnumerateValue(&GV);
- // Enumerate the functions.
- for (const Function & F : M) {
- EnumerateValue(&F);
- EnumerateAttributes(F.getAttributes());
- }
- // Enumerate the aliases.
- for (const GlobalAlias &GA : M.aliases())
- EnumerateValue(&GA);
- // Enumerate the ifuncs.
- for (const GlobalIFunc &GIF : M.ifuncs())
- EnumerateValue(&GIF);
- // Remember what is the cutoff between globalvalue's and other constants.
- unsigned FirstConstant = Values.size();
- // Enumerate the global variable initializers and attributes.
- for (const GlobalVariable &GV : M.globals()) {
- if (GV.hasInitializer())
- EnumerateValue(GV.getInitializer());
- if (GV.hasAttributes())
- EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
- }
- // Enumerate the aliasees.
- for (const GlobalAlias &GA : M.aliases())
- EnumerateValue(GA.getAliasee());
- // Enumerate the ifunc resolvers.
- for (const GlobalIFunc &GIF : M.ifuncs())
- EnumerateValue(GIF.getResolver());
- // Enumerate any optional Function data.
- for (const Function &F : M)
- for (const Use &U : F.operands())
- EnumerateValue(U.get());
- // Enumerate the metadata type.
- //
- // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
- // only encodes the metadata type when it's used as a value.
- EnumerateType(Type::getMetadataTy(M.getContext()));
- // Insert constants and metadata that are named at module level into the slot
- // pool so that the module symbol table can refer to them...
- EnumerateValueSymbolTable(M.getValueSymbolTable());
- EnumerateNamedMetadata(M);
- SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
- for (const GlobalVariable &GV : M.globals()) {
- MDs.clear();
- GV.getAllMetadata(MDs);
- for (const auto &I : MDs)
- // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
- // to write metadata to the global variable's own metadata block
- // (PR28134).
- EnumerateMetadata(nullptr, I.second);
- }
- // Enumerate types used by function bodies and argument lists.
- for (const Function &F : M) {
- for (const Argument &A : F.args())
- EnumerateType(A.getType());
- // Enumerate metadata attached to this function.
- MDs.clear();
- F.getAllMetadata(MDs);
- for (const auto &I : MDs)
- EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
- for (const BasicBlock &BB : F)
- for (const Instruction &I : BB) {
- for (const Use &Op : I.operands()) {
- auto *MD = dyn_cast<MetadataAsValue>(&Op);
- if (!MD) {
- EnumerateOperandType(Op);
- continue;
- }
- // Local metadata is enumerated during function-incorporation.
- if (isa<LocalAsMetadata>(MD->getMetadata()))
- continue;
- EnumerateMetadata(&F, MD->getMetadata());
- }
- EnumerateType(I.getType());
- if (const CallInst *CI = dyn_cast<CallInst>(&I))
- EnumerateAttributes(CI->getAttributes());
- else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I))
- EnumerateAttributes(II->getAttributes());
- // Enumerate metadata attached with this instruction.
- MDs.clear();
- I.getAllMetadataOtherThanDebugLoc(MDs);
- for (unsigned i = 0, e = MDs.size(); i != e; ++i)
- EnumerateMetadata(&F, MDs[i].second);
- // Don't enumerate the location directly -- it has a special record
- // type -- but enumerate its operands.
- if (DILocation *L = I.getDebugLoc())
- for (const Metadata *Op : L->operands())
- EnumerateMetadata(&F, Op);
- }
- }
- // Optimize constant ordering.
- OptimizeConstants(FirstConstant, Values.size());
- // Organize metadata ordering.
- organizeMetadata();
- }
- unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
- InstructionMapType::const_iterator I = InstructionMap.find(Inst);
- assert(I != InstructionMap.end() && "Instruction is not mapped!");
- return I->second;
- }
- unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
- unsigned ComdatID = Comdats.idFor(C);
- assert(ComdatID && "Comdat not found!");
- return ComdatID;
- }
- void ValueEnumerator::setInstructionID(const Instruction *I) {
- InstructionMap[I] = InstructionCount++;
- }
- unsigned ValueEnumerator::getValueID(const Value *V) const {
- if (auto *MD = dyn_cast<MetadataAsValue>(V))
- return getMetadataID(MD->getMetadata());
- ValueMapType::const_iterator I = ValueMap.find(V);
- assert(I != ValueMap.end() && "Value not in slotcalculator!");
- return I->second-1;
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
- print(dbgs(), ValueMap, "Default");
- dbgs() << '\n';
- print(dbgs(), MetadataMap, "MetaData");
- dbgs() << '\n';
- }
- #endif
- void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
- const char *Name) const {
- OS << "Map Name: " << Name << "\n";
- OS << "Size: " << Map.size() << "\n";
- for (ValueMapType::const_iterator I = Map.begin(),
- E = Map.end(); I != E; ++I) {
- const Value *V = I->first;
- if (V->hasName())
- OS << "Value: " << V->getName();
- else
- OS << "Value: [null]\n";
- V->print(errs());
- errs() << '\n';
- OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):";
- for (const Use &U : V->uses()) {
- if (&U != &*V->use_begin())
- OS << ",";
- if(U->hasName())
- OS << " " << U->getName();
- else
- OS << " [null]";
- }
- OS << "\n\n";
- }
- }
- void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
- const char *Name) const {
- OS << "Map Name: " << Name << "\n";
- OS << "Size: " << Map.size() << "\n";
- for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
- const Metadata *MD = I->first;
- OS << "Metadata: slot = " << I->second.ID << "\n";
- OS << "Metadata: function = " << I->second.F << "\n";
- MD->print(OS);
- OS << "\n";
- }
- }
- /// OptimizeConstants - Reorder constant pool for denser encoding.
- void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
- if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
- if (ShouldPreserveUseListOrder)
- // Optimizing constants makes the use-list order difficult to predict.
- // Disable it for now when trying to preserve the order.
- return;
- std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
- [this](const std::pair<const Value *, unsigned> &LHS,
- const std::pair<const Value *, unsigned> &RHS) {
- // Sort by plane.
- if (LHS.first->getType() != RHS.first->getType())
- return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
- // Then by frequency.
- return LHS.second > RHS.second;
- });
- // Ensure that integer and vector of integer constants are at the start of the
- // constant pool. This is important so that GEP structure indices come before
- // gep constant exprs.
- std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
- isIntOrIntVectorValue);
- // Rebuild the modified portion of ValueMap.
- for (; CstStart != CstEnd; ++CstStart)
- ValueMap[Values[CstStart].first] = CstStart+1;
- }
- /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
- /// table into the values table.
- void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
- for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
- VI != VE; ++VI)
- EnumerateValue(VI->getValue());
- }
- /// Insert all of the values referenced by named metadata in the specified
- /// module.
- void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
- for (const auto &I : M.named_metadata())
- EnumerateNamedMDNode(&I);
- }
- void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
- for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
- EnumerateMetadata(nullptr, MD->getOperand(i));
- }
- unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
- return F ? getValueID(F) + 1 : 0;
- }
- void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
- EnumerateMetadata(getMetadataFunctionID(F), MD);
- }
- void ValueEnumerator::EnumerateFunctionLocalMetadata(
- const Function &F, const LocalAsMetadata *Local) {
- EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
- }
- void ValueEnumerator::dropFunctionFromMetadata(
- MetadataMapType::value_type &FirstMD) {
- SmallVector<const MDNode *, 64> Worklist;
- auto push = [&Worklist](MetadataMapType::value_type &MD) {
- auto &Entry = MD.second;
- // Nothing to do if this metadata isn't tagged.
- if (!Entry.F)
- return;
- // Drop the function tag.
- Entry.F = 0;
- // If this is has an ID and is an MDNode, then its operands have entries as
- // well. We need to drop the function from them too.
- if (Entry.ID)
- if (auto *N = dyn_cast<MDNode>(MD.first))
- Worklist.push_back(N);
- };
- push(FirstMD);
- while (!Worklist.empty())
- for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
- if (!Op)
- continue;
- auto MD = MetadataMap.find(Op);
- if (MD != MetadataMap.end())
- push(*MD);
- }
- }
- void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
- // It's vital for reader efficiency that uniqued subgraphs are done in
- // post-order; it's expensive when their operands have forward references.
- // If a distinct node is referenced from a uniqued node, it'll be delayed
- // until the uniqued subgraph has been completely traversed.
- SmallVector<const MDNode *, 32> DelayedDistinctNodes;
- // Start by enumerating MD, and then work through its transitive operands in
- // post-order. This requires a depth-first search.
- SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
- if (const MDNode *N = enumerateMetadataImpl(F, MD))
- Worklist.push_back(std::make_pair(N, N->op_begin()));
- while (!Worklist.empty()) {
- const MDNode *N = Worklist.back().first;
- // Enumerate operands until we hit a new node. We need to traverse these
- // nodes' operands before visiting the rest of N's operands.
- MDNode::op_iterator I = std::find_if(
- Worklist.back().second, N->op_end(),
- [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
- if (I != N->op_end()) {
- auto *Op = cast<MDNode>(*I);
- Worklist.back().second = ++I;
- // Delay traversing Op if it's a distinct node and N is uniqued.
- if (Op->isDistinct() && !N->isDistinct())
- DelayedDistinctNodes.push_back(Op);
- else
- Worklist.push_back(std::make_pair(Op, Op->op_begin()));
- continue;
- }
- // All the operands have been visited. Now assign an ID.
- Worklist.pop_back();
- MDs.push_back(N);
- MetadataMap[N].ID = MDs.size();
- // Flush out any delayed distinct nodes; these are all the distinct nodes
- // that are leaves in last uniqued subgraph.
- if (Worklist.empty() || Worklist.back().first->isDistinct()) {
- for (const MDNode *N : DelayedDistinctNodes)
- Worklist.push_back(std::make_pair(N, N->op_begin()));
- DelayedDistinctNodes.clear();
- }
- }
- }
- const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
- if (!MD)
- return nullptr;
- assert(
- (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
- "Invalid metadata kind");
- auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
- MDIndex &Entry = Insertion.first->second;
- if (!Insertion.second) {
- // Already mapped. If F doesn't match the function tag, drop it.
- if (Entry.hasDifferentFunction(F))
- dropFunctionFromMetadata(*Insertion.first);
- return nullptr;
- }
- // Don't assign IDs to metadata nodes.
- if (auto *N = dyn_cast<MDNode>(MD))
- return N;
- // Save the metadata.
- MDs.push_back(MD);
- Entry.ID = MDs.size();
- // Enumerate the constant, if any.
- if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
- EnumerateValue(C->getValue());
- return nullptr;
- }
- /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
- /// information reachable from the metadata.
- void ValueEnumerator::EnumerateFunctionLocalMetadata(
- unsigned F, const LocalAsMetadata *Local) {
- assert(F && "Expected a function");
- // Check to see if it's already in!
- MDIndex &Index = MetadataMap[Local];
- if (Index.ID) {
- assert(Index.F == F && "Expected the same function");
- return;
- }
- MDs.push_back(Local);
- Index.F = F;
- Index.ID = MDs.size();
- EnumerateValue(Local->getValue());
- }
- static unsigned getMetadataTypeOrder(const Metadata *MD) {
- // Strings are emitted in bulk and must come first.
- if (isa<MDString>(MD))
- return 0;
- // ConstantAsMetadata doesn't reference anything. We may as well shuffle it
- // to the front since we can detect it.
- auto *N = dyn_cast<MDNode>(MD);
- if (!N)
- return 1;
- // The reader is fast forward references for distinct node operands, but slow
- // when uniqued operands are unresolved.
- return N->isDistinct() ? 2 : 3;
- }
- void ValueEnumerator::organizeMetadata() {
- assert(MetadataMap.size() == MDs.size() &&
- "Metadata map and vector out of sync");
- if (MDs.empty())
- return;
- // Copy out the index information from MetadataMap in order to choose a new
- // order.
- SmallVector<MDIndex, 64> Order;
- Order.reserve(MetadataMap.size());
- for (const Metadata *MD : MDs)
- Order.push_back(MetadataMap.lookup(MD));
- // Partition:
- // - by function, then
- // - by isa<MDString>
- // and then sort by the original/current ID. Since the IDs are guaranteed to
- // be unique, the result of std::sort will be deterministic. There's no need
- // for std::stable_sort.
- llvm::sort(Order.begin(), Order.end(), [this](MDIndex LHS, MDIndex RHS) {
- return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
- std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
- });
- // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
- // and fix up MetadataMap.
- std::vector<const Metadata *> OldMDs = std::move(MDs);
- MDs.reserve(OldMDs.size());
- for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
- auto *MD = Order[I].get(OldMDs);
- MDs.push_back(MD);
- MetadataMap[MD].ID = I + 1;
- if (isa<MDString>(MD))
- ++NumMDStrings;
- }
- // Return early if there's nothing for the functions.
- if (MDs.size() == Order.size())
- return;
- // Build the function metadata ranges.
- MDRange R;
- FunctionMDs.reserve(OldMDs.size());
- unsigned PrevF = 0;
- for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
- ++I) {
- unsigned F = Order[I].F;
- if (!PrevF) {
- PrevF = F;
- } else if (PrevF != F) {
- R.Last = FunctionMDs.size();
- std::swap(R, FunctionMDInfo[PrevF]);
- R.First = FunctionMDs.size();
- ID = MDs.size();
- PrevF = F;
- }
- auto *MD = Order[I].get(OldMDs);
- FunctionMDs.push_back(MD);
- MetadataMap[MD].ID = ++ID;
- if (isa<MDString>(MD))
- ++R.NumStrings;
- }
- R.Last = FunctionMDs.size();
- FunctionMDInfo[PrevF] = R;
- }
- void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
- NumModuleMDs = MDs.size();
- auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
- NumMDStrings = R.NumStrings;
- MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
- FunctionMDs.begin() + R.Last);
- }
- void ValueEnumerator::EnumerateValue(const Value *V) {
- assert(!V->getType()->isVoidTy() && "Can't insert void values!");
- assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
- // Check to see if it's already in!
- unsigned &ValueID = ValueMap[V];
- if (ValueID) {
- // Increment use count.
- Values[ValueID-1].second++;
- return;
- }
- if (auto *GO = dyn_cast<GlobalObject>(V))
- if (const Comdat *C = GO->getComdat())
- Comdats.insert(C);
- // Enumerate the type of this value.
- EnumerateType(V->getType());
- if (const Constant *C = dyn_cast<Constant>(V)) {
- if (isa<GlobalValue>(C)) {
- // Initializers for globals are handled explicitly elsewhere.
- } else if (C->getNumOperands()) {
- // If a constant has operands, enumerate them. This makes sure that if a
- // constant has uses (for example an array of const ints), that they are
- // inserted also.
- // We prefer to enumerate them with values before we enumerate the user
- // itself. This makes it more likely that we can avoid forward references
- // in the reader. We know that there can be no cycles in the constants
- // graph that don't go through a global variable.
- for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
- I != E; ++I)
- if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
- EnumerateValue(*I);
- // Finally, add the value. Doing this could make the ValueID reference be
- // dangling, don't reuse it.
- Values.push_back(std::make_pair(V, 1U));
- ValueMap[V] = Values.size();
- return;
- }
- }
- // Add the value.
- Values.push_back(std::make_pair(V, 1U));
- ValueID = Values.size();
- }
- void ValueEnumerator::EnumerateType(Type *Ty) {
- unsigned *TypeID = &TypeMap[Ty];
- // We've already seen this type.
- if (*TypeID)
- return;
- // If it is a non-anonymous struct, mark the type as being visited so that we
- // don't recursively visit it. This is safe because we allow forward
- // references of these in the bitcode reader.
- if (StructType *STy = dyn_cast<StructType>(Ty))
- if (!STy->isLiteral())
- *TypeID = ~0U;
- // Enumerate all of the subtypes before we enumerate this type. This ensures
- // that the type will be enumerated in an order that can be directly built.
- for (Type *SubTy : Ty->subtypes())
- EnumerateType(SubTy);
- // Refresh the TypeID pointer in case the table rehashed.
- TypeID = &TypeMap[Ty];
- // Check to see if we got the pointer another way. This can happen when
- // enumerating recursive types that hit the base case deeper than they start.
- //
- // If this is actually a struct that we are treating as forward ref'able,
- // then emit the definition now that all of its contents are available.
- if (*TypeID && *TypeID != ~0U)
- return;
- // Add this type now that its contents are all happily enumerated.
- Types.push_back(Ty);
- *TypeID = Types.size();
- }
- // Enumerate the types for the specified value. If the value is a constant,
- // walk through it, enumerating the types of the constant.
- void ValueEnumerator::EnumerateOperandType(const Value *V) {
- EnumerateType(V->getType());
- assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
- const Constant *C = dyn_cast<Constant>(V);
- if (!C)
- return;
- // If this constant is already enumerated, ignore it, we know its type must
- // be enumerated.
- if (ValueMap.count(C))
- return;
- // This constant may have operands, make sure to enumerate the types in
- // them.
- for (const Value *Op : C->operands()) {
- // Don't enumerate basic blocks here, this happens as operands to
- // blockaddress.
- if (isa<BasicBlock>(Op))
- continue;
- EnumerateOperandType(Op);
- }
- }
- void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
- if (PAL.isEmpty()) return; // null is always 0.
- // Do a lookup.
- unsigned &Entry = AttributeListMap[PAL];
- if (Entry == 0) {
- // Never saw this before, add it.
- AttributeLists.push_back(PAL);
- Entry = AttributeLists.size();
- }
- // Do lookups for all attribute groups.
- for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) {
- AttributeSet AS = PAL.getAttributes(i);
- if (!AS.hasAttributes())
- continue;
- IndexAndAttrSet Pair = {i, AS};
- unsigned &Entry = AttributeGroupMap[Pair];
- if (Entry == 0) {
- AttributeGroups.push_back(Pair);
- Entry = AttributeGroups.size();
- }
- }
- }
- void ValueEnumerator::incorporateFunction(const Function &F) {
- InstructionCount = 0;
- NumModuleValues = Values.size();
- // Add global metadata to the function block. This doesn't include
- // LocalAsMetadata.
- incorporateFunctionMetadata(F);
- // Adding function arguments to the value table.
- for (const auto &I : F.args())
- EnumerateValue(&I);
- FirstFuncConstantID = Values.size();
- // Add all function-level constants to the value table.
- for (const BasicBlock &BB : F) {
- for (const Instruction &I : BB)
- for (const Use &OI : I.operands()) {
- if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
- EnumerateValue(OI);
- }
- BasicBlocks.push_back(&BB);
- ValueMap[&BB] = BasicBlocks.size();
- }
- // Optimize the constant layout.
- OptimizeConstants(FirstFuncConstantID, Values.size());
- // Add the function's parameter attributes so they are available for use in
- // the function's instruction.
- EnumerateAttributes(F.getAttributes());
- FirstInstID = Values.size();
- SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
- // Add all of the instructions.
- for (const BasicBlock &BB : F) {
- for (const Instruction &I : BB) {
- for (const Use &OI : I.operands()) {
- if (auto *MD = dyn_cast<MetadataAsValue>(&OI))
- if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata()))
- // Enumerate metadata after the instructions they might refer to.
- FnLocalMDVector.push_back(Local);
- }
- if (!I.getType()->isVoidTy())
- EnumerateValue(&I);
- }
- }
- // Add all of the function-local metadata.
- for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
- // At this point, every local values have been incorporated, we shouldn't
- // have a metadata operand that references a value that hasn't been seen.
- assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
- "Missing value for metadata operand");
- EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
- }
- }
- void ValueEnumerator::purgeFunction() {
- /// Remove purged values from the ValueMap.
- for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
- ValueMap.erase(Values[i].first);
- for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
- MetadataMap.erase(MDs[i]);
- for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
- ValueMap.erase(BasicBlocks[i]);
- Values.resize(NumModuleValues);
- MDs.resize(NumModuleMDs);
- BasicBlocks.clear();
- NumMDStrings = 0;
- }
- static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
- DenseMap<const BasicBlock*, unsigned> &IDMap) {
- unsigned Counter = 0;
- for (const BasicBlock &BB : *F)
- IDMap[&BB] = ++Counter;
- }
- /// getGlobalBasicBlockID - This returns the function-specific ID for the
- /// specified basic block. This is relatively expensive information, so it
- /// should only be used by rare constructs such as address-of-label.
- unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
- unsigned &Idx = GlobalBasicBlockIDs[BB];
- if (Idx != 0)
- return Idx-1;
- IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
- return getGlobalBasicBlockID(BB);
- }
- uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
- return Log2_32_Ceil(getTypes().size() + 1);
- }
|